Program Monitoring Tools For
Parallel Processing With
Large-Grain Data Flow Techniques

Robert G. Babb IT
David C. DiNucct
Lise Store

Oregon Graduate Institute
Department of Computer Science
and Engineering
19600 N.W. von Neumann Drive
Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 87-017

PROGRAM MONITORING TOOLS FOR
PARALLEL PROCESSING WITH
LARGE-GRAIN DATA FLOW TECHNIQUES

Final Report for Los Alamos National Laboratory
Computer Research and Applications Division
under

Contract 9-Z34-P3915-1 Modification No. 2

Robert. G. Babb I1
David C. DiNucei
Lise Store

Department of Computer Science and Engineering
Oregon Graduate Center

Beaverton, Oregon

8 October 1986

CONTENTS

1. Initial Requirements Definition
1.1. Software
1.2. Hardware

2. Acquisition of Tools
2.1. Software
2.2. Hardware

3. Initial Specification Ideas
3.1 Display Form"
1.1 LGDF network
1.2 LGDF subnetwork

3 Display Actions
2.1 Trace Actions
.2 User Actions
3 Per formance metrics and meters

.3.1 Relative display speed(delta)
.3.2 Parallelism (Process_set)
.3.3 Processor under-utilization (Processor)

W wwwwwvyww
N

4., Practical Considerations

5. Design
5.1 Subnetwork Expansion Algorithm
5.2 BUBLIB - Higher level network display routines
5.3 External data structures

6. Implementation Experience
6.1. BUBLIB - Dealing within GKS
6.2. Program Development Experiences

7. Future Possibilities/Suggestions
7.1. LGDF Monitor - Conclusions and Recommendations

7.2. A Multi-level Debugger/Testbed

8. Listings

1. Initial Requirements Definition

1.1. Software

The purpose of this research project was to define and implement a graph-
ics monitor to aid in the debugging and analysis of Large-Grain Data Flow
(LGDF) programs. Previously, a Los Alamos gamma ray transport benchmark
code (GAMTEB) was parallelized for the Denelcor HEP using the prototype

LGDF Toolset!. Our goal was to design and prototype a parallel program ani-
mation system that would give LGDF programmers "intuition” about how an
LGDF computation, such as the LGDF version of GAMTEB, was progressing.
As a secondary goal, we wanted the tool to aid in controlled very high level
debugging of large parallel application codes.

Our approach was to enhance the LGDF macros so that they would option-
ally generate sufficient trace data to model the action of the program running
on a multi-processing system. This file of trace data would be used by the mon-
itor program (running on an IBM PC) to display parallel process initiations, and
data flow events in a graphic form.

Although the monitor was to be capable of monitoring GAMTEB program,
the monitor would be constructed to allow other LGDF programs to be modeled
by merely re-macro expanding with the program animation option turned on.

The monitoring system was to be as interactive as possible. This suggested
that the monitor could run in real-time—i.e., while the program being moni-
tored was running on the host machine.

The LGDF program would be shown on the monitor as a data flow graph
consisting of nodes (processes) and edges (datapaths). Processes would change
color with execution state (green=running, red=sleeping, purple=terminated)
and datapaths would change color with state of empty/full flag (red=empty,
green=full).

A "speedometer” would show the speed of the display relative to the speed
the program would have been running without display. Provisions would be
made for the user to set the speed at some fixed value so that relative speed of
display would reflect that of an actual execution.

Provisions for hierarchical expansion of the network display were to be con-
sidered; i.e. perhaps the user could, using a mouse, dynamically expand a bub-
ble representing a subnetwork into its components and later collapse the sub-
network components back into a single bubble representing the subnetwork.

IR. G. Babb II and L. Storc, "Parallel Processing on the Denelcor HEP with Large-Grain
Data Flow Techniques”, Final Report for Los Alamos National Laboratory, Computer Research
and Applications Division, 30 April 1985. Also available as Oregon Graduate Center Technical
Report CS/E 85-010, May 1985.

Graphics would be performed with an established standard, preferably
GKS to facilitate future development efforts and portability.

1.2. Hardware

An IBM PC or AT compatible system was to be used to run the monitor.
The parallel host system was not to be restricted to any one parallel processor
system, but our initial implementation could be performed using the LGDF
Toolset in simulated parallel mode on Oregon Graduate Center’s VAX 11/780.

2. Acquisition of Tools

2.1. Software

The compiler used was Microsoft Fortran 3.3. Code was linked with the
IBM Linker 2.3, since the /X parameter to increase segment size was needed.
A library package called No-limit Fortran was acquired to facilitate communi-
cation between the host system and monitor (especially in the event that the
monitor would run in real-time), Graphics were to be developed following the
Graphical Kernel System (GKS) standard for graphics. For this we purchased
the GSS-Toolkit Kernel System #1125 from Graphic Software Systems, which
provides the capabilities of Level 2b of the ANSI GKS Specification. GSS-
Device Drivers, providing a standard VDI interface, were also used. Unfor-
tunately, initially, there was a bug in the GSS software that precluded any use
of a mouse. After several months, a workaround CGI driver was delivered by
GSS which restored the necessary aspects of mouse function.

2.2. Hardware

We used an IBM PC-XT with 512K memory and 10Mbyte hard disk run-
ning DOS 3.1. To support the GKS kernel, we added an Enhanced Graphics
Adaptor (EGA) card, enhanced color monitor and Microsoft Mouse.

3. Initial Specification Ideas

To avoid problems related to retrofitting an existing project with newly
conceived features, we started the project with a brainstorming phase. We
could then insure a modular and well thought out design, as well as the careful
selection of those features which were central to the performance of the project
to implement and test first.

3.1. Display Form

3.1.1. LGDF network

An LGDF network consists of a directed graph where each node is a circle
and each arc is a line. Each node has a unique name of the form pnn and each
data arc has a unique name of the form dnn, where nn is a two-digit integer.
Arrows on arcs may be of three types: clearable (a solid triangle), non-clearable

(an open triangle) and side-effect (an open V shape). Arcs can either end at a
node’s circumference or proceed through the node with a dashed or solid line, at
which point it may or may not continue on to another node. If the arc does
continue to another node, the continuation arc has the same name as the origi-
nal arc, but with a one letter suffix. Arcs can contain branches, in which case
each branch has the same name as the original arc. An arc cannot pass
through a node unless the node reads or writes the arc. (Therefore, arc paths
must not cross over or under nodes just to get from here to there.} An arc may
cross over another arc.

3.1.2. LGDF subnetwork

A node may represent a single program or a subnetwork. In the latter
case, all arcs (and only those arcs) entering the node must be represented in the
subnetwork. A subnetwork has the same form as a network, as described
above. This nesting can occur to any level. When a subnet is expanded (i.e. its
component nodes and arcs are displayed) within the context of its supernet, it is
enclosed within a rectangular border (perhaps with rounded corners).

3.2. Display Actions

The display of the network on the graphics screen can be affected by Trace
Actions read from the trace stream or by User Actions entered from the key-
board or mouse.

3.2.1. Trace Actions

Trace actions are the affect of reading a trace record from a trace file or
from a communication port. There is not necessarily a one-to-one correspon-
dence between trace records and trace actions. '

Trace records are of the form:
#XpNNQsNNANNQeNNNN . NNNNNNwNNNN . NNNNNN

where
X = s - set
c -~ clear
t - terminate
w - wake up
n - nap

Z
"

digit (after p = process number

= state number

= data arc number
elapsed cpu time,
= wall clock time,
Q = qualifier (space or lcase letter)

£ 000

in seconc
in seconds

Trace actions are as follows:

If X="'w" or 'n' or 't'
Case X of
'w': COLOR = green
SUBNET = (pNN is within one or more (nested)

subnets)

n': COLOR = red
SUBNET = (pNN is the only green bubble within one
or more (nested) subnets)
't': COLOR = purple
SUBNET = (pNN is the only non-purple bubble within
one or more (nested) subnets)
endcase
If SUBNET
Color of subnet circle turns COLOR
Color of subnet rectangle turns light COLOR
end if
If Q is blank
Color of circle associated with pNN turns COLOR

else
Color of slice Q of circle associated with pNN turns COLC
end if
Display state sNN for node pNNQ
else if X = 's'
Color of arc dANNQ turns green
else (if X = 'c')
Color of arc dANNQ turns red
end 1if

A trace action will not necessarily update the display when a trace record
is read, because of either the display speed or the display format. Below is a
list of cases to be checked after reading a trace record describing whether a
screen update is to be performed and when. In all cases, whether or not a
screen update is performed, the color and state of all entities must be updated
internally with each trace record.

In the following, "Time reqd for screen update” is constant and approxi-
mate, and more information on "Pause” and “Speedometer” can be found below
in "Performance measures and metrics” under "Relative display speed". (Note:
to best facilitate this, it might be best to read a trace record, then check for
any user actions, then perform the trace action and then read the next trace
record.)

If no affected entity is currently displayed
(No screen update)
Increment Records_Skipped
else if (speed == 0)
Perform screen update.
Speedometer = (w_time - st_w_time) * 100
/ (r_time - st_r_time)
else
Pause = (w_time - st_w_time) * 100 / speed
- (r_time - st_r_time)
If Pause < time reqd for screen update
(No screen update)
Increment Records_Skipped
else
I1f Pause - 1 second > time reqd for screen update
Wait for Pause - 1 seconds
end if
Perform screen update
end if
end if

3.2.2. User Actions

User actions are from the keyboard or mouse, and affect the format of the
display. Whenever the display is changed in this way, its colors are updated to
reflect their state had the display been in this format since the beginning of the
trace.

3.2.2.1. Expand a subnet

Cause:
(1) Pick of "expand” menu item with the mouse
(2) Pick of circle which represents a subnet

Effect:
Trace halts. Display is redrawn with the picked circle enlarged to a rec-
tangle containing the subnetwork (one level). All nodes previously on
screen will remain on screen. All circles will have equal radii. (If neces-
sary, circle radii will be smaller after redraw to accommodate new subnet-
work).

3.2.2.2. Collapse a subnet

Cause:
(1) Pick of “collapse” menu item
(2) Pick of empty spot within an expanded subnet rectangle

Effect:
Trace halts. Display is redrawn with the picked subnetwork represented as

circle. All nodes (outside the rectangle boundaries) previously on screen
will remain on screen. All circles will have equal radii.

3.2.2.3. Restrict the display (ZOOMIN)

Cause:
(1) Pick of "zoomin" menu item
(2) Definition of rectangle to restrict display to
Effect:
Trace halts. Display is redrawn (and possibly enlarged) with only those
nodes within the defined rectangle represented.
Notes:

Rectangle borders must be along grid lines. It may not be possible to split
nodes or subnetworks.

3.2.2.4. Unrestrict the display (ZOOMOUT)

Cause:
(1) Pick of “zoomout" menu item

Effect:

Trace halts. Display is redrawn with all nodes present at time of
corresponding zoomin.

Notes:
Should this be implemented at only one level, or as a stack?

3.2.2.5. Halt trace temporarily (STOP)

Cause:
(1) Pick of "stop/go" menu item while trace is active

Effect:
Trace halts (i.e. reading of trace records halts and therefore all trace
actions halt).

3.2.2.8. Start or Continue trace (GO)

Cause:
(1) Pick of "stop/go" menu item while trace is stopped

Effect:
Trace starts where it was when last halt occurred. Start time and

3.2.2.7. Perform single visible trace step (NEXT)

Cause:
(1) Pick of "Single step” menu item

Effect:
Trace halts. Trace records are then read and performed until one of them
affects an arc or node that is (at least partially) displayed on the screen.

7

After that trace action is performed, the trace halts again and the "number
of trace records skipped” is updated on the screen.

3.2.2.8. Control trace speed

Effect:
Trace speed is set to desired figure.

3.2.2.9. Abort trace (KILL)

Effect:
Trace program terminates.

3.2.2.10. Set/Clear Breakpoint on process or datapath

Cause:
(1) Pick of "Set/clear Breakpoint” menu item
(2) Pick of a process or datapath

Effect:
Trace halts. If breakpoint already present on datapath/process, it is
cleared, else one is set. A breakpoint has the affect of halting the monitor
whenever the state of the datapath or process containing the breakpoint
changes.

3.2.2.11. Clear all Breakpoints

Cause:
(1) Pick of "Clear All Breakpoints" menu item

Effect:
Trace halts. All breakpoints already present on all datapaths/processes
are cleared.

3.3. Performance metrics and meters

Following is an incomplete list of performance metrics that could be
included in the form of meters (digitally, or graphically in the form of bar
charts or pie charts). These will be purely experimental in nature, since perfor-
mance monitoring is not a primary goal of this project.

3.3.1. Relative display speed(delta)

Measure of:
Speed of display relative to speed of original program execution measured
over the last "delta” trace records, giving an ’average relative speed’ over a
short or long period depending on the value of "delta”.
Proposed Equation
(w_time - st_w_time) / (r_time - st_r_time)
where
"w_time" is the wall clock time from last trace record

“r_time" is the real wall clock time when last trace record was read,

"delta" is some small integer constant (3? 5?7 10?)

“st_w_time" is the wall clock time from the trace record *-delta,
where * is the ordinal of the last trace record read

"st_r_time" is the real wall clock time when trace record *-delta was
read

Note:
This measure seems to only make sense back to the last "GO", since real
wall clock time continues through a HALT while trace record wall clock
time stops. Therefore, if *-delta addresses a record before the last GO, it
could either be taken to be the record read after the last GO, or else the
real wall clock time which has elapsed between intervening HALTs and
GOs could be subtracted from the denominator.

3.3.2. Parallelism(Process_set)

Measure of:
Amount of parallelism achieved within the "Process_set".

Proposed Equation:
(Total wall clock execution time for all processes) / (Wall clock from last
trace record - wall clock from first trace record - wall clock time while all
processes idle)

Note:

If all processes in the Process set are on separate processors, this is a meas-
ure of speedup, since it is ratio of the time that the process would have
taken on one processor to the time it took on the many processors. If the
processes in the Process set are all on a single processor, this is a measure
of contention among processes for CPU time. To get a speedup measure
when processes/processors > 1, perhaps a similar metric could be devised
using CPU time measures.

3.3.3. Processor under-utilization(Processor)

Measure of:
Percent of time a Processor is idle.

4. Practical Considerations

In our initial thinking, the monitor was to run as the host program was
running, requiring bidirectional data transfer between the monitor and host sys-
tems. Monitor to host data would include the trace stream and any normal
program output, while host to monitor would consist of flow control and
interactive program input.

This design suffered from problems arising from the flow control. In order
for the speedometer to remain accurate, the actual speed execution of the host
program could not be affected by the speed of the display, meaning that a large

output buffer had to be maintained for the trace between the host program and
the display system - larger than the Unix default of 512 characters. Although
there are probably ways to handle this on Unix and other systems (e.g. by hav-
ing the trace go to a file on the VAX and then having a separate process such
as "tail" spool the file to the monitor), this is very system dependent and
offers little advantage over simply creating a trace file which is moved over to
the monitor after the trace is complete.

5. Design

5.1. Subnetwork Expansion Algorithm

A subnetwork expansion/collapse algorithm is not as trivial as it may first
seem if it is to have certain desirable properties. Among these is that all bub-
bles (process nodes) on the screen should be of a uniform size, and the network
should in some nice sense fill the area available on the screen. Furthermore,
datapaths should not be made to cross or uncross because of an
expansion/collapse, and datapaths should never cross over or under bubbles.

It initially seemed as though GKS could help us out by allowing us to
redefine coordinate systems or by performing certain transformations for us.
Unfortunately, these capabilities turned out to be of little use.

Our solution was to enclose each bubble in a square zone exactly 10 units
wide by 10 units high to enclose it. (The display area is rescaled as necessary
to accommodate all zones.) All datapaths arriving or departing from the bubble
would meet the zone and then proceed radially to the bubble. Each bubble
would keep a record of where datapaths impinged on its zone; i.e. the side (top,
bottom, left, right) and the relative point along the side. In addition, zones
were not allowed to overlap, and datapaths were not allowed to pass through
zones.

The detail level of each subnetwork was defined the same way, with the
entire subnetwork defined within a rectangle (again, scaled to accommodate all
of the bubble zones). Any datapath entering or leaving the subnetwork would
meet this external rectangle.

With this basis, expansion and collapse of subnetworks can be performed
dealing only with the rectangular zones, with the bubbles re-added (with their
centers coinciding with the rectangles’ centers) after the mapping has been per-
formed. This means that after the mapping, the restriction is that the zones
must still be at least 10 by 10 (to hold the bubbles again).

The algorithm works by checking to see if the detail level network will fit
into the zone of the subnetwork bubble it is replacing, one dimension at a time.
If the detail level is smaller than the zone, then the subnetwork is stretched
along that dimension to fit in the zone. If the detail level is larger than the
zone (which is usually the case), the zone is stretched to accommodate the
detail level. As the zone is stretched, all points adjacent to the zone along that

10

dimension (i.e. either all of the points directly above and below the zone or all
the points directly to the left and right of the zone) are moved accordingly to
preserve the correspondence between them and the points on the zone edge.

After the stretching is performed, the detail level is moved into the zone
and the screen is rescaled if necessary to accommodate the new network. The
network is re-drawn with each bubble placed at the center of it’s corresponding
zone.

The "stretching” mentioned above may be non-linear depending on the past
history of stretches in the network, but it can always be partitioned into linear
stretches.

5.2. BUBLIB - Higher level network display routines

To avoid being dependent on any given graphics package or terminal, and
to avoid carrying (sometimes voluminous) calls to GKS within our higher level
routines, we designed this intermediate level of graphics routines to do most of
the dirty work of network display and manipulation. These routines were
designed in light of both the capabilities of generally available graphics pack-
ages (e.g. segments and primitives) and the needs of our LGDF monitor.

SUBROUTINE INITBB(GRIDX, GRIDY, STATUS)
INTEGER GRIDX, GRIDY, STATUS

Undefines all segments, sets scaling factor for all further calls, such that
there are at least GRIDX units horizontally and GRIDY units vertically, with
the lower left hand corner coordinate (0, 0) and aspect ratio of 1. Clears screen
to empty, except for control menu. STATUS is returned zero if all ok.

SUBROUTINE DEFBUB (CENTRX, CENTRY, SLICES, BUBNAM, BUBIDN, STATUS)
REAL CENTRX, CENTRY

INTEGER SLICES, BUBIDN, STATUS

CHARACTER BUBNAM*3

Defines a bubble with given center at (CENTRX, CENTRY). Radius of
bubble will be 7 units. Bubble will be divided into SLICES equal pie-slices.
Bubble will be labeled with BUBNAM (which may be able to be defined as a
separate segment - see DRWARC with SLICE=0). Returns BUBIDN to be used
in actions on bubble in further calls. STATUS is returned zero if all ok. No
drawing will occur.

SUBROUTINE DEFARC (XYPATH, ARCIDN, STATUS)
REAL XYPATH (2, *)
INTEGER ARCIDN, STATUS

11

Defines an arc with path described in XYPATH. In general, XYPATH(1, I)
is an x coordinate, XYPATH(2, I) a y coordinate. X and y coordinates are
always positive. If XYPATH(1, I) is -1, it repre sents the end of one branch of
the path, with other branches to follow; If -2, it represents the end of the path
definition. In either case, XYPATH(2, I) represents the type of arrowhead from
the following list:

| XYPATH(2, 1 Type of arrowhead
0 No arrowhead
1 Open arrow
2 Closed arrow
3 V arrow

Arrowhead should be 2 units in length, and should point in approximately
the right direction with the point at the last coordinate in the path.

No drawing will occur. ARCIDN returned to identify arc in subsequent
calls. STATUS is returned zero if all ok.

SUBROUTINE DRWBUB (BUBIDN, SLICE, XSTATE, STATUS)
INTEGER BUBIDN, XSTATE, STATUS

Draw slice# SLICE of bubble with id BUBIDN on screen, with execution
state = XSTATE as shown:

XSTATE Execution state
1 Waiting
2 Executing
3 Done (Stopped)

If bubble is unsliced, SLICE will be equal to 1. If SLICE = 0, just the outline
(whatever that means - maybe nothing) and bubble name will be drawn. (If
bubbles are implemented such that outlines and names are re-drawn whenever
the state changes, a call with SLICE=0 may result in no action.) The execution
state will be reflected as a color. If slice is already on the screen, it will be
redrawn.

SUBROUTINE DRWARC (ARCIDN, MTFULL, STATUS)
INTEGER ARCIDN, MTEULL, STATUS

Draw arc with id ARCIDN on screen with empty-full state = MTFULL as
shown:

12

MTFULL Emgtz-Ful] state
1 Empty
2 Full

The empty-full state will be reflected as a color. If arc is already on the
screen, it will be redrawn.

SUBROUTINE DSPSTT (CENTRX, CENTRY, LABEL, STATUS)
INTEGER CENTRX, CENTRY, STATUS
CHARACTER LABEL*3

Label bubble, whose center is at CENTRX, CENTRY, with LABEL.

This routine will be used to display a bubble’s internal state changes.

SUBROUTINE ARWOFF (DIFFX, DIFFY, OFF1X, OFF1lY, OFF2X, OFF2Y)
REAL DIFFX, DIFEY, OFF1X, OFF1lY, OFF2X, OFF2Y

Computes two points for back of arrow head relative to point, (OFF1X,
OFF1Y) and (OFF2X, OFF2Y), given the differences in X coordinates and in Y
coordinates for the last two points on the arc; i.e. if the point before the end of
the arc was (125, 7) and the point at the end of the arc (the point of the arrow)
is (170, 5), then DIFFX should be (170 - 125) = 45 and DIFFY = (5 - 7) =-2.

5.3. External data structures

Since this monitor was to be general enough to any LGDF program, it was
logical to store the general structure of the data flow graph being monitored
outside of the program in a file which, perhaps someday, would be built by
another program. This program would act as a graphics editor for a user to
create the graphs and subgraphs to be shown in the monitor. It is easy to con-
ceive that this program would be capable of collecting all of the data currently
held in the LGDF "wirelist”" file, since most of this information is already
present in the data flow graph.

The GKS system offered us one choice for external representation of the
data flow graph in the form of a metafile. A metafile is a file which has a for-
mat known to GKS, and which can hold GKS segments. Although we intended
to use segments for our display, our datapath segments had to be redefined
every time a transformation (such as expand or collapse) took place on the
display, and we needed the component coordinates of the segments available
within the program to perform these transformations. This was not possible if
using a metafile as our only form of data transfer between the graphics editor
and the monitor program.

13

We therefore devised our own file format for such a file. This would also
facilitate the extension which would have the graphics monitor accept all data
currently present in the wirelist.

The file format is:

BUBBLE pp nn xxxxxXX YYYYYY SS wwwwww hhhhhh
ARC ddg nn o}
ARCPNT ddg nn XxXxxxxXxX YYYYYY

where
BUBBLE records describe bubbles and for networks
ARC records describe arcs
ARCPNT records describe points on arc and arrows at terminals
PP process number for the bubble
nn network the bubble resides within
XXXXXX x coordinate of the bubble or arcpoint within nn
YYyyyy Y coordinate of the bubble or arcpoint within nn
ss number of slices in bubble
wwwwww width of network when expanded
hhhhhh height of network when expanded
dd arc number for arc
q arc qualifier (one letter or space)
o Flag (t/f) for whether arc has an origin in nn

Restrictions

(1) All ARC records having identical nn fields must appear together (except
for intervening ARCPNT records)

(2) All ARCPNT records for a particular arc must immediately follow the
ARC record for the same arc

(3) The BUBBLE record for a network must appear before the the BUBBLE
records for bubbles within that network and before the ARC records for
arcs within that network

6. Implementation Experience

6.1. BUBLIB - Dealing within GKS

The monitor program must have available some form of specification of the
program graphics. Within GKS, the simplest means of specifying a graphic
image such as a bubble or arc is as a segment. A segment is opened, GKS rou-
tines are called to insert the appropriate graphical information, and the seg-
ment is closed. High level routines are then available to manipulate the seg-
ment. However, segments restrict further program animation graphic activity
essential to the program monitor. For example, once a segment is created, its
color cannot be changed.

14

The current implementation of the monitor bypasses this problem by creat-
ing multiple segments for each LGDF object. This is done in an initialization
step. The (currently hardwired) interface file is processed, and a segments for
each possible state (color) of each bubble and arc are created. The high level
GKS segment display routines are then used during the actual monitoring
phase. If, for example, a bubble is to be turned from green to red, the green
segment of that bubble is erased and the red segment drawn. The reason for
the erasure is to allow selective screen update. The GKS system allows setting
of update modes and segment priorities, and these can be combined to control
the time of screen updates. However, when an update is forced within GKS,
the screen is cleared and all visible segments are redrawn. This is totally
infeasible due to the slowness of redraw. A sample set of trace actions is also
hardwired into the monitor code.

An alternative to using segments is to write routines to mimic GKS seg-
ment storage and display. Arcs and bubbles would be preprocessed in the setup
phase of the monitor. A data structure would be associated with each arc and
bubble to hold all precomputable graphical data, in order to minimize the
amount of computation to be done and the number of GKS routines to be
called at display time. It is conceivable that this approach might result in fas-
ter execution than the current implementation, but this has not been tested
since it is unlikely and development would be lengthy.

6.2. Program Development Experiences

Program development on an IBM PC/XT was unpleasant at best. Though
compilation was tolerably fast, linking was intolerably slow. The GKS kernel is
quite large. A 500-statement program with 130 subroutine calls {most to GKS
routines) took half an hour to link, and linking time increases with program
size. 500 lines is small compared to the code size of a full-blown monitor. In
addition, the experimental nature of the code (we were not adapting any pre-
existing code), the poor documentation of some of the graphics library and slow
graphics display hardware make the "let’s try it and see" (frequent
write /debug /test cycles) method of programming a necessity. The long linking
time mades this process agonizing.

7. Future Possibilities /Suggestions

7.1. LGDF Monitor - Conclusions and Recommendations

The resulting demonstration software is SLOW, probably too slow to be of
any practical use. This seemed to be a result of two aspects of the GKS sys-
tem;

(1) It uses abundant floating point arithmetic, even though we could have
supplied all points as integer values without much problem.

15

(2) There was no straightforward way of changing colors without redrawing
the entire figure. Even then, it was necessary (when using segments) to
erase the old figure before redrawing the new one, which took even more
time, especially with the bubbles.

It is possible that upgrading to a faster machine (PC/AT with a math
coprocessor) would help some. However, the mismatch between our application
and the functions offered by GKS seemed to be the primary problem.

Resources for the project ran out before we were able to try out some por-
tions of the design. The poor performance of the PC as a development system
was a major cause of this.

A more useful configuration for implementation of a system such as this
would be to have a mainframe doing most of the dirty work with a smart
graphics terminal performing the monitoring. Perhaps, under this condition,
GKS could run on the mainframe at a reasonable rate and development would
also go smoother. If a personal computer configuration is desired, lower-level
graphics should be considered, and perhaps a computer with more of a graphics
orientation such as the Amiga, Apple Ilgs, or Macintosh.

7.2. A Multi-level Debugger /Testbed

This project certainly opened our eyes to some possible extensions in the
realm of real time monitoring of parallel programs. Perhaps the most intriguing
of these became apparent while considering the kinds of interaction the user
could have with the program while it was running.

In most parallel programming environments, the relative timing of the
separate processes can affect the results of the program, yielding the nondeter-
ministic behavior which these programs have become infamous for. Adding
tracing to such programs can affect these relative timings, thereby frequently
aflecting the results of the program. To minimize this problem, it is important
that tracing be as unobtrusive as possible.

An interesting technique that might be used with such a program would be
to trace only enough of the execution so that it could be reconstructed with the
same relative timings at a later time. This reconstructed execution could then
be slowed down or monitored in any more detailed way desired, as long as the
important relative timings occur the same way as they did during the actual
execution. Although the trace itself would contain very little information, the
trace together with the original program and original input data could yield a
wealth of information.

It may not even be necessary for the reconstruction to take place on the
same hardware that originally ran the program. A program that was originally
run on a parallel processor could be recreated under a multiprocessing operating
system, like Unix, as long as the compiler and machine arithmetic were similar.
The tool performing the reconstruction could, in fact, allow the user to call a

18

standard interactive debugger (such as dbx on Unix) to allow the user to set
breakpoints and for monitor values during the execution.

The LGDF programming model provides an excellent base for such a sys-
tem. Since LGDF programs have very few opportunities for timing to modify
results, there are very few places where tracing needs to occur. During execu-
tion of the reconstruction, the user could watch the execution from a high level
monitor, such as the one we have developed here, until the program enters a
particularly important phase, at which time the user could query the data
available on data paths directly from this high level or could opt to invoke the
standard interactive debugger.

In fact, an LGDF program is so stable with respect to relative timing that
it may be desirable in some cases to skip the tracing phase and simply run the
monitored program in a testbed environment, where the user could dictate when
processes should be held from executing. In addition, the user may want to
manually deposit data on a datapath or modify a variable within a program.
The tool controlling these interactions could possibly warn the user when the
program acts in a non-deterministic way (i.e. when there is a choice of two
processes that can start, both of which access a common data path).

8. Listings

17

Oct 7 14:17 1986 /ogc/students/storcl/lanl/gss/lgdf.def Page 1

}OQQOU‘!#&NH

integer
integer

C
< ***x COLORS

BACKGR , FOREGR, RED, GREEN
BLUE, YELLOW, ORANGE, VIOLET

#+ DEFINES

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

integer
integer

integer
integer

BUNDLED, INDIVIDUAL

WC,NDC
FHOLLOW, FSOLID, FPATTERN, FHATCH
SOLID, DASHED, DOTTED

POINT, PLUS, ASTERISK, OMARK
NONE, OK, NOPICK
POSTPONE , PERF ORM

DETECTABLE

HIGHLIGHT

INVISIBLE, VISIBLE

HNORMAL , HLEFT, HCENTER , HRIGHT
VNORMAL, VTOP, VCAP, VHALF , VBASE , VBOTTOM
RIGHT,LEFT,UP, DOWN
STRING, CHAR, STROKE

HIGHER, LOWER

BAR,ARC,PIE, CIRCLE

C
< **x+ DEVICES

wssdev, crtdev, joydev
gmodev, gnidev

C
*** FONTS

FONTO,FONT1,FONT2,FONT3
FONT4,FONT5, FONT6

Oct 7 13:35 1986 /Jogc/students/storcl/lanl/gss/lgdf.dat Page 1

i C

2 g **% COLORS

3

4 data BACKGR,FOREGR,RED,GREEN /0,1,2,3/

g data BLUE, YELLOW, ORANGE,VIOLET /4,5,6.,7/

7

8 C

9 C *+** DEFINES
100 C
11 data BUNDLED, INDIVIDUAL /0,1/
12 data WC,NDC /0,1/
13 data FHOLLOW, FSOLID, FPATTERN,FHATCH /0,1,2,3/
14 data SOLID,DASHED,DOTTED /1,2,3/
15 data POINT,PLUS,ASTERISK,OMARK /1,2,3,4/
16 data NONE,OK,NOPICK /0,1,2/
17 data POSTPONE,PERFORM /0,1/

18 data DETECTABLE /1/

19 data HIGHLIGHT /1/

20 data INVISIBLE,VISIBLE /0,1/

21 data HNORMAL,HLEFT,HCENTER,HRIGHT /0,1,2,63/
22 data VNORMAL, VTOP,VCAP, VHALF, VBASE, VBOTTOM /0,1,2,3,4,5/
23 data RIGHT,LEFT,UP,DOWN /0,1,2,3/

24 data STRING,CHAR, STROKE /0,1,2/

25 data HIGHER,LOWER /0,1/

26 data BAR,ARC,PIE,CIRCLE /-1,-2,-3,-4/

27 C

28 C *** DEVICES

29 C

30 data wssdev,crtdev, joydev /0,1,2/

31 data gmodev,gmidev /4,5/

32

33 C

34 C *** FONTS

5 C

36 data FONTO,FONT1,6FONT2, FONT3 /1,-101,-102,-103/
37 data FONT4.FONTS,FONT6 /-104,-105,-106/

Oct 8 10:54 1986 Jogc/students/storcl/lanl/lgdf.for Page 1

VONONb W

$STORAGE : 2
program lgdf

c*t***t***t*t***tt****t*t***t*ttt*tt*****tt***i**t*tttttt*****tit**tt*t**

(o] *

(o] DECLARATIONS *
*

C*******ttttt**t*t*t****t*****t****tt*t****t****t*t*************tt*tt****

c

c GKS constants

$INCLUDE: '1gdf.def’

c DO NOT REMOVE THE LINE BELOW!!! (Used by GKS for scratch memory)
integer*4 size, intary (5000)

c polyline aspect source flags
integer plasf(13)

coordinates used in transformation computations:
maximum device / normalized device
real xdcmax, ydcmax, xndc, yndc

0o

values used in computing segment names:

nums%s is the current number of segments in existence, sgstrt is

the last segment created for the control portion of the display

control section: 0 through sgstrt / 1lgdf graph: sgstrt+l to numsgs
integer numsgs, sgstrt

(oo NeN¢!

c VARIABLES FOR TEST STUFEF:

c centers, number of slices, id numbers, and names of the 7 bubbles
real center(?,zg
integer slices (7),bubidns(7)
character*3 bubnamsé7)

c specification ints and id numbers of the 14 arcs
real arcs(2,59)
integer arcidns(14)

c standard array for passing an arc to the defarc subroutine
real xypath(Z,SO{

c catches arc and bubble ids returned by defining subroutines
integer idn

c catches status returned by defining subroutines
integer status

c plenty of loop indices for doing test runs

integer 1i,Jj,k

c**t********t*t**********tti*ﬁ*t*********************t***t***i*t******i**
C *
c COMMON BLOCKS *

[o] *
c*t****tt*tt*t*t******t****tit*****t********t**t****ttt****t***t*t***i***

c
c DO NOT REMOVE THE LINE BELOW!!! (Used by GKS for scratch memory)
common /gracom/ size, intary

common /dcmax/ xdcmax, ydcmax, xndc, yndc

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 2

57
58
59

112

common /segs/ numsgs, sgstrt

c*****t**t*t****ﬁtt***t*ﬁ*i*t*tt**************************Q*****t**t*****
[od *
c DATA STATEMENTS *

*
cttii**it*ti***tit**ﬁi****ﬁ****iitt*i****t*tit****it*t*i*tti*************

C
$INCLUDE: '1gdf.dat’
data plasf /0,0,1,1,1,1,1,1,1,1,1,1,1/

c DATA FOR TEST STUEE:
c centers of circles (all x's then all y's)

c pl2 pl3 14 pl6 pl7 pl8 ploO
data center /14.0,35.0,105.0,42.0,63.0,84.0,14.0,
* 59.0,59.0, 59.0,35.0,35.0,35.0,13. 0/
c number of slices in gach gircle
(] 1l 1 14 16 17 18 10
data slices / p1, pl, p 1, p 1, p 6, pl, p 1/
c names of the bubbles
data bubnams /'pl2', 'pl3’, 'pl4’, 'plé6’', 'p17', 'p18’', 'pl0'/
c specification polnts for arcs (p y) pairs)
data arcs /
c arc#l dol
1.0,59.0, 7.0,59.0, -2.0,3.0,
c arc#2 do2
* 21.0,59.0, 28.0,59.0, -2.0,2.0,
c arcé#3 410
* 42.0,59.0, 98.0,59.0, -2.0,2.0,
c arc#4 do7
* 112.0,59.0, 119.0,59.0, -2.0,3.0,
o] arc#5 do6
* 19,0,54.0, 22.0,47.0, 52.5,47.0, 58.0,40.0, -1.0,1.0,
* $2.5,47.0, 73.5,47.0, °79.0,40.0, -2.0,1.0,
c arc#o dll
* 40.0,54.0, 42.0,53.0, 75.0,53.0, 84.0,42.0, -2.0,2.0,
c arc$7 di2
* 35.0,52.0, 42.0,42.0, -2.0,2.0,
c arc$8 do06a
* 89.0,40.0, 100.0,54.0, -2.0,2.0,
c arc$9 di3
* 49.0,35.0, 56.0,35.0, -2.0,2.0,
c arc#l10 414
* 70.0,35.0, 77.0,35.0, -2.0,2.0,
c arc#ll 405
* 20.0,16.5, 49.0,16.5, 58.0,30.0, -2.0,1.0,
c arc#l2 4Ao4
* 21.0,13.0, 52.5,13.0, 63.0,28.0, -2.0,1.0,
c arc#l3 403
* 20.0, 9.5, 56.0, 9.5, 68.0,26.0, 68.0,30.0, -1.0,1.0,
* 56.0, 9.5, 87.0, 9.5, 105.0,52.0, -2.0,1.0,
o] arc#lda 4AlS
* 19.0,64.0, 24.5,69.5, 119.0,69.5, -2.0,1.0/

Oct 8 10:54 1986 Jogc/students/storcl/lanl/lgdf.for Page 3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
1585
156
157
158
159
160
161
162
163
le4
165
166
167
168

CEREIRAARARAAAARRR AR A ARRRA AR RR R AR AR AR AR AR R AR AR AR R AR AR AR R AR A AR A AR AR Ak kR &

C *
c EXECUTABLE CODE *
[} *

ct*tt*tt*****t**t**********i*****t*****tt***t**t*t****i**************t***

(o]
c DO NOT REMOVE THE LINE BELOW!!! (Used by GKS for scratch memory)
c AND IT MUST BE FIRST LINE OF EXECUTABLE CODE!!!

size = 10000

c GKS initialization, open files
call init

c set normalization transformations
call setnrm (crtdev)

c set polyline aspect source flags and polyline index
call gsasf (plasf)

c draw graph area box (se #1%
call box (1,1,1 0.0, 0.0, 70.0)

Qa

draw control area box (seg #2)
call box (3,2,2,0.0, 100.0, 0.0, 20.0)

draw control segments (segments numbered 3 through sgstrt)
NOT IMPLEMENTED

set sgstrt and numsgs to proper values (done below for the case
that the control section ended on segment 10)

sgstrt = 10

numsgs = sgstrt

TEST STUEE
the 1lgdf graph 1is bounded by a 120x75 box in world coordinates
initbb inlitializes the necessary transformation, after cleaning
up after any tgrevious graph displayed
call initbb(120.0,75.0,status)

a0 aa0n

nnoaao

define the arc segments:
read the arc specification points into the xypath array
at the end of each arc, call the defarc subroutine
save the arc id numbers for later use
=1
221
do 10 i=1, 59
xypath = arcs 1,1;
xypath ; = arcs(2,1

if (arcs(l 1) . -2) then
call defarc xypath idn, status)
arcidns(k) idn

k = k+1

j=1

00060

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 4

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

0noan

0O 0 0 0o 0 0 60 0 0 0 a0 0

0 00 0

endif
10 continue

define the bubble segments:

send the center and number of slices for each circle to defbub

save the bubble id numbers for later use
do 20 1 =1.,7
call defbub (center (1,1),center (i, 2

* slices(i),bubnams(i;:idn,status)

bubidns (1) = idn
20 continue

draw each slice for each bubble in suspended state (red) using drwbub

do 30 1 =1,7
do 40 k = 1,slices (i)
call drwbub (bubidns (i) ,k,1,status)
40 continue
30 continue

draw each arc in empty state (red) using drwarc
do 50 1 =1,14
call drwarc(arcidns(i),1, status)
50 continue

change a few for fun and to see how it's working
set doOl
call drwarc(arcidns (1), 2, status)
wake up pl2
call drwbub (bubidns (1),1, 2, status)
set 406
call drwarc(arcidns(5),2,status)
set do02
call drwarc(arcidns(2), 2, status)
wake P13

call drwbub (bubidns(2).,1, 2, status)
set dl2
call drwarc(arcidns (7)., 2,status)

wake ug pPlé

call drwbub (bubidns (4),1, 2, status)
clear dlz

call drwarc(arcidns(7),1,status)
set di3

call drwarc (arcidns (9), 2, status)
wake pl7d

call drwbub (bubidns (5), 4, 2, status)
terminate pl6

call drwbub (bubidns (4),1, 3, status)

END TEST STUEF

clear screen (igﬁpresses final redraw)
call gcl (crtdev, 1)

shut down GKS and close flles
call shutd

Oct 8 10:54 1986 /Jogc/students/storcl/lanl/lgdf.for Page 5

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

c insert code here to call "mode co80'" to enable proper text display
c for subsequent programs such as editors

NOT IMPLEMENTED

ao0o

end

C***************t**i***t*****t****t*i**t****tt***t*t*tt*t*ti*************

oao000000

SUBROUTINE INIT

1. Open files
2. Initialize GKS
3. Call "iniarw"

subroutine init

$INCLUDE: '1gdf.def"

integer unitl

$INCLUDE: '1gdf.dat’

data unitl /14/

c file used

ARk ARKRRR AR AR AAARRRARRRAR AR R ARRARR AR AN A AR AR AN AR kA ARk Ak AR Ak kA Ak hkh k&

by GKS to log error messages
open (unitl, file='errors',Kstatus='new')

c file for debug write statements

open (15, file='debugs',Kstatus='new')

c open kernel system for business
call gopks (unitl, 1024)

c open workstations
call gopwk
call gopwk
call gopwk
call gopwk

wssdev,
crtdev,
gmodev,
Jjoydev,

c activate workstations

call gacwk
call gacwk
call gacwk
call gacwk

¢ suppress display updates unless asked for

wssdev
crtdev
gmodev
joydev

,

Q00O

call gsds (crtdev,0,0)

00

return
end

wssdev
crtdev
gmnodev
joydev

compute tables for use in computing the angle
of arrowheads at the end of arcs
call iniarw

*
*
*
*
*
*
*

Oct 8 10:54 1986 Jogc/students/storcl/lanl/lgdf.for Page 6

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

c***********t***t*t****t*i**t****t*t*tt********ttt*t*t****t***ttit*******

SUBROUTINE SETNRM

c

(o

c

c 1. Define transformation (#1) for graph area
c 2. Define transformation (#2) for control area
c
c

AR AR AR R AR R R R AR AR R AR R AR AR R AR AR AR A AR AR R R AR A AR A AR R AR AR R AR AR AR R AR AR A ARk R k&

subroutine setnrm (dev)

$INCLUDE: '1gdf.def’
integer dev
integer err, dcunit, xras, yras
real xdcmax, ydcmax, scale, xndc, yndc

common /dcmax/ xdcmax, ydcmax, xndc, yndc
$INCLUDE: '1gdf.dat’

c inquire maximum display surface size
call ggdsp (dev, err, dcunit, xdcmax, ydcmax, xras, yras)

c calculate the aspect ratio of display surface
if (xdcmax .GT. ydcmax) then
scale = xdcmax

else

scale = ydcmax
end if
xndc = xdcmax / scale

yndc = ydcmax / scale

c set world window and viewgort for transformation 1 (graph area)
call gswn (1, 0.0, 70.0, 0.0, 70.0)
call gsvp (1, 0.0, xndc, 0.21*yndc, yndc)

c set world window and viewport for transformation 2 (control area)
call gswn (2, 0.0, 100.0, 0.0, 20.0)
call gsvp (2, 0.0, xndc, 0.0, 0.20*yndc)

c set display window and viewport
call gswkwn (dev, 0.0, xndc, 0.0, yndc)
call gswkvp (dev, 0.0, xdcmax, 0.0, ydcmax)

return
end

*
*
*
*
*
*
*

c***i*****t********it*t***********tt******t********i**t**tt**********t***

SUBROUTINE BOX

c

c

c

C 1. Define a box segment at the indicated coordinates,

Cc using the indicated line attributes and transformation
c
c

AR A AR AR AR R RN R R AR R RN KRR R AR R AR AR AR AR R R KRR RRRR AR AR R RN R AR AR AR A AR R AR AR AR Ak &k

subroutine box (pli,trnum,sgnm,>xmin,xmax,ymin, ymax)

*
*
*
*
*
*

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 7

337
338 GINCLUDE: 'lgdf.def'
339 integer pli, trnum, sgrm
340 real xmin, ymin,)xmax, ymax
341 c
342 real x(5), y(5)
gzg $INCLUDE: 'l1gdf.dat’
345 c¢ set polyline index
346 call gspli (pli)
347
348 c set normalization transformation
ggg call gselnt (trnum)
351 call gcrsg (sgnm)
352 x{1) = xmin
353 Y(1l) = ymin
35g x(2) = xmax
35 y(2) = ymin
356 x(3) = xmax
357 Y(3) =
358 x{(4) = xmin
59 y({4) = ymax
360 x(5) = xmin
361 Y(5) = ymin
362
363 c draw the box ()
364 call gpl (5, x, ¥y
365
366 call gclsg
367 return
368 end
369
370 C********t’k*itt*t******ii******t*t**ti****t*********t*****************t**
371 c *
372 c SUBROUTINE INITEB *
373 c *
374 c 1. Undefine all graph segments *
375 c¢ 2. Define a transformation which maps GRIDXxGRIDY *
376 c onto the graph display with aspect ratio 1 *
377 c and set this transformation as the current one *
378 c for all subsequent output *
379 c 3. Clear the %Baph area of the display *
380 c 4, Return STATUS :
gg% gt****t*********t***t**tit*t*t*****t**t***t**t***t**t*t****t***t*********
383 subroutine initbb (gridx,gridy,status)
384
385 real gridx,gridy
386 integer status
387 integer numsgs, sgstrt
ggS real xdcmax,ydcmax,xndc,yndc
9
390 common /segs/ numsgs, sgstrt
391 common /dcmax/ xdcmax,ydcmax,xndc,yndc

392

Oct 8 10:54 1986 /ogc/students/storcl/lanl/l1gdf.for Page 8

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

c delete all graph segments currently existing
do 10 i = sgstrt+l, numsgs

call gdsg(i)

10 continue
numsgs = sgstrt

calculate aspect ratio
NOT IMPLEMENTED

0 0000

set world window and viewport
call gswnéB,0.0, 1dx,0.0,gridy)
call gs 3,0.01*xndc, 0.99*xndc, 0.21*yndc, 0.99*yndc)
call gselnt (3)

clear graph display

NOT IMPLEMENTED

return status (0 if ok)
NOT IMPLEMENTED

0nQo0n onon

return
end

c*********t*t*t***tt***t***tt***t*t*t*ﬁ*******************t*t**i*********

SUBROUTINE DEEFBUB

*

*

1. Define a bubble with center (CENTRX,CENTRY} and radius 7. *
Create three segments for each slice, via "'doarc" and *
"docirc'. Assoclate BUBNAM with each segment. *

2. Return BUBIDN and STATUS *
*

*

(2 X222 2222222282222 2222232222222 2222222222222 2222222222222 xRl]

subroutine defbub (centrx,centry, slices,bubnam, bubidn, status)
" real centrx,cent
integer slices, bubidn, status
character bubnam*3
$INCLUDE: '1gdf.def’
character datrec (1)
real rad
real xarc(3),yarc(3
real xcir (2),ycir (2
integer 1
real angle
real pi

real tempx,tempy

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

aoonnonnnn

Oct 8 10:54 1986 Jogc/students/storcl/lanl/lgdf.for Page 9

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
430
491
492
493
494
495
496
497
498
499
S00
S01
502
503
504

$INCLUDE: ‘1gdf.dat’
data rad /7.0/
data pi /3.14159/

c compute bubidn
numsgs = numsgs + 1
bubidn = numsgs
if (slices .gt. 1) then
tempx = rad*1.0 + centrx
tempy = 0.0 + centry
do 10 i=1,slices

xarc(l) = centrx
yarc(l) = centry
xarc(2) = tempx
yarc(2) =

tempy
angle = (2.0*pi*i)/slices
tempx = rad*cos(angle) + centrx
tempy = rad*sin(angle) + centry
xarc (3) = tempx
yarc (3
call doarczxarc,yarc,RED,bubnam)

call doarc(xarc,yarc, GREEN, bubnam)
call doarc (xarc,yarc, VIOLET, bubnam)

10 continue
else
xcir(l) = centrx
ycir (1) = centry
xcir (2) = centrx + rad
ycir (2) = centry

call docirc(xcir,ycir, GREEN, bubnam)

call docirc(xcir,ycir, RED, bubnam)
call docirc(xcir,ycir,VIOLET, bubnam)

endif

¢ return 0 status if ok (add error checking)
status = 0

return

end
c**t****t******t**'kt***t****t*t*****t*tt***t’k*t*t*ttt**t**t*t*ttt*****t**
c
c SUBROUTINE DOCIRC *
Cc *
c Create a bubble/label segment *
lod . *
c*******t*t*tt***t**t*t*i*****t***t**t*t***tt*t**t***t**t****************

subroutine docirc (xcir,ycir, ccolor,bubnam)

real xcir (2),ycir (2)

integer ccolor

character*3 bubnam
$INCLUDE: '1gdf.def’

character datrec (1)
real rad

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 10

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
S39
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

$INCLUDE: 'lgdf.dat’
data rad /7.0/

call
call

gsfais (FSOLID
gsfaci (ccolor

numsgs = numsgs + 1

call
call
call
call

c draw label

gcrsg (numsgs)
gsdtec (numsgs, DETECTABLE)
gsvis (numsgs, INVISIBLE

ggdp(Z,xcir,ycir,CIRCL%.O,datrec)

of circle

call gstxci (YELLOW

call gstxal (HC . VHALF)

call gtxs (xcir (1),ycir (1), 3,bubnam)
call gclsg

return

end

c*********t******t**********************t****t********t***********t***i**

o000 n00n

SUBROUTINE DOARC

Create an arc/label segment.

AR AR AR R R AR A A AR A ARAR A AR AR R R AR AR A AR R R R AR AR A RARA AR AR AR R AR AR AR Ak Ak ko kk
subroutine doarc (xarc,yarc,ccolor,bubnam)

real xarc(3),yarc(3)
integer ccolor
character*3 bubnam
S$INCLUDE: '1gdf.def’
character datrec (1)

real

rad

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

$INCLUDE: '1gdf.dat’
data rad /7.0/

call
call

gsfais (FSOLID
gsfaci (ccolor

numsgs = numsgs + 1

call
call
call
call
c draw label
call
call
call

call

gcrsg (numsgs)

gsdtec (numsgs, DETECTABLE)
gsvis (numsgs, INVISIBLE)

ggdp (3, xarc, yarc,PIE, 0,datrec)
of circle

gstxci OW)

gstxal (HCENTER, VHALF)

gtxs (xarc (1) ,yarc (1), 3, bubnam)

gclsg

*
*
*
*
*
*

Oct 8 10:54 1986 /ogc/students/storcl/lanl/l1gdf.for Page 11

561

562 return

563 end

564

565 ctt*********t******t***t*t*t*t**t***t*******ttit*t**t*tt*t*****'k********t
566 c *
567 c SUBROUTINE DRWBUB *
568 c *
569 c Draw a bubble (or slice) in the specified state. This is done *
570 c by erasing the other states of the bubble before display. *
571 c (Only one needs to be erased if the state of the display *
572 c is known) . *
573 ¢ *
5'74 c******************i***tt******tt***t*t**t*****t*********t*t*t***********
575 subroutine drwbub (bubidn, slice, xstate, status)

576 integer bubidn,slice,xstate,status

577 $INCLUDE: 'lgdf.def’

578 integer sgrm

579 integer base

580 real tmat (2, 3)

581 integer err,vis,high,det

582 real sgpr

583 integer numsgs, sgstrt

584 common /segs/ numsgs, sgstrt

582 $INCLUDE: 'lgdf.dat

58

587 base = bubidn + (slice-1)*3

588

589 if (xstate .eq. 1) then

590 call gsvis ase+2,INVISIBLE;

591 call gsvis (base+3, INVISIBLE

592 call gsvis (base+1,VISIBLE)

593 endif

594 if (xstate .eq. 2) then

595 call gsvis(base+3, INVISIBLE

596 call gsvis (base+l, INVISIBLE

597 call gsvis (base+2, VISIBLE)

598 endif

599 if (xstate .eq. 3) then

600 call gsvis(base+l, INVISIBLE

601 ' call gsvis(base+2, INVISIBLE

602 call gsvis(base+3,VISIBLE)

603 endif

604

605 return

606 end

607

608

609

610

611

612

613

614

615

616

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 12

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

c***t***ﬁ**ttti**t*t*ttt**t*t********************ﬁ***t***ﬁ*t****t********

SUBROUTINE DEFARC

*
®
Define an arc with Path XYPATH. Create two segments for *
the arc via "defpth'', and create a label segment. *
No drawing will occur. ARCIDN is returned to identify *
the arc in subsequent calls. STATUS 1s returned zero *
if all ok. *

*

x

oo NeNe ReNeNeNe NN

RARARRRARR A RN R R AR AR KRR A A AR A A RAR AR AR AR AR AAARAA R AR A AR A A AN RN A AR A A I AR AR R kK

subroutine defarc (xypath, arcidn, status)
real xypath(2, 50)
integer arcidn, status

$INCLUDE: '1gdf.def’

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

$INCLUDE: '1gdf.dat’

numsgs = nuusgs + 1

arcidn = numsgs

call gcrsg(numsgs)

call gsvis (numsgs, INVISIBLE)
call gstxci (YELLOW)

call gstxal (HCENTER, VHALF)
call gtxs(1.0,1.0,1,'a")
call gclsg

call defpth(xypath,RED, status)
call defpth (xypath, GREEN, status)

return
end

c***************i******tt***************t*t**t*t*****t*******************

SUBROUTINE DEFPTH

*
*
*
Trace the datapath and output polylines as appropriate. *
XYPATH (1, I) is an x coordinate, ATH (2, IE a y coordinate. *
X and y coordinates are always positive. 1f ATH(1, I) is *
-1, it represents the end of one branch of the path, with *
other branches to follow; If -2, it represents the end of the *
path definition. In either case, XYPATH(2, I) represents the :

*

L3

type of arrowhead and "arwhed" is call to output this.

AR RERRARRARRARANRNAR AR AR ARRR AR AR AR AR AR N AR AR AR A d Akt kb d Akt

subroutine de:gth(xypath,ccolor,status)
real xypath(2,50)
integer ccolor, status
$INCLUDE: '1gdf.def’
real xarc(10),yarc(10)
integer length

aonNnoNonNnNanno0

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 13

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

integer sgstate

¢ index into xypath array

integer 1
integer Jj

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

$INCLUDE: 'l1gdf.dat’

10

98

99

20

call gspli (1)

call gsplci (ccolor

call gsfaci (ccolor

call gspmci (ccolor

call gsmk (1)

gall gsmksc (1.1)
=1

length = 0

numsgs = numsgs + 1

call gcrsg(numsgs)

call gsvis (numsgs, INVISIBLE)

continue
if (xypath(l,i) .eq. -2) then
o 98 j = length+1,10
xarc(j) = xarc(length
yarc ij; = yarc {lengt.h;
continue
call gpl (10,xarc,yarc)
call arwhed(xarc,yarc, length,xypath(2,1))
call gclsg
dgoto 0
endif
if (xypath(1,i) .eq. -1) then
o 99 jJ = length+1,10
xarc (j) = xarc(length
yarc(j) = yarc(length
continue
call gpl (10,xarc,yarc)
calliarwhed(xarc,yarc,length,xypath(z,i))
i=1i+1
length = 0
xm = xypath(l,1
ym = xypath(2,1
call gpm(l,xm,ym)
goto 10
endif
length = length + 1
xarc (length) = xypathél,i
yarc (length) = xypath(2.,1
= i+1
goto 10

continue
return

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 14

729 end
zgg c******tttt***t***ttt*t*’kt*t*i*****tt*t****tt*tt*t*t*tt*t*tt****t***t****
732 ¢
733 c SUBROUTINE ARWHED
734 c
735 c Output an arrowhead of the TYPE:
736 c 0 No arrowhead
737 c© 1 Open arrow
738 c 2 Closed arrow
739 c 3 V arrow
740 c Compute the location of the arrowhead using "arwoff".
741 c An arrowhead is 2 units in length, and points in
742 c tgproximately the right direction with the point at
743 c last coordinate in the path.
;33 g******t************tt*t****************t*****************************t*
746 subroutine arwhed (xarc,yarc, last, type)
747 real xarc(10),yarc(10)
748 integer last
749 real type
750 $INCLUDE: 'lgdf.def'
751
752 c index into x and y arc arrays
753 integer i
754 real xloc(3),yloc(3)
752 real x1,yl,dx,dy
75
;gg $INCLUDE: '1gdf.dat’
759 c compute points in arrowhead
760 x1 = xarc(last-1
761 yl = yarc(last-1
762 xloc 2 = xarcilast
763 yloc = yarc last
764 = xl-xloc
765 dy = yl-yloc (2
766 call arwoff (dx,dy,xloc(1l),yloc(1l).xloc(3),yloc(3))
767 xloc(l) = xloc(l) + xloc(2
768 yloc(l) = yloc(l) + yloc(2
769 - xloc(3) = xloc(3) + xloc(2
;;O yloc(3) = yloc(3) + yloc(2

1
772 if t{pe . 1) then
773 call gsfais(OLLOW)
774 call gfa(3,xloc,yloc)
776 T2 (type .eq
777 ca gsfais(%SOLID)
778 call gfa(3,xloc,yloc)
780 It (type .eq. 3

0 i
781 call gpe?3 xioc yloc)
i

784 return

*
*
*
*
*
*
&
%
*
*
*
*
*
*

Oct 8 10:54 1986 Jogc/students/storcl/lanl/lgdf.for Page 15

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

end

c****it**i**t*ttt*t***t*ﬁ*t***ttﬁt********tit*t******t******t************

SUBROUTINE DRWARC

(o4 ®
[o] *
o] *
c Draw an arc in the specified state. This is done by *
c erasing the other state of the arc before display. *
o] *
C *

ARRAKRAARRRRRR AR AR AN R AR ARAAARRA R AR R R AR AR R R KAARR AR A AR N AR R A AR AR AR AR A kA hhkhhx

subroutine drwarc (arcidn,mtfull, status)
integer arcidn,mtfull, status

$INCLUDE: '1gdf.def’

$INCLUDE: 'l1gdf.dat’'

if (mtfull .eq. 1) then
call gsvis (arcidn+2, INVISIBLE)
call gsvis (arcidn+1,VISIBLE)
endif

if (mtfull .eq. 2) then
call gsvis (arcidn+l, INVISIBLE)
call gsvis (arcidn+2,VISIBLE)
endif

c call gsvis (arcidn, VISIBLE)
return
end

c************t******************t*t****t*t*******************************

c
c SUBROUTINE SHUID *
Cc *
c 1. Close down the Kernel System. *
c 2. Close files. :
g****t**********ttt***t*t*******tt*****************t***t********t********

subroutine shutd
$INCLUDE: '1gdf.def'

integer unitl
$INCLUDE: '1gdf.dat'

data unitl /14/
c

call gdawk (wssdev

call gdawk (crtdev

call gdawk (gmodev

call gdawk (joydev

call gclwk (wssdev

call gclwk (crtdev

call gclwk (gmodev

call gclwk (joydev

call gclks

close (unitl)

close (15)

return

end

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 16

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

CRRAR A AR AR A AR AR AR AR R AR R R R R AR AR R R AR A A AR AR AR AR R AR AR R AR AR R AR AR AR AR AR R AR k&

SUBROUTINE INIARW

*
*
*
Set up arrow offsets and angles tables. *
*
*

oaa0nn

AR KRR AR AR AR R R R R R R AAR R AR RRARNARRNARARRRRRRRR AR ARRARR AR RA AR R AR A AR AR A AR AR A Ak k
subroutine iniarw

real arwofa(5), arwofb(5), slplv2, slp2v3
common /arwcom/ arwofa, arwofb, slplv2, slp2v3
integer arwang
real radian

parameter (pi = 3.1415926535897932384626433)

these are x, y offsets for arrow tips

000
'
1

do 1000 arwang = 1,
radian = (arwang-z)*pi/s
arwofa (arwang cos(radian) * 2
arwofb (arwang sin(radian) * 2
1000 continue

these are the slopes of the lines dividing angles 1 - 2, and
2 - 3, for determining which arrow angle most closely matches
slope of line arrow is to be added to

onnaon

slplv2 = tan(pi/16)
slp2v3d = tan(3*pi/16)
return

end

c*t*************t*i**t****tttt**************i**t*********t**t***t********

SUBROUTINE ARWOEF

*
*
*
Finds appropriate coordinates for an arrowhead, based *
on the direction in which it points. *

*

*

aoononnonn

kA RKRRRRARR AR R AR R R KRR ARR R AR R AR AR AR R AR AR AR A AR AR R AR AR AR AR A ARk Ak

subroutine arwoff(diffx, diffy, offlx, offly, off2x, offly)
real diffx, diffy
real offlx, offly, off2x, off2y

real xsign, ysign, slope

computes two ints for back of arrow head relative to point,

(offlx offl ?oand (off2x, off2y), given the differences in x
coordinates and in y coordinates for the last two points on the
arc; i.e. if the point before the end of the arc was (125, 7) and
the point at the end of the arc (the point of the arrow% is (170 5),
then diffx should be (170 - 125) = 45 and diffy = (5 -

- - translate slope to first quadrant (to avoid overflow)

aoonooanonan

xsign = diffx

Oct B8 10:54 1986 /ogc/students/storcl/lanl/l1gdf.for Page 17

897 diffx = absédiffx)
898 ysign = difty
899 diffy = abs(diffy)
900 if (diffx .?t. diffy) then
901 slope = diffy / diffx
902 else
903 slope = diffx / diffy
904 end if
905 c
906 c - - get offsets for base of arrow (switching x and y to put
38; c - - it in right half of quadrant, if necessary)
c
909 if (diffx .gt. diffy) then
glg 1call offcpy (slope, xsign, ysign, offlx, offly, off2x, offly)
1l else
912 call offcpy (slope, ysign, xsign, offly, offlx, off2y, off2x)
913 end if
914
915 return
916 end
917
918 subroutine offcpy (slope, sgna, sgnb, offla, offlb, off2a, off2b)
919 real slope, sgna, sgnb, offla, offlb, off2a, off2b
920 integer arwslp
921 c
922 c - - these are x and y offsets for points on a circle with
923 c¢ - - radius 2 for every pi/8 radians (22.5 degrees) starting
924 c - - at "arrow slope 0" (-22.5 degrees) to "arrow slope 4"
925 ¢ - - (67.5 degrees) in a counter-clockwise direction. the idea
926 c - - is (1) figure which arrow slope 1-3 best fits the slope of
927 c - - the line, and (2) make the sides of the arrow head line up
928 c - - with the adjacent arrow slopes.
929 c
930 real arwofa(5), arwofb(5), slplv2, slp2v3
931 common /arwcom/ arwofa, arwofb, slplv2, slp2v3
932 c
933 c - - figure which arrow angle will be closest
934 c
935 if (slope .lt. slplv2) then
936 arwslp = 1
937 else if (slope .1lt. slp2v3) then
938 arwslp = 2
939 else
940 arwslp = 3
941 end if
942
943 offla = sign(arwofa(arwslp), sgna
944 offlb = sign(arwofb (arwslp). sgnb
945 off2a = sign(arwofa(arwslp + 2), sgna
946 off2b = sign(arwofb(arwslp + 2), s
947 if (arwslp .eq. 1) off2b = -off2b
948
949 return

950 end

Oct 7 13:34 1986 /ogc/students/storcl/lanl/gss/trace Page 1

#wpl0 s00 e0000.216666w3826.010000
#spl0 500403 e€0000.250000w3826.050000
#spl0 s00d404 e0000.266666w3826.080000
#spl0 s00405 e€0000.283333w3826.120000
#npl0 s00 e0000.300000w3826.180000
#wpl2 s00 e0000.366666w3826.260000
#spl2 s01d02 e0000.383333w3826.280000
#spl2 s01406 €0000.400000w3826.300000
#npl2 s01 e0000.433333w3826.330000
10 #wpl3 s00 e0000.450000w3826.360000
11 #spl3 s00d12 e0000.466666w3826.380000
12 #spl3 s00dll e0000.483333w3826.400000
13 #spl3 s00d10 e0000.516666w3826.420000
14 #cpl3d s00402 e0000.516666w3826.430000
15 #npl3 s00 e0000.550000w3826.450000
16 #wpl6 s00 e0000.583333w3826.520000
17 #spl6 s00d13 e0000.600000w3826.530000
18 #npl6 s00 e0000.616666w3826.550000
19 #wpl7 s00 e0000.650000w3826.580000
20 #cpl7 s00d13 e0000.666666w3826.600000
21 #spl7 s00d14 e0000.683333w3826.610000
22 #npl7 s00 e0000.700000w3826.630000
23 #wpl8 s00 e0000.716666w3826.650000
24 #cpl8 s00d14 e0000.750000w3826.670000
25 4$#npl8 s00 e0000.766666w3B826.690000
26 #wpl6 s00 e0000.816666w3826.750000
27 #spl6 s00d4d13 e0000.833333w3826.770000
28 +#npl6é s00 e0000.866666w3826.880000
29 #wpl7 s00 e0000.883333w3826.900000
30 #cpl7 s00d13 e0000.933333w3827.010000
31 #spl7 s00d14 e0000.933333w3827.030000

17 s00 e0000.966666w3827.060000
33 #wpl8 s00 e0001.000000w3827.100000
34 #cplB s00d14 e0001.016666w3827.310000
35 #npl8 s00 €0001.033333w3827.350000
36 #wpl6 s00 €0001.100000w3827.440000
37 #spl6é s00d13 e0001.100000w3827.460000
38 #npl6é s00 €0001.133333w3827.480000
39 #wpl7 s00 e0001.149999w3827.510000
40 4#cpl7 s00d13 e0001.166666w3827.550000
41 4$#spl7 s00dl4 e0001.183333w3827.570000

17 s00 e0001.216666w3827.650000
43 #$#wpl8 s00 e0001.233333w3827.680000
44 #cpl8 s00d14 e0001.250000w3827.700000
45 +#npl8 s00 €0001.283333w3827.780000
46 #wpl6 s00 e0001.316666w3827.830000
47 4#spl6 s00d13 e0001.316666w3828.010000
48 #npl6 s00 e0001.333333w3828.200000
49 #wpl7 s00 e0001.366666w3828.230000
50 #cpl7 s00d13 e0001.399999w3829.450000
51 #spl7 s00d14 e0001.433333w3829.470000
52 #npl7 s00 e0001.433333w3829.520000
53 #wpl8 s00 e0001.466666w3829.560000
54 #cplB s00d414 e0001.500000w3829.580000
55 4#npl8 s00 e0001.516666w3829.610000
56 #wpl6 s00 €0001.549999w3829.650000

VO WN

Oct 7 13:34 1986 /ogc/students/storcl/lanl/gss/trace Page 2

57 #spl6 s00d13 e0001.566666w3829.670000
S8 #npl6 s00 e0001.566666w3829.690000
S9 #wpl7 s00 e000]1.616666w3829.830000
60 #cpl7 s00d13 e0001.633333w3829.850000
61 #spl7 s00d14 e0001.666666w3829.890000
62 #npl7 s00 e0001.683333w3829.910000
63 #wplB8 s00 e0001.733333w3829.960000
64 #cplB s00d14 e0001.750000w3830.160000
65 #npl8 s00 e0001.783333w3830.460000
66" #wpl6 s00 e0001.816666w3830.700000
67 #spl6 s00d13 e0001.833333w3830.710000
68 #npl6 s00 e0001.833333w3830.730000
69 #wpl7 s00 e0001.866666w3830.800000
70 #cpl7 s00d13 e0001.883333w3830.820000
71 #spl7 s00d14 e0001.900000w3830.840000
72 #npl7 s00 e0001.916666w3830.850000
73 #wpl8 s00 e0001.950000w3831.000000
74 #cpl8 s00d14 e0001.966666w3831.020000
75 #npl8 s00 e0001.983333w3831.030000
76 #wpl6 s00 e0002.033333w3831.200000
77 #spl6 s00d13 e0002.049999w3831.220000
78 #npl6é s00 e0002.066666w3831.240000
79 #wpl7 s00 e0002.083333w3831.260000
80 #cpl7 s00d13 e0002.116666w3831.280000
8l #spl7 s00d414 e0002.133333w3831.320000
82 #npl7 s00 €0002.149999w3831.340000
83 #wpl8 s00 e0002.183333w3831.370000
84 #cpl8 s00d14 e0002.200000w3831.460000
85 #npl8 s00 e0002.216666w3831.500000
86 #wpl6 s00 e0002.250000w3831.530000
87 #spl6 s00d13 e0002.266666w3831.550000
88 #npl6 s00 e0002.283333w3831.570000
89 #wpl7 s00 e0002.333333w3831.630000
90 #cpl7 s00d13 e0002.366666w3831.820000
91 #spl7 s00d14 e0002.383333w3831.840000
92 #npl7 s00 e0002.383333w3831.850000
93 #wpl8 s00 e0002.416666w3831.880000
94 #cpl8 s00d14 e0002.433333w3832.000000
95 #npl8 s00 e0002.450000w3832.020000
96 #wpl6 s00 e0002.483333w3832.120000
97 #spl6 s00d13 e0002.516666w3832.160000
98 #npl6é s00 e0002.533333w3832.170000
99 #wpl7 s00 e0002.550000w3832.200000
100 #cpl7 s00d13 e0002.583333w3832.220000
101 #spl7 s00d14 e0002.600000w3832.240000
102 #npl7 s00 e0002.616666w3832.250000
103 #wpl8 s00 e0002.633333w3832.280000
104 #cpl8 s00d14 e0002.650000w3832.300000
105 +#npl8 s00 e0002.666666w3832.330000
106 #wpl6 s00 e0002.716666w3832.380000
107 +#spl6é s00d13 e0002.733333w3832.390000
108 #npl6 s00 e0002.750000w3832.410000
109 #wpl7 s00 e0002.783333w3832.450000
110 #cpl7 s00d13 e0002.800000w3832.470000
111 #spl7 s00d14 e0002.833333w3832.490000
112 #npl7 s00 €0002.833333w3832.520000

Oct 7 13:34 1986 /Jogc/students/storcl/lanl/gss/trace Page 3

113
114
115
116
117
118
119
120

121.

122
123
124
125
126
127

#wpl8
#cpl8
#spl8
#cpl8
#npl8
#wpl6

16
#npl6
#wpld
#cpl4d
#cpl4
#npl4
#wpl2
#spl2
$#npl2

s00 e0002

s00d14 e0002.
s00d06ae0002.

s00d411 e0002

s00 e0002.
s00 e0003.
s00dl12 e0003.
s00 e0003.
s00 e0003.
s00d06ae0005,
s00d10 e0005.
s00 e0005.
s01 e0005.
501d15 e0005.
s01 e0005.

.866666w3832.
900000w3832.
900000w3832.
.950000w3832

000000w3832
000000w3B32
016666w3832

116666w3835
233333w3835
266666w3835
266666w3835

550000
570000
580000

.640000
966666w3832.

670000

.700000
.720000
.740000
066666w3832.
066666w3835.
099999w3835.

780000
260000
360000

.410000
.560000
.610000
.640000

