
Program Monitoring Tools For
Parallel Processing With

Large-Grain Data Flow Techniques

Robert G. Babb 11
David C. DiNucci

Lise Store

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 87-017

PROGRAM MONITORING TOOLS FOR
PARALLEL PROCESSING WITH

LARGEGRAIN DATA FLOW TECHNIQUES

Final Report for Los Alamos National Laboratory

Computer Research and Applications Division

under

Contract 9-234-P3915-1 Modification No. 2

Robert. G. Babb I1
David C. DiNucci

Lise Storc

Department of Computer Science and Engineering
Oregon Graduate Center

Beaverton, Oregon

8 October 1986

CONTENTS

1. Initial Requirements Definition
1.1. Software
1.2. Hardware

2. Acquisition of Tools
2.1. Software
2.2. Hardware

3. Initial Specification Ideas
3.1 Display Form"

3.1.1 LGDF network
3.1.2 LGDF subnetwork

3.2 Display Actions
3.2.1 Trace Actions
3.2.2 User Actions

3.3 Performance metrics and meters
3.3.1 Relative display speed(de1ta)
3.3.2 Parallelism (Process-set)
3.3.3 Processor under-utilization(Processor)

4 . Practical Considerations

5. Design
5.1 Subnetwork Expansion Algorithm
5.2 BUBLIB - Higher level network display routines
5.3 External data structures

6. Implementation Experience
6.1. BUBLIB - Dealing within GKS
6.2. Program Development Experiences

7 . Future Possibilities/Suggestions
7.1. LGDF Monitor - Conclusions and Recommendations
7.2. A Multi-level Debugger/Testbed

8. Listings

1. Initial Requirements Definition

1.1. Software
The purpose of this research project was t o define and implement a graph-

ics monitor t o aid in the debugging and analysis of Large-Grain Data Flow
(LGDF) programs. Previously, a Los Alamos gamma ray transport benchmark
code (GAMTEB) was parallelized for the Denelcor HEP using the prototype
LGDF ~oolse t ' . Our goal was t o design and prototype a parallel program ani-
mation system tha t would give LGDF programmers "intuition" about how an
LGDF computation, such as the LGDF version of GAMTEB, was progressing.
As a secondary goal, we wanted the tool t o aid in controlled very high level
debugging of large parallel application codes.

Our approach was to enhance the LGDF macros so tha t they would option-
ally generate sufficient trace da ta t o model the action of the program running
on a multi-processing system. This file of trace da ta would be used by the mon-
itor program (running on an IBM PC) to display parallel process initiations, and
da ta flow events in a graphic form.

Although the monitor was t o be capable of monitoring GAMTEB program,
the monitor would be constructed to allow other LGDF programs t o be modeled
by merely re-macro expanding with the program animation option turned on.

The monitoring system was t o be as interactive as possible. This suggested
tha t the monitor could run in real-time-i.e., while the program being moni-
tored was running on the host machine.

The LGDF program would be shown on the monitor as a da ta flow graph
consisting of nodes (processes) and edges (datapaths). Processes would change
color with execution s ta te (green=running, red-leeping, purple=terminated)
and datapaths would change color with state of empty/full flag (red-mpty,
greenxfull).

A "speedometer" would show the speed of the display relative t o the speed
the program would have been running without display. Provisions would be
made for the user t o set the speed a t some fixed value so tha t relative speed of
display would reflect tha t of an actual execution.

Provisions for hierarchical expansion of the network display were t o be con-
sidered; i.e. perhaps the user could, using a mouse, dynamically expand a bub-
ble representing a subnetwork into its components and later collapse the sub-
network components back into a single bubble representing the subnetwork.

'R. G. Babb I1 and L. Storc, "Parallel Processing on the Denelcor HEP with Large-Grain
Data Flow Techniques", Final Report For Los Alamos National Laboratory, Computer Research
and Applications Division, 30 April 1985. Also available as Oregon Graduate Center Technical
Report CS/E 85-010, May 1985.

Graphics would be performed with an established standard, preferably
GKS t o facilitate future development efforts and portability.

1.2. Hardware

An IBM PC or AT compatible system was t o be used to run the monitor.
The parallel host system was not t o be restricted to any one parallel processor
system, but our initial implementation could be performed using the LGDF
Toolset in simulated parallel mode on Oregon Graduate Center's VAX 111780.

2. Acquisition of Tools

2.1. Software

The compiler used was Microsoft Fortran 3.3. Code was linked with the
IBM Linker 2.3, since the /X parameter t o increase segment size was needed.
A library package called No-limit Fortran was acquired to facilitate communi-
cation between the host system and monitor (especially in the event tha t the
monitor would run in real-time), Graphics were t o be developed following the
Graphical Kernel System (GKS) standard for graphics. For this we purchased
the GSS-Toolkit Kernel System #I125 from Graphic Software Systems, which
provides the capabilities of Level 2b of the ANSI GKS Specification. GSS-
Device Drivers, providing a standard VDI interface, were also used. Unfor-
tunately, initially, there was a bug in the GSS software tha t precluded any use
of a mouse. After several months, a workaround CGI driver was delivered by
GSS which restored the necessary aspects of mouse function.

2.2. Hardware

We used a n IBM PC-XT with 512K memory and lOMbyte hard disk run-
ning DOS 3.1. To support the GKS kernel, we added an Enhanced Graphics
Adaptor (EGA) card, enhanced color monitor and Microsoft Mouse.

3. Initial Specification Ideas

To avoid problems related t o retrofitting an existing project with newly
conceived features, we started the project with a brainstorming phase. We
could then insure a modular and well thought out design, as well as the careful
selection of those features which were central t o the performance of the project
t o implement and test first.

3.1. Display Form

3.1.1. LGDF network

An LGDF network consists of a directed graph where each node is a circle
and each arc is a line. Each node has a unique name of the form pnn and each
data arc has a unique name of the form dnn, where nn is a twedigit integer.
Arrows on arcs may be of three types: clearable (a solid triangle), non-clearable

(an open triangle) and side-eflect (an open V shape). Arcs can either end a t a
node's circumference or proceed through the node with a dashed or solid line, a t
which point it may or may not continue on to another node. If the arc does
continue t o another node, the continuation arc has the same name as the origi-
nal arc, but with a one letter suffix. Arcs can contain branches, in which case
each branch has the same name as the original arc. An arc cannot pass
through a node unless the node reads or writes the arc. (Therefore, arc paths
must not cross over or under nodes just t o get from here t o there.) An arc may
cross over another arc.

3.1.2. LGDF subnetwork

A node may represent a single program or a subnetwork. In the latter
case, all arcs (and only those arcs) entering the node must be represented in the
subnetwork. A subnetwork has the same form as a network, as described
above. This nesting can occur t o any level. When a subnet is expanded (i.e. its
component nodes and arcs are displayed) within the context of its supernet, it is
enclosed within a rectangular border (perhaps with rounded corners).

3.2. Display Actions

The display of the network on the graphics screen can be affected by Trace
Actions read from the trace stream or by User Actions entered from the key-
board or mouse.

3.2.1. Trace Actions

Trace actions are the affect of reading a trace record from a trace file or
from a communication port. There is not necessarily a one-to-one correspon-
dence between trace records and trace actions.

Trace records are of the form:
X p N N Q s N N W Q e N N N N . - w N M J N . m

where
X = s - set

c - clear
t - terminate
w - wake up
n - nap

N = digit (after p = process number
s = state number
d = data arc number
e = elapsed cpu time, in seconc
w = w a l l clock time, in seconds

Q = qualifier (space or lcase letter)

Trace actions are as follows:

If X = 'w' or 'n' or 't'
Case X of
t w t . . COLOR = green

SUBNET = @NN is within one or more (nested)
subnets)

In'. . COLOR = red
SUBNET = (pNN is the only green bubble within one

or more (nested) subnets)
t : COLOR = purple

SUBNET = @NN is the only non-purple bubble within
one or more (nested) subnets)

endcase
I f SUBNET

Color of subnet circle turns COLOR
Color of subnet rectangle turns light COLOR

end if
If Q is blank

Color of circle associated with pNN turns COLOR
else

Color of slice Q of circle associated with pNN turns COLC
end if
Display state sNN for node pNNQ

else if X = ' s t
Color of arc dNNQ turns green

else (if X = 'c')
Color of arc dNNQ turns red

end if

A trace action will not necessarily update the display when a trace record
is read, because of either the display speed or the display format. Below is a
list of cases t o be checked after reading a trace record describing whether a
screen update is t o be performed and when. In all cases, whether or not a
screen update is performed, the color and state of all entities must be updated
internally with each trace record.

I* In the following, Time reqd for screen update" is constant and approxi-
mate, and more information on *'PauseN and "Speedometerw can be found below
in "F'erformance measures and metrics" under *'Relative display speed". (Note:
t o best facilitate this, it might be best t o read a trace record, then check for
any user actions, then perform the trace action and then read the next trace
record.)

If no affected entity is currently displayed
(No screen update)
Increment Records-Skipped

else if (speed == 0)
Perform screen update.
Speedometer = (w-time - st-w-time) * 100

/ (r-time - st-r-time)
else

Pause = (w-time - st-w-time) * 100 / speed
- (r-time - st-r-time)

If Pause < time reqd for screen update
(No screen update)
Increment Records-Skipped

else
If Pause - 1 second > time reqd for screen update

Wait for Pause - 1 seconds
end if
Per form screen update

end if
end if

3.2.2. User Actions
User actions are from the keyboard or mouse, and affect the format of the

display. Whenever the display is changed in this way, its colors are updated t o
reflect their s t a te had the display been in this format since the beginning of the
trace.

3.2.2.1. Expand a subnet
Cause:

(1) Pick of "expand" menu item with the mouse
(2) Pick of circle which represents a subnet

Effect:
Trace halts. Display is redrawn with the picked circle enlarged t o a rec-
tangle containing the subnetwork (one level). All nodes previously on
screen will remain on screen. All circles will have equal radii. (If neces-
sary, circle radii will be smaller after redraw t o accommodate new subnet-
work).

3.2.2.2. Collapse a subnet
Cause:

(1) Pick of "collapse" menu item
(2) Pick of empty spot within an expanded subnet rectangle

Effect:
Trace halts. Display is redrawn with the picked subnetwork represented as

circle. All nodes (outside the rectangle boundaries) previously on screen
will remain on screen. All circles will have equal radii.

3.2.2.3. Restrict the display (ZOOMIN)

Cause:
(1) Pick of "zoomin" menu item
(2) Definition of rectangle t o restrict display t o

Effect:
Trace halts. Display is redrawn (and possibly enlarged) with only those
nodes within the defined rectangle represented.

Notes:
Rectangle borders must be along grid lines. I t may not be possible t o split
nodes or subnetworks.

3.2.2.4. Unrestrict the display (ZOOMOUT)

Cause:
(1) Pick of "zoomout" menu item

Effect:
Trace halts. Display is redrawn with all nodes present a t time of
corresponding zoomin.

Notes:
Should this be implemented a t only one level, or as a stack?

3.2.2.5. Halt trace temporarily (STOP)

Cause:
(1) Pick of " ~ t o ~ / ~ o " menu item while trace is active

Effect:
Trace halts (i.e. reading of trace records halts and therefore all trace
actions halt).

3.2.2.6. Start or Continue trace (GO)

Cause:
(1) Pick of "stop/goW menu item while trace is stopped

Effect:
Trace starts where i t was when last halt occurred. Start time and

3.2.2.7. Perform single visible trace step (NEXT)
Cause:

(1) Pick of "Single step" menu item

Effect:
Trace halts. Trace records are then read and performed until one of them
affects an arc or node that is (at least partially) displayed on the screen.

After that trace action is performed, the trace halts again and the "number
of trace records skippedw is updated on the screen.

3.2.2.8. Control trace speed

Effect:
Trace speed is set t o desired figure.

3.2.2.9. Abort trace (KILL)
Effect:

Trace program terminates.

3.2.2.10. Set/Clear Breakpoint on process or datapath

Cause:
(1) Pick of "Set/clear Breakpoint" menu item
(2) Pick of a process or datapath

Effect:
Trace halts. If breakpoint already present on datapath/process, it is
cleared, else one is set. A breakpoint has the affect of halting the monitor
whenever the state of the datapath or process containing the breakpoint
changes.

3.2.2.11. Clear all Breakpoints

Cause:
(1) Pick of "Clear All Breakpointsw menu item

Effect:
Trace halts. All breakpoints already present on all datapaths/processes
are cleared.

3.3. Performance metrics and meters

Following is a n incomplete list of performance metrics that could be
included in the form of meters (digitally, or graphically in the form of bar
charts or pie charts). These will be purely experimental in nature, since perfor-
mance monitoring is not a primary goal of this project.

3.3.1. Relative display speed(de1ta)

Measure of:
Speed of display relative t o speed of original program execution measured
over the last "delta" trace records, giving an 'average relative speed' over a
short or long period depending on the value of "delta".

Proposed Equation
(w-time - st-w-time) / (r-time - str-t ime)

where
I* w-time" is the wall clock time from last trace record

11 r-time" is the real wall clock time when last trace record was read,
*I delta" is some small integer constant (3? 5? lo?)
18 I8 st-w-time is the wall clock time from the trace record *-delta,

where * is the ordinal of the last trace record read
I* str-time" is the real wall clock time when trace record *-delta was

read

Note:
This measure seems t o only make sense back t o the last "GO", since real
wall clock time continues through a HALT while trace record wall clock
time stops. Therefore, if *-delta addresses a record before the last GO, it
could either be taken to be the record read after the last GO, or else the
real wall clock time which has elapsed between intervening HALTS and
GOs could be subtracted from the denominator.

3.3.2. Parallelism(Process~et)

Measure of:
Amount of parallelism achieved within the ' ~ roces s se t " .

Proposed Equation:
(Total wall clock execution time for all processes) / (Wall clock from last
trace record - wall clock from first trace record - wall clock time while all
processes idle)

Note:
If all processes in the Process set are on separate processors, this is a meas-
ure of speedup, since it is ratio of the time tha t the process would have
taken on one processor t o the time i t took on the many processors. If the
processes in the Process set are all on a single processor, this is a measure
of contention among processes for CPU time. To get a speedup measure
when processes/processors > 1, perhaps a similar metric could be devised
using CPU time measures.

3.3.3. Processor under-utilization(Processor)

Measure of:
Percent of time a Processor is idle.

4. Practical Considerations

In our initial thinking, the monitor was t o run as the host program was
running, requiring bidirectional data transfer between the monitor and host sys-
tems. Monitor t o host da ta would include the trace stream and any normal
program output, while host t o monitor would consist of flow control and
interactive program input.

This design suffered from problems arising from the flow control. In order
for the speedometer t o remain accurate, the actual speed execution of the host
program could not be affected by the speed of the display, meaning tha t a large

output buffer had t o be maintained for the trace between the host program and
the display system - larger than the Unix default of 512 characters. Although
there are probably ways t o handle this on Unix and other systems (e.g. by hav-
ing the trace go t o a file on the VAX and then having a separate process such
as "tail" spool the file t o the monitor), this is very system dependent and
offers little advantage over simply creating a trace file which is moved over t o
the monitor after the trace is complete.

5. Design

5.1. Subnetwork Expansion Algorithm

A subnetwork expansion/collapse algorithm is not as trivial as i t may first
seem if i t is t o have certain desirable properties. Among these is tha t all bub-
bles (process nodes) on the screen should be of a uniform size, and the network
should in some nice sense fill the area available on the screen. Furthermore,
datapaths should not be made t o cross or uncross because of an
expansion/collapse, and datapaths should never cross over or under bubbles.

I t initially seemed as though GKS could help us out by allowing us t o
redefine coordinate systems or by performing certain transformations for us.
Unfortunately, these capabilities turned out t o be of little use.

Our solution was to enclose each bubble in a square zone exactly 10 units
wide by 10 units high t o enclose it. (The display area is rescaled as necessary
t o accommodate all zones.) All datapaths arriving or departing from the bubble
would meet the zone and then proceed radially t o the bubble. Each bubble
would keep a record of where datapaths impinged on its zone; i.e. the side (top,
bottom, left, right) and the relative point along the side. In addition, zones
were not allowed t o overlap, and datapaths were not allowed t o pass through
zones.

The detail level of each subnetwork was defined the same way, with the
entire subnetwork defined within a rectangle (again, scaled t o accommodate all
of the bubble zones). Any datapath entering or leaving the subnetwork would
meet this external rectangle.

With this basis, expansion and collapse of subnetworks can be performed
dealing only with the rectangular zones, with the bubbles re-added (with their
centers coinciding with the rectangles' centers) after the mapping has been per-
formed. This means tha t after the mapping, the restriction is tha t the zones
must still be a t least 10 by 10 (to hold the bubbles again).

The algorithm works by checking t o see if the detail level network will fit
into the zone of the subnetwork bubble it is replacing, one dimension a t a time.
If the detail level is smaller than the zone, then the subnetwork is stretched
along tha t dimension t o fit in the zone. If the detail level is larger than the
zone (which is usually the case), the zone is stretched t o accommodate the
detail level. As the zone is stretched, all points adjacent t o the zone along tha t

dimension (i.e. either all of the points directly above and below the zone or all
the points directly t o the left and right of the zone) are moved accordingly to
preserve the correspondence between them and the points on the zone edge.

After the stretching is performed, the detail level is moved into the zone
and the screen is rescaled if necessary to accommodate the new network. The
network is re-drawn with each bubble placed a t the center of it's corresponding
zone.

The "stretching" mentioned above may be non-linear depending on the past
history of stretches in the network, but it can always be partitioned into linear
stretches.

5.2. BUBLIB - Higher level network display routines
To avoid being dependent on any given graphics package or terminal, and

t o avoid carrying (sometimes voluminous) calls t o GKS within our higher level
routines, we designed this intermediate level of graphics routines t o do most of
the dirty work of network display and manipulation. These routines were
designed in light of both the capabilities of generally available graphics pack-
ages (e.g. segments and primitives) and the needs of our LGDF monitor.

SUBROUTINE INITBB (GRIDX , GRIDY, STATUS)
INTEGER GRIDX, GRIDY, STATUS

Undefines all segments, sets scaling factor for all further calls, such tha t
there are a t least GRIDX units horizontally and GRIDY units vertically, with
the lower left hand corner coordinate (0, 0) and aspect ratio of 1. Clears screen
t o empty, except for control menu. STATUS is returned zero if all ok.

SUBROUTINE DEFBUB(CENTRX, CENTRY, SLICES, BUBNAM, BUBIDN, STATUS)
REAL CENTRX, CENTRY
INTEGER SLICES, BUBIDN, STATUS
CHARACTER BUBNAM*3

Defines a bubble with given center a t (CENTRX, CENTRY). Radius of
bubble will be 7 units. Bubble will be divided into SLICES equal pie-slices.
Bubble will be labeled with BUBNAM (which may be able t o be defined as a
separate segment - see DRWARC with SLICE=O). Returns BUBIDN t o be used
in actions on bubble in further calls. STATUS is returned zero if all ok. No
drawing will occur.

SUBROUTINE DEFARC (XYPATH, ARCIDN, STATUS)
REAL XYPATH(2, *)
INTEGER ARCIDN, STATUS

Defines an arc with path described in XYPATH. In general, XYPATH(1, I)
is an x coordinate, XWATH(2, I) a y coordinate. X and y coordinates are
always positive. If XYPATH(1, I) is -1, it repre sents the end of one branch of
the path, with other branches t o follow; If -2, it represents the end of the path
definition. In either case, XYPATH(2, I) represents the type of arrowhead from
the following list:

XYPATH(2, I) Type of arrowhead
0 No arrowhead
1 Open arrow
2 Closed arrow
3 V arrow -

Arrowhead should be 2 units in length, and should point in approximately
the right direction with the point at the last coordinate in the path.

No drawing will occur. ARCIDN returned t o identify arc in subsequent
calls. STATUS is returned zero if all ok.

SUBROUTINE DRWBUB (BUBIDN, SLICE, XSTATE, STATUS)
INTEGER BUBIDN, XSTATE , STATUS

Draw slice# SLICE of bubble with id BUBIDN on screen, with execution
s ta te = XSTATE as shown:

XSTATE Execution state
Waiting

Executing

If bubble is unsliced, SLICE will be equal t o 1. If SLICE = 0, just the outline
(whatever tha t means - maybe nothing) and bubble name will be drawn. (If
bubbles are implemented such tha t outlines and names are re-drawn whenever
the state changes, a call with S L I C E 4 may result in no action.) The execution
state will be reflected as a color. If slice is already on the screen, i t will be
redrawn.

SUBROUTINE DRWARC (ARCIDN, MTE'ULL , STATUS)
INTEGER ARCIDN, MTFULL, STATUS

Draw arc with id ARCIDN on screen with empty-full state = MTFULL as
shown:

The empty-full state will be reflected as a color. If arc is already on the
screen, i t will be redrawn.

SUBROUTINE DSPSTT(CENTRX, CENTRY, LABEL, STATUS)
INTEGER CENTRX, CENTRY, STATUS
CHARACTER LABELf3

Label bubble, whose center is a t CENTRX, CENTRY, with LABEL.

This routine will be used t o display a bubble's internal state changes.

SUBROUTINE ARWOFF(DIEFX, DIFEY, OEFlX, OFF lY , OFF2X, OFF2Y)
REAL DIFFX, DIFFY, OFFIX, OFF lY , OFF2X, OFF2Y

Computes two points for back of arrow head relative t o point, (OFFIX,
OFFlY) and (OFF2X, OFF2Y), given the differences in X coordinates and in Y
coordinates for the last two points on the arc; i.e. if the point before the end of
the arc was (125, 7) and the point a t the end of the arc (the point of the arrow)
is (170, 5), then DIFFX should be (170 - 125) = 45 and DIFFY = (5 - 7) = -2.

5.3. External data structures

Since this monitor was t o be general enough t o any LGDF program, it was
logical t o store the general structure of the data flow graph being monitored
outside of the program in a file which, perhaps someday, would be built by
another program. This program would act as a graphics editor for a user t o
create the graphs and subgraphs t o be shown in the monitor. It is easy to con-
ceive tha t this program would be capable of collecting all of the da ta currently
held in the LGDF "wirelist" file, since most of this information is already
present in the da ta flow graph.

The GKS system offered us one choice for external representation of the
data flow graph in the form of a metafile. A metafile is a file which has a for-
mat known t o GKS, and which can hold GKS segments. Although we intended
to use segments for our display, our datapath segments had to be redefined
every time a transformation (such as expand or collapse) took place on the
display, and we needed the component coordinates of the segments available
within the program t o perform these transformations. This was not possible if
using a metafile as our only form of data transfer between the graphics editor
and the monitor program.

We therefore devised our own file format for such a file. This would also
facilitate the extension which would have the graphics monitor accept all data
currently present in the wirelist.

The file format is:
BUBBLE pp nn xxxxxx yyyyyy ss wwwwww hhhhhh
ARC ddq nn o
ARCPNT ddq nn xxxxxx yyyyyy

where
BUBBLE records describe bubbles and/or networks
ARC records describe arcs
ARCPNT records describe points on arc and arrows a t terminals
pp process number for the bubble
nn network the bubble resides within
xxxxxx x coordinate of the bubble or arcpoint within nn
yyyyyy y coordinate of the bubble or arcpoint within nn
ss number of slices in bubble
wwwwww width of network when expanded
hhhhhh height of network when expanded
dd arc number for arc
9 arc qualifier (one letter or space)
o Flag (t/f) for whether arc has an origin in nn

Restrictions

(1) All ARC records having identical nn fields must appear together (except
for intervening ARCPNT records)

(2) All ARCPNT records for a particular arc must immediately follow the
ARC record for the same arc

(3) The BUBBLE record for a network must appear before the the BUBBLE
records for bubbles within that network and before the ARC records for
arcs within tha t network

6. Implement ation Experience

6.1. BUBLIB - Dealing within GKS
The monitor program must have available some form of specification of the

program graphics; Within GKS, the simplest means of specifying a graphic
image such as a bubble or arc is as a segment. A segment is opened, GKS rou-
tines are called to insert the appropriate graphical information, and the seg-
ment is closed. High level routines are then available t o manipulate the seg-
ment. However, segments restrict further program animation graphic activity
essential t o the program monitor. For example, once a segment is created, its
color cannot be changed.

The current implementation of the monitor bypasses this problem by creat-
ing multiple segments for each LGDF object. This is done in an initialization
step. The (currently hardwired) interface file is processed, and a segments for
each possible s ta te (color) of each bubble and arc are created. The high level
GKS segment display routines are then used during the actual monitoring
phase. If, for example, a bubble is t o be turned from green to red, the green
segment of t ha t bubble is erased and the red segment drawn. The reason for
the erasure is t o allow selective screen update. The GKS system allows setting
of update modes and segment priorities, and these can be combined t o control
the time of screen updates. However, when an update is forced within GKS,
the screen is cleared and all visible segments are redrawn. This is totally
infeasible due t o the slowness of redraw. A sample set of trace actions is also
hardwired into the monitor code.

An alternative t o using segments is t o write routines t o mimic GKS seg-
ment storage and display. Arcs and bubbles would be preprocessed in the setup
phase of the monitor. A data structure would be associated with each arc and
bubble t o hold all precomputable graphical data, in order t o minimize the
amount of computation t o be done and the number of GKS routines to be
called a t display time. It is conceivable that this approach might result in fas-
ter execution than the current implementation, but this has not been tested
since i t is unlikely and development would be lengthy.

6.2. Program Development Experiences
Program development on an IBM PC/XT was unpleasant a t best. Though

compilation was tolerably fast, linking was intolerably slow. The GKS kernel is
quite large. A 500-statement program with 130 subroutine calls (most t o GKS
routines) took half an hour t o link, and linking time increases with program
size. 500 lines is small compared t o the code size of a full-blown monitor. In
addition, the experimental nature of the code (we were not adapting any pre-
existing code), the poor documentation of some of the graphics library and slow

*I graphics display hardware make the let's t ry it and see" (frequent
write/debug/test cycles) method of programming a necessity. The long linking
time mades this process agonizing.

7. Future Possibilit i e s / ~ u ~ ~ e s t i o n s

7.1. LGDF Monitor - Conclusions and Recommendations
The resulting demonstration software is SLOW, probably too slow t o be of

any practical use. This seemed to be a result of two aspects of the GKS sys-
tem;

(1) It uses abundant floating point arithmetic, even though we could have
supplied all points as integer values without much problem.

(2) There was no straightforward way of changing colors without redrawing
the entire figure. Even then, it was necessary (when using segments) t o
erase the old figure before redrawing the new one, which took even more
time, especially with the bubbles.

It is possible tha t upgrading t o a faster machine (PC/AT with a math
coprocessor) would help some. However, the mismatch between our application
and the functions offered by GKS seemed to be the primary problem.

Resources for the project ran out before we were able t o try out some por-
tions of the design. The poor performance of the PC as a development system
was a major cause of this.

A more useful configuration for implementation of a system such as this
would be t o have a mainframe doing most of the dirty work with a smart
graphics terminal performing the monitoring. Perhaps, under this condition,
GKS could run on the mainframe a t a reasonable rate and development would
also go smoother. If a personal computer configuration is desired, lower-level
graphics should be considered, and perhaps a computer with more of a graphics
orientation such as the Amiga, Apple IIgs, or Macintosh.

This project certainly opened our eyes t o some possible extensions in the
realm of real time monitoring of parallel programs. Perhaps the most intriguing
of these became apparent while considering the kinds of interaction the user
could have with the program while it was running.

In most parallel programming environments, the relative timing of the
separate processes can affect the results of the program, yielding the nondeter-
ministic behavior which these programs have become infamous for. Adding
tracing t o such programs can affect these relative timings, thereby frequently
affecting the results of the program. To minimize this problem, it is important
tha t tracing be as unobtrusive as possible.

An interesting technique tha t might be used with such a program would be
to trace only enough of the execution so tha t i t could be reconstructed with the
same relative timings a t a later time. This reconstructed execution could then
be slowed down or monitored in any more detailed way desired, as long as the
important relative timings occur the same way as they did during the actual
execution. Although the trace itself would contain very little information, the
trace together with the original program and original input da ta could yield a
wealth of information.

I t may not even be necessary for the reconstruction t o take place on the
same hardware tha t originally ran the program. A program tha t was originally
run on a parallel processor could be recreated under a multiprocessing operating
system, like Unix, as long as the compiler and machine arithmetic were similar.
The tool performing the reconstruction could, in fact, allow the user t o call a

standard interactive debugger (such as dbx on Unix) t o allow the user t o set
breakpoints and/or monitor values during the execution.

The LGDF programming model provides an excellent base for such a sys-
tem. Since LGDF programs have very few opportunities for timing t o modify
results, there are very few places where tracing needs t o occur. During execu-
tion of the reconstruction, the user could watch the execution from a high level
monitor, such as the one we have developed here, until the program enters a
particularly important phase, a t which time the user could query the da t a
available on da t a paths directly from this high level or could opt t o invoke the
standard interactive debugger.

In fact, a n LGDF program is so stable with respect t o relative timing t ha t
i t may be desirable in some cases t o skip the tracing phase and simply run the
monitored program in a testbed environment, where the user could dictate when
processes should be held from executing. In addition, the user may want t o
manually deposit da t a on a datapath or modify a variable within a program.
The tool controlling these interactions could possibly warn the user when the
program acts in a non-deterministic way (i.e. when there is a choice of two
processes t ha t can s tar t , both of which access a common da t a path).

8. Listings

integer BACKQt ,FOREQt ,RED,~EN
integer BLUE, YELLOW, ORANGE, VIOLET

*** DEFINES

integer BUNDLED,INDIVIDUAL
integer WC, NDC
integer F H O L L O W , F S O L I D , F P A ~ , ~ ~
integer S O L I D , D A S H E D , m
integer POINT,PLUS,ASTERISK,OMARK
integer NONE,OK,NOPICK
integer POSTPONE,PERFORM
integer DETECCABLE
integer HIGHLIGHT
integer INVISIBLE,VISIBLE
integer HNORMAL,HLEFT,HCENTER,HRIGHT
integer VNORMAL,VTOP,VCAP,W,VBRSE,VBOTICM
integer RIGHT, LEFT, UP, DOWN
integer STRING,CHAR,STROKE
integer HI-, LOWER
integer BAR,ARC,PIE,CIRCLE -

C
C * * * DEVICES

28 L
29 integer w s s d e v , c r t d e v , j o y d e v
3 0 integer gmodev, g m i d e v
31
32 C
33 C *** FONTS
34 C
35 integer FONT0 , FONT1, FONT2, FONT3
36 integer FONT4, FONT5, FONT6
37

7 13:35 1986 /ogc/students/storcl/lanl/gss/lgdf.&t Page 1

*** COLORS
data BACKGR , FORE= , RED, QEEN /0,1,2,3/
data BLUE. YELLOW, ORANGE, VIOLET /4,5,6,7/

*** DEFINES
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

BUNDLED. INDIVIDUAL /o ,1/

HIGKLIGHT /i/'
INVISIBLE,VISIBLE /0,1/
HNORMAL , HLEFT, HCENTER, HR
VNORMAL , VTOP, VCAP , W,
RIGHT,LEFT,UP,DOWN /0,1,
STRING,cHAR,STROKE /0,1,
HIQ-ER,LOWER /0,1/

L E /-I,-

.I=
VBASE

27 C
28 C *** DEVICES
29 C
30 data wssdev,crtdev,joydev /0,1,2/
31 data gmodev, gmidev /4,5/
32
33 C
34 C *** FONTS
35 C
36 data FONTO,FONTl,FONT2,FONT3 /1, -101, -102, -103/
37 data FONT4,FONT5,FONT6 /-104,-105,-106/
38

Oct 8 10:54 1986 /ogc/students/storcl/1anl/lgdf.for Page 1

program lgdf

DECLAWLTI ONS

c GKS constants
$INCLUDE: 'lgdf .def'

c DO NOT REMOVE THE LINE BELOW!!! (Used by G3CS for scratch memory)
integer*4 size, intary (5000)

c polyline aspect source flags
integer plasf (13)

c coordinates used in transformation computations:
c maximum device / normalized device

real xdcmax, ydcmw, xndc, yndc

c values used in computing segment names:
c nums s is the current number of segments in existence, sgstrt is
c the ?,st segment created for the control portion of the display
c control section: 0 through sgstrt / lgdf graph: sgstrt+l to numsgs

integer numsgs, sgstrt

c VARIABLES FOR TEST STUFF:
c centers, number of slices, id numbers, and names of the 7 bubbles

real center (7,2 4 integer slices () ,bubidns (7)
character*3 bubnams 7)

c specification ints an id numbers of the 14 arcs
real arcs PS)59)

d
integer arcidns (14)

c standard array for passing an arc to the defarc subroutine
real xypath (2,50

integer idn
1 c catches arc and bubb e ids returned by defining subroutines

c catches status returned by defining subroutines
integer status

c plenty of loop indices for doing test runs
integer i,-J,k

L;

c COWON BLOCKS *
C *
c**
C
c DO NOT REMOVE THE LINE BELOW!!! (Used by GKS for scratch memory)

common /gracom/ size,intary

common / d m / xdcmax, ydanax, mdc, yndc

Oct 8 10:54 1986 /ogc/students/storcl/1anl/lgdf.for Page 2

common /segs/ numsgs, sgstrt

c**
C *
c DATA STATEMENTS *
C *
c**

data plasf /0,0,1,1,1.1,1,1,1,1,1,1,1/

c DATA FOR TEST STUFF:
c centers of circles (all x's then all y's)
c p12 p13 14 p16 p17 p18 p10

data center / 1 4 . 0 , 3 5 . 0 , 1 0 . 0 , 4 2 . 0 , 6 3 . 0 , 8 4 . 0 , 1 4 . 0 , 5
5 9 . 0 , 5 9 . 0 , 59.0,35.0,35.0,35.0,13.0/

c number of slices in each circle
c p12 p13 p14 p16 p17 p18 p10

data slices / 1, 1, 1, 1, 6 , 1, 1 /
c names of the bubbles

data bubnams / ' p l 2 ' , ' p l 3 ' , ', 'p16' , 'p17 ' , ' p l 8 ' , 'plO'/
c specification points for arcs pairs)

- data arcs 7
c arc#l d o 1

Oct 8 10:54 1986 /ogc/students/storcl/lanl/1gdf.for Page 3

113 c**
114 c *
115 c EXECUTABLE CODE *
116 c
117 c**
118 c
119 c DO NOT REMOVE THE LINE BELOW!!! (Used by C=KS for scratch memory)
120 c AND IT MUST BE FIRST LINE OF EXECUTABLE CODE!!!
121 size = 10000
122
123 c GKS initialization, upen files
124 call init -- -
125
126 c set normalization transformations
127 call setnrm (crtdev)
128
129 c set polyline aspect source flags and polyline index
130

9 7
call gsasf @lasf)

131

132 c draw graph area box (seg #1
133 call box (1,1,1,0.0, b 0.0, 0.0, 70.0)
134
135 c draw control area box (seg #2)
136 call box (3,2,2,0.0, 100.0, 0.0, 20.0)
137
138 c draw control segments (segments numbered 3 through sgstrt)
139 c
140 c NOT IMPLEMENTED
141 c
142
143 c set sgstrt and numsgs to proper values (done below for the case
144 c that the control section ended on segment 10)
145 sgstrt = 10
146 numsgs = sgstrt
147
148 c TEST STUFF
149 c the lgdf graph is bounded by a 120x75 box in world coordinates
150 c initbb initializes the necessary transformation, after cleaning
151 c up after any revious aph displayed
152 call lni & b(120.0,%.O,status)
153
154 c define the arc segments :
155 c read the arc specification points into the xypath array
156 c at the end of each arc, call the defarc subroutine
157 c save the arc id numbers for later use
158
159 2:;
160 do 10 1=1,59
161 xypath[l,j] = arcs[l,i]
162 xypath 2,j = arcs 2,i
163
164 -2) then
165 call defa;3&ath, idn, status)
166 arcidns (k) = idn
167 k = k+l
168 j = l

Oct 8 10:54 1986 /ogc/students/storcl/1anl/1gdf.for Page 4

169 endi f
170 10 continue
171
172 c define the bubble segments:
173 c send the center and number of slices for each circle to defbub
174 c save the bubble id numbers for later use
175 do 20 i = 1.7
176 call defbub(center(i,l).center(i,2
177 * slices (i) ,b&nams (i idn, status)
178 bubidns (i) = idn

20 continue 179

draw each slice for each bubble in suspended state (red) using drwbub
do 30 i = 1,7

do 40 k = l,slices(i)
call drwbub (bubidns (i) , k, 1, status)

40 continue
30 continue

draw each arc in empty state (red) using drwarc
do 50 i = 1,14

call m a r c (arcidns (i) , 1, status) - -
50 continue

change a few for fun and to see how it's working

set do1
call drwarc (arcidns (1) ,2, status)

wake up p12
call drubub (bubidns (1) ,1,2, status)

set do6
call drwarc (arcidns (5) ,2, status) - -

set do2
call drwarc (arcidns (2) .2. status)

wake ca P 1 M u b (bubidns (2) , 1,2, status)
set dl2

call drwarc (arcidns (7) ,2, status)

wake ca uf 1 m u b (bubidns (4) , 1 , 2 , status)
clear dl2

call -arc (arcidns (7) .I, status)
set dl3

call m a r c (arcidns (9) ,2. status)

'T p17d ca 1 dnibub (bubidns (5) ,4,2, status)
terminate p16

call drwbub (bubidns (4), 1,3, status)
2 17
218 c END TEST STUFF - -

219
220 c clear screen (s resses final redraw)
221 c call gcl (crtdev, 1)

323 c shut down GKS and close files
224 call shutd

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdfffor Page 5

c insert code here to call ''mode co80" to enable praper text display
c for subsequent programs such as editors
C
c NOT IMPLEPENTED
C

end

.
C *
c SUBROUTINE INIT *
C *
c 1. Open files
c 2. Initialize GKS *
c 3. Call "iniarw" *
C *
c**

subroutine init

$INCLUDE: 'lgdf .def *
integer unitl

eINCLUDE: 'lgdf .&t'
data unitl /14/

c file used by GKS to log error messages
open (unitl,file='errors*,status=*new*)

c file for debug write statements
open (15, file= ' debugs * , status= 'new')

c open kernel system for business
call gopks (unitl, 1024)

c open workstations
call gopwk wssdev, 0, wssdev
call gopwk crtdev, 0, crtdev
call gopwk gmodev, 0, gmodev
call gopwk I joydev, 0 , joydev I

c activate workstations
call gacwk wssdev
call gacwk crtdev
call gacwk gmodev
call g a W I joydev 1

c suppress display updates unless asked for
call gsds (crtdev , 0 , 0)

c compute tables for use in computing the angle
c of arrowheads at the end of arcs

call iniam

return
end

SUBROUTINE SETNRM
C
c 1. Define transformation for graph area
c 2. Define transformation for control area
C
c**

subroutine setnrm (dev)

$INCLUDE : ' lgdf . def '
integer dev
integer err, dcunit, mas, yras
real xdcmax, ydcmax, scale, xndc, yndc

2 96
297 common /dcmax/ xdcmax, ydcmax, xndc, yndc
298
299 $INCLUDE:'lgdf.datt -
30 0
301 c inquire maximum display surface size
30 2 call gqdsp (dev, err, dcunit, xdcmax, ydcmax, mas, yras) - -

303
304 c calculate the aspect ratio of display surface
305 if (xdcmax .GT. ydcmax) then
306 scale = xdcmax
307 else
308 scale = ydcmax

end if
m d c = xdcmax / scale
yndc = ydcmax / scale

31 2
313 c set world window and vi ort for transformation 1 (graph area)
314 call gswn p, O.O??O.O, 0.0, 70.0)
315 call gsvp 1, 0.0, xndc, 0.21*yndc, yndc)
316
317 c set world window and viewport for transformation 2 (control area)
318 call gswn 2, 0.0, 100.0, 0.0, 20.0)
319 call gsvp I 2, 0.0, xndc, 0.0, 0.20*yndc)
32 0
321 c set display window and viewport
322 call gswkwIl dev, 0.0, xndc, 0.0, yndc)
323 call gswkvp [dev, 0.0, xdcmax, 0.0, ydcmax)
324
325 retum
326 end
327
328 c** *

SUEROUTINE BOX
331 c
332 c 1. Define a box segment at the indicated coordinates,
333 c using the indicated line attributes and transformation
334 335 c c**

336 subroutine box @li, tmm, sgnm, xmin, xmax, ymin, ymax)

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 7

337
338 6INCLUDE:'lgdf.def'
339 integer pli , t m m , sgnm
34 0 real xmin, ymin, xmax, ymax

- - -
345 c set polyline index
346 call gspli (pli)
347
348 c set normalization transfonmation
349 call qselnt (tmum)

call gcrsg (sgnm)
= xmin
= ymin

=ymax
x PI 4 = xmin

363 c draw the box
364 call gp1 (5, x, y)
365
366 call gclsg
367 return
368 end

SUBROUTINE INITBB

1. Undefine all graph segments
2. Define a transformation which maps GRIDXxGRIDY

onto the graph display with aspect ratio 1
and set this transformation as the current one
for all subsequent output

3. Clear the aph area of the display ?L 4. Return STA S
381 c u

382 c*************************************f**********************************
383 subroutine initbb (gridx, gridy , status)
384
385 real gridx, gricfy
386 integer status
387 integer numsgs , sgstrt
388 real xd-, ydcmax, xndc, yndc
389
390 common /segs/ numsgs, sgstrt
391 common /danax/ xdcmax, ydcmax , xndc , yndc
392

393 c delete all graph segments currently existing
394 do 10 i = sgstrt+l, numsgs
395 call gdsg(i)
396 10 continue
397 numsgs = sgstrt
398
399 c calculate aspect ratio
400 c
401 c NOT IMPLErENTm
402 c
403
404 c set world window and viewport
405 3.0.0, qridx, 0 .O, pridy)
406 3.0.01 mdc, 0.99 mdc, 0. 2l*yndc. 0.99*yndc)
407 call gselnt (3)

c clear graph display
C
c NOT IMPLEMENTED
C

c return status (0 if ok)
C
c NOT IMPLEMENTED

return
end

c** *
SUBROUTINE DEFBUB

C
1. Define a bubble with center (CPnaX,CENTRY] and radius 7. * C

Create three segments for each slice, via 'doarc" and C
"docirc". Associate BUBNAM with each segment. C

2. Return BUBIDN and STATUS * C *
C
c**

subroutine defbub (centrx,centry. slices,bubnam,bubidn, status)
' real centrx,centry
integer slices, bubidn, status
character bubnam* 3

$INCLUDE: 'lgdf .deft
character datrec (1)
real rad

integer i
real angle
real pi
real tempx, tempy

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

Oct 8 10:54 1986 /ogc/students/storcl/lan1/1gdf.for Page 9

449 $INCLUDE:'lgdf.dat'
450 data rad /7.0/
451 data pi /3.14159/
452
453 c compute bubidn
454 numsgs = numsgs + 1
455 bubidn = numsgs
456 if (slices .gt. 1) then
457 tempx = rad*l.O + centrx
458 tempy = 0.0 + centry
459 do 10 i=l,slices
460
461
46 2
46 3
464
465
466
467
468
469 call doarc xarc,yarc,RED,bubnam)
47 0 call doarc xarc, yarc, GREEN, bubnam)
471 call doarc xarc, yarc, VIOLET, bubnam)
472 10 continue
473 else
474
475
476
477
478
479
480
481 mdi f
482
483 c return 0 status if ok (add error checking)
484 status = 0
485 return
486 end
487
488 C*******f*ff***

SUBROUTINE DOCIRC
C
c Create a bubble/label segment
C C**

subroutine docirc xcir,ycir,ccolor,bubnam)
real xcir (2 .ycir 1 integer cco or
characterf3 bubnam

$INCLUDE: 'lgdf .&f'
character datrec (1)
real rad

integer numsgs , sgstrt
common /segs/ numsgs, sgstrt

Oct 8 10:54 1986 /ogc/students/storcl/lan1/1gdf.for Page 10

$INCLUDE : ' lgdf . dat '
data rad /7.0/

call gsfais
call gsfaci
numsqs = numsgs + 1
call -gcrsg (negs)
call asdtec (numsas , DETECTABLE)
call Gsvis (riumsgG, INVISIBLE
call ggdp (2, xcir,ycir, CIRCL

c d r a w label of circle
call gstxci YELLOW
call gstxal LC&,
call gtxs (xcir (1) , ycir (1) ,3, bubnam)

call gclsg

return
end

c**
C *
c SUBROUTINE DOARC * - *
b

C - Create an arc/label segment.
C
c**

subroutine doarc (xarc, yarc, ccolor , bubnam)
real xarc (3 , yarc (3) l integer cco or
character*3 bubnam

$INCLUDE: 'lgdf .def'
character datrec (1)
real rad

integer numsgs , sgstrt
common /segs/ numsgs, sgstrt

$INCLUDE: 'lgdf .dat'
data rad / 7 . 0 /

call gsfais
call gsfaci
numsqs = numsgs + 1
call -gcrsg (nuikgs)
call gsdtec (numsgs , DETECTABLE)
call gmis (numsgs, INVISIBLE)
call qqdp(3,xarc,yarc,PIE,O,&trec)

c d r a w label 6E circle
-

call gclsg

Oct 8 10:54 1986 /ogc/students/storcl/lan1/1gdf.for Page 11

return
end

C *
C *
c SUBROUTINE DRWBUI3 *
C *
c Draw a bubble (or slice) in the specified state. This is done *
c by erasing the other states of the bubble before display. *
c (Only one needs to be erased if the state of the display *
c is known) . *
C *
c**

subroutine drwbub (bubidn, slice, xstate, status)
integer bubidn,slice,xstate,status

$INCLUDE : ' lgdf . def '
integer sgnm
integer base
real tmat (2.3)
integer err, vis, high, det
real sgpr
integer numsgs, sgstrt
common /segs/ numsgs,sgstrt

$INCLUDE: ' lgdf .dat
base = bubidn + (slice-1) *3

if (xstate .eq. 1) then
call gsvis ase+2,INVISIBLE
call gsvis ase+3,INVISIBLE
call gmis ase+l,VISIELE)

endi f
E 1

endi f

1
ase+l,INVISIBLE
ase+2,INVISIBLE
ase+3,VISIBLE)

endi f

return
end

Oct 8 10:54 1986 /ogc/students/storcl/lan1/1gdf.for Page 12

c**
C *
c SUBROUTINE DEFARC *
C *
c Define an arc with path XYPATH. Create two segments for *
c the arc via "defpth', and create a label segment. *
c No drawing will occur. ARCIDN is returned to identify *
c the arc in subsequent calls. STATUS is returned zero *
c if all ok. *
C *
c**

subroutine de f arc (xypath, arcidn, status)
real xypath (2,50)
integer arcidn, status

$INCLUDE: 'lgdf .def'

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

$INCLUDE: 'lgdf .dat'

numsgs = numsgs + 1

call gclsg

call defpth xypath,RED,status)
call defpth xypath, QZEEN, status)

return
end

c**
C
c SUBROUTINE DEFPTH *
C
c Trace the datapath and output pol lines as a ropriate. *
c XYPATH(1, I) is an x coordinate, L A T H (2 I&Ahiyordinate. *
c X and y coordinates are always positive. i f , I) is *
c -1, it represents the end of one branch of the path, with *
c other branches to follow; If -2, it represents the end of the *
c path definition. In either case, XYPATH 2, I) represents the *
c type of arrowhead and "arwhed" is call d to output this. *
C *
C *

subroutine def th (xypath, ccolor , status)
real xypath (2 ,go)
integer ccylor, status

e1NCLUDE:'l f.&f i@ rea xarc (10) , yarc (10)
integer length

Oct 8 10:54 1986 /ogc/students/storcl/lanl/lgdf.for Page 13

integer sgstate
c index into xypath array

integer i

integer j

integer numsgs, sgstrt
common /segs/ numsgs, sgstrt

call
call
call
call
call
call
i = 1
length = 0
numsas = numsss + 1
callHgcrsg nukgs)
call gsvis I numsgs,INVISIBLE)

10 continue
if xypath(1,i) .eq. -2) then

do 98 j = length+l,lO
xarc [j 1 = xarc
yarc j = yarc

98 continue
call gpl (lo, xarc, yarc)
call arwhed (xarc,yarc, length, xypath (2, i))

qclsg aoto 0
end f
if xypath(1,i) .eq. -1)

do 99 j = length+l. 10
xarc [j] = xarc
yarc j = yarc

continue - -
call qpl(l0, xarc, yarc)
call arwhed (xarc, yarc, length, xypath (2, i))
i = i+l
length = 0
xm = xypath

got0
endi f

i = i+l
got0 10

20 continue
return

Oct 8 10:54 1986 /ogc/students/storc1/lanl/1gdf.for Page 14

end

c**
C *
c SUBROUTINE ARWHED *
C
c Output an arrowhead of the TYPE: *
c 0 No arrowhead *
c 1 Open arrow
c 2 Closed arrow *
c 3 V arrow *
c Compute the location of the arrowhead king "arwof f" . *
c An arrowhead is 2 units in length, and points in *
C 3? roximately the right direction with the point at

*
c e last coordinate in the path. - *
C;
c**

subroutine arwhed (xarc, yarc , last, type)
real xarc (10) , yarc (10)
integer last
real type

$INCLUDE: 'lgdf .deft

c index into x and y arc arrays -
integer i
real xloc (3) , yloc (3)
real xl,yl,dx,dy

@INCLUDE: 'lgdf .dat'

ii ca (type 1 gs iais (LOLLOW) then
call gfa (3,xloc,yloc)

endi f

h If dX~Zi .7 SEE)
call gf a (3, xloc, yloc)

endif
3 then

if ! W ~ ~ i , x l o c , y i o c)
endi f

return

Oct 8 10:54 1986 /ogc/students/storcl/lan1/1gdf.for Page 15

end

c**
C
c SUBROUTINE DRWARC
C *
c Draw an arc in the specified state. This is done by *
c erasing the other state of the arc before display. *
C *
c**

subroutine drwarc arcidn,mtfull,status) 4 intecrer arcidn.mt ull.status

if (mtfull .eq. 1) then
arcidn+2,INVISIBLE)
arcidn+l,VISIBLE) -

endi f
if (mtfull .eq. 2) then

arcidn+l,INVISIBLE)
arcidn+2,VISIBLE)

endi f

c call gsvis (arcidn,VISIBLE)
return
end

c**
* C

SUBROUTINE SHu'I'D C
C

1. Close down the Kernel System. * C
2. Close files. * C

C C*
subroutine shutd

$INCLUDE: 'lgdf .defl
integer unitl

$INCLUDE: 'lgdf .datt
data unitl /14/

C
call gdawk
call gdawk
call gdawk
call gdawk
call gclwk
call gclwk
call gclwk
call gclwk
call gclks
close
close [Z;+l)
return
end

Oct 8 10:54 1986 /ogc/students/storcl/1anl/lgdf.for Page 16

c**
C *
c SUBROUTINE INIARW *
C *
c Set up arrow offsets and angles tables. *
C *
c**

subroutine iniarw

real arwofa (5) , arwofb (5) , slplv2, slp2v3
common /amcorn/ arwo f a, arwofb, slplv2, slp2v3
integer arwang
real radian

parameter (pi = 3.1415926535897932384626433)
C
c - - these are x, y offsets for arrow tips
C

1000 continue
C
c - - these are the slopes of the lines dividing angles 1 - 2, and
c - - 2 - 3, for determining which arrow angle most closely matches
c - - slope of line arrow is to be added to
C

slplv2 = tan
slp2v3 = tan
return
end

c**
C *
c SUBROUTINE ARWOFF *
C *
c Finds appropriate coordinates for an arrowhead, based *
c on the direction in M c h it points. *
C
c**

subroutine arwoff (diffx, diffy, offlx, offly, offax, off2y)
real diffx, diffy
real offlx, offly, off2x, off2y
real xsign, ysign, slope

C
c computes two ints for back of arrow head relative to point,
c (oiilx, offlyY and (off2x, off2y), given the differences in x
c coordinates and in y coordinates for the last two points on the
c arc; i .e. if the point before the end of the arc was (125, 7) and
c the point at the end of the arc (the point of the arrow is (170, 5) ,
c then diffx should be (170 - 125) = 45 and diffy = (5 - b) = -2.
C
C - - translate slope to first quadrant (to avoid overflow)
C

xsign = diffx

O c t 8 10:54 1986 /ogc/students/storcl/lan1/1gdf.for Page 17

d i f f x = abs
ysign = d i f
d i f fy = abs
i f (diffx

slope = d f fy / di f fx
else

slope = d i f fx / d i f fy
end i f

- - get o f f se t s for base of arrow (switching x and y t o put - - it i n right half of quadrant, i f necessary)

i f (diffx .gt. dif fy) then
c a l l offcpy (slope, xsign, ysign, off lx, o f f ly , off2x, of f2y) -

else
c a l l offcpy (slope, ysign, xsign, off ly , off lx , off2y, of f2x)

end i f

re turn
end

subroutine offcpy(slope, sgna, sgnb, of f l a , o f f lb , off2a, off2b)
r ea l slope, s p a , sgnb, of f la , of f lb , off2a, off2b
integer arwslp

- - these a r e x and y of f se t s for points on a circle w i t h - - radius 2 for every pi /8 radians (22.5 degrees) s t a r t i ng
- - a t "arrow s l o 0 ' (-22.5 degrees) t o "arrow slope 4"
- - (67.5 deg-reesrin a counter-clockwise direct ion. the idea - - is (1) figure w h i c h arrow slope 1-3 best f i t s the slope of
- - the l ine , and (2) make the s ides of the arrow head l i n e up
- - w i t h the adjacent arrow slopes.

r e a l arwo fa (5) , arwofb (5) , slplv2, slp2v3
common /amcorn/ arwo f a, arwofb, slplv2, slp2v3

- - figure which arrow angle w i l l be c loses t

i f (slope .It. slplv2) then
arwslp = 1

else i f (slope .It . slp2v3) then
arwslp = 2

else
arwslp = 3

end i f

o f f l a = sign arwofa arwslp ,
o f f l b = s ign arwofb arwslp , I ' off2a = sign arwofa arwslp + 2 sgna
2 = sign arwofb arwslp + 4:
i f (arwslp .eq. 1) off2b = -0ff2b

re turn
end

Oct 7 13:34 1986 /ogc/students/storcl/lanl/gss/trace Page 1

Oct 7 13:34 1986 /ogc/students/storc1/lan1/gss/trace Page 2

Oct 7 13:34 1986 /ogc/students/storcl/lan1/gss/trace Page 3

