
The Stability of Query Evaluation Plans
and

Dynamic Query Evaluation Plans

Goetz Graefe

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-003

The Stability of Query Evaluation Plans
and

Dynamic Query Evaluation Plans

Goetz Graefe
Oregon Graduate Center

Abstract

A database query embedded in a program written in a conventional programming
language is optimized when the program is compiled. The query optimizer must make assump-
tions about the values of the program variables that appear as constants in the query and
about the data stored in the database. These assumptions include that the query can be optim-
ized realistically using guessed "typical" values for the program variables and that the database
will not change significantly between query optimization and query evaluation. The optimality
of the resulting query evaluation plan depends on the validity of these assumptions. If a query
evaluation plan is used repeatedly over an extended period of time, i t is important to determine
when reoptimization is necessary. We aim a t developing criteria when reoptimization is
required, how these criteria can be implemented efficiently, and how reoptimization can be
avoided by using a new technique called dynamic query evaluation plans for embedded queries.
Note that the same problem occurs in database support for logic programs that rely on back-
tracking. A specific database query is executed repeatedly with different variable instantiations,
i.e. different constants in the query predicate. The concepts presented in this paper will be
included in the next version of the EXODUS optimizer generator.

1. Introduction

In many database applications, queries are embedded in application programs written in a

conventional programming language like Cobol or C. These application programs are compiled

once and then executed repeatedly over an extended period of time. In most database manage-

ment systems, the embedded queries are optimized when the programs are compiled. The result-

ing query evaluation plan is stored in an 'access module' associated with the program's object

code, and is activated by procedure calls. This organization avoids the optimization overhead

when the program and the query are executed, thus allowing for fast execution and high tran-

saction rates.

The disadvantage of query optimization a t compile time is that varying constants in the

query predicate or changes in the database cannot be reflected in the query evaluation plan.

Thus, queries might be executed according to query evaluation plans that are far from optimal.

An embedded database query is used to retrieve information pertinent to the program.

The program data and the database query are connected by using one or more program vari-

ables as constants in the query predicate. The value of the program variables is not known a t

compile-time, i.e. when the query is optimized. Database query optimization does not genuinely

depend on the values of constants in the database query. However, in order to optimize a com-

plex query correctly, the optimizer needs to estimate intermediate result sizes, which in turn

may depend on the constants in the query predicate. For example, the optimal join strategy

depends on the number of tuples to be joined from each input. If the inputs are the results of

selections, i t is imperative tha t the optimizer estimate the select output size.

When optimizing an embedded query with program variables in the query predicates,

database query optimizers guess a "typical" value for each variable or a selectivity for each

predicate clause. Selectivities and costs of alternative query evaluation plans are estimated

using the guessed values. In the case of complex queries with inequality constraints involving

program variables, the resulting query evaluation plan can be far from optimal.

For example, consider a database query to find all employees with a salary greater than

$30,000 and their departments. Assume that this query requires to join the employee relation

with the department relation on the department number, and that the only two indices in the

database are for the employee relation on salary and for the department relation on depart-

ment number. If there are very few employees in this salary range, it probably is best to find

qualifying employees using the salary index, to use the result as outer relation in the join and to

perform repeated index lookups on the department relation. If there are very many such

employees, however, it might be best to read the entire department relation (the smaller of the

two relations) into a memory-resident hash table and then probe the hash table using the

employee tuples, using a file scan on the employee file. In this example, the scanning strategies,

the join order, and the join algorithm depend on the cardinality of the two relations and the

selectivity of the selection predicate. Imagine that the above query is embedded in an applica-

tion program, and that the cutoff value, the constant $30,000, is replaced by a program vari-

able. In this case, a conventional query optimizer cannot satisfactorily optimize the query.

Independent of values of program variables, another problem with stored query evaluation

plans is that they are optimized for the database a t the time when the query was optimized, not

a t the time when query is executed. In the mean time, the database may change such that the

query evaluation plan is no longer optimal. We have to distinguish between changes that make

a query evaluation plan infeasible and changes that make a query evaluation plan non-optimal.

The former category includes removing relations and indices that are referenced in the query

evaluation plan and has been addressed by earlier work [Chamberlinl98la]. The latter category

includes creating new indices, inserting or deleting a large number of tuples, and modifying a

large number of attribute values. We are concerned with the latter category.

Consider the above example again with a constant of $30,000. If most of the newly hired

employees are highly paid specialists, the number of qualifying employees will change, as well as

the portion of qualifying employees (i.e. the selectivity). If the query is optimized only once and

the resulting access plan reused over a long period of time, the query evaluation plan will even-

tually become suboptimal.

So far, we have looked a t the problem as it appears in conventional database management

systems. In a database system used to support logic programs, the same problem occurs very

frequently. Consider a model of execution that relies on backtracking, particularly Prolog

[Warrenl977a, Clocksinl98la]. The same clause is activated repeatedly with different variable

instantiations. If the clause contains a database query, the same database query is performed

with different constants in the query predicate, possibly requiring different query evaluation

plans. The techniques described here are aimed a t providing more flexibility and better perfor-

mance for both conventional and non-conventional database management systems and applica-

tions.

The next section describes a new concept which we call the stability of query evalua-

tion plans. In Section 3, we propose techniques to test efficiently whether a query evaluation

plan is optimal, i.e. whether the query with the actual constants is optimal for the current state

of the database. Section 4 describes how some of the problems addressed in this paper can be a

solved, namely by choosing the scanning strategy dynamically. Section 5 extends these tech-

niques to join processing. In Section 6, we develop a general technique, called dynamic query

evaluation plans, with the goal of providing minimal overhead, maximal flexibility, or both.

Section 7 briefly overviews the work in progress to assess the practical feasability of dynamic

query evaluation plans. Section 8 contains a summary and our conclusions.

2. The Stability of Query Evaluation Plans

As pointed out in the introduction, the optimality of a query evaluation plan depends on

whether or not the guesses and assumptions made during optimization are correct during query

execution, or, t o be more exact, on how significantly the guesses are wrong and the assumptions

are violated. To date, there is no exact measure how much is significantly. It certainly depends

on the database and the query; it also depends on the query evaluation plan itself. A query

evaluation plan might be better than another one, but only slight changes in the database

would favor the other one. For example, if the smaller of two join inputs fits into the available

main memory, hash join is preferred over merge join [Shapirol986a]. However, if the relations

grow only by a small number of tuples such that the main memory hash table would overflow

and the overflow must be resolved using temporary files [Gerberl986a, DeWittl986a1, merge join

might be the preferred strategy. If the query in this example is an embedded query and changes

in the database are quite likely between query optimization and query execution, it might be

the safer choice to ignore the advantage of hash join and choose merge join.

We define the stability of query evaluation plans to be the robustness of query evalua-

tion plans against changes in the database and in the query constants. Robustness expresses the

amount of change that will not change the fact that the query evaluation plan is the optimal

one or its cost is very close to the optimum. In the example above, the query evaluation plan

using hash join is not very robust1.

The major problem with this definition is that i t is not a concrete measure for robustness.

In the next sections, we describe a way to think about the problem and how we plan to capture

it in more concrete mathematical terms.

2.1. Range of Optimality

The range over which a query evaluation plan is optimal for a given query depends on the

query constants, the database, and their relationship.

Consider the query given in the example above. We indicated two query evaluation plans

for it, one of them using an index scan for the selection and an index lookup for the join, the

other one using two file scans and a hash based join method. We encountered the problem that

either one of the plans could be the optimal one, depending on the concrete situation. Both

query evaluation plans have costs associated with them that depend on the cutoff value for the

attribute salary. The cost functions could be parameterized, and plotted over the range of pos-

sible salary cutoff values. If we had a plot that shows the respective curves for each of the two

query evaluation plans, it would be trivial to select the better plan given a particular cutoff

value for the salary attribute.

When the database changes (e.g. by hiring many highly paid specialists), the curves

change in their exact positions, but the general method would still work. We observe that the

shape and position of the curves depend on the cardinality of the relations involved and the

selectivity of the selection predicate. Consequently, the curves should be parameterized, too.

In general, query evaluation plans involving hash join are less likely to be robust due to
the fact that small changes can lead to hash table overflow and an ungraceful performance de-
gradation. Merge join, on the other hand, tends to lead to more robust query evaluation plans
because the cost of both sorting and merging grows smoothly with the size of the relations to be
joined. We ignore here non-smooth growth due to duplicate attribute values as this problems
typically is not significant.

So far, we have considered only cases with one program variable in the query predicate of

an embedded query. Now imagine a query with two program variables. In order to plot a cost

function that depends on two variables, we use a 3-dimensional plot. The result looks like a

mountain range over a plane spanned by the two variables in the query predicate. If there are

two access plans to choose from, two surfaces interpenetrate. For any given pair of values for

the program variables, the cheaper query evaluation plan can readily be determined.

This model of thinking about access plans as functions and curves can be generalized for

any number of dimensions and program variables in the query predicate. We restricted our-

selves to the cases of one and two dimensions only for the sake of explanation.

In order to enable a database management system to decide which one of a set of query

evaluation plans promises the best performance, the system must be knowledgeable about the

relation cardinalities, the selectivities, and the cost functions. The cardinalities of the stored

files are readily available in most systems. The cost functions for each of the algorithms

involved is specified by the database implementor, and it is possible to design the database sys-

tem in such a way that it is able to combine several cost formulas into one calculation. The

remaining problem is to estimate selectivities and cardinalities of intermediate results depending

on both the database state and the constants in the query predicate. What is needed is a

method practical for database systems to concisely describe data distributions.

2.2. Distribution Description Tools

Several methods to estimate selectivities have been suggested and implemented in data-

base systems, including histograms and inverted histograms [Kooi1980a, Kooi1982a, Piatetsky-

Shapirol984a]. Recently, we have suggested to use density functions [Graefel987a]. If the den-

sity functions are assumed to be polynomials, it is possible to derive the coefficients from the

moments. The moments can be collected very efficiently and possibly maintained by update

transactions. One of the main advantages of density functions is that they can capture multi-

dimensional distributions, whereas previous methods relied on the assumption that attributes

are statistically independent. Multi-dimensional distributions are described using multi-

dimensional density functions, the coefficients of which can be derived using co-moments. Since

multi-dimensional density functions are more costly to derive and to use than one-dimensional

ones, i t is important to note that it can be determined very easily from the co-moments whether

two attributes are correlated and whether a multi-dimensional density function allows

significantly better estimates.

In order to estimate the selectivity of a simple predicate, e.g. for what portion of our

employees the salary is between $20,000 and $30,000, we need to know the density function for

the salary attribute in the employee relation, say fVda,, and solve the integral

30,OOo

.f f , d a ~ (') dx
%,OOo

This integral is easy to solve numerically if the function f ,da , is a polynomial. Integral of

multi-dimensional functions are used to estimate the selectivity of predicates involving two or

more correlated attributed.

Density functions also allow to estimate the cardinality of join results. If the join predi-

cate is x. a=y . a and the appropriate density functions f,., and f , , are known, the result cardi-

nality can be calculated using the integral

I f , a (a) f , a (a) da
A

over the join domain A . Again, if the density functions are polynomials, this integral can easily

be solved numerically. More details can be found in [Graefel987a].

2.3. Development of the Concept 'Query Evaluation Plan Stability'

The difficulty of capturing the concept of query evaluation plan stability stems from the

fact tha t multiple dimensions need to be considered. In fact, expressing the concept in a for-

mula and assigning a "stability coefficient" like

range of optimality in values and distributions

range of possible values and distribution

make only limited sense. We hope to develop a more concrete mathematical definition.

Research on the decision trees to be introduced in the following sections is expected to provide

more insight into this problem.

Fortunately, finding a definition is not crucial to operationalize the concept, and to imple-

ment significant improvements in database systems. For the time being, we think about the sta-

bility of query evaluation plans as a concept only, and concentrate on ramifications of the lack

of stability in query evaluation plans.

3. Test of Optimality

In order to test whether a given query evaluation plan is optimal for a set of query con-

stants given in the program variables, a special predicate is associated with each compiled query

evaluation plan. When a plan is activated with a record of actual values for the query con-

stants, the associated predicate is evaluated on this record and returns one of the values TRUE

or FALSE. In the case of TRUE, the access plan is considered appropriate, and query process-

ing proceeds as in existing database systems. In the case of FALSE, the access plan is con-

sidered suboptimal, and the database query optimizer is invoked.

In order to include the data distributions currently found in the database, the coefficients

for the density polynomials (see Section 2.2) are kept in the catalogs, together with information

needed to verify the feasability the query evaluation plan (e.g. existence if indices). If all infor-

mation pertinent to one relation is kept physically clustered, no additional 1/0 is incurred for

testing the optimality of a query evaluation plan, and only insignifant computational expense is

needed for evaluating a polynomial.

It can be argued that the overhead for evaluation of the predicate is unacceptable for

high-performance database systems. Consider, for example, a banking teller transaction. Prob-

ably, the optimizer selects to access the appropriate account records using a index on account

numbers (assuming this index exists), and testing this access plan's optimality will be wasted

effort. While this is true, we would like to alert the reader to two facts. First, if the predicate

used to test the optimality is compiled into machine code (just as predicates on data records

should be), evaluation requires probably in the range of 20 to 100 instructions. Second, in

extreme cases like the banking teller example, the predicate can be designed such that it always

returns TRUE without inspecting the record of actual values, which requires only one instruc-

tion.

When the query optimizer has been reinvoked for a certain query after the original query

evaluation plan was rejected, it is probably a good idea to keep both plans and choose dynami-

cally among them in future activations of the query. In general, there might be a number of

access plans to be choosen from dynamically. It is not even necessary to wait until the original

query evaluation plan is rejected; rather, it should be possible to prepare more than one plan

when the query is optimized originally. We will discuss this concept in more detail in the follow-

ing sections.

4. Dynamic Decisions on Scanning Strategies

Dynamic decisions on the best scanning strategy are the first step towards dynamic query

evaluation plans. The alternative scanning strategies are file scan and index scan, if a suitable

index exists. Let us first review the rationale by means of an example.

Consider a moderately large file, e.g. with 10,000 employee records stored in 1,000 pages.

If we need to retrieve all records, we should use a file scan, as this method ensures that we

inspect each data page only once and allows high-performance techniques like read-ahead. If we

retrieve only 10 of the 10,000 records, we do better by using an index (assuming one exists). We

would have to read a t most 10 data pages, and probably less than 30 index pages. If we

retrieve 2,000 records, however, it is quite likely that we eventually have to read all 1,000 data

pages and the index adds only to the overhead for three reasons. First, we have to read the

index pages, second, if the index is an unclustered index, we inspect many pages more than once,

and third, we cannot make use of read-ahead. Yao pao1979a] gives an estimation formula to

determine the number of page accesses from the number of qualifying records; other research

refined these formulas for the case that clustering attribute and selection attribute are corre-

lated, e.g. [Christodoulakisl983a, Zandenl986al. Besides the considerations concerning pages

access, there are also considerations concerning locking and concurrency (assuming locks are

used for concurrency control). If only relevant records are accessed using the index, only those

records need to be locked. For a file scan, all records must be locked. But then again, this can

be done with a single call to the lock manager if a hierarchical locking scheme is used. Depend-

ing on the selectivity and the current system load, either one of the two strategies can be

optimal.

The lesson from this example is that there are many considerations tha t favor index scan

over file scan or vice versa, depending on the actual situation when the query evaluation plan is

activated. The choice depends mainly on the selectivity of the predicate and to a small degree

on the current system load, and thus can be performed by estimating the selectivity a t run-time.

If the interfaces to the file scan procedure and the index scan procedure are equal (or very simi-

lar), a dynamic choice of the scan method can be implemented with reasonable effort and run-

time overhead. The task of the query optimizer is to determine the break-even point. More

exactly, the query optimizer must determine the formulas to find the break-even point and to

compare it with the actual selectivity, and include these formulas in the query evaluation plan.

5. Dynamic Decisions on Join Strategies

As we have seen in the example in the introduction, in some cases it is recommendable to

select the join strategy a t run-time. If more than one join operators are cascaded in a query

evaluation plan, it may even be advantageous to delay the decision about the join order.

Unfortunately, the decisions on the join strategies are interdependent. Most importantly, the

physical (sort) order of intermediate results may affect the cost of alternative algorithms for the

next processing step.

The query optimizer's task for this kind of access plans is more complex. Instead of fol-

lowing a fixed set of assumption and guesses about distributions, selectivities, etc., it must

design an efficient decision procedure which can be executed when the query evaluation plan is

activated. This decision procedure must have resolved the interdependence of partial decisions

into a straight-forward decision tree, and include formulas for the break-even points between

alternative plans.

Since the number of possible join strategies is very large, even for only moderately complex

queries, it is not possible to include all query execution plans in the access module. There are

two solutions to this problem. First, the optimizer can select a subset of query execution plans.

The plans are selected such that they allow reasonably efficient query evaluation for any set of

parameters. In order to keep this set small, plans with great stability must be selected. Second,

instead of storing complete plans, only elements of the plans are stored, and linked together

when the access module is activated.

6. Dynamic Query Evaluation Plans

Instead of a set of query evaluation plans, as suggested in the previous sections, we pro-

pose to avoid redundancy in the access module by designing the data structure for the query

evaluation plans to be more flexible. The access modules of existing database management sys-

tems consist of a number of components, e.g. an indicator for file scan with a file name and a

search predicate, an indicator for hash join with a hash function and a comparison function,

etc. These components are bound together in a static query evaluation plan by the query

optimizer, thus hiding the fact there are several components. Dynamic access modules con-

sist of the same components, only the binding between components is more flexible. The only

new component is the decision tree used to analyze the actual query constants and the data

distributions. When an access module is activated, the first step is to evaluate the decision tree.

Concurrently with the evaluation of the decision tree, this step sets up the bindings between the

components of the access module.

Besides the decision tree designed by the optimizer, the access module must also contain

the support functions for all possible query evaluation plans. These support functions include

predicate functions for scans, comparison functions for sort and join, hash functions for hash

join, etc. The physical organization of the access module must allow equally efficient execution

of any of the query evaluation plans.

Introducing the dynamic choices outlined in the sections above are an important step

towards more flexible and efficient database systems. However, instead of considering scanning

strategies and join strategies separately, we intend to investigate how far the concept of

dynamic query evaluation plans can be generalized. Once we have investigated the concept

by a trial implementation and have developed implementation guidelines for database process-

ing algorithms, selection of scanning and join strategies are special cases of a general problem.

Other special cases that come immediately to mind are join orders and the placement and exe-

cution of aggregate functions. The principal goal of the implementation guidelines is to develop

modular query evaluation plans that can be activated in a number of ways.

It can be argued that setting up the bindings dynamically inflicts too much overhead on

query processing. Consider the example of a banking teller transaction introduced in Section 3.

If there is no gain in using a dynamic access module, the decision tree can be an empty function.

In this case, all bindings must be set statically, and "evaluating" the decision tree costs only one

instruction. The techniques proposed here do not require that as many choices as possible must

be delayed until run-time. Their advantage is that they allow to delay exactly as many choices

as advisable.

7. State of the Implementation

In order to assess whether dynamic query evaluation plans are a viable alternative to

existing static plans, we are undertaking a trial implementation of a run-time system using the

new data structures. The methods currently implemented are file scan, select, project, duplicate

elimination, hash join, division, aggregate functions, and print. Each of the algorithm is imple-

mented as an iterator, i.e. there are an open, nes t , and close procedure for each algorithm.

Associated with each algorithm is a s ta te record. Par t of a state record are the addresses of the

appropriate procedures. The arguments for the algorithms, e.g. predicates, are kept in the state

records.

In queries involving more than one operator (i.e. almost all queries), state records are

linked together by means of input pointers, also kept in the state records. Calling open for the

top-most operator results in instantiations for the associated state record, e.g. allocation of a

hash table, and in open calls for all inputs. In this way, all iterators in a query are initiated

recursively. In order to process the query, n e z t for the top-most operator is called repeatedly

until i t fails. Finally, a cloee call for the top-most operator recursively "shuts down" all itera-

tors in the query. This model of query execution matches very closely the one being imple-

mented in the E database implementation language pichardsonl987a].

The state records are the components of dynamic query evaluation plans. Instead of being

linked together statically as they are in the trial implementation, however, they will be linked

dynamically. For example, for the queries used in the "Wisconsin Benchmarks" [Bittonl983a,

Bora11984a1, i.e. queries of moderate complexity, as few as 3 to 8 pointers need to be assigned to

make a dynamic query execution plan executable, truly a very low overhead. Very preliminary

performance comparisons strongly suggest that the resulting query execution times are accept-

able, and that calling the input procedures via a pointer in a record incurs only minimal over-

head. Thus, we are confident that a database system using dynamic query evaluation plans will

perform as well as one using conventional query evaluation plans. We are currently designing

the required extensions for the EXODUS optimizer generator [Graefel987b, Graefel987c,

Graefel987dl to produce dynamic query evaluation plans.

8. Summary and Conclusions

In this paper, we have introduced a new concept called the s tabi l i ty of query evaluation

plans. For cases in which the stability of a query evaluation plan does not cover the entire

range of possible queries as defined by the range of query constants and data distributions, we

suggest a very efficient scheme to decide dynamically whether to reoptimize the query or to

choose one of several existing query evaluation plans. Finally, we proposed dynamic query

evaluation plane which build the query evaluation plan very efficiently a t run-time from frag-

ments prepared by the query optimizer using a decision and linking procedure also included in

the access module by the query optimizer. Implementation work in progress indicates that the

run-time overhead for dynamic query evaluation plans is negligibly low.

The proposed concepts can be expected to enhance significantly database systems for both

conventional and non-conventional application domains. For conventional domains, the

emphasis is on better and more flexible support for queries embedded in application programs.

Within non-conventional domains, we envision the new techniques to be particularly advanta-

geous for database systems supporting logic programming relying on backtracking, thus execut-

ing the same query repeatedly with different variable instantiations.

References

Bittonl983a.
D. Bitton, D.J. DeWitt, and C. Turbyfill, "Benchmarking Database Systems: A Systematic
Approach," Proceeding of the Conference on Very Large Data Bases, pp. 8-19 (October-
November 1983).

Bora11984a.
H. Boral and D.J. DeWitt, "A Methodology for Database System Performance Evalua-
tion," Proceedings of the A C M SIGMOD Conference, pp. 176-185 (June 1984).

Chamberlinl98la.
D.D. Chamberlin, M.M. kstrahan, W.F. King, R.A. Lorie, J.W. Mehl, T.G. Price, M.
Schkolnik, P . Griffiths Selinger, D.R. Slutz, B.W. Wade, and R.A. Yost, "Support for
Repetitive Transactions and Ad Hoc Queries in System R," A C M Transactions on Data-
base Systems 6(1) pp. 70-94 (March 1981).

Christodoulakisl983a.
S. Christodoulakis, "Estimating Block Transfers and Join Sizes," Proceedings of the A C M
SIGMOD Conference, pp. 40-54 (May 1983).

Clocksinl98la.
W. Clocksin and C. Mellish, Programming in Prolog, Springer, New York (1981).

DeWittl986a.
D.J. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, and M. Muralikrishna,
"GAMMA - A High Performance Dataflow Database Machine," Proceedings of the Confer-
ence on Very Large Data Bases, pp. 228-237 (August 1986).

Gerberl986a.
R. Gerber, "Dataflow Query Processing using Multiprocessor Hash-Partitioned

Algorithms," Ph.D. Thesis, University of Wisconsin, (October 1986).

Graefel987a.
G. Graefe, "Selectivity Estimation Using Moments and Density Functions," submitted for
presentation at the ACM SIGMOD Conference 1988, (November 1987).

Graefel987b.
G. Graefe, "Rule-Based Query Optimization in Extensible Database Systems," Ph.D.
Thesis, University of Wisconsin, (August 1987).

Graefel987c.
G. Graefe and D.J. DeWitt, "The EXODUS Optimizer Generator," Proceedings of the
ACM SIGMOD Conference, pp. 160-171 (May 1987).

Graefel987d.
G. Graefe, "Software Modularization with the EXODUS Optimizer Generator," IEEE
Database Engineering, (November 1987).

Kooi1980a.
R.P. Kooi, "The Optimization of Queries in Relational Databases," Ph.D. Thesis, Case
Western Reserve University, (September 1980).

Kooi1982a.
R.P. Kooi and D. Frankforth, "Query Optimization in Ingres," IEEE Database Engineering
6(3) pp. 2-5 (1982).

Piatetsky-Shapirol984a.
G. Piatetsky-Shapiro and C. Connell, "Accurate Estimation of the Number of Tuples
Satisfying a Condition," Proceedings of the ACM SIGMOD Conference, pp. 256-276 (June
1984).

Richardsonl987a.
J.E. Richardson and M.J. Carey, "Programming Constructs for Database System Imple-
mentation in EXODUS," Proceedings of the ACM SIGMOD Conference, pp. 208-219 (May
1987).

Shapirol986a.
L.D. Shapiro, "Join Processing in Database Systems with Large Main Memories," ACM
Transactions on Database Systems l l (3) pp. 239-264 (September 1986).

Warrenl977a.
D.H.D. Warren, L.M. Pereira, and F. Pereira, "PROLOG - The Language and its Imple-
mentation Compared with Lisp," Proceedings of ACM SIGART-SIGPLAN Symposion on
A I and Programming Languages, (1977).

Yao1979a.
S.B. Yao, "Optimization of Query Evaluation Algorithms," ACM Transactions on Database
Systems 4(2) pp. 133-155 (June 1979).

Zandenl986a.
B.T. Vander Zanden, H.M. Taylor, and D. Bitton, "Estimating Block Accesses When Attri-
butes Are Correlated," Proceeding of the Conference on Very Large Databases, pp. 119-127
(August 1986).

