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Abstract 

A database query embedded in a program written in a conventional programming 
language is optimized when the program is compiled. The query optimizer must make assump- 
tions about the values of the program variables that appear as constants in the query and 
about the data stored in the database. These assumptions include that  the query can be optim- 
ized realistically using guessed "typical" values for the program variables and that  the database 
will not change significantly between query optimization and query evaluation. The optimality 
of the resulting query evaluation plan depends on the validity of these assumptions. If a query 
evaluation plan is used repeatedly over an extended period of time, i t  is important to  determine 
when reoptimization is necessary. We aim a t  developing criteria when reoptimization is 
required, how these criteria can be implemented efficiently, and how reoptimization can be 
avoided by using a new technique called dynamic query evaluation plans for embedded queries. 
Note that  the same problem occurs in database support for logic programs that  rely on back- 
tracking. A specific database query is executed repeatedly with different variable instantiations, 
i.e. different constants in the query predicate. The concepts presented in this paper will be 
included in the next version of the EXODUS optimizer generator. 

1. Introduction 

In many database applications, queries are embedded in application programs written in a 

conventional programming language like Cobol or C. These application programs are compiled 

once and then executed repeatedly over an extended period of time. In most database manage- 

ment systems, the embedded queries are optimized when the programs are compiled. The result- 

ing query evaluation plan is stored in an 'access module' associated with the program's object 

code, and is activated by procedure calls. This organization avoids the optimization overhead 

when the program and the query are executed, thus allowing for fast execution and high tran- 

saction rates. 

The disadvantage of query optimization a t  compile time is that  varying constants in the 

query predicate or changes in the database cannot be reflected in the query evaluation plan. 



Thus, queries might be executed according to  query evaluation plans that  are far from optimal. 

An embedded database query is used to  retrieve information pertinent to  the program. 

The program data and the database query are connected by using one or more program vari- 

ables as constants in the query predicate. The value of the program variables is not known a t  

compile-time, i.e. when the query is optimized. Database query optimization does not genuinely 

depend on the values of constants in the database query. However, in order to  optimize a com- 

plex query correctly, the optimizer needs to  estimate intermediate result sizes, which in turn 

may depend on the constants in the query predicate. For example, the optimal join strategy 

depends on the number of tuples to  be joined from each input. If the inputs are the results of 

selections, i t  is imperative tha t  the optimizer estimate the select output size. 

When optimizing an  embedded query with program variables in the query predicates, 

database query optimizers guess a "typical" value for each variable or a selectivity for each 

predicate clause. Selectivities and costs of alternative query evaluation plans are estimated 

using the guessed values. In the case of complex queries with inequality constraints involving 

program variables, the resulting query evaluation plan can be far from optimal. 

For example, consider a database query to  find all employees with a salary greater than 

$30,000 and their departments. Assume that  this query requires to  join the employee relation 

with the department relation on the department number, and that  the only two indices in the 

database are for the employee relation on salary and for the department relation on depart- 

ment number. If there are very few employees in this salary range, it  probably is best to  find 

qualifying employees using the salary index, to  use the result as outer relation in the join and to 

perform repeated index lookups on the department relation. If there are very many such 

employees, however, it  might be best to  read the entire department relation (the smaller of the 

two relations) into a memory-resident hash table and then probe the hash table using the 

employee tuples, using a file scan on the employee file. In this example, the scanning strategies, 

the join order, and the join algorithm depend on the cardinality of the two relations and the 



selectivity of the selection predicate. Imagine that  the above query is embedded in an applica- 

tion program, and that  the cutoff value, the constant $30,000, is replaced by a program vari- 

able. In this case, a conventional query optimizer cannot satisfactorily optimize the query. 

Independent of values of program variables, another problem with stored query evaluation 

plans is that  they are optimized for the database a t  the time when the query was optimized, not 

a t  the time when query is executed. In the mean time, the database may change such that  the 

query evaluation plan is no longer optimal. We have to  distinguish between changes that  make 

a query evaluation plan infeasible and changes that  make a query evaluation plan non-optimal. 

The former category includes removing relations and indices that  are referenced in the query 

evaluation plan and has been addressed by earlier work [Chamberlinl98la]. The latter category 

includes creating new indices, inserting or deleting a large number of tuples, and modifying a 

large number of attribute values. We are concerned with the latter category. 

Consider the above example again with a constant of $30,000. If most of the newly hired 

employees are highly paid specialists, the number of qualifying employees will change, as well as 

the portion of qualifying employees (i.e. the selectivity). If the query is optimized only once and 

the resulting access plan reused over a long period of time, the query evaluation plan will even- 

tually become suboptimal. 

So far, we have looked a t  the problem as it  appears in conventional database management 

systems. In a database system used to  support logic programs, the same problem occurs very 

frequently. Consider a model of execution that  relies on backtracking, particularly Prolog 

[Warrenl977a, Clocksinl98la]. The same clause is activated repeatedly with different variable 

instantiations. If the clause contains a database query, the same database query is performed 

with different constants in the query predicate, possibly requiring different query evaluation 

plans. The techniques described here are aimed a t  providing more flexibility and better perfor- 

mance for both conventional and non-conventional database management systems and applica- 

tions. 



The next section describes a new concept which we call the stability of query evalua- 

tion plans. In Section 3, we propose techniques to  test efficiently whether a query evaluation 

plan is optimal, i.e. whether the query with the actual constants is optimal for the current state 

of the database. Section 4 describes how some of the problems addressed in this paper can be a 

solved, namely by choosing the scanning strategy dynamically. Section 5 extends these tech- 

niques to  join processing. In Section 6, we develop a general technique, called dynamic query 

evaluation plans, with the goal of providing minimal overhead, maximal flexibility, or both. 

Section 7 briefly overviews the work in progress to  assess the practical feasability of dynamic 

query evaluation plans. Section 8 contains a summary and our conclusions. 

2. The Stability of Query Evaluation Plans 

As pointed out in the introduction, the optimality of a query evaluation plan depends on 

whether or not the guesses and assumptions made during optimization are correct during query 

execution, or, t o  be more exact, on how significantly the guesses are wrong and the assumptions 

are violated. To date, there is no exact measure how much is significantly. It certainly depends 

on the database and the query; it  also depends on the query evaluation plan itself. A query 

evaluation plan might be better than another one, but only slight changes in the database 

would favor the other one. For example, if the smaller of two join inputs fits into the available 

main memory, hash join is preferred over merge join [Shapirol986a]. However, if the relations 

grow only by a small number of tuples such that the main memory hash table would overflow 

and the overflow must be resolved using temporary files [Gerberl986a, DeWittl986a1, merge join 

might be the preferred strategy. If the query in this example is an  embedded query and changes 

in the database are quite likely between query optimization and query execution, it  might be 

the safer choice to  ignore the advantage of hash join and choose merge join. 

We define the stability of query evaluation plans to  be the robustness of query evalua- 

tion plans against changes in the database and in the query constants. Robustness expresses the 

amount of change that  will not change the fact that  the query evaluation plan is the optimal 



one or its cost is very close to  the optimum. In the example above, the query evaluation plan 

using hash join is not very robust1. 

The major problem with this definition is that  i t  is not a concrete measure for robustness. 

In the next sections, we describe a way to  think about the problem and how we plan to  capture 

it  in more concrete mathematical terms. 

2.1. Range of Optimality 

The range over which a query evaluation plan is optimal for a given query depends on the 

query constants, the database, and their relationship. 

Consider the query given in the example above. We indicated two query evaluation plans 

for it, one of them using an  index scan for the selection and an index lookup for the join, the 

other one using two file scans and a hash based join method. We encountered the problem that  

either one of the plans could be the optimal one, depending on the concrete situation. Both 

query evaluation plans have costs associated with them that depend on the cutoff value for the 

attribute salary. The cost functions could be parameterized, and plotted over the range of pos- 

sible salary cutoff values. If we had a plot that  shows the respective curves for each of the two 

query evaluation plans, it  would be trivial to  select the better plan given a particular cutoff 

value for the salary attribute. 

When the database changes (e.g. by hiring many highly paid specialists), the curves 

change in their exact positions, but the general method would still work. We observe that  the 

shape and position of the curves depend on the cardinality of the relations involved and the 

selectivity of the selection predicate. Consequently, the curves should be parameterized, too. 

In general, query evaluation plans involving hash join are less likely to  be robust due to  
the fact that  small changes can lead to  hash table overflow and an ungraceful performance de- 
gradation. Merge join, on the other hand, tends to lead to  more robust query evaluation plans 
because the cost of both sorting and merging grows smoothly with the size of the relations to be 
joined. We ignore here non-smooth growth due to duplicate attribute values as this problems 
typically is not significant. 



So far, we have considered only cases with one program variable in the query predicate of 

an  embedded query. Now imagine a query with two program variables. In order to plot a cost 

function that  depends on two variables, we use a 3-dimensional plot. The result looks like a 

mountain range over a plane spanned by the two variables in the query predicate. If there are 

two access plans to  choose from, two surfaces interpenetrate. For any given pair of values for 

the program variables, the cheaper query evaluation plan can readily be determined. 

This model of thinking about access plans as functions and curves can be generalized for 

any number of dimensions and program variables in the query predicate. We restricted our- 

selves to  the cases of one and two dimensions only for the sake of explanation. 

In order to  enable a database management system to  decide which one of a set of query 

evaluation plans promises the best performance, the system must be knowledgeable about the 

relation cardinalities, the selectivities, and the cost functions. The cardinalities of the stored 

files are readily available in most systems. The cost functions for each of the algorithms 

involved is specified by the database implementor, and it  is possible to  design the database sys- 

tem in such a way that  it  is able to  combine several cost formulas into one calculation. The 

remaining problem is to  estimate selectivities and cardinalities of intermediate results depending 

on both the database state and the constants in the query predicate. What is needed is a 

method practical for database systems to  concisely describe data distributions. 

2.2. Distribution Description Tools 

Several methods to  estimate selectivities have been suggested and implemented in data- 

base systems, including histograms and inverted histograms [Kooi1980a, Kooi1982a, Piatetsky- 

Shapirol984a]. Recently, we have suggested to  use density functions [Graefel987a]. If the den- 

sity functions are assumed to be polynomials, it is possible to derive the coefficients from the 

moments. The moments can be collected very efficiently and possibly maintained by update 

transactions. One of the main advantages of density functions is that  they can capture multi- 

dimensional distributions, whereas previous methods relied on the assumption that  attributes 



are statistically independent. Multi-dimensional distributions are described using multi- 

dimensional density functions, the coefficients of which can be derived using co-moments. Since 

multi-dimensional density functions are more costly to  derive and to  use than one-dimensional 

ones, i t  is important to  note that  it  can be determined very easily from the co-moments whether 

two attributes are correlated and whether a multi-dimensional density function allows 

significantly better estimates. 

In order to  estimate the selectivity of a simple predicate, e.g. for what portion of our 

employees the salary is between $20,000 and $30,000, we need to  know the density function for 

the salary attribute in the employee relation, say fVda,, and solve the integral 

30,OOo 

.f f , d a ~ ( ' )  dx  
%,OOo 

This integral is easy to  solve numerically if the function f ,da ,  is a polynomial. Integral of 

multi-dimensional functions are used to  estimate the selectivity of predicates involving two or 

more correlated attributed. 

Density functions also allow to  estimate the cardinality of join results. If the join predi- 

cate is x. a=y .  a  and the appropriate density functions f,., and f , ,  are known, the result cardi- 

nality can be calculated using the integral 

I f , a ( a )  f , a ( a )  da 
A 

over the join domain A .  Again, if the density functions are polynomials, this integral can easily 

be solved numerically. More details can be found in [Graefel987a]. 

2.3. Development of the Concept 'Query Evaluation Plan Stability' 

The difficulty of capturing the concept of query evaluation plan stability stems from the 

fact tha t  multiple dimensions need to be considered. In fact, expressing the concept in a for- 

mula and assigning a "stability coefficient" like 



range of optimality in values and distributions 

range of possible values and distribution 

make only limited sense. We hope to  develop a more concrete mathematical definition. 

Research on the decision trees to  be introduced in the following sections is expected to  provide 

more insight into this problem. 

Fortunately, finding a definition is not crucial to  operationalize the concept, and to  imple- 

ment significant improvements in database systems. For the time being, we think about the sta- 

bility of query evaluation plans as a concept only, and concentrate on ramifications of the lack 

of stability in query evaluation plans. 

3. Test of Optimality 

In order to  test whether a given query evaluation plan is optimal for a set of query con- 

stants given in the program variables, a special predicate is associated with each compiled query 

evaluation plan. When a plan is activated with a record of actual values for the query con- 

stants, the associated predicate is evaluated on this record and returns one of the values TRUE 

or FALSE. In the case of TRUE, the access plan is considered appropriate, and query process- 

ing proceeds as in existing database systems. In the case of FALSE, the access plan is con- 

sidered suboptimal, and the database query optimizer is invoked. 

In order to  include the data distributions currently found in the database, the coefficients 

for the density polynomials (see Section 2.2) are kept in the catalogs, together with information 

needed to  verify the feasability the query evaluation plan (e.g. existence if indices). If all infor- 

mation pertinent to one relation is kept physically clustered, no additional 1/0 is incurred for 

testing the optimality of a query evaluation plan, and only insignifant computational expense is 

needed for evaluating a polynomial. 

It can be argued that  the overhead for evaluation of the predicate is unacceptable for 

high-performance database systems. Consider, for example, a banking teller transaction. Prob- 

ably, the optimizer selects to  access the appropriate account records using a index on account 

numbers (assuming this index exists), and testing this access plan's optimality will be wasted 



effort. While this is true, we would like to alert the reader to  two facts. First, if the predicate 

used to  test the optimality is compiled into machine code (just as predicates on data records 

should be), evaluation requires probably in the range of 20 to  100 instructions. Second, in 

extreme cases like the banking teller example, the predicate can be designed such that  it  always 

returns TRUE without inspecting the record of actual values, which requires only one instruc- 

tion. 

When the query optimizer has been reinvoked for a certain query after the original query 

evaluation plan was rejected, it  is probably a good idea to  keep both plans and choose dynami- 

cally among them in future activations of the query. In general, there might be a number of 

access plans to  be choosen from dynamically. It is not even necessary to  wait until the original 

query evaluation plan is rejected; rather, it  should be possible to  prepare more than one plan 

when the query is optimized originally. We will discuss this concept in more detail in the follow- 

ing sections. 

4. Dynamic Decisions on Scanning Strategies 

Dynamic decisions on the best scanning strategy are the first step towards dynamic query 

evaluation plans. The alternative scanning strategies are file scan and index scan, if a suitable 

index exists. Let us first review the rationale by means of an example. 

Consider a moderately large file, e.g. with 10,000 employee records stored in 1,000 pages. 

If we need to  retrieve all records, we should use a file scan, as this method ensures that  we 

inspect each data page only once and allows high-performance techniques like read-ahead. If we 

retrieve only 10 of the 10,000 records, we do better by using an index (assuming one exists). We 

would have to  read a t  most 10 data pages, and probably less than 30 index pages. If we 

retrieve 2,000 records, however, it  is quite likely that we eventually have to read all 1,000 data 

pages and the index adds only to  the overhead for three reasons. First, we have to  read the 

index pages, second, if the index is an unclustered index, we inspect many pages more than once, 

and third, we cannot make use of read-ahead. Yao pao1979a] gives an estimation formula to  



determine the number of page accesses from the number of qualifying records; other research 

refined these formulas for the case that  clustering attribute and selection attribute are corre- 

lated, e.g. [Christodoulakisl983a, Zandenl986al. Besides the considerations concerning pages 

access, there are also considerations concerning locking and concurrency (assuming locks are 

used for concurrency control). If only relevant records are accessed using the index, only those 

records need to  be locked. For a file scan, all records must be locked. But then again, this can 

be done with a single call to  the lock manager if a hierarchical locking scheme is used. Depend- 

ing on the selectivity and the current system load, either one of the two strategies can be 

optimal. 

The lesson from this example is that  there are many considerations tha t  favor index scan 

over file scan or vice versa, depending on the actual situation when the query evaluation plan is 

activated. The choice depends mainly on the selectivity of the predicate and to  a small degree 

on the current system load, and thus can be performed by estimating the selectivity a t  run-time. 

If the interfaces to  the file scan procedure and the index scan procedure are equal (or very simi- 

lar), a dynamic choice of the scan method can be implemented with reasonable effort and run- 

time overhead. The task of the query optimizer is to  determine the break-even point. More 

exactly, the query optimizer must determine the formulas to  find the break-even point and to  

compare it  with the actual selectivity, and include these formulas in the query evaluation plan. 

5. Dynamic Decisions on Join Strategies 

As we have seen in the example in the introduction, in some cases it  is recommendable to  

select the join strategy a t  run-time. If more than one join operators are cascaded in a query 

evaluation plan, it  may even be advantageous to delay the decision about the join order. 

Unfortunately, the decisions on the join strategies are interdependent. Most importantly, the 

physical (sort) order of intermediate results may affect the cost of alternative algorithms for the 

next processing step. 



The query optimizer's task for this kind of access plans is more complex. Instead of fol- 

lowing a fixed set of assumption and guesses about distributions, selectivities, etc., it  must 

design an efficient decision procedure which can be executed when the query evaluation plan is 

activated. This decision procedure must have resolved the interdependence of partial decisions 

into a straight-forward decision tree, and include formulas for the break-even points between 

alternative plans. 

Since the number of possible join strategies is very large, even for only moderately complex 

queries, it  is not possible to  include all query execution plans in the access module. There are 

two solutions to  this problem. First, the optimizer can select a subset of query execution plans. 

The plans are selected such that  they allow reasonably efficient query evaluation for any set of 

parameters. In order to  keep this set small, plans with great stability must be selected. Second, 

instead of storing complete plans, only elements of the plans are stored, and linked together 

when the access module is activated. 

6. Dynamic Query Evaluation Plans 

Instead of a set of query evaluation plans, as suggested in the previous sections, we pro- 

pose to  avoid redundancy in the access module by designing the data structure for the query 

evaluation plans to  be more flexible. The access modules of existing database management sys- 

tems consist of a number of components, e.g. an  indicator for file scan with a file name and a 

search predicate, an indicator for hash join with a hash function and a comparison function, 

etc. These components are bound together in a static query evaluation plan by the query 

optimizer, thus hiding the fact there are several components. Dynamic access modules con- 

sist of the same components, only the binding between components is more flexible. The only 

new component is the decision tree used to  analyze the actual query constants and the data 

distributions. When an access module is activated, the first step is to  evaluate the decision tree. 

Concurrently with the evaluation of the decision tree, this step sets up the bindings between the 

components of the access module. 



Besides the decision tree designed by the optimizer, the access module must also contain 

the support functions for all possible query evaluation plans. These support functions include 

predicate functions for scans, comparison functions for sort and join, hash functions for hash 

join, etc. The physical organization of the access module must allow equally efficient execution 

of any of the query evaluation plans. 

Introducing the dynamic choices outlined in the sections above are an important step 

towards more flexible and efficient database systems. However, instead of considering scanning 

strategies and join strategies separately, we intend to  investigate how far the concept of 

dynamic query evaluation plans can be generalized. Once we have investigated the concept 

by a trial implementation and have developed implementation guidelines for database process- 

ing algorithms, selection of scanning and join strategies are special cases of a general problem. 

Other special cases that  come immediately to  mind are join orders and the placement and exe- 

cution of aggregate functions. The principal goal of the implementation guidelines is to  develop 

modular query evaluation plans that  can be activated in a number of ways. 

It can be argued that  setting up the bindings dynamically inflicts too much overhead on 

query processing. Consider the example of a banking teller transaction introduced in Section 3. 

If there is no gain in using a dynamic access module, the decision tree can be an empty function. 

In this case, all bindings must be set statically, and "evaluating" the decision tree costs only one 

instruction. The techniques proposed here do not require that  as many choices as possible must 

be delayed until run-time. Their advantage is that they allow to delay exactly as many choices 

as advisable. 

7. State of the Implementation 

In order to  assess whether dynamic query evaluation plans are a viable alternative to  

existing static plans, we are undertaking a trial implementation of a run-time system using the 

new data structures. The methods currently implemented are file scan, select, project, duplicate 

elimination, hash join, division, aggregate functions, and print. Each of the algorithm is imple- 



mented as an iterator, i.e. there are an open, nes t ,  and close procedure for each algorithm. 

Associated with each algorithm is a s ta te  record. Par t  of a state record are the addresses of the 

appropriate procedures. The arguments for the algorithms, e.g. predicates, are kept in the state 

records. 

In queries involving more than one operator (i.e. almost all queries), state records are 

linked together by means of input  pointers, also kept in the state records. Calling open for the 

top-most operator results in instantiations for the associated state record, e.g. allocation of a 

hash table, and in open  calls for all inputs. In this way, all iterators in a query are initiated 

recursively. In order to process the query, n e z t  for the top-most operator is called repeatedly 

until i t  fails. Finally, a cloee call for the top-most operator recursively "shuts down" all itera- 

tors in the query. This model of query execution matches very closely the one being imple- 

mented in the E database implementation language pichardsonl987a]. 

The state records are the components of dynamic query evaluation plans. Instead of being 

linked together statically as they are in the trial implementation, however, they will be linked 

dynamically. For example, for the queries used in the "Wisconsin Benchmarks" [Bittonl983a, 

Bora11984a1, i.e. queries of moderate complexity, as few as 3 to  8 pointers need to  be assigned to  

make a dynamic query execution plan executable, truly a very low overhead. Very preliminary 

performance comparisons strongly suggest that the resulting query execution times are accept- 

able, and that  calling the input procedures via a pointer in a record incurs only minimal over- 

head. Thus, we are confident that  a database system using dynamic query evaluation plans will 

perform as well as one using conventional query evaluation plans. We are currently designing 

the required extensions for the EXODUS optimizer generator [Graefel987b, Graefel987c, 

Graefel987dl to  produce dynamic query evaluation plans. 

8. Summary and Conclusions 

In this paper, we have introduced a new concept called the s tabi l i ty  of query evaluation 

plans. For cases in which the stability of a query evaluation plan does not cover the entire 



range of possible queries as defined by the range of query constants and data distributions, we 

suggest a very efficient scheme to  decide dynamically whether to reoptimize the query or to 

choose one of several existing query evaluation plans. Finally, we proposed dynamic query 

evaluation plane which build the query evaluation plan very efficiently a t  run-time from frag- 

ments prepared by the query optimizer using a decision and linking procedure also included in 

the access module by the query optimizer. Implementation work in progress indicates that  the 

run-time overhead for dynamic query evaluation plans is negligibly low. 

The proposed concepts can be expected to enhance significantly database systems for both 

conventional and non-conventional application domains. For conventional domains, the 

emphasis is on better and more flexible support for queries embedded in application programs. 

Within non-conventional domains, we envision the new techniques to be particularly advanta- 

geous for database systems supporting logic programming relying on backtracking, thus execut- 

ing the same query repeatedly with different variable instantiations. 
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