
Software Design Revision Control
01 9

How to Keep Too Many Cooks from Spoiling the Broth

Robert Babb II
Dick Hamlet

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-004

December, 1988

Software Design Revision Control
or,

How to Keep Too Many Cooks from Spoiling the Broth

Robert Babb I1
Dick Hamlet

Department of Computer Science and Engineering
Oregon Graduate Center

19600 NW Von Neumann Drive
Beaverton, OR 97006 USA

(503) 645-1 121

Abstract - Existing revision control systems deal mainly with the prob-
lem of recovering previous versions of source code segments. After a
series of changes to program source code have been made, program
maintenance tools such as "make" can be used t o restore system con-
sistency, but provide little guidance t o the programmer about the
impact and scope of proposed modifications t o a system design. This
paper describes a revision control system tha t will extend these ideas t o
assist programmers in coordinating a wider range of system design
data. In addition t o the usual tasks of coordinating versions of program
source code and related object code, the system will manage dependen-
cies involving specifications, interface and interconnection definitions,
and test data. Design dependency information will be used t o warn pro-
grammers about the impact of proposed updates t o the system design,
as well as t o prevent the problems tha t can occur when two program-
mers attempt t o change related pieces of design data simultaneously.

Index Terms - Revision Control Systems, Program Maintenance,
Software Development Process, Source Code Control, Unit Testing,
Integration Testing.

Dr. Hamlet's work was partially supported by the Air Force Office of Scientific Research (Contract
F49620-83-K-0018).

1. INTRODUCTION

I t is possible t o develop large software systems only because the systems are subdi-
vided into relatively independent program modules. This division comprises the ar t of
modular design, and has two distinct purposes. First, modular design allows many
people t o work in parallel on software development. This ability t o bring many pro-
grammers t o bear is most important during the coding phase, but it can also be impor-
t an t during preliminary design of very large systems, and in maintenance. Second,
intellectual control of software depends on limiting its complexity, and modularization
can help with this also. The analysis t ha t division into modules makes possible (of
their separate specifications, interfaces, unit tests, etc.) is important throughout the
lifetime of a software product.

A software design is one of the most volatile products of the development process,
because it is made in ignorance of the difficulties t ha t will arise during the coding of
the modules it calls for. As the coding proceeds, problems tha t arise in one place fre-
quently require changes affecting a great many other places. Similarly, during mainte-
nance, changes can propagate from one module t o another, modifying the design even
though the official design documents may not be updated t o reflect them. Sets of test
da ta must also be kept up t o date with respect t o changes in the modules t ha t they
are supposed t o exercise.

Revision control systems such as SCCS[l] and more recently RCS[2] [3] are software
tools intended t o help keep design changes under control. They are used most often t o
control source code versions but can also manage a variety of other program
development-related documents, such as code skeletons, stubs, and program design
language modules,

Revision control can be combined with automated update programs tha t compare
I I latest modification times" for a set of inter-related files and perform compilation or
other actions t o keep the set of files consistent. The UNIXt "make" program is a n
example[4]. Such systems at tempt t o prevent the construction of systems whose
integrity has been compromised by incomplete changes t o program source files. In con-
junction with proper languages and linkers (not necessarily used) and if not subverted
by a programmer who "knows" t ha t a particular file need not be regenerated, it can
guarantee t ha t a linked system will incorporate the latest versions of all program
source files.

However, the automating of the module integration process is not the most important
function of revision control. Changes are made by people, perhaps many people work-
ing together, and it is better t o aid them a t all steps of program design, coding and
testing, rather than merely t o attempt t o repair design damage periodically. The aid
we envision would usually take the form of enhanced communication between different

f UNIX is a trademark of Bell Laboratories.

programmers, but should also be of considerable use t o an individual working alone on
a program.

informed about the global implications of design changes as they are proposed, instead
of diagnosing after the fact those tha t disrupt an evolving system design. The extra
information will also help extend the design checking tha t can be done from syntax
toward semantics.

2. SYSTEMS AND COMPONENTS

A revision control system is not a n integrated software development environment, but
only a relatively minor piece of such an environment. Its focus is on source code, and
on other surrounding phases of development tha t support coding (design, testing),
insofar as they are needed for changes. Under its control are units (modules) tha t can
be assembled into a running software system. Programmers should be able t o work on
any unit in safety, knowing that a modified test system can be constructed without
losing the older "current best" system by accident. Furthermore, programmers should
know tha t there will be no unexpected problems caused by multiple simultaneous
updates of the same or distinct source components by different people. And during the
modification process, the system should provide global awareness of the scope and
impact of any proposed change, taking advantage of all available machine-encoded
system design information.

2.1. Components of a System under Development

In support of the stored source code, the following are examples of useful components
in the design control system we envision:

Module Specifications. Although natural-language specification is the rule in large
systems, it will probably not be very useful as part of automated change support.
Abstract da ta type modules can be described by axioms in a way t ha t allows testing,
and assertional specifications can also be checked by tests. Therefore it will be
worthwhile t o experiment with the inclusion of such information, but this is the least
well understood part of the proposed system.

Module Interface and Interconnection DeJnitions. Managing the da ta aspects of
interaction between modules involves, for example, ensuring type agreement on com-
munication paths (parameters for subroutines, message channels for concurrent
processes). Some of the control aspects of the system design can also be captured by
explicitly representing potential use relationships among modules (a software "wirel-
ist"). These interface and interconnection definitions can be kept up t o date automat-
ically as part of the editing of encoded design specifications.

Concurrency constraints. It is a special feature of systems intended for parallel
execution t ha t their design should characterize what is allowable and what is errone-
ous run-time concurrent behavior. This information can be expressed in terms tha t
may be verified - for example as grammatical descriptions of permitted and forbidden

execution traces for sets of test points.

Unit- and Integration-test data. Interface definitions are static, depending only on
the program structure expressed in its syntax. T o make use of any other information
requires the program semantics. Test data is the most practical form stored semantic
information could take. Unit tests can be linked syntactically with specific da ta inter-
faces, and semantically with module specifications. Integration tests are judged
against the system's specification as a whole. In addition, tests may be required t o
meet coverage criteria of some kind.

2.2. Properties to be Preserved by Revisions

Maximum help is provided t o a programmer seeking t o make a change if potential
effects are displayed explicitly by the system. This is quite different from later check-
ing for potential flaws caused by changes. For example, if a programmer were notified
that his/her proposed change would affect almost every interface in the system, and
would invalidate almost all unit test data thereby, he/she might think twice about
making it.

Any change begins with the editing of a component stored under the design revision
system's control. The potential implications of the change can be calculated from the
syntactic relationships among components:

Changing a specification implies tha t the specified module will be
changed, potentially its interfaces, and potentially other modules t ha t
use it. If test data has been specified, it must also be changed t o remain
consistent with specification changes.

Changing an interface may require changes t o modules (both those
t ha t define it, and those tha t make use of it), and changes t o
specifications and tests using that interface.

Changing code may require changes in all the other stored informa-
tion supporting tha t code.

Changing concurrency constraints may require changes t o the module
communication structure or may involve only program specification
changes.

Changing tests may affect all other stored information.

In each of these cases, the potential implications are usually more extensive than the
actual ones. The programmer who intends t o edit a component can be asked t o
predict the extent of the change, and when the actual change is available, it can be
checked against this intention. (There can be a difficulty with simultaneous update,
should expectation and reality prove too different - see below.)

In the traditional "batch" mode for system revisions, when a change is made its impli-
cations for other components are not investigated. Later, when all editing is com-
pleted, a batch of such changes are incorporated, with some syntactic diagnosis for

I I
system integrity. In the proposed interactive" design mode, the checks would be

applied immediatedly as each change is incorporated. The latter is a possibility
because the syntactic sites of far-reaching changes are easy t o isolate due t o incor-
poration of the modular design structure information into the revision control system.
For example, changes t o an abstract data type module can propagate only if they
occur in the exported portions of the code, and then only t o modules t ha t have data
links t o the module in question.

In response t o actual changes, the system can prompt for other associated changes
necessary t o maintain the type consistency of specification, interface, code, and test
data. When the syntax of changes is consistent, the system can execute using
appropriate stored test da ta t o determine partial consistency of specification and code,
and partial satisfaction of concurrency constraints.

2.3. The Modification Process

The features described above are all intended t o help the individual programmer, not
t o control multiple simultaneous access to system components. A design revision con-
trol system must also provide facilities t o help people work together. The mechanism
for this is a "check-out/check-in" scheme based on potential propagation of changes.

When a programmer intends t o edit a component he/she is asked t o specify the likely
extent of the change, from the potential sphere of influence calculated by the system.

I I All components specified are then checked-out t o her/him, in a sheltered workspacew
so tha t the existing system is not compromised. Others may not specify for check-out
any components already checked out. As changes are made, the check-out list might
need t o grow when a n unexpected interaction occurs. Should the needed component
then be checked out elsewhere, a potential for deadlock exists, and the system should
simply so inform the people involved. In any case, addition of a new component t o the
checked out list implies t ha t the newly checked out source be examined closely for
recent changes, since its history is not known.

The system can calculate, for the changes made by one person, all secondary informa-
tion t ha t it possessed for the unmodified system. This information includes test
results, the module interconnection pattern, and parallel execution sequences realized
in testing. Unlike syntactic consistency, which can profitably be checked interactively,
this secondary information is semantic, dependent on the existence of a complete, exe-
cutable system, and so easily checked only when changes are complete. Test results
must meet specifications and concurrency constraints must be observed. There is no
necessary compromise of system integrity if other secondary information changes, but
the programmer should be informed of such changes.

When a change is complete, all checked out components are again checked-in and the
sheltered workspace cleared. When several people are working together, it can happen
t ha t two syntactically independent changes (hence ones in which no conflicts arose in
check-out) may nevertheless conflict semantically a t the time the second person tries
t o check-in. For example, the concurrency constraints may be violated because two
apparently unrelated modules were changed by different people, the first checked in
change may be really t o blame, but the problem does not appear until the second

check-in. Such a situation is obviously nasty, but the only solution seems t o lie in pro-
viding the complete history of modification since check-out t o the person who has
semantic integrity problems on check-in.

It should be noted tha t nothing in the description of "changes" precludes application
t o tha t drastic change from design t o coded system tha t is called "initial develop-
ment." Test results cannot be used until fairly late in the development process, but
multiple update control and syntactic consistency checks will be useful.

As a specific example of some of the ideas presented above, in the next section we
describe briefly experience with using an existing revision control system t o support a
simple, highly constrained model for software structure. This model is especially
relevant in this context because it is a unified software
specification/design/implementation method, allowing examination of the "broader
spectrumM aspects of revision control referred t o above.

3. USING AN EXISTING REVISION CONTROL SYSTEM

The need for revision control support arose in a software engineering laboratory set-
ting. A group of 25 students was divided up into four job classifications: coders, tes-
ters, management, and tool builders. The objective was t o develop as a group a pro-
gram to format the output resulting from a query to a relational database system.
The program had t o support interactive formatting and display of portions of the
tabular query output data. The primary problem in developing the program was how
t o organize this relatively large group of participants so tha t they could work together
t o produce this moderate-sized program (less than 5000 lines of source code) in a rela-
tively short time (10 weeks) working only part-time. Furthermore, the entire program
development life cycle (from interviewing the "user" t o testing the product) was t o be
acted out during the project, so the chaos that typically reigns during the early design
stages of a project had t o be planned for and supported.

The program was developed using the Large-Grain Data Flow (LGDF) model of
software structure. Only a brief summary of the features of this model relevant t o the
design revision control problem are given here. Further details on this model of com-
putation are discussed elsewhere[5] [6].

3.1. Overview of the Large-Grain Data Flow Computation Model
LGDF programs are made up of processes connected by uni-directional datapaths
resembling UNIX "pipesw [7]. (See Fig. 1.) LGDF processes are activated and con-
trolled by the arrival, consumption, and production of data values on associated data
paths. At various stages of development of a n LGDF process network, the circles can
represent either program stubs or actual programs. The directed arcs represent da ta
interfaces along which messages can be passed. Data interfaces are initially abstract,
perhaps described only by a name. A t later stages of development, concrete da ta type
declarations are associated with each arc. Simulations of system execution can be run

Fig. 1. A Large-Grain Data Flow process network.

a t very early stages of specification by specifying default data production and con-
sumption actions.

For this project, we needed a way t o break up the program into a fairly large number
of process modules (say 40) so tha t the 16 programmers could each have several
modules t o work on. However, since this is not that large a program, the resulting
modules were decidedly n o t independent. Also, since we had over 20 people attempt-
ing t o contribute t o the modularization of the system during the the initial design
phases, the system "design" was anything but stable during the first four or five weeks
of the project.

The basic pieces of design da ta we needed t o control were:

1) docurnenta t ion (user requirements, management memos, et c.)

2) test data (both system-wide and local unit test da ta sets)

3) LGDF process definit ions (program source code)

4) LGDF data definitions (data type interface definitions shared by two or more
processes)

5) the wirelist (encoding which datapaths are inputs and outputs of which processes)

For this experiment, we did not attempt t o maintain formal links between documenta-
tion or test data , and the evolving LGDF model.

3.2. Design Revision Control Tools for LGDF
We developed a set of UNIX shell scripts that used the facilities of RCS t o help coordi-
nate ongoing multiple simultaneous updates t o LGDF process definitions, da ta
definitions, and the "wirelist". The objective of the tools was t o ensure t ha t a t any
point a consistent test version of the entire program could be built t h a t included all
the latest work contributed by anyone in the class. We also wanted t o have available
a t all times a n up-to-date picture of the current module structure and a n indication of
who was currently working on what parts of the system. The shell scripts were used
t o provide a customized user interface t o the basic RCS facilities, as well as t o provide

some LGDF-specific features.

RCS provides facilities t o check-out (make a local copy) of a system file stored in a
special RCS directory. The RCS "con facility allows check-out of a file under version
control either with or without a lock being set. A check-out with a lock provides p r e
tection against the situation where two programmers check- out the same piece of pro-
gram text a t approximately the same time, both make changes and then check the
new versions back in. (Only the last person t o check-in the file will have any effect).
An attempt t o check-out a file already locked by another programmer results in a n
informative message giving the owner of the lock and the version number in conten-
tion. RCS also provides a facility t o break another person's lock (see "sebo" below).

What we wanted t o provide programmers was a way t o create the "sheltered" work
environment mentioned above where documentation, test data, process specifications,
and/or datapath definitions could be experimented with (and hopefully improved) in a
way tha t did not preclude a large number of other people from doing the same thing
simultaneously on different parts of the system design. Given below is a brief descrip-
tion of the functions developed for the laboratory project:

seco - (Software Engineering Check-Out) Activates the RCS c heck-out
facility (with lock) on the specified files. If a file is currently
checked out, the file is not checked out, and the standard RCS
error message is given.

sebo - (Software Engineering Break-Out) Breaks the lock on a specified
RCS file and version and then checks out the file (with a new
lock). Mail is sent automatically t o the owner of the previous
lock indicating the event.

secc - (Software Engineering macro expansion and C Compile) Macro
expands local (checked-out) LGDF process specifications and
compiles the resulting C source code.

seci - (Software Engineering Check-In) Checks to see whether the
specified files have been changed. If a file has not been changed
since its last check-in, the local copy is merely deleted. For
changed program source files, if an appropriate object file has
been successfully generated by "secc", the object file is archived
in a master system object file library and the source file is
checked in. Otherwise, an appropriate error message is gen-
erated.

sebi - (Software Engineering Bag-It) Deletes any local copies of the
specified files, and releases associated locks.

seld - (Software Engineering LoaD) Builds a n executable test system in
the current directory, with any locally available (changed)
object files over-riding archived object files.

selog - (Software Engineering LOG) Lists the RCS change history for
the specified files.

3.3. An Example of Use of the LGDF Revision Control Tools

Suppose a programmer wanted t o work on (change) a particular process specification.
To prevent another programmer from changing the data interface specification t o this
module out from underneath herlhim, the programmer would check-out (and thus
lock) tha t process specification and all directly associated da ta path specifications.
Now the programmer can safely change anything within the program and be protected
from global changes. The programmer would compile and test the modified process
with appropriate test data, and if satisfied, check-in the changed process codet.

Suppose as a result of work within the module, the programmer decides tha t a global
da ta interface definition (a datapath in LGDF terminology) had t o be changed. The
programmer would then need t o check out the process specification on the other end of
the da ta link, and all datapaths associated with tha t process. Now, as before, both
processes must a t least compile successfully before the system would allow a check-in.
It can be seen from this example tha t even a minor change t o a n intermodule data
interface can be a much more serious disruption t o the system design than major
changes t o the inner workings of a module.

3.4. Shortcomings of RCS Facilities

While the RCS tools worked generally as expected, there were a few relatively minor
but annoying features of the revision control facilities it provides.

The first problem arose because RCS does not maintain the current version of a file in
a user-accessible form. This meant that when we wanted t o see if a particular file
checked out with a lock had been changed, we had no way t o do this other than
breaking the lock on the old revision and checking it out again. We programmed
around this problem by saving an extra copy of the latest version of all files in another
directory on every check-in.

The second problem arose because there is only one kind of lock available under RCS,
essentially a lock for exclusive update privilege. This meant t ha t two programmers
working on "adjacent" programs (those that shared a da ta interface) simultaneously, a
frequent occurrence, would have t o exchange mail (breaking each others locks), even
though neither programmer wanted or needed t o update the shared datapath
specification. Provision of a "read privilegew lock tha t would not conflict with another
read lock would have been very helpful.

4. A DESIGN REVISION CONTROL TESTBED

We propose t o implement a software design revision control system incorporating the
ideas of syntactic and semantic consistency described above. The purpose of

?If the process was changed, the shell script required that a corresponding object file exist before al-
lowing the check-in. This simple check turned out to be a very powerful way to ensure that a consistent
executable test system could always be built!

implementation will be t o experiment with those ideas in practice; in particular, t o
perform in vivo evaluations in graduate classes doing software engineering projects.

The proposed system in its initial form will be a n experimental testbed, not a produc-
tion system. It is intended t o be used mainly in experiments t o evaluate its features,
but only by forgiving and motivated users. The best way t o construct systems for
experimentation is t o make them as cheap and flexible as possible so tha t ideas emerg-
ing during evaluation can be incorporated. Use of existing tools (such as the prototype
Large-Grain Data Flow tools, "RCS" and "make") where possible should prove
beneficial. We also intend t o make extensive use of a simple graphics-based user inter-
face, so t ha t complex information about inter-related components can be displayed
and understood quickly.

5. CONCLUSION

Current revision control technology is appropriate only when a system's design is rela-
tively stable, so tha t the configuration and interconnection of modules changes only
slowly. The more isolation between modules, the better. Extending revision control
methods t o very large projects, or t o software designs consisting of a great many
highly-interdependent, tightly-coupled modules, or both, will require improvements in
our current software engineering tools. Study of these problems using as case studies
specialized, highly constrained models of software structure, such as LGDF, should
prove beneficial in extending the methods to more traditional software development
techniques.

6. REFERENCES

[I] Marc J. Rochkind, "The Source Code Control Systemw, IEEE Transac-
tions on Software Engineering, Vol. SE-1, No. 4, pp. 364-370, Dec. 1975.

[2] Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proc. 6th Int. Conf. on Software Engineering, Tokyo,
Japan, Sept. 1982, pp. 58-67.

[3] Alan L. Glasser, "The Evolution of a Source Code Control Systemw,
Software Engineering Notes, Vol. 3, No. 5, Nov. 1978, pp. 122-125.

[4] Stuart I. Feldman, "Make - A Program for Maintaining Computer Pro-
grams", Software Practice and Experience, Vol. 9, No. 4, April 1979, pp.
255-265.

I # .
[5] R. G. Babb 11, "Data-driven implementation of da ta flow diagrams, In

Proc. 6th Int. Conj. on Software Engineering, Tokyo, Japan, Sept. 1982,
pp. 309-318.

[6] R. G . Babb 11, "Parallel Processing with Large-Grain Data Flow Tech-
I t niques, Computer, Vol. 17, No. 7, July 1984, pp. 55-61.

[7] B. W. Kernighan and R. Pike, The UNLX Programming Environment.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

