
Design of a Debugger
for

Large-Grain Data Flow Programs

David C. DiNucci

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-005

December, 1988

Design of a Debugger
for

Large-Grain Data Flow Programs

David C. DiNucci

Department of Computer Science and Engineering
Oregon Graduate Center

19600 NW Von Neumann Drive
Beaverton, OR 97006 USA

(503) 645-1 121

Abstract - Most approaches t o parallel debugging have assumed the
worst: t ha t the program t o be debugged must be viewed as a black box,
with no internal structure useful t o the debugger. This document
assumes the opposite-that the program was written using Large-Grain
Data Flow 2 (LGDFZ). Using this as a basis, the design of a user inter-
face for a graphical debugger is proposed, t o view and control execution
of a parallel program from a high, inter-process level before descending
into a standard debugger t o view the intra-process actions. Break-
points a re presented in a natural way which doubles as a single-step
mechanism. LGDF2 provides the framework t o reliably repeat execu-
tions, t o restrict non-breakpointed processes from altering important
state, and t o facilitate pre-execution analysis t o determine the minimum
amount of data tha t needs t o be logged during tracing.

Index Terms - Parallel Debugging, Instant Replay, Non-determinism,
Large-Grain Data Flow, Graphical Debugging, Program Visualization,
High-level Debugging, Parallel Monitoring.

1. INTRODUCTION

A program written using the Large-Grain Dataflow model (LGDF2)[1] is highly
structured, both syntactically and semantically. LGDF2 can be viewed as a declara-
tive very- high-level language, where the atoms are themselves processes written in a
sequential high-level language. This project is t o test two hypotheses relating t o
debugging a n LGDF2 program:

Debugging a parallel program is often confounded by the nondeterminism
present. Since the debugging environment is often quite different than the
actual environment in which the program usually executes, especially consider-
ing the relative execution times of the communicating subtasks, bugs t ha t are
present during normal execution may dissappear during debugging. Many have
at tempted t o solve this problem by capturing the important events of an actual
execution, using t ha t event stream t o replay the execution in the debugger.
But just the time required t o capture the events during the actual execution
can cause problems. We believe t ha t the structure of a n LGDF2 program can
be analyzed before execution t o cut the number of events t o be captured t o an
absolute minimum, thereby greatly decreasing the effect of this action on execu-
tion.

Much of the debugging of parallel programs consists of determining what went
wrong a t a very high level; what process didn't s tar t when i t was supposed to,
which communication didn't take place, why the effect of changing this data
have the desired result over a t t ha t process. This type of debugging does not
require the user t o trace the internal process states, but rather the interaction
between processes. Since, in an LGDF2 application, all such interaction takes
place within the network and not within the processes, this type of debugging
can occur without delving into the actual processes. A low-level debugger can
still be made available t o debug the individual processes for logic-errors a t tha t
level.

The LGDF2 debugger runs on a graphics workstation and controls and monitors
the execution of a program which is running simultaneously on a parallel computer.
At the user's request, a s tandard source-level debugger (on the parallel computer) can
be invoked. The behavior of the LGDF2 debugger is intended t o be independent of
the workstation (running the debugger), the parallel computer (running the program
and low-level debugger), and the debugger used for low-level debugging.

In the remainder of this document, Section 2 will describe how we exploit the
LGDF3 model, Section 3 will describe the windowing features of the display, Section 4
will describe the annotations given t o objects within those windows, and Section 5 will
describe the actual dynamic behavior and semantics of the debugger.

2. Overview

This debugger depends on many of the features offered by the LGDF2 program-
ming model. Though the description of this model is beyond the scope of this docu-
ment, we will repeat the aspects which we feel are important in this context:

(1) An LGDF2 program consists of processes. For the purpose of this paper, these
will be considered t o be sequential program segments, written in a standard
sequential language (e.g. Fortran or C) for which standard symbolic debuggers
are readily available. These processes fire (begin execution) spontaneously,
often repeatedly during a single run of the LGDF2 program, according t o the
following rules.

(2) LGDF2 processes communicate only through selectively-shared da t a spaces
called datapaths. The permissions (read, write) t ha t each process has t o each
datapath is declared as part of the program, usually by showing the processes
as being connected with undirected, directed, or bidirected arcs t o the datapath
in a graphical form of the program called a network or da t a flow graph. A pro-
cess accesses the da ta on the datapath as though it was a call-by-address
parameter. Processes cannot maintain internal s ta te between firings, but such
s ta te can be explicitly saved on a datapath t o be re-accessed in a future firing.

(3) In addition t o data , each datapath possesses a control s t a te which defines the
subset of processes which can access it a t t ha t point in time. When depicted
graphically, the members of a given subset are represented by having them all
connected t o the same side of the datapath. A process can only fire when all of
the datapaths t o which i t has permissions have control s tates which allow it
access. Upon firing, a process will be guaranteed logically exclusive access t o
those datapaths. At any time, a process may relinquish t ha t access, and a t the
same time alter the control s ta te of the datapath t o give other processes access.
Access may not be regained unless the process fires again.

These rules allow us t o regard each process externally as a function, deterministi-
cally mapping the values of its readable datapaths t o new values for its writable data-
paths and new control s tates for all of its datapaths. Internally, the sequential code
comprising each process is guaranteed t o act a s though it was running stand-alone on
a sequential computer. This debugger exploits this clean division by using a graphical
interface t o manipulate the high-level interactions, treating each process as a function,
relegating the lower source-level debugging t o any existing debugger already designed
t o manipulate sequential programs.

As a n aid t o both programming and debugging, this document will assume the
ability t o represent da ta flow graphs hierarchically, even though this has not been for-
mally discussed in the context of previous papers on LGDF2. The principal is simple:
a node on a dataflow graph (shown as a circle) can represent either a process (as dis-
cussed above) or another da ta flow graph in its own right. This da ta flow graph (or
subnet) will have certain of its datapaths annotated t o show tha t they are actually
I 1 off-page connectors" or formal parameters, and represent a datapath (actual parame-
ter) within its parent network.

In addition t o facilitating a natural division of labor in the debugger, the LGDF2
model also addresses the problems related t o debugging non-deterministic programs.
Since the processes are all deterministic, and since the relative firing order of processes
accessing a single datapath is dictated partially by the control s ta te of the datapath

which is in turn deterministically determined, certain portions of the LGDF2 program
can be ensured t o be deterministic by inspection [2]. T o capture the behavior of the
non-deterministic portions, it is only necessary t o record the order t ha t certain
processes connected t o the same side of a given datapath fired. This can be done with
a mi~limum of overhead during a production execution, and the resulting record can be
fed into the debugger t o ensure tha t those processes fire in the same order during
debugging[3]. When our debugger is looking a t such a record and ensuring the same
partial order of firings as in the production run, we will say t ha t it is in "replay" mode.

For a more extensive overview of the leverage t ha t LGDF2 can provide t o a
debugger, see [4].

3. Windows and their Static Contents

This section will describe the windows which a user may conjure up. The only
dynamic actions described in this section will be the opening, closing, and possibly
resizing of windows as well as scrolling through their contents. All of these actions are
performed only as a direct result of action from the user. The user-interface should be
as close t o the standard u-i for the machine t ha t the debugger is executing on as possi-
ble. Preferably, all actions should be able t o be performed through the mouse alone.

The display originally consists of the main node window (for the highest level net-
work) and one execution window. Four menu sections will also be accessible, but may
be implemented as pop-up or pull-down rather than static. All elements of the origi-
nal display will always either be somewhere on the screen or easily summoned.

The user may open and close other node windows through the use of the mouse
and menu, as described below. [Optional - The user may open and close datapath
windows through the use of the mouse and menu, as described below.]

Figure 1 is a n example of a screen after opening a network node (fiddle) and a
process node (fidd1e.x) window, with the execution and main node windows a t the left,
and the menus along the bottom of the screen. This example will be referenced as its
different components are discussed.

3.1. Node windows
Each node window will have a standard title bar, which will contain room for a

string of up t o 5 8-character node names separated by periods [optional: and a one-line
node description]. The main node window, with an empty title bar, will be a network
node window and will thus contain a graphics image of a n LGDF2 network con-
structed by a separate graphics editor. This network will consist of nodes, datapaths,
and arcs, a s per LGDF2 standards (see top of Figure 2 for details):

Each node will be represented as a circle (or many-sided polygon) labeled with an
8-character name and, optionally, a small integer making the name unique within
the window. [Optional: Process nodes are distinguished from network nodes.]

Each datapath will be represented by a vertical rectangle labeled with a n 8-
character name.

EXECUTION

dbx version 1.0
Breakpoint @ 45
> print i, j
i = lo, j = a0
> stop at 55
OK

Figure 1. Sample Screen.

. fiddle . x

inrec: F
outcom: G

Each arc will be represented by a line connecting either the left or right side of a
datapath t o a node. The arc may have a n arrowhead a t both, either, or neither
end. The arc may be either grantable or ungrantable; in the latter case, it will be
annotated, preferably with a dot, cross, or slash, across the arc somewhere along
its length.

Node/Path Action

Each subsequent node window must be associated with a node in a n existing node
window, and its title bar will contain the name of the node shown therein prefixed
with the title of its parent window. The new window will be called a subwindow of its
parent.

>resume

Global Action

000 Freeze/Thaw/Unstick

Print/Debug

Tag/Zap/Untag

If the node is a network node, the (network) node subwindow will will contain a n
LGDF2 network of the form described above except t ha t it will have certain of its
datapaths marked as "external", one for each datapath adjoining the node in its
parent window. These external datapaths will be distinguished within the
subwindow by being labeled with the name from the parent window as well as
their own name. This additional (external) name should be easily differentiated
from their own (internal) name, either by its location or type font. Window

Timed Freeze

Open Window

M , .

Display Speed

. I 1 3 4 5

........

......... ... : -..
........

.........

@... C A . .._.........
, ,

. . . , , ,
c....... 1

Mode

. fiddle

........

........

.... . c 2;

. , , , . , . ,
__.*: : I

D

. f i d d l e in figure 1 is a (network) node subwindow of the main node window.

a If the node is a process node, the (process) node subwindow will contain a list of
internal-external datapath associations. This can be represented textually, or
graphically as if it was another network node subwindow containing only one
node. Window . f i d d l e .x in figure 1 is a (process) node subwindow of (net-
work) node window . f idd le . [Optional: In addition t o the internal-external
datapath associations, the (process) node subwindow contains a second pane with
a listing of the process source code. Some means is available t o scroll through the
process code - preferably with the mouse only, like a scroll bar.]

All nodes with the same name (regardless of occurrence number) in a common
network (i.e. window) will have node subwindows which are identical, with the possible
exception of having different external names.

3.2. Execution Window
The execution window may be on a separate screen, in which case it will probably

have a devoted keyboard. It is used t o facilitate communication between the low-level
(source-level) debugger and the user. I t may also be used for terminal 1 / 0 to/from the
user's parallel program being debugged. The window will likely not require graphics
capability. The LGDF2 debugger does not perform any 1/0 directly to/from this win-
dow. Therefore, this window will only be described in vague terms in this document.
In figure 1, the execution window, EXECUTION, is on the same screen as the other
windows.

3.3. Menu

The menu contains four sections - N o d e p a t h Action, Global Action, Display
Speed, Global Mode, and Window Action. The first four of these are shown in the
long rectangle a t the bottom of the screen in figure 1.

The N o d e p a t h Action section is used t o select the accion t o be invoked on a n
object in a node window (i.e. a node or datapath) when picked with the mouse.
The menu can be implemented either as a static menu or a pop-up menu. For a
static type menu, the user would first choose a menu item, and any subsequently
picked object would have the chosen action applied t o it; a menu item would
remain chosen until another item was chosen, and the mouse pointer should
change (if practical) t o reflect the currently selected item. The N o d e p a t h Action
section in Figure 1 is implemented in this way. For pop-up, the menu would
appear a t the mouse location whenever the user depressed the mouse button
within a n object, then whichever menu item the mouse was over when the button
was released would be picked and t ha t action would be applied t o the object.
There are currently five menu items - "Freeze/Thaw/Unstick", "Print/DebugM,
"Tag/Zap/Untag", "Open Window", and "Timed Freeze". The
"Freeze/Thaw/Unstick" menu item will be used quite often, so systems which
have multiple mouse buttons may dedicate one of them to performing only this
action.

The Global Action section allows the user t o apply the "Freeze/Thaw/Unstick" t o
all datapaths or processes on the screen which currently have a certain tempera-
ture (explained later), or the "Tag/Zap/Untag" action t o all datapaths or
processes on the screen which currently have a certain trace mode (explained
later). It consists of six items, three which resemble process circles and three
which represent datapath rectangles. Either the color, shading, or annotations on
these items will change as they are selected. Though this may be implemented as
a pull-down or pop-up menu, it is likely t ha t the implementation of shapes and
changing colors or shadings will require t ha t it be implemented as a static menu.
The exact functioning of this menu will be described later.

The Display Speed section alters the speed a t which events trace events are
displayed on the screen. It consists of a "Stop" item, several speed items (marked
with approximate number of events per minute), and a "Hyperw item. Only one of
the items on this menu can be selected a t any one time, and the selected item
remains selected until another item is chosen. The speeds available may differ
depending on the debugger implementation.

The Global Mode section alters the function of the entire debugger. When an
item from the menu is chosen, it must remain selected until it is chosen again. I t
may be implemented as a static menu, a pull-down menu, or a pop-up menu
(when the mouse button is depressed outside of a n object), and may share a menu
with the Global Action menu. Any, all, or none of the menu items may be chosen
a t any one time. The menu currently contains only one menu item - "Replay".
Once this item is deselected, it can never be selected again.

The Window Action section consists of those actions already supported by most
I P I 1 windowing systems - Close window", Move window", "Resize window". These

are usually supported by gadgets or pull-down menus in the window border. This
should be implemented in the way supported by the window system being used.

3.4. [Optional: Datapath windows]

Each datapath window must be associated with a datapath in a n existing node
window, and its title bar must contain the name of t ha t datapath. The window con-
tains a listing of the datapath structure (i.e. source code of type declarations for vari-
ables on the datapath). Some means t o scroll through the contents (prefereably with
the mouse only, like a scroll bar) is also required.

4. Debugging Annotations
This section will describe annotations which are added t o a node window while an

LGDF2 program is executing. Three line styles are used - dotted (or dashed), thin (or
normal) solid, and thick (or highlighted) solid. If thick lines are not available or do
not s tand out enough, they can be thickened by using doubled lines. Either shading
(none, light, and heavy) or color (green, yellow, and red) will be used t o fill objects.
The choice of whether t o use shading or color for a n implementation will be a function
of speed and capabilities of the display. Other annotations are formed of characters

added t o the display.

These debugging annotations fall into four general categories - temperature,
execution/data s ta te , d e b ~ ~ g i n ~ / ~ r i n t i n g state, and dataflow tracing. A possible
representation for each annotation described in this section is shown in figure 2.

4.1. T e m p e r a t u r e

Each object (node and datapath) has a temperature which is reflected by its color
or shading. A Thawed object is green or unshaded, a Frozen object is yellow or lightly
shaded, and a Stuck object is red or deeply shaded. An arc has no temperature, and
is always shown in green except as noted in the next section.

Each process also has a "firing count", which is a one-to-five digit number. This
can be used t o alter temperature through the "Timed Freeze" facility described later.

4.2. E x e c u t i o n / D a t a State

Each process has a n execution s ta te and each datapath has a da t a state, reflected
by the line style of its outline. Arcs have usage states which are also shown this way.

A process's execution s ta te can either be Suspended (idle), in which case the cir-
cular outline is dotted or dashed, Fired (but not executing) in which case the cir-
cular outline is a thin solid line, or Executing in which case the circular outline is
a thick or highlighted solid line.

a A datapath 's da t a s ta te can either be Neutral (none), in which case the rectangu-
lar outline is a dotted or dashed line, Left in which case the left vertical line of
the rectangle is a thick or highlighted solid line while the rest of the rectangle is
dotted or dashed, or Right in which case the right vertical line is thick or
highlighted.

An arc's usage s ta te can either be Finished, in which case the line is dotted or
dashed, or Unfinished, in which case the line is a thick or highlighted solid line.
As described later, it is sometimes desireable t o temporarily show when a process
has at tempted but failed t o change the usage s ta te of an arc. If color is available
on the display, this is best shown by changing the color of the arc t o red. How-
ever, if color is not available, the line style of the arc should be changed t o a thin
solid line. The actual usage s ta te of the arc in this case will hopefully be obvious
t o the user from the surrounding cues.

4.3. Debugging/Pr int ing State
I I Processes may be in Waiting for debuggeru s ta te in which case they are anno-

ta ted with a "D", "Has been debuggedn s ta te in which case they are annotated with a
"d", or "Never been debugged" s ta te in which case they are not annotated with either.

Datapaths may be in "Being printed" s ta te in which case they are annotated with
a "P", or "Not being printed" s ta te in which case they are not.

Trace mode Datapath na?e
(T, 2, or bk)

..

'.. pathname

Node name
and #

.................... Print mode (P or bk)
. - extpname .,..

. . . I . .._
. Firing count External datapath name

Low-level debugger mode
(D, d, or bk)

I
i

D a t a p a t h S t a t e s i i E x e c u t i o n S t a t e s
I

pathname pathname pathname i
................. i

i ,-. T -..
i
i ; procname;
i 2 j
i 32345
i '.... ,' b............. d
i
I
i

Neutral Left Right i Idle Fired Ezecuting
i
i

D a t a p a t h T e m p e r a t u r e i
I
i

P r o c e s s T e m p e r a t u r e
pathname pathname pathname

Thawed Frozen Stuck

I..

...........
. . . ;.'. T -..,T....:.::::.,

i procname'j 2 i :-.pf$++n-$
j.. '2 .;

32345 ; $33 3.5:;. ::. .. '.j ::..,.d. '.. d ,.,: * . ..: .::>.::.::..:.,

Thawed Frozen Stuck

Finished

Arc Usage

Special Unfinished

Figure 2. Possible Representations for Annotations

4.4. Dataflow Tracing

Data in a n object (process or datapath) may be tagged, in which case the object
is annotated with a T, or zapped, in which case i t is annotated with a 2. Only one of
these can be present a t any one time. Any kind of extra color or highlighting for these

annotations is desireable t o make the marked objects s tand out as much as possible,
but it must not conflict with any other markings already mentioned.

5. Debugging and Monitoring

This section will describe the actual functioning of the LGDF2 debugger from the
user's standpoint. Justification of certain design decisions will be included.

Debugging will be described in six sections - getting started, high-level monitoring,
stopping and starting processes, low-level debugging, dataflow tracing, and other menu
actions.

5.1. Getting Started

When the debugger starts, it queries the user for the name of the program t o be
debugged and for the name of the trace information file produced during the normal
execution of t ha t program. The debugger then presents the initial windows for the
program, as described under section 2, above. The "Stop" item on the "Display SpeedH
menu section is selected, so the LGDF2 network is not executing in any way. All
processes are idle (i.e. outlines are not highlighted), all da tapaths are Left (i.e. their
left side is thick or highlighted) and all arcs are Finished (i.e. their lines are not dotted
or dashed). If a filename was supplied a t the trace information file prompt, the
"Replayu menu item is selected on the "Global Mode" menu. By selecting the a
Display Speed other than "Stop", the network will begin execution.

5 $2. High-Level Monitoring

During the network execution, processes in the network may fire, execute, grant
and reserve datapaths, and suspend. Because these actions will occur quite frequently
and account for the vast majority of the animation process, their animation must be
fast. For this reason, line styles (rather than color or shading which are rather slow
on some displays) is used for all such animation, a s follows:

5.2.1. Fire

According t o the semantics of LGDF2, a process which can fire will have each of
its arcs connected t o the highlighted side of a datapath, a s shown in figure 3.A. The
act of firing will appear in 3 stages, which will hopefully occur in quick enough succes-
sion t o give some feeling of animation. In the first stage, the arcs connecting the pro-
cess t o its datapaths will become unfinished (thick solid lines or highlighted), as shown
in figure 3.B. In the second stage, the process execution s ta te will become Fired (the
outline will become thin-solid), as is shown in figure 3.C. Finally, the datapath states
will become neutral (making the sides dotted or dashed) as shown in figure 3.D. The
"firing count" on the process will also be incremented a t this time.

If the "Replayw mode is selected, processes which appear t o be able t o fire (i.e. all
of their datapaths are in the correct s ta te and they are not executing) may not. This
is because, in the execution t ha t is being replayed, the firing of t ha t process was pre-
ceded by the firing of another process t ha t could have some effect on it , and tha t other

pathname

.......
i P

pathname <
: T ..
: procname :
:123452i

; P ..- d .' :
pathname :.'

........

i P

pathname

.......

pathname

........

pathname
i--v--1

pathname
c-r--l

pathname
i T i

A. Before Firing B. Phase 1 C. Phase 2 D. Phase 3

Figure 3. Phases of Firing Animation

process has not yet executed in the replay. The user may cancel replay mode a t any
time, but i t may not be restored after it is canceled since executions may already have
occurred in a n order different from tha t of the original execution.

5.2.2. Execute

When a process s ta te goes from "Fired but not executing" t o "Executing", the out-
line of the process will be redrawn with a thick solid line. The debugger may, in some
cases depending on the scheduler, merge the "Fire" and "Execute" phases into one t o
avoid drawing the process outline twice when not necessary.

5.2.3. Grant or Reserve a Datapath

While a process is executing, it may reserve or grant any datapath which is con-
nected t o the process via a n unfinished (highlighted) arc. From the semantic proper-
ties of LGDF2, the datapath will always be Neutral in this case (i.e. be represented
with dotted sides). These actions consist of altering the datapath s ta te (shown by
redrawing one side of the datapath with a thick or highlighted solid line), then finish-
ing the arc (by redrawing it with a dotted line).

5.2.4. Suspend

A process which is executing and which has no unfinished datapaths may suspend.
This is shown by returning i t t o idle s ta te (i.e. by redrawing the process circle with a
dotted line).

5.3. Starting and Stopping Processes

The actions discussed in this section are either the result of a mouse click or they
require a mouse click before further animation can proceed, so the resulting animation
does not need t o be lightening fast. However, since some of the actions require user
attention, they must be immediately obvious t o the user. For these reasons, the color-
ing or shading of regions is used for most all actions discussed in this section.

5.3.1. Freezing Processes

One method of starting and stopping processes is by altering their temperature
(represented by their color or shading). A thawed (green or unshaded) process will
execute freely, while a frozen (yellow or lightly shaded) process will not grant or
reserve any datapaths or begin execution after firing. The temperature of any process
can be toggled from thawed t o frozen by applying the "Freeze/Thaw/Unstick" menu
action t o the process.

If a process at tempts t o perform a n action while it is frozen, it will become stuck
(red or deeply shaded). If this was a result of attempting t o grant or reserve a data-
path, t ha t datapath will turn also turn red if the display is in color or change from a
thick/highlighted solid line t o a thin solid line if the display does not have color.
Applying the "Freeze/Thaw/Unstick" menu action t o the process will allow it t o exe-
cute the action which it became stuck on and return t o a frozen s ta te and the arc
back t o green (if it was red). By applying the same menu action again, while the pro-
cess is frozen, it will of course become thawed as described before.

Occasionally, a process will perform dataflow actions in very quick succession,
which would make it difficult t o return it t o a thawed s ta te from a stuck s ta te
(because it wouldn't s tay frozen long enough t o apply the menu action the second
time). For this reason, the debugger will guarantee t ha t the temperature will not
change too quickly t o be caught by two mouse clicks within a 112 second interval.

A process can be set t o freeze after firing a specific number of times by applying
the "Timed Freeze" action t o the process. This displays the current "freeze time" and

I 1 allows the user t o alter it. When the "firing count" of a process equals its freeze
time", the temperature will be set t o frozen as it is firing. This will cause the process
t o become stuck before executing its first statement. If the debugger is in Replay
mode, entering a zero or negative freeze time will cause the freeze time t o be set t o the
last "firing count" recorded for the process during its regular execution minus the abso-
lute value of the freeze-time entered.

Freezing a process can be used t o single-step the dataflow actions within it for
careful scrutiny, t o see the effect of stopping it on the surrounding processes, or t o
temporarily halt it t o engage a lower-level debugger. Timed freezing allows the user t o
quickly advance t o interesting portions of the execution. I t should be noted t ha t freez-
ing a process does NOT stop it from firing.

5.3.2. Freezing Datapaths

The other method of stopping and starting processes is by altering the tempera-
ture of their datapaths, which is shown through color or shading in the same way as
for processes. Any process connected t o a thawed datapath can fire freely, according
t o the laws of LGDF2, while a process connected t o a frozen datapath is not allowed
t o fire. When such a process at tempts t o fire, both the datapath and the process
become stuck and the arc connecting the datapath t o the process becomes red (if color
is available) or thin-solid (if not). Even after the datapath has become stuck, it will
still cause other processes connected t o it which at tempt t o fire t o become stuck and

for their connecting arc t o become red or thin-solid.

Applying the "Freeze/Thaw/UnstickU menu action t o the datapath will allow one
of the frozen processes (chosen by the scheduler) t o fire. This will return all processes
stuck on the datapath t o their previous temperatures1, since they will no longer be
stuck, only idle. The temperature of the datapath will also therefore return t o frozen.
Figure 4 illustrates what happens when a stuck datapath is unstuck while two (previ-
ously thawed) processes are stuck waiting for it.

Applying the "Freeze/Thaw/UnstickW menu action t o one of the stuck processes
will cause i t t o fire and change its temperature t o frozen. All other processes and the
datapath will act as described above. This allows the user t o dictate which process is
t o fire next.

Freezing a datapath is useful for holding it in a stable s t a te (i.e. between process
accesses) t o view its contents or for capturing interprocess interactions. A global data-
path freeze can be used as a network-wide single-step, where "stepM here is defined as
a process firing. If the debugger is not in "ReplayM mode, this also allows the user t o
pick which of the processes competing for the datapath should go first.

procname
.

A. Two processes stuck trying

to fire

Figure 4. Unsticking a datapath

(procname)

pathname

B. The top process fires

,~_.___________.
.. ;' T
i procname i

'These const i tutes t h e only hidden modes in t h e debugger - t h e temperature t h a t t h e process will r e tu rn t o a n d t h e next
process t o execute. We may still find a way around this.

5.4. Low-level Debugging

Any debugger actions which directly reference the values on a datapath or in pro-
gram variables or which directly display the affect of program operations (other than
dataflow actions) within a process will be called low-level debugging. Most low-level
debugging will be performed by invoking a separate debugger, which can be any one of
a number of standard source-level or symbolic debuggers like adb, sdb, or dbx, chosen
and configured into the LGDF2 debugger by the user.

Annotations in this section do not need t o a t t rac t the user's attention or eye, but
serve only as feedback or a reminder t ha t a n object is in a certain debugging mode.
Simple letter annotations were therefore deemed satisfactory.

By applying the "Print/Debugfl menu item from the "Node/Path Action" section
t o a datapath , the datapath will be annotated with the letter "P". If the datapath
s ta te is not neutral, the contents of the datapath will appear on the execution window.
As long as the datapath is so annotated, the contents of the datapath will be printed
again whenever the datapath s ta te changes t o neutral from left or right. The 'P" is
removed by applying the "Print/DebugU menu item t o the datapath again.

Applying the "Print/DebugU menu item t o a process causes it t o be annotated
with the letter I'D" (upper case). This annotation gives a slightly different interpreta-
tion t o "stuck"; when the process becomes stuck, it will be stuck a t a low-level-
debugger breakpoint within the grant, reserve, or start-execution logic.2 Along with
turning the process temperature t o stuck (red or deeply shaded), the low-level
debugger will print its s tandard "stopped a t breakpointM message within the execution
window.

When the low-level debugger is invoked in this way, the process cannot be
unstuck except by resuming it through the low-level debugger by issuing the appropri-
a te command t o i t in the execution window. This will turn the process temperature
back t o frozen (yellow or lightly shaded). Of course, before resuming, the user is free
t o display the values of variables and/or set new breakpoints within the process. If
the "Replayw mode is currently on, the user should not change the values in any of the
variables or cause statements within the process t o execute out of order.

The LGDF2 debugger does not know about breakpoints which are set by the user
with the low-level debugger. Therefore, when these breakpoints are encountered, there
will be no feedback in any network window. The only notice of the breakpoint being
hit will be from the low-level debugger itself, in the execution window.

As long as the process is annotated with "D", a breakpoint will be tripped when-
ever the process becomes stuck. The "D" annotation can be removed by applying the
"Print/Debug" action t o the process again. However, if the low-level debugger has
been invoked even once for the process, the "DM will not be removed completely, but

%Tote t h a t t h e low-level debugger is not invoked if t h e process becomes s tuck during firing (from being a t t ached t o a frozen
d a t a p a t h) since there is no executing process t o invoke t h e debugger on in th i s case.

instead replaced by a "d". Although this annotation has the same effect as having no
"D" annotation a t all, it serves as a reminder t o the user that , even though the net-
work window may show the process as thawed or frozen, it may indeed be stuck in a
breakpoint set by the user via the low-level debugger. The "D" or "d" annotation will
be removed automatically when the process suspends.

5.5. Dataflow Tracing

Applying the "Tag/Zap/Untag" menu item t o a n object will toggle its tracing
s ta te between tagged (annotated with a T), zapped (annotated with a Z), and
untagged (annotated with neither a Z nor T).

Tagging a n object does not really tag the object, but rather the da t a currently
residing in the object. Anytime this da ta resides within a n object with other data , the
other da t a also becomes tagged, and the object carrying the da t a becomes annotated
with a T. Since da ta can only effect other da ta if it resides in the same object, this
tracing will show how da ta travels through a network.

Zapping a n object really zaps the object - from tha t point on, all d a t a which
resides in the object will be tagged. This is like radioactive dataflow tracing, attri-
buted t o J an Cuny by Nelson and Snyder [5] , except t ha t the objects in which the
tagged da t a resides will not in turn become zapped.

The specific rules for propagation of "T" annotations is as follows:

(1) If a process fires and has read access t o any datapath t ha t is tagged or zapped,
or was itself tagged (zapped) before execution, the process becomes or remains
tagged (zapped).

(2) When a datapath becomes tagged or zapped from the user applying the
I I Tag/Zap/UntagM action t o it , any process connected t o it by a n unfinished arc
with read permission will become tagged.

(3) When a process becomes tagged or zapped (either by rule 1 or 2 or from the
user applying the " ~ a ~ / ~ a ~ / U n t a ~ " action t o it), all datapaths t o which the
process has write permission and t o which the process is connected by
unfinished arcs are tagged.

(4) When a process fires as untagged and unzapped (because none of the above
rules cause it t o be tagged or zapped on firing), all datapaths t o which the pro-
cess has write permission are untagged.

(5) When a process suspends, it becomes untagged (but not unzapped).

Tagging and zapping are included t o help trace where da t a is going or why its
affects are not felt in a different part of the program. Though much of this can be
ascertained statically from the LGDF2 network and its arc permissions, dataflow trac-
ing with tagging and zapping takes the dynamic effects of granting and reserving arcs
in different ways into account.

5.6. Other Menu Actions

Menu selections which have not been described fully are described here.

Applying the Open Window action from the N o d e p a t h menu causes a window to
be opened, as described a t the beginning of this document. Datapath windows may
not be implemented.

The "Display Speed" menu controls the maximum number of events t o appear on
the screen in any one second. If the parallel program becomes compute-bound, or if
all active processes are stuck, events may be spaced further apar t than this. The
speed of the display limits the speed of the parallel program in most cases so t ha t a
user mouse event will not be bypassed by buffered-up program events. Therefore, the
I 1 Stop" selection not only stops the display, but the parallel program as wells3 Note
t ha t this is very different than applying a global freeze, since the program stops "try-
ing" t o progress in this case. Setting the "Display Speedn t o "HyperH supresses the
display of all screen events except for temperature changes, and thus allows the paral-
lel program t o execute without waiting for screen updates. When the "Display Speed"
is relowered, the entire screen will be updated t o reflect the current s ta te of all
processes and datapaths.

The "Replayw item on the Global Mode menu represents whether the debugger is
in replay mode or not. In replay mode, the debugger reads a trace stream which was
created during a non-debugger execution of the program. This trace contains only (1)
the firing counts for each process when the network stopped (or blew up) and (2) the
order in which "rival" processes executed. Processes are rivals if the LGDF2 model
does not dictate in which order they must fire and if differing the firing order could
effect the program outcome; it is rare for an LGDF2 program to contain very many
such rival processes. In any case, when the debugger is in replay mode, it guarantees
t ha t such processes fire in the same order tha t they did in the original execution t o
guarantee t ha t the program will produce the same answer and/or encounter the same
error. Once the "Replay" item on the Global Mode menu has been deselected, i t can-
not be reselected, since some rival processes may already have fired out of order.

The Global Action menu can now be explained. Recall t ha t it consists of three
items which resemble processes and three which resemble datapaths. The remainder
of the markings will depend on whether the current N o d e p a t h Action selection is
Freeze/Thaw/Unstick or Tag/Zap/Untag.

If Freeze/Thaw/Unstick, each of the three process-like items will have a different
temperature, a s will each of the datapath-like items. Each represents all of the
objects on the screen with the like shape and temperature. Applying
Freeze/Thaw/Unstick t o the red process-like item, for example, will change not
only its own temperature t o Frozen, but also the temperature of all red processes

-- -

3in reality, the processes themselves may continue for a short time, until encountering their first dataflow action, but this
will not be apparent t o the user.

on the screen. After the user has changed the temperature of any of the items in
the menu, other items may change temperature so t ha t all three temperatures are
still represented.

a If Tag/Zap/Untag, the items in the Global Action menu will not have tempera-
ture but rather each will have a different trace s ta te (T, Z , or blank). Except for
this, functioning is the same. For example, by applying the Tag/Zap/Untag
action twice t o the datapath-like item annotated with T , it and all datapaths
containing a T on the entire screen will be cleared of tagging (as will all data-
paths containing a Z, since the datapath-like item becomes a Z on the first appli-
cation, then a space on the second).

This definition of the Global Action menu gets a little hazy if
Freeze/Thaw/Unstick is implemented as a separate mouse button. In this case, the
menu may need another item t o toggle between the representations. Future design
may allow use of this menu t o set global Timed Freeze values as well.

6. Summary

We believe t ha t this design has a number of novel features, including the clean
division of high- and low-level debugging, the minimization of recording needed for

11 "Instant replay" debugging, the temparature" approach (Freeze/Thaw/Unstick) t o
breakpointing and single-stepping processes a t a high level, and the use of da ta flow
debugging (Tag/Zap) t o find actual da ta flow a t a high level. However, the only way
t o truly study the utility of these techniques will be t o implement (or a t least proto-
type) the debugger and put it into the hands of users.

Instead of simply adding features blindly, we have at tempted t o base them
soundly on the firm foundation provided by the LGDF2 model. In doing so, misleading
concepts such as a "global program state" have been avoided.

7. References

[I] D. C. DiNucci and R. G. Babb 11, "Practical Support for Parallel Pro-
gramming", in Proc. 21st Hawaii Int. Conf. on System Sciences, vol. 11:
Software Track, Jan. 1988, pp. 109-118.

[21 G. Kahn, "The Semantics of a Simple Language for Parallel Program-
ming", Inf. Proc. 74, North-Holland, 1974, pp 471-475.

[31 T. J. LeBlanc, J. M. Mellor-Crummey, "Debugging Parallel Programs
with Instant Replayn, IEEE Transactions on Computers, vol. c-36, no.
4, Apr. 1987, pp. 471-482.

141 D. C. DiNucci, "High-level parallel debugging with LGDF2 (extended
abstract)", Proc. SIGPLAN/SIGOPS Workshop on Parallel and Distri-
buted Debugging, May. 1988, also available as Oregon Graduate
Center Technical Report CSE88-007.

[51
II P. A. Nelson, L. Snyder, Programming Paradigms for Nonshared

Memory Parallel Computersw, in The Characteristics of Parallel Algo-
rithms, MIT Press, 1987, Cambridge, pp. 3-20.

