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Abstract - LGDF2 is a new and growing language for expressing port- 
able, efficient parallel programs. In this paper, the computational 
model of the language, the F-net, is presented formally in terms of a vir- 
tual machine. Precise methods of representing and reasoning about 
computations are defined. The model facilitates the design and imple- 
mentation of architecture-independent parallel programs and gives the 
designer control over non-determinism. Restrictions imposed by the 
model are clarified, and applicable work by others is identified. 
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1. INTRODUCTION 
The Large-Grain Data  Flow (LGDF) language has evolved over the years as a n  

attempt t o  make parallel programming more palatable. I t  began as a software 
engineering experiment-adding execution semantics t o  the da ta  flow diagrams used in 
structured analysis methodologies[l]. I t  became apparent tha t  the semantics could be 
implemented efficiently on shared memory multiprocessors, and this was successfully 
demonstrated with a scheduler for the HEP 1 [2]. 

In a n  at tempt t o  formalize the syntax and semantics of the language, t o  allow 
more efficient implementation on shared memory processors, and t o  enable implemen- 
tation on distributed memory architectures, the language has recently undergone 
another transformation. The principles of this new version, LGDF2, have been demon- 
strated with a n  efficient implementation on a shared-memory parallel processor, the 
Sequent Balance [3]. However, the language is still new, and much has yet t o  be 
learned about its power, techniques of using it effectively, and exactly what restric- 
tions must be placed on its semantics t o  make it truly portable. This paper will 
address some of these issues by separating the computational model of the language 
from the language syntax and features. 

Like all high-level computer languages, LGDF2 can be considered on three levels: 

(1) A definition of the "basic" virtual machine that  it presents t o  the user. The 
valid statements in the language define the instruction set of the machine, and 
the basic data  types define the properties of various kinds of memory. 

(2) The abstractions tha t  are built into the language itself, but are easily defined 
in terms of the basic virtual machine. In sequential languages, structured con- 
trol statements (if, case, for, while) fit into this category. The use of these 
slightly higher-level abstractions can make the intention of the program clearer, 
t o  both the reader and the language processor, than if the base equivalents in 
the virtual machine are used. 

(3) A set of meta operations tha t  allow the user t o  build higher level 
abstractions-for example, typedef and function definitions in C. 

This paper discusses the first two of these levels of LGDF2 and describes some 
ways of reasoning about them. Section 2 briefly describes the first principals of MIMD 
architectures. Section 3 lists the goals of LGDF2, and Section 4 reviews some other 
work t ha t  addresses some of those goals. Section 5 presents the syntax and semantics 
of a n  architecture-independent virtual machine (VM) for executing LGDF2 programs. 
Section 6 explains why a better concept of "execution" is needed, and offers one in the 
form of partial orderings of events called Execution Graphs. Section 7 provides 
motivation for some of the semantics of the VM, and Section 8 illustrates t ha t  some 
straightforward extensions t o  the VM can be implemented in terms of the basic VM 
instructions. Section 9 relates the VM to  other computational models, and section 10 
contains a summary and conclusions. 



2. Overview of MTMD Computer Architecture 

At the heart of almost all general-purpose Multiple-Instruction Multiple-Data 
(MIMD) processors is a set of standard sequential CPUs. One of the main differences 
in the classes of these machines lie in the way the address space is allicated t o  these 
individual CPUs. In shared memory systems, all memory is addressable by all of the 
CPUs. In distributed (or private) memory systems, no two CPUs have access t o  the 
same memory. In hybrid systems, each CPU has some private memory while other 
memory is shared. In any system, shared memory can be divided into local (fast) and 
remote (slow) address spaces. 

Since any processor can store data  into shared memory, and any other processor 
can access t ha t  data,  shared memory provides a high-bandwidth (memory speed) 
medium for communication. Shared memory programming is primarily concerned with 
ensuring t ha t  the individual processers access the shared memory in a coordinated and 
predictable fashion. To  accomplish this, some form of "meta-communication" must be 
performed so t ha t  each processor can know when it is its ''turn" to safely access some 
portion of shared memory. This meta-communication is usually based on the notion of 
a semaphore (or lock). Considered as an  abstract data  type, a lock has two operations 
which can be performed on it: 

Unlock the lock. 

Wait until the lock is unlocked, then lock it. 

Though protocols exist for building an  abstract data  type with these semantics using 
only shared memory and the standard load, s t o r e ,  and test instructions that  
exist on the component processors, special hardware instructions and/or "atomic lock 
memory" is usually provided in order t o  make lock operations more efficient. Addi- 
tional lock support (e.g. waiting for a lock t o  be locked before unlocking) is sometimes 
provided in hardware or software, but the operations described here are sufficient t o  
implement them. 

All distributed memory systems, and some hybrid systems, provide another form 
of communication called message passing. In it, a process can instruct special 
hardware called a channel t o  make a copy of some contiguous portion of its address 
space and send it t o  another processor in the form of a message. Some architectures 
also support a broadcast facility, where multiple processors can be named as destina- 
tions. When a processor notices a n  arriving message (either by polling or by being 
interrupted), it stores the message into a buffer area until it is requested by a process 
running on it. At  tha t  time, the message is either copied into a buffer specified by the 
user process or the process is simply informed of the address in the buffer area where 
the message is stored. Once a message is delivered t o  a requesting process, it will not 
be delivered t o  another. 

If a process requests a message before one arrives, this fact is recorded by the 
message reception mechanism (software or firmware) so that  the next message t o  
arrive can be immediately forwarded t o  the requesting process. The process may have 
the choice of blocking until the message arrives, or it may continue processing and poll 



the message reception mechanism periodically. 

Another model of communication, sometimes called "generative communication", 
is now being supported directly by some architectures[$]. Based on the Linda 
language, it views all communication as depositing or withdrawing information from a 

I I I* large relational-database-like structure called tuple spaceM (or object space"). 
Rather than give a specific location or processor as a source or destination for mes- 
sages, actions on the tuple space refer only t o  characteristics of the tuple being depo- 
sited or withdrawn from the space. Even in this model, however, the underlying com- 
munication takes place through message-passing or shared-memory, though it may not 
be directly visible t o  the user. 

3. Goals and Objectives of LGDF2 

Many of the goals outlined in this section became goals only after i t  became clear 
that  they might become achievable. They can be seen as subparts of one overall goal: 
t o  facilitate the construction of efficient, portable parallel programs capitalizing on as 
much existing technology as possible. 

3.1. Portability of Parallel Programs 

A major goal of the virtual machine is portability among general-purpose MIMD 
processors. If the term portability is taken to  mean the ability t o  run on any general 
purpose MIMD processor given the proper software run-time support, then nearly any 
message-passing model is portable since the message-passing semantics can be imple- 
mented by copying to/from shared memory. In addition, portability should encompass 
the idea tha t  its implementation on a processor would use the same constructs for 
achieving efficiency as a programmer would if he/she were writing the program 
specifically for that  architecture. Portability also implies independence of the speed 
and number of processors. 

3.2. Accept Implementation Advice 

Though a program defines a precise semantics for execution, it does necessarily 
exactly specify how tha t  semantics will be achieved. Because of the very different 
qualities of communication on different architectures, our portable model will have to  
rely heavily on this declarative aspect of programming. Even on a given architecture, 
there are often many ways of implementing the same program. The preferred way 
may be dependent on factors, such as the frequency of a particular operation or the 
amount of contention for a resource, which may not be apparent or derivable from the 
program syntax. 

Programmers tend t o  have higher level knowledge about the resources needed by 
a program, and should be able t o  advise the implementation on these matters. This 
may include (but need not be limited to) suggestions on 

assigning processes t o  processors 

data  communication methods 



a scheduling priorities 

use of fast and slow memory 

This advice need not be part of the model, however, since its presence or absence will 
not (must not!) affect the program semantics and will be likely be very specific t o  the 
target architecture. 

3.3. Use Existing Compiler Technology 

The heart of a general-purpose MIMD computer is a set of general-purpose 
sequential processors. Computer scientists have spent decades designing languages 
and compilers for these machines, and have developed a wide variety of techniques 
and paradigms t o  use them effectively. Any approach t o  parallel processing tha t  
begins by avoiding the use of these languages is "throwing the baby out with the bath- 
water". I t  shouldn't be necessary t o  compromise our ability t o  get good efficiency from 
the component processors in order t o  use more of them. 

3.4. Preserve Sequential Modular Reasoning 

MIMD parallel programs today are typically written in traditional languages, 
complemented with subroutine calls, macro calls, or compiler extensions t o  give the 
user access t o  the parallel hardware of the machine. These new primitives may be 
very low-level, like a lock or message send, or higher-level, like a monitor [5] or access 
t o  shared "tuple spacew [4], but no matter how high-level they seem, they all have a 
major drawback: they deprive us of our ability t o  reason about the code in a modular 
fashion. The correctness of the code suddenly depends on  the correctness of other code 
which is not within the module. In  fact, it depends o n  all the other code, since any 
other code can cause errors by an incorrect message send, deposit to tuple space, or 
write to shared memory. 

This is the most serious criticism of these approaches, since abstraction is a t  the 
core of our ability t o  build large programs, whether sequential or parallel. If a 
module's implementation is not hidden, we cannot reason about it in terms of its 
specification: the complexity of its specific implementation must be carried and dealt 
with throughout its lifetime. 

3.5. Increase Visibility of Parallel Interactions 
Parallel primitives embedded in sequential code not only make sequential reason- 

ing hard or impossible, they also hide the parallel structure of the program. There is 
no central location t o  find which processes interact and which don't, or even more use- 
ful, t o  dictate which processes should interact and which shouldn't. 

3.6. Allow Non-deterministic Execution 
Nondeterminism is often considered a n  undesirable property of computation. 

Stating tha t  a program is non-deterministic is often regarded as evidence t ha t  it does 
not work correctly. Indeed, unwanted nondeterminism can often sneak into parallel 
computations without the programmer's knowledge. 



In fact, many non-numerical applications require, and many numerical applica- 
tions benefit from, a first-come first-served style of programming, resulting in behavior 
which is not completely determinable by the input alone. The programmer should be 
able t o  reason with and control such "useful" non-determinism, rather than  fear it. 
This means t ha t  it must be apparent t o  the programmer when it exists, and deciding 
which actions will eligible for non-deterministic execution must be completely under 
the programmer's control. 

4. Related Work 
To the author's knowledge, no other model has attempted t o  simultaneously 

satisfy all of these goals. The portability goal is seen as unimportant t o  many, since 
there are only two principle classes of architecture (shared and private memory), and 
"relatively portable" paradigms (such as monitors and message passing, respectively) 
can be used t o  program the classes individually[6]. Even with this approach, however, 
most of the other goals go unaddressed. 

Declarative programming models are often espoused as offering solutions t o  many 
of these goals. These include functional, dataflow [7] [a], and logic languages. The 
premise is t ha t  the order of evaluation (i.e. execution) in these languages is dictated 
solely by the da ta  dependencies that  exist among the otherwise independent functions. 
Therefore, if multiple functions are ready t o  evaluate and have no da ta  dependencies 
among them, they are candidates t o  evaluate concurrently on separate processors. 

This concept is very valuable, and the model described in this paper will make 
use of it. The existing declarative languages fail some of our goals, however. 

We must adopt a new paradigm for all programming in order t o  use them, rather 
than using existing sequential languages for programming the sequential proces- 
sors. 

With the vast amount of potential, fine-grained parallelism available, partitioning 
the problem (dependency graph) among processors must be automated; it is 
unrealistic t o  assume tha t  the programmer could have much control over imple- 
mentation, or could even understand how the compiler chose t o  implement the 
program. 

Non-deterministic execution is directly contrary t o  the functional approach 
(though, t o  be fair, it is not difficult t o  augment a functional language with non- 
deterministic non-functions in practice). 

The languages are based on a zero- or single-assignment notion, giving the pro- 
grammer little power t o  specify efficient use of memory or t o  minimize copying. 

In all, such declarative languages require that  all sequential and parallel implementa- 
tion issues be left up t o  the compiler, even if efficient methods of implementation are 
obvious to  the programmer. The drawbacks mentioned will be obviated only by the 
advancement of new programming techniques and compilers t ha t  will consistently 
implement declarative programs as well or better than  a programmer with more con- 
trol. This is not likely t o  occur soon, if ever. 



5. The MIMD Virtual Machine 

5.1. Introduction 

The computational model of LGDF2 will be described by defining the virtual 
machine tha t  it presents to  users, in part t o  separate the features of the machine from 
the syntax of LGDF2. The programs for the machine will be specified both textually 
and graphically. Though the graphical form is similar in many ways t o  the da ta  flow 
graph associated with LGDF2 syntax, it will be described as a separate entity called 
an  F-Net t o  avoid this (possibly incorrect) correspondence. 

This MIMD VM is different than  most, in tha t  the instruction set is not fixed, but 
rather, implemented with easily-replaceable microcode. The intention is t ha t  the pro- 
grammer tailor the instruction set t o  each particular application. An instruction exe- 
cution on this machine would be more typically considered as the execution of a pro- 
cess (named by the opcode). 

5.2. Syntax 

5.2.1. Hardware 

The VM consists of temporary memory, input memory, output memory, and 
instruction memory. Instruction memory is read-only. All memory other than  instruc- 
tion memory is referred t o  collectively as data memory, and a single da ta  memory loca- 
tion is referred t o  as a state. There are no registers (all operations are memory-to- 
memory), and, unlike a typical sequential VM, there is no instruction counter. 

Each da ta  memory location (i.e. s tate)  is capable of storing a da ta  structure of 
arbitrary size, called its data state, and an  additional value called its control state 
which can assume the values Left, Right, or Neutral. 

5.2.2. Software 

Each instruction memory location is capable of storing one instruction of the form 

<opcode> <operands> 

where <operands> is a list of one or more data  memory references, each of the form: 

<input-memory-address>, R i g h t  
or 

<output-memory-address>, L e f t  
or 

< temporary-memory-address> , <side> 

where <side> is L e f t  or R i g h t .  

5.2.3. Firmware 

Each operation in the instruction set of the VM takes a fixed number of operands, 
and defines a functional mapping from the da ta  states of some of them (the readable 
operands) t o  new da ta  states for some of them (the writable operands) and transitions 



for all of them. The readable and writable operands need not be mutually exclusive. 
A transition is one of reserve ,  g r a n t ,  or neutral ize. '  

The mapping is intended t o  be expressed in the form of a program, called micro- 
code. This may be written in a standard sequential higher-level language, though any 
language capable of expressing the mapping (including functional or  parallel 
languages) will do. The microcode sees the data  states of the operands as  call-by- 
address arguments, and the mapping of readable data  states t o  writable data  states is 
expressed by the use and/or modification of these arguments. The microcode language 
is augmented with primitives t o  effect r ese rve  and g r a n t  transitions for a n  operand. 
The only restriction on the microcode (other than its functional nature) is t ha t  it not 
reference an  operand in any way after it has prescribed a transition for it using one of 
these primitives. 

Each opcode has a permission signature that  summarizes the role of each of its 
operands in the mapping: whether it is readable and/or writable, and whether a g r a n t  
and/or rese rve  transition is ever prescribed for it. The permission signature for a n  
n-ary operation is denoted by an  n-tuple of sets, each containing one o r  more of the 
codes rd, w r ,  gr, or rs. The i-th set corresponds t o  the i-th operand. 

The neu t r a l i z e  transition is not explicitly mentioned in the permission signature, 
nor is i t  explicitly prescribed by the microcode. I t  will become clear later tha t  the 
N e u t r a l  control s ta te  and the neu t ra l i ze  transition is present only t o  guarantee a 
representation for microcode which encodes a partial function, and t ha t  the neu t ra l -  
ize transition will only be required (or desirable) for operands with the permission sig- 
natures containing either w r  or the combination of g r  and rs. 

The instructions and permission signature for a program for this machine may be 
represented graphically as a n  F-net. In it, each state is represented as a square box 
labeled with its address. Input memories are distinguished by an  arrow pointing a t  
their left side, output memories by an  arrow pointing from their right side. Each 
instruction is represented as a circle labeled with its opcode, connected with arcs t o  
the boxes representing its operands. Each arc is numbered t o  denote which operand it 
represents, t o  preserve information on the order of the operands in the net. The arc is 
connected t o  either the left or right side of a box, depending on the <side> field of the 
operand. 

Each arc is then annotated to  denote the permission signature of the 
opcode/operand tha t  it represents as follows: 

(1) rd  - An arrowhead toward the instruction. 

One exception: If a neutralize transition is associated with a writable operand, the  new d a t a  s ta te  of  the  operand is 
unimportant, and  need not  be functionally determined by the  d a t a  states  of the  readable operands. 



(2) w r  - An arrowhead toward the state box. 

(3) gr - A continuation of the arc through the side of the s ta te  box. (Meant t o  
suggest a finger pointing t o  the opposite side of the state box.) 

(4) rs - A semicircle within the state box, beginning a t  the end of the arc. (Meant 
t o  suggest a finger pointing t o  the same side of the s ta te  box.) 

See Figure l a  for a n  example of an  F-net, and Figure l b  for a contrived example 
of possible microcode associated with it, expressed in a C-like pseudo code. 

5.3. Semantics 

Configuration 
A configuration consists of an  F-net, an  input sequence of data  values for each of 

V i r t r d  Machine Program 

Output mem: a Instruction Mem. Temp Mem: x,y Input mem: w 

Figure la. Sample VM program and associated F-Net. 

f w,Right x,Leh 

f w,Right y,Left 

g x,Riiht %,Left 

g y,Right a,Lelt 

define-op f (next-n,result) I Cube n and decrement it 
n = next-n; I Take copy of number to cube 
next-n = next-n - 1; I Decrement it for the next guy 
if (next-n == 0) I If this was last n 

grant next-n; I change control state of n 
else 

reserve next-n; 
resu1t.n-cubed = n*n*n; I Compute result = n cubed 
result.last = (n==l) ; 1 Tell whether this is last result 
grant result; I Finished with result 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
def ine-op g (term, t e r ~ s u m )  ( Add term to sum 

term-sum += term.n-cubed; I Add term to sum 
if (term. last) 1 If this is last one 

grant terasum; I change control state of result 
else 

reserve term-sum; 
grant term; I Finished with term 

Figure lb. Microcode for F-net in Figure la .  

Permission Signatures 



its input memories, an  ou tpu t  sequence of data  values associated with each of its 
output memories, and a state value of the form (data state,  control s tate)  associ- 
ated with each state. An input (output) memory with its associated input (out- 
put) sequence will be referred t o  together as an  i npu t  (ou tpu t ) .  An ini t ial  
configuration is a configuration for which all output sequences are null (have 
length zero) and all s tate values are of the form (ZER0,Left) .  

Enabled 
If the control s ta te  portion of a state is Left (Right), the left (right) side of its box 
is said t o  be active. An instruction is enabled if it is connected only t o  active sides 
of boxes: i.e. the control s ta te  of the memory location referenced by each of its 
operands is equal t o  the <side> field of the operand. An input is enabled if it has 
a non-empty input sequence and the input memory has a control s ta te  of Lef t .  
An output is enabled if its output memory has a control s ta te  of R i g h t  and a 
da ta  s ta te  other than  EOF (a distinguished value for output memories). 

Execution Step 
An execut ion step consists of performing any enabled instruction, input, or output. 

An instruction is performed by evaluating the function associated with its opcode 
(typically by executing the microcode) with the readable operands specified in its 
operand fields. The da ta  states of the writable operands are replaced with the 
results of the evaluation, and the control states of all of the operands are 
transformed according t o  the transitions resulting from the evaluation as follows: 

rese rve  - the control s tate of the operand is left unaltered 

grant - the control s tate is changed from Left t o  Right or Right t o  Left 

neu t r a l i z e  - the control s tate is changed t o  Neutral 

a An input is performed by setting the data  state of the input memory t o  be equal 
t o  the first element of the input sequence, deleting the first element of the input 
sequence, and setting the control s tate of the input memory t o  R igh t .  

An output is performed by appending the value of the data  s ta te  of the output 
memory t o  the end of the associated output sequence and setting the control s ta te  
of the output memory t o  Lef t .  

Execution Sequence 
An execution sequence consists of a sequence of execution steps on an  initial 
configuration. 

Final Configuration 
An F-net is said to have entered a final configuration if all output memories have 
a s ta te  value pair of (EOF,Right). Note that  execution may be able t o  continue 
even after  the F-net has entered a final configuration, but in no case will it leave 
a final configuration or produce more output. 



5.4. Discussion 

5.4.1. Parallelism 

The semantics make no mention of parallel execution. If they did, i t  could be 
hard t o  determine which aspects of an  instruction's execution relied on other con- 
currently executing instructions. As is, it should be apparent tha t  instructions can be 
reasoned about independently, and tha t  deadlock is not possible between instructions. 

It should also be apparent that  much of the execution could proceed in parallel 
with no ill effects. For example, two enabled instructions with mutually exclusive 
operands can be executed in either order or concurrently, and the outcome will be 
identical, as long as the microcode does not share temporary variables with other 
microcode (an assumption we will make and enforce). 

An F-net which has a t  most one instruction connected t o  each side of each s ta te  
must be deterministic, since every step in the execution in functional. This is a special 
case of the same property shown for any network of functional processes connected by 
fixed channels (a Kahn-MacQueen network) [9]. Non-determinism can be introduced 
into a n  F-net in only one way: by connecting multiple instructions to  the same side of 
a single state such tha t  there is some execution sequence which can cause more than 
one t o  be enabled a t  the same time. Thus, non-determinism can be present only 
between instructions (within the F-Net) rather than within the instruction's microcode. 

5.4.3. Powerful Microcode 

If it is assumed tha t  a n  implementation has the resources t o  execute any number 
of the enabled instructions in an  F-net concurrently, either by putting them onto 
separate processors or by timesharing, the machine can model microcode which is Tur- 
ing powerful -i.e. which may represent partial recursive functions-despite the 
requirement that  an  operation define a total function. If a control s ta te  is set to  Neu- 
tral (through the neutralize transition), no other instruction, input, or output which 
references t ha t  s tate will ever be enabled again, which is exactly the behavior tha t  we 
wish t o  attribute t o  operands which are never granted or reserved due t o  a divergent 
computation in micro-code. 

Obviously, the micro-code cannot test t o  see if i t  will never halt in order t o  ini- 
tiate a neutralize transition. Suppose that  after the microcode for an  instruction has 
executed for a while and failed t o  perform grant or reserve transitions for some of its 
operands, the machine assumes that  the microcode has started looping and assumes 
neutralize transitions for those operands. Suppose, further, tha t  even after performing 
this action, the machine leaves the microcode running as it initiates the next instruc- 
tion. Some time later, perhaps after several more execution steps have occurred, the 
microcode may perform another transition. The machine was wrong t o  assume tha t  a 
transition for the operand would not appear. 



However, there is no harm done. No execution steps or final markings have 
occurred t ha t  could not have occurred if the machine had waited longer for the transi- 
tion t o  appear. So, the machine can perform the late transition and continue nor- 
mally. 

Carrying this principle further, when the machine finds an  enabled instruction, it 
can simply assume neutralize transitions for all of the operands, then begin execution 
of the microcode and immediately s tar t  looking for the next enabled instruction. In 
fact, this is exactly how the current version of LGDF2 is implemented. This suggests 
another opportunity for parallel execution: as soon as a transition is performed for a n  
operand, tha t  s ta te  is available t o  play a role in enabling another instructions. 

The neutralize transition also comes in handy t o  model run-time fatal errors in 
micro-code-as long as the presence of the error is deterministic. 

6. Execution Graphs 

Although the definition of execution as a sequence of execution steps is suitable 
for sequential models of computation, it is not suitable for parallel models. Such 
sequences contain both too little information (e.g. about what dependency relation- 
ships existed among the steps) and too much (e.g. the order in which totally unrelated 
events occurred). Executions that  we would probably like to  consider equivalent may 
appear wildly different by looking a t  the sequences alone. 

A more desirable view of execution would be one which described the order of two 
execution steps only when it might affect the output. Any sequence of execution steps 
which satisfies such a partial ordering could then be considered as  identical, in the 
sense t ha t  all would map inputs through the same instructions and therefore produce 
the same output [lo]. Our attempt t o  define such a partial ordering will be called an  
Execution Graph, or EG. 

The following construction of an  EG relies on the fact that  an  instruction can 
only directly depend on another if they are connected t o  the same s ta te  in the F-net, 
since there is no other way for one instruction t o  affect or detect the relative execution 
order of another. 

The nodes in an  execution graph resemble those of the F-net whose execution it is 
describing. Value nodes are shown as squares, and represent the control and data  

I 1  states associated with a given s ta te  a t  a given time". They are labeled with the 
address of the state they represent. Evaluation nodes are shown as circles, and 
represent the execution of a n  instruction on the machine. They are labeled with the 
opcode of the instruction. Edges will represent control dependence and possibly da ta  
flow. When the latter is present, it is indicated by a directed edge. The graph will be 
built from left t o  right. The rightmost value node with a given label will be called the 
current value node for tha t  state, since it will represent the most current values on the 
associated state. 

At  the beginning of the machine's execution, the execution graph is initialized 
with a value node for each data  memory location in the F-net. When a n  input is 



performed, a n  arrow is drawn down to  the top of the current value node corresponding 
t o  the input memory. When an  output is performed, a n  arrow is drawn down from the 
bottom of the output memory. When an  instruction is performed: 

(1) An evaluation node for the instruction is added t o  the right of all of the other 
nodes in the EG. 

(2) Edges are added t o  connect the new evaluation node t o  all of the current value 
nodes corresponding t o  the operands of the instruction. If a n  edge corresponds 
t o  a n  operand with rd in the permission signature, the edge is directed toward 
the evaluation node in the EG. Else, it is left undirected. 

(3) New current value nodes are added t o  the EG, t o  the right of the new evalua- 
tion node, corresponding t o  the operands of the instruction which have either 
wr or gr in the permission signature. 

(4) Edges are added t o  connect the evaluation node t o  the new current value 
nodes. If a n  edge corresponds t o  an  operand with wr in the permission signa- 
ture, the edge is directed toward the value node in the EG. Else, i t  is left 
undirected. 

(5) All edges are numbered for the operand t ha t  they represent. 

The first element of the output sequence produced by the sample F-net in Figures 
l a  and l b  will be equal to  the sum of the first n cubes, where n is the first element of 
the input sequence. An execution graph of the sample F-net is shown in Figure 2 for 
a n  initial configuration having an  input sequence of (2). 

The execution graph shows the actual transformations tha t  occur t o  da ta  state 
during the execution of a n  F-net. I t  represents the function which is being simultane- 
ously created and evaluated by the F-net. 

The execution graph of the sample F-net is only one of six tha t  could have been 
obtained from tha t  F-net with tha t  initial configuration. I t  could therefore be deduced 

Figure 2. Execution Graph of Sample F-net with input (2) 



tha t  the F-net is non-deterministic, since it can result in different computations for the 
same input. 

It is not too hard, however, t o  show that  all six functions are indeed the same by 
performing transformations and reductions on the execution graph which preserve the 
function being represented. The easiest of these transformations is t o  remove the 
labels on the value nodes not representing input or output memory. This immediately 
trims our six graphs t o  two. To  show these two EGs represent equivalent functions 
requires only t ha t  we recognize tha t  the "g" operation is commutative. Other reduc- 
tions can be performed on EGs, and different definitions of "deterministic" can be for- 
mulated based on the equivalence of such "collapsedM execution graphs. 

7. Motivation 

In this section, I describe the motivation behind various aspects of the design of 
the VM as though all aspects of its design are new. In fact, many of the points 
defended here have been present in the LGDF model since its inception, though some 
may not have been explicitly justified in the past. This section, then, is written with 
the benefit of 20/20 hindsight! 

7.1. Data State 

A da ta  s ta te  in the VM is a set of variables tha t  are treated as a unit in terms of 
process access. I t  can be derived using the idea of shared values-variables present in 
different processes, perhaps having different names, but which are intended t o  
represent exactly the same concept in each. A sharable value is identified by this con- 
cept rather than  the variable name it is represented by. The da ta  states of a program 
can be constructed by partitioning the set of all sharable values by the set of sharable 
values read by each process, the set of sharable values written by each process, and 
the set of sharable values updated (written and read) by each process. 

Shared memory programming has always relied on the concept of da ta  s ta te  to  
give reasonable meaning t o  locks; i.e. what is a lock locking? Message-passing pro- 
gramming, too, must always be concerned with which processes have access t o  which 
data  state, and it's natural t o  think of identical da ta  used by many such processes as 
being somehow "the same data". The VM has formalized this notion. 

7.2. Control State 

Control s ta te  unifies the ways tha t  locks and messages are used t o  control access 
t o  da ta  state. Both of these mechanisms can instill an  ordering on access t o  data  
state, but locks naturally implement partial orderings, where the next process t o  get 
access t o  the lock and therefore the data  state is not known, and point-to-point mes- 
sages naturally instill a linear ordering, where the next process t o  get access t o  the 
message and therefore the data  state, is known completely. If process synchronization 
was limited t o  either of these extremes in the VM, the program on the VM would need 
t o  implement other orderings with an  explicit protocol. Control s ta te  allows both 
extremes or anything in between by partitioning the processes that  can access the 



s ta te  into two (or, as will be shown later, more) sets. When a side becomes active, 
only those processes connected t o  that  side (i.e. within tha t  set) can access the state. 
The implementation can then provide the most efficient protocol for the ordering 
required on the available architecture. 

7.3. Data-driven Scheduling 

An instruction does not explicitly poll for each of its da ta  states t o  become avail- 
able. Rather, it implicitly waits for them t o  all become available. This assurance tha t  
all states are available for access when it begins eliminates the possibility of deadlock 
and makes it possible for an  instruction to  treat the associated data  states like a func- 
tion would treat  its arguments. 

7.4. Read and Write Permissions 

Efficient sharing of data  state on a particular architecture can only be performed 
when the read or write intentions of each process is known. I t  is common, in shared 
memory machines, t o  consider some area of memory as "read only" during some por- 
tion of the program execution. Such an  area can be read simultaneously by several 
processes, but not written by any of them. Since this is not possible if processes are 
accessing separate memory in a private memory system, the less efficient method of 
sending a message containing a copy of the data  to  each process must be used if simul- 
taneous reading is desired. 

The message passing solution, though less efficient in most cases, has an  advan- 
tage; a process can update its copy in some cases even while other processes are still 
reading old copies of the data. This same effect can be accomplished by a shared 
memory approach, but only by physically copying the data  t o  a new location for each 
of the reading processes. 

Since the intentions of a process to  read or write the da ta  s ta te  must be explicit 
t o  efficiently implement its sharing and communication on a particular architecture, 
the combination of read and write is a natural extension. This allows a process to  
update in place, further reducing unnecessary copying (within the user's instruction 
microcode). 

7.5. Dis-Allowance of Neutralize for some Permission Signatures 

In order t o  be architecture independent, microcode must specify the same set of 
transitions regardless of the implementation. This includes neutralize transitions. 
This only creates a problem in one case: when a state is readable but not writable by 
an  instruction, and the instruction only performs one possible transition t o  the state 
(i.e. grant or  reserve). See process B in Figure 3. 

An efficient message-passing implementation of the VM could send a message con- 
taining the da ta  s ta te  t o  the instruction, perform the allowed transition (in this case, 
reserve) immediately, and ignore the explicit request from the microcode t o  perform 
the transition. This would allow other instructions (A, C, or D) t o  be enabled a t  the 
earliest possible time, maximizing possible parallelism. In fact,  if this strategy is used 
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Figure 3. Premature Transition Anomaly 

and there are many such enabled instructions on the same side of a s ta te  all having 
read and reserve permissions only and not directly dependent on each other by any 
other s ta te  (e.g. A and C), the contents of the da ta  state can be broadcast t o  them 
simultaneously. This natural representation of broadcast within the model is a Very 
Good Thing. 

But if such a n  instruction should go into a loop before explicitly performing the 
transition, it is of no consequence; the implementation has already performed the 
transition. A subsequent instruction which needs to  write t o  the s ta te  (e.g. D) could 
be enabled. Contrast this with a shared memory implementation. The reader's transi- 
tion cannot be performed until it is explicitly performed by microcode, since tha t  is 
how a shared-memory implementation keeps writers from intruding on the shared data  
s ta te  while it is being read. If the very same microcode goes into a loop here before 
performing the transition, it would block writers out forever. 

Thus, an  efficient shared-memory implementation of a reading process does not 
have the same semantics as an  efficient message-passing implementation. The seman- 
tics for the model must be defined one way or the other. Which architecture should 
lose, and be forced t o  implement the VM in an  inefficient manner? 

We declare message-passing the winner, but its not t ha t  bad for shared memory, 
since (1) it is only necessary tha t  a reader perform the transition on the s ta te  in a 
finite time, and (2) a shared-memory implementation can be defined t o  include a 
human. Thus, shared-memory reading can be implemented in its writer-blocking 
manner as long as a human or "gremlin" can check periodically t o  determine whether 
a reader is indeed blocking another instruction. If so, the implementation must allow 
the human or gremlin t o  manually make a new copy of the data  s ta te  being read so 
tha t  the blocked instruction can proceed. An implementation without this feature will 
not strictly conform t o  the model, but will still be perfectly usable. 

Note t ha t  a programmer may know tha t  an  instruction is likely t o  read a state 
for a long time in a shared-memory implementation, and would prefer tha t  it get a 
copy of the da ta  s ta te  in the first place t o  avoid blocking writers. This is one of the 



implementation decisions tha t  a shared-memory implementation should accept advice 
on. 

8. Extensions (or Higher Level Abstractions) 

Is the model powerful enough? One way t o  answer this is t o  consider whether 
extensions t o  the model add any power or if they can be constructed within the exist- 
ing model. Even if they can be constructed, it may still be desirable t o  use them 
instead their equivalent basic constructs if they are clearer or easier t o  work with. In 
this sense, these extensions are similar t o  control constructs in high-level languages. 

Three such extensions are considered in this section. 

8.1. Multi-sided States 

Consider allowing the model t o  provide any number of sides on a state,  rather 
than  just two. The idea of a transition would need t o  be extended past grant and 
reserve t o  allow the ability t o  make any side the next active side, but would still 
include the notion of a neutralize transition and neutral state. 

An F-net with an  n-sided s ta te  can always be modeled by a simple F-net (one 
containing only 2-sided states) with the same number of instructions. To  see this, con- 
sider a simple F-net with lg(n) 2-sided states. There are n ways of attaching processes 
t o  one side of each of these 2-sided states. Without loss of generality, consider one of 
those n ways. If the instructions connected in this way are enabled, no instruction 
connected in another way can be enabled, since the other instruction must be attached 
t o  the other side of a t  least one of the states, and only one side can be active a t  a 
time. By selectively granting and reserving these states, a n  executing instruction can 
arbitrarily determine the next active side for all of the states, thereby dictating which 
connectivity will be enabled next. This is exactly the behavior required for a n  n-sided 
state. See figure 4 for a n  example of a mapping from a $-sided s ta te  t o  2 2-sided 
states. Note t ha t  only one of the 2-sided states needs t o  carry the data  s ta te  from the 
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Figure 4. Multisided state reimplemented with %sided states 



n-sided state. 

The introduction of multi-sided states adds t o  the decision power of the model. 
Without them, i t  is often necessary t o  connect multiple instructions t o  a single side 
even when there is no intention for them to  be enabled a t  the same time, simply 
because they need t o  access the same data  state. Determining the conditions under 
which these instructions can be enabled is sometimes not clear from the F-net. For 
example, in figure 4, i t  is not clear from the simple F-Net which transitions instruction 
D' may perform, in contrast t o  D in the other F-Net. 

Note tha t  even if an  F-net contains multi-sided states, and those states can often 
only be modeled by 2-sided states by attaching multiple instructions t o  a side, the 
determinism rule mentioned earlier still stands: a (multi-sided) F-net which has a t  
most one instruction connected t o  each side of each state must be deterministic. 

8.2. Ignoring Some Control State 

In the current model, an  operand lists exactly one side of the referenced state 
which must be active for the instruction t o  be enabled. Is it possible t o  have an  
instruction which can be enabled regardless of the active side of one of its states? 

Because a n  instruction's behavior is defined solely by its opcode and the da ta  
states of its operands, this is easily accomplished by providing two instructions which 
are identical except for the side of the s ta te  tha t  they reference. Since only one of the 
instructions will be enabled a t  any one time, the behavior of the two combined will be 
identical t o  the one instruction which ignored the control s ta te  of the state. 

8.3. Multiple Active Sides 

Even a many-sided state can only have one side active a t  a time. Would relaxing 
this rule t o  allow 2, 3, or n sides active a t  once, increase the power of the model? 

No, since a n  s-sided state which allows any combination of multiple active sides 
can be reimplemented as follows: 

(1) Replace the original s-sided state with a s ta te  having additional sides 
representing all of the combinations of the original s sides. 

(2) For every side j on the new state which represents a combination including side 
i of the original state, create new instructions tha t  are exactly like those 
attached t o  side i except that  they reference side j. 

See figure 5 for an  example of a 3-sided state allowing multiple active sides modelled 
by a 7-sided s ta te  allowing only single active sides. 

Although this could be considered a high-level abstraction, it seems tha t  it could 
add complexity more often that  it would remove it. 

9. Discussion 
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Figure 5. Implementation of multi-active state with uni-active 

9.1. Relationship to Petri Nets 
Except for the presence of input and output memory, the semantics of a simple 

F-net resembles tha t  of an  ordinary Petri Net [Ill. In tha t  model, a net consists of 
directed graph with two types of nodes: places and transitions. Places can be con- 
nected only t o  transitions, transitions only t o  places. The semantics consist of placing 
a single token on some subset of the places to  form the initial marking, then non- 
deterministically choosing from among the enabled transitions: tha t  is, ones for which 
all the input places (connected t o  the transition by an  edge toward the transition) 
have a token and all the output places (connected t o  the transition by a n  edge away 
from the transition) have no token. When such a transition is chosen, it is fired; i.e., 
the tokens are removed from all of its input places and a token is placed onto all of its 
output places. Another enabled transition is then chosen, ad  infinitum or until there 
are no more enabled transitions. 

We replace the places in Petri's model with states, transitions with instructions, 
and tokens with control s ta te  (say, Right==token, Left==none). We change the 
notation t o  reflect the flow of data  rather than the flow of tokens: a s ta te  connected 
t o  a n  instruction via its right side would be considered an  "input place" in Petri terms, 
one connected via its left would be an  "output place". The semantics of our model 
differs from Petri's in our use of data. We add data  t o  our states where Petri had 
none, and extend the "firing" of an instruction by having it decide whether t o  ltpick up 
or put down tokens" based and the data  present on the states. Finally, we produce 
new da ta  for the states as a function of the da ta  t ha t  was on them when the instruc- 
tion started. 

An F-net which does not contain rd  or wr  in its permission signatures can be 
modeled directly by such a Petri Net. See figure 6 for an  example. As long as all per- 
mission signatures contain only gr ,  the mapping between the two models is purely 
notational. If rs permissions appear in the F-net, the Petri Net must model the asso- 
ciated control s tate with two places (left and right) and be augmented with a n  addi- 
tional transition to  copy the token back t o  the appropriate place when it is reserved. 
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Figure 6. F-Net modeled by Petri Net 

Modeling a n  F-net with a full Petri Net (i.e., one which does not require tha t  output 
places be empty for a transition t o  be enabled) always requires two places per state, 
but F-nets with rs in their permission signatures can be modeled without extra tran- 
sitions. 

We can benefit from some of the extensive study on Petri Nets, specifically tha t  
on reachability. This is the property tha t  some given object marking (in our case, glo- 
bal control s tate)  can or cannot be reached from a source marking. This property has 
been shown to  be decidable for Petri Nets, and algorithms have been developed and 
proven. Its most obvious use is to  determine whether some undesirable global control 
s tate can be reached from, say, a n  initial marking. Unfortunately, our more powerful 
concept of "firingM limits the usefulness of the algorithms, but they can probably still 
be used directly on those portions of the F-net where the instructions have only one 
allowable transition. 

9.2. Relationship to Side Effects and Functional Programming 

In traditional dataflow[l2] or functional programming models, a function always 
maps a set of inputs t o  different output(s). There is no distinction within these models 
between output tha t  will be identical t o  some input unless altered and tha t  which will 
not. This additional information is present in F-nets through the use of arcs which are 
both readable and writable. It can be used t o  create more efficient implementations 
by allowing the functions t o  alter the data  in place, where this is possible and desir- 
able. 

The problem is that  a state may now "hold" different kinds of values, having 
different characteristics, a t  different stages of the overall computation. This is the 
same problem which has greatly complicated attempts to  reason about sequential pro- 
grams containing side-effects, and which has given the impetus t o  functional program- 
ming as a n  "easier t o  reason about" paradigm. Rather than give up this idea of in- 
place da ta  modification, however, we have provided each da ta  s ta te  with a control 
s ta te  which represents the characteristics of the data  item now inhabiting the state. 



The semantics of the machine guarantee tha t  a da ta  item only be accessible t o  a given 
function when the "rightM type of data  item is inhabiting the state. The use of multi- 
sided states allow full expressiveness of this interpretation of control state. 

Data  items within a given state can be considered as "useless" (uninitialized or 
has otherwise outlived its usefulness), ''new1' (put into the s ta te  by a function which 
does not have read access t o  the state)  or as "modified" (the result of a function modi- 
fying a new or modified state). The control s tate can describe the stage of da ta  state. 
Thus, the overall s ta te  of a computation can be considered as combination of the data  
items present and the stage of completion of each. A function serves t o  construct new 
values from existing ones, t o  transform existing values in place, or a combination of 
the two. 

This is different from the way a sequential programmer would think of the current 
state of a computation because the only real control s ta te  available is the program 
counter, and the only way t o  infer the stage of completion of any variable is t o  reason 
about the current program counter and some combination of other variable values. In 
tha t  sense, the F-net model can be considered as distributing the program counter, not 
over the program counters of the individual processes, but rather over the "stages of 
completion" of the variables. 

10. Summary 

This paper has dealt with the computational aspects of the LGDF2 model in a n  
at tempt t o  provide a formal framework t o  reason about programs. I t  has avoided 
specific recommendations for optimization of implementation in favor of building a 
model with enough expressibility t o  make these optimizations possible. I t  has also not 
dealt with language issues such as syntax, typing, or modularity. These must all be 
dealt with in their own right t o  make LGDF2 a truly useful tool. All of these matters 
should be considered in terms of the language, however, and few should affect the 
model. 

The model still requires some enhancement t o  encompass some of the require- 
ments of portable parallel programming. Among these are the ability t o  partition 
I I arrays" among individual instructions, and the ability t o  alter a n  F-net during execu- 
tion. Both of these are currently being carefully considered. I t  appears tha t  the next 
extension will be the addition of an  optional indexing field to  the operands of any 
instruction. This will require some data  memory t o  have additional constraints placed 
on its addresses. 

Methods of collapsing and analyzing execution graphs need t o  be formalized. 
Besides helping in the proof of correctness of parallel programs, execution graphs are 
useful in the debugging of parallel programs, since they summarize all the important 
information about a parallel execution without overconstraining t ha t  notion. We are 
developing a graphical debugger (131 which rebuilds an  execution graph by recording 

11 minimal da ta  during a n  actual execution, then re-executes the program in an  Instant 
ReplayM [14] fashion. 



The two-level approach t o  parallel programming presented here seems t o  be valu- 
able. This is not a new concept, but the F-net model can be considered as a n  attempt 
t o  see how few restrictions can be placed on behavior of the component processes and 
the overall program while preserving the abstraction of the processes. 
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