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ABSTRACT 

There has been a substantial growth in the number of images being created 

every day in healthcare settings. Effective image annotation and retrieval can be 

useful in the clinical care of patients, education and research. 

Traditionally, image retrieval systems have been text-based, relying on the 

annotations or captions associated with the images. Although text-based 

information retrieval methods are mature and well-researched, they are limited 

by the quality and availability of the annotations associated with the images. 

Advances in techniques in computer vision have led to methods for using the 

image itself as the search entity.  

The goal of our project was to create an image retrieval system a set of 1500 

upper endoscopic images from the Clinical Outcomes Research Initiative 

Collection. We have created a web-based multimodal image retrieval system 

written using the Ruby on Rails framework. Ferret, a ruby port of Lucene was 

used for the text indexing of the annotations for the text-based retrieval. Our 

database also contains a number of visual features created using image 

processing algorithms that allows users to perform content-based retrieval.  

When operating in a “query-by-example” mode, our system retrieves an ordered 

set of images from the test collection that are “similar” in visual content to the 

image being queried. We also evaluated the performance of a variety of image 
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features and machine learning classifiers that can be used to automatically 

annotate the image with an image class consisting of one of eight findings. We 

developed a hybrid algorithm for image classification that showed improved 

performance compared to commonly-used classification algorithms. This 

enabled us to provided text-based querying capability where search words from 

a controlled vocabulary retrieve a set of pre-classified and annotated images 

matching the search criteria. Our intention was to enable users to query using 

either a sample image, keywords or desired image class to retrieve “similar 

images” from the system, along with a display of the associated information 

from these images.  

Although CBIR has great potential in patient care, research and education, 

purely content-based image retrieval can be quite challenging for clinical 

purposes due to the semantic gap. Low level global features like color and 

texture may not be sufficient for classification of findings. However, combining 

visual and textual information can greatly improve retrieval performance. 

Additionally, the use of distance metric learning and relevance feedback can help 

the system produce results that are more relevant to the user. 
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CHAPTER 1 

Introduction 

Image retrieval is a burgeoning area of research in medical informatics [1, 2]. 

With the increasing utilization of digital imaging in all aspects of health care and 

medical research, there has been a substantial growth in the number of images 

being created every day in healthcare settings. Consequently, there is a critical 

need to manage the storage and retrieval of these image collections, whether in 

stored in Picture Archival and Communication Systems (PACS) or in patient 

health records or on the web.  Effective image annotation and retrieval can be 

useful in the clinical care of patients, education and research [2, 3]. Image 

retrieval can be used by clinicians to generate differential diagnosis, monitor 

response to therapy and for quality control. Medical students and residents have 

indicated that effective image retrieval can be useful for self-education [4]. A 

good image retrieval system can also be beneficial to healthcare practitioners for 

patient education. Data-mining of large image collections can provide useful 

information for researchers. Examples include prevalence of certain findings 

including polyps during routine screening [5], visual characteristics associated 

with malignancy in mammography [6, 7], and prediction of response to radiation 

therapy based on FDG-PET [8]. 

Traditionally, image retrieval systems have been text-based, relying on the 

annotations or captions associated with the images [9]. Although text-based 
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information retrieval methods are mature and well-researched, they are limited 

by the quality of the annotations applied to the images. These techniques have 

limitations as 1) the annotations are subjective and context sensitive, can be quite 

limited in scope or completely absent; 2) manually annotating images is labor 

and time intensive, and error prone; 3) annotation are very “noisy” if they are 

automatically extracted from the surrounding text; and 4) there is far more 

information in an image than can be abstracted using a limited number of words.  

In addition, these annotations can experience a “semantic gap” as described by 

Smeulders et al. [10], where the annotation may not fully describe the semantic 

context of the image.  

Advances in techniques in computer vision have led to methods for using the 

image itself as the search entity. In content-based image retrieval (CBIR), the 

visual information from the image is mathematically abstracted and compared to 

similar abstractions of all images in the database [10]. These features could 

include the color, shape or texture of images. An ordered-list of images that are 

visually most similar to the sample image is presented to the user. 

However, the success of these methods when applied to a collection of diverse 

content can be limited. It is generally felt that the application of CBIR techniques 

to a more homogenous collection, like medical image databases, can prove to be 

useful [2]. Also, as shown in recent years, a combination of text-based and 

content-based image retrieval techniques can be very successful [11, 12]. 



 

3 

 

The Clinical Outcomes Research Initiative (CORI) [13], is a research initiative that 

“acquires information that will improve the quality of clinical practice in 

gastroenterology.” The data collected under this initiative “has been analyzed to 

examine endoscopic practice patterns, to develop research hypotheses, as a 

resource for prospective research on topics such as colon polyp surveillance, and 

to support quality measure reporting.”  In addition to case reports and 

pathological findings, images are also collected and archived in the CORI. 

Currently, over 400 endoscopists participate in this project at almost 90 sites, 

providing reports on procedures.  Many of the participating sites also collect and 

send images attained during endoscopic procedures to the data warehouse. More 

than 150,000 images are currently available in the system. However, the 

annotations associated with these images are highly variable and have not been 

validated. OHSU has created a manually curated digital library collection 

consisting of 1500 images from eight endoscopic findings for the upper GI tract. 

Associated textual information includes the finding, size, anatomical location 

and comments about visual appearance.  

 The goal of our project was to create an image retrieval system for this subset of 

the CORI collection. Our system retrieves an ordered set of images from the test 

collection that are “similar” in visual content to the image being queried when 

operating in a  “query-by-example” mode. It also has limited text-based querying 

capability where search words from a controlled vocabulary retrieve a set of pre-
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classified and annotated images matching the search criteria. Our intention is 

that either a query image or keywords can be used to retrieve “similar images” 

from the system, along with a display of the associated information from these 

images.  
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CHAPTER 2 

Background 

Advances in computing capabilities and the pervasiveness of digital images in 

the last few decades have resulted in significant strides in the areas of image 

processing, computer vision and pattern recognition.  Algorithms have been 

developed to analyze images, classify images and automatically annotate images  

as well as retrieve similar images. Computer aided detection (CAD) is routinely 

used in medicine in areas as diverse as mammography, pathology and 

endoscopy [7, 14]. 

Image retrieval 

 Traditionally, researchers have taken three broad approaches in the task of 

images retrieval: text-based retrieval, content-based retrieval and automatic 

annotation based retrieval. 

Text-based image retrieval 

 Image retrieval most commonly has been accomplished using the textual 

annotations associated with image. Most popular web-based image search 

engines including Google images1, Yahoo! image search2, and Bing3 as well as 

                                                 

1 http://images.google.com  

2 http://images.search.yahoo.com  

3 http://www.bing.com/images  
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medical image retrieval engines including Goldminer4  [15] and Yottalook!5 

perform text-based image retrieval. The search entities are keywords and the 

results are images. Although this is still the most commonly used approach in 

non-academic situations, there can be numerous issues with this approach. 

Manually annotating images is a very labor-intensive task. Not all images have 

well-curated annotations.  The annotations can depend on the annotator and the 

context in which they were labeled.  Other issues include the problem with 

synonymy as shown in Figure 1 below where the word “mum” could refer to 

mother or chrysanthemums.   

 

Figure 1 Searching for "mum" in Google shows images for different synonyms of 
the word 

                                                 

4 http://goldminer.arrs.org/  

5http://www.yottalook.com   
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Content-based image retrieval 

 Advances in image processing and the prevalence of digital images led to 

the notion of using the image itself as the search entity.  The early nineties saw 

the advent of some of the early CBIR systems. The idea behind these systems was 

that the user would upload an image and the system would return an ordered 

list of images that are visually most similar to the search image. These systems 

were typically used for color-images of real-life scenes (animals, cars, airplanes, 

faces etc). Reviews of these systems can be found at [10,16-18] There were many 

different techniques based on image properties like color, texture, shape.   

 One of more successful of the early systems was the QBIC (Query by Image 

Content) system from IBM [19]. This system uses color histograms, texture  [20, 

21] and shape descriptors (moments) for image retrieval. 

 Other pioneering systems include the BlobWorld system  [22]and the 

NETRA system. Blobworld was developed at the University of California, 

Berkeley and uses color, texture, location and shape of the regions (blobs) and 

background as features. NETRA  [23], developed at UC, Santa Barbara, also uses 

color, texture using Gabor filters  [24], shape and spatial location as features. 

 However, content-based image retrieval systems often suffer from the 

“semantic and sensory gaps” [10].  Smeulders et al. identified the ‘semantic gap’ 

as “the lack of coincidence between the information that one can extract from the 

visual data and the interpretation that the same data have for a given user in a 
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given situation.”  The goal of many researchers in image retrieval continues to be 

to find ways to close that gap [25-27]. 

One manifestation of the semantic gap in medical images is the difference 

between the image itself and the contents of the annotations associated with the 

image. The same image may be annotated quite differently depending on the 

user, his training, and/or his medical expertise. The ‘sensory gap’ between “the 

object in the world and the information in a computational description derived 

from a recording of the scene” is also pertinent in medicine. This sensory gap can 

be demonstrated by the differences between the actual tumor in the physical 

world and how it is imaged under various modalities (e.g., CT or MRI) and 

views (prone or supine). 

 In comparing image retrieval to text retrieval, Smeulders et al. [10] note the 

lack of a sensory gap in text retrieval. They also note that the difference between 

the semantic gap in text retrieval (between keywords to full text) to that in image 

retrieval. The differences in semantic and sensory gaps between textual and 

visual retrieval may shed some light on why image retrieval systems currently 

do not perform as well as their textual counterparts. 

 Many reviews, including a recent one performed by Datta et al. [18], have 

compared the image retrieval performance of various color, texture, shape and 

saliency features that were extracted from images in a database. However, 

establishing the correspondence between the semantics of an image and its 
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mathematical properties such as color, shape and texture remains a very active 

area for research. 

Automatic annotation and classification 

 More recently, automatic annotation-based techniques have been 

developed to label images with image tags [28-30]. Images can be organized and 

retrieved easily based on the annotations.  Typically, these methods require a 

training set of labeled images consisting of tags from a constrained vocabulary. 

Using these training images, image tags can be propagated to new images. 

Retrieval is then accomplished using the image tags. Behold6 and ALIPR7 are 

examples of image search engines that use automatically generated image tags. 

Image Retrieval in Medicine  

 Mueller et al. have performed an extensive review of the use of image 

retrieval in medicine [2]. Image retrieval in medicine is most commonly 

performed within the purview of PACS systems, where the images are retrieved 

using either the patient or study ID. However, Mueller et al. argue that content-

based methods can be a useful functionality to be integrated with PACS systems. 

Mueller et al. identify teaching, research and diagnostics as three primary 

domains for applying image retrieval.  They identify an important use of purely 
                                                 

6 http://www.behold.cc  

7 http://www.alipr.com  
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visual (or content-based) image retrieval, namely, “Visual features do not only 

allow the retrieval of cases with patients having similar diagnoses but also cases 

with visual similarity but different diagnoses.” 

 They note various image retrieval engines used in many clinical disciplines 

including for high resolution CT images of the lung (ASSERT)  [31], spine x-rays  

[32,33], pathological images, CT’s, mammograms, dermatology and varied 

collection (IRMA)  [21,34].  

 MedGIFT  [35,36] is an adaptation of the GIFT, an open source CBIR system 

developed at the University Hospitals of Geneva. The MedGIFT system uses 

color histogram in HSV space and Gabor coefficients for texture characterization. 

This system uses an inverted file structure (similar to text based method) for 

improve retrieval efficiency. Other notable image retrieval systems used in 

medicine include SPIRS  [37,38] for spine x-rays and BRISC for images from the 

Lung Image Database Consortium (LIDC) [39]. SPIRS  allows users to query 

using either text or images.   

Image processing and machine learning in endoscopy 

Image processing and machine learning techniques have been applied to 

numerous medical applications in both the grey scale and color image domains. 

Kodogiannis et al. created a system for computer aided diagnosis in endoscopy 

using image processing and machine learning [40-42]. In [41], the authors first 

create histogram in the RGB and HSV spaces. Statistical measures of standard 
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deviation, variance, skew, kurtosis, energy, entropy, inverse difference moment, 

contrast and covariance are used to create a 54-dimension feature vector. 

Different techniques including Extended Normalized radial basis function 

networks, adaptive fuzzy logic systems and fuzzy integrals are then used to 

create a fusion of multiple classifiers. A fairly high accuracy of classification was 

achieved. 

Karkanis et al.  [43] used color wavelet covariance based feature vectors, 

followed by Linear Discriminant Analysis (LDA) for the detection of abnormal 

colonic regions. 

Artificial neural networks were used by Tjoa et al. [44,45] to detect abnormal 

colonoscopic area. They compared the use of Backpropagation and Adaptive 

resonance theory networks. They used a variety of segmentation methods and 

extracted features based on color and shape of the segmented regions. 

User Search Behavior and Interaction 

Researchers [3,4,10,18] have developed models to describe the search behavior of 

users. Users can be categorized in three broad classes: a) ‘browser’ as someone 

looking for pictures with no clear end goal, b) ‘surfer’ as a user searching  with a 

moderate clarity of an end goal, and c) a ‘searcher’ who is very clear about for 

what she is searching. Tasks can similarly be classified as “lookup”, “learn”, and 

“investigate” [46]. Many leading scientists [47] in information science have 

stressed the importance of taking into account user behavior, whether someone 
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is searching for a particular document/image or browsing with no particular end 

in mind or something in between, when designing user interface and 

information retrieval systems.  User interaction, in the form of relevance 

feedback, can be useful for setting the context and training the system for the 

particular user and search. 

Information Seeking Behavior of Users of Medical Image Systems  

Image retrieval systems are expected to be useful tools for a variety of consumers 

of health information, from clinicians performing diagnosis to the general public 

trying to understand health conditions. However, only a few studies [3, 4, 48] 

have looked at the use-behavior of image retrieval system users. Mueller et al. 

noted that many clinicians store reference images from past cases, often on their 

personal computers. Most of the clinicians interviewed do not believe that the 

CBIR systems in medicine are ready to be used in a clinical setting. They 

identified “recommendations for search techniques that do not exist but are 

regarded as very useful: Search by pathology; Search by anatomic region; Search 

by visual similarity; Search by multi-modality combined to find similar cases; 

Indexation of the entire PACS by keywords regarding the pathology.” We 

believe that it is very important to understand the needs and use patterns of real 

users in designing user-centric, clinically useful image retrieval systems.  

Relevance Feedback and Similarity Learning 

Relevance feedback has been used quite successfully in text retrieval [49-51].  In 
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relevance feedback, the user reviews the results that are initially returned from a 

given search and provides feedback to the system about whether he thinks that 

the document or image retrieved was pertinent to the intended search.  This can 

be explicit, where the user states which documents are relevant, or implicit, 

where the relevance in inferred from user behavior.  Relevance feedback can be 

useful when the query is hard to formulate, but the user may recognize the 

document as being pertinent when he sees it. Such feedback can help the user 

identify new search terms or discover concepts. Many researchers believe that 

relevance feedback can be critical in image retrieval as a method to bridge the 

semantic gap [52]. This feedback can be used in the short term where the results 

of the subsequent search are enhanced using the information provided by the 

user. In addition, it can be used for long term learning to provide training data 

for machine learning. This can be used to adapt the system for a particular user 

[53].  

Similarity learning is another attractive approach to tuning the system to meet 

the user’s needs [54, 55]. Early research in CBIR systems evaluated the use of 

similarity measures such as Euclidean distance, Earth mover’s distance, 

Histogram intersection, and Mahalanobis distance for retrieval performance [56, 

57]. However, Squire et al.  [58] noted that “current systems face great 

difficulties, due to the fact that perceived image similarity is both subjective and 

task dependent.” They proposed a distance-learning network that allows the 
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system to learn distances that better correlate to human perception. Ma et al.  [59] 

have previously shown improved image retrieval performance by learning 

similarity.  More recently, in computer vision, Chopra et al.  [60] and others  

[55,61] have demonstrated that learning similarity measures can significantly 

improve performance by transforming the feature space such that objects that are 

semantically similar will have reduced distance in the new space while objects 

that are dissimilar will have large distances. 

Multimodal Fusion for Improved Retrieval 

Multimodal fusion is an extremely promising approach to image retrieval [21, 62, 

63]. This approach take advantage of both the visual and textual information that 

can be associated with an image. The textual information can include 

annotations, captions or text contained on a web page near the image, while the 

visual information can include the color, shape or texture contained within the 

image. The query itself could be multimodal, with the user supplied key words 

as well as sample images. By leveraging both types of available information, this 

approach seeks to support multimodal queries in which the user could supply 

key words (e.g. text) as well as sample images to improve the likelihood of more 

precise results. However, as noted by Datta et al. [18], this is still an emerging 

area of research, with only a small number of actual systems that employ this 

technique.  Some participants of ImageCLEF 2006 and 2007 have had successful 

submissions using a variety of algorithms to combine textual and visual features 
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[63, 64].  The text-based annotations associated with the image can also be used 

as supervised training data for visual classification. Class labels can be then 

learned from training examples to aid in image retrieval [65]. 

Evaluation of Classification and Image Retrieval  

 The Cranfield methodology is typically used to evaluate the effectiveness of 

information retrieval systems using test collections and relevance judgements 

[66-68]. Commonly used metrics for information retrieval include precision, 

recall, and mean average precision (MAP). In order to evaluate the performance 

of an information retrieval system, we require a set of topics, a set of documents 

(or images) that are retrieved by the search system and a set of judgements to 

indicate the relevance of the returned document or image to the user’s search. 

Relevance is typically binary, with the returned documents being deemed either 

relevant if they satisfy the user’s information need or not relevant if they do not.  

Judgements are performed by domain experts. Precision is the fraction of the 

documents retrieved that are relevant to the user's information need. It is often 

specified given a number of documents retrieved. For example, P(10) is the 

number of relevant documents in the top 10 documents retrieved. It is analogous 

to positive predictive value. Recall is the fraction of the successfully retrieved 

documents that are relevant to the query. It is analogous to sensitivity [66, 69]. 

Hence, a system with high precision will return mostly relevant documents, 

while a system with high recall will return all the relevant documents in the 
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database.  

However, there is limited research to indicate the preference of real users of 

medical image retrieval systems as to which measures mostly closely correlate to 

user satisfaction with the retrieval results.  Search engines usually utilize 

precision as it has been shown that most users of search engines typically do not 

view more than the first or second page of results  [70, 71].  However, there are 

many clinical and research applications where an exhaustive search may be 

necessary and recall would be preferred, such as a genomics researcher 

interpreting the vast output of a microarray [72] or the clinical epidemiologist 

performing a systematic review [73]. 

In the case of a multi-class image classification evaluation, the typical metric 

used to compare performance of systems is the accuracy or hit rate. This is the 

ratio of number of images that are correctly classified to the total number of 

images.  

Recently, Cohen’s kappa [74] has been suggested as a better metric for 

comparing classification accuracies since the hit rate does not account for 

classification by chance.  
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In the case of a multi-class classifier, Cohen’s Kappa is defined at  

 

where xii is the count of cases in the main diagonal ,N is the number of examples, 

I is the number of classes, and xj and xi are the column and row total counts, 

respectively. Cohen’s kappa can be calculated in a straightforward manner based 

on the confusion matrix obtained by the classifier. 
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CHAPTER 3 

Methodology 

The basic goal of image retrieval is to find images that are most ‘similar’ to a 

given query image. We framed this problem as both an unsupervised problem of 

finding the most similar images to a query image as well as a supervised 

machine learning problem of image categorization, given labels on a training set 

or pair-wise constraints between images as during a relevance feedback phase.  

Image retrieval systems typically consist of two phases. During the indexing 

phase, image features are extracted and stored from all images in the database.  

During the retrieval phase, image features are extracted from the query image 

and compared to all similar features that were indexed. An ordered list of most 

similar images is presented to the user.  

Image Collection 

The CORI test collection that was used in this project included about 1500 

endoscopic images that have been categorized into eight pathological findings: 

Barrett’s, esophagitis, nodules, polyps, stenosis, tumors, ulcers, and varices. In 

addition, the images in this collection have corresponding textual information 

about the location at which these images were acquired, associated findings and 

optional comments. The images are typically about 450x450 pixels in size and 

8bits/channel RGB images. An example image and associated annotation is 

given below. 
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Figure 2 Example of image and associated annotation in the CORI collection 

Framework of image retrieval system 

A framework of generic image retrieval systems is show below in Figure 3. In the 

pre-processing phase, the images are first cropped, resized and potentially 

transformed to a different color space. In the indexing phase, feature vectors are 

then extracted for all images using one or more algorithms from the feature 

extraction algorithm library. Feature vectors and references to the images are 

stored in the relational database. The annotations associated with the images are 

also stored in the database and indexed.  

Title: Upper Gastrointestinal Polyps 

MeSH Subject: Endoscopy,  Gastrointestinal; 

Intestinal Polyps 

Description: Maximum size: 2 mm, sessile, 

located in distal esophagus 



 

21 

 

 

Figure 3: Framework for the indexing phase of an image retrieval system 

If labels are known for a subset of images, this information can be used to 

improve the retrieval process using machine learning.  If sufficient images are 

available for training and the labels are of a small number of categories, the 

unlabeled images can be categorized using supervised classification techniques. 

The system allows such an automatic annotation phase to be performed. First, a 

set of training images and associated annotations are identified. We then extract 

tags from a constrained vocabulary for these images. These include location and 

finding for the endoscopic images. Using machine learning algorithms, we create 
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a classifier for the tags which are then propagated to the test images. We then 

evaluate the performance of the classifier. If the classifiers perform well, the 

entire database of images is labeled. These labels can be used in the retrieval 

phase by allowing users to search using keywords.  

In the retrieval phase, the query image is preprocessed in a similar manner to the 

database images. Feature vectors are extracted similarly. Distances between the 

feature vector of the query image and all images in the database are computed 

using one of the distance measures from the distance measure library. The most 

similar images are then presented to the user.   
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Figure 4 Framework for the retrieval phase of an image retrieval system 
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Alternatively, using the class labels, the distance space between images can be 

transformed in such a way that distances between images in the same class is 

minimized while distances between images in different classes is increased.  

Finally, users can indicate their preference for the images retrieved by using 

relevance feedback. This allows the distances between images to be updated to 

more closely reflect the users’ notion of similarity.    Relevance feedback can also 

be used for distance metric learning by establishing must-link and cannot-link 

constraints between images. 

 

Figure 5 Graphical User Interface of OHSU’s image retrieval system that enables 
users to provide feedback about the relevance of images. 
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System architecture 

As described above, the basic components of an image retrieval system include a 

database to store images and annotations, associated tags and/or features, image 

processing algorithms, an indexing system, a search engine, and a user interface.   

Database and Web Application 

We used the Ruby programming language8, with the open source Ruby On Rails 

web application framework9 to build our web-based image retrieval system.  The 

image locations, annotations and other user-created features were stored in a 

PostgreSQL relational database10.  There are also fields for storing visual features 

that were created using image processing techniques. The relational database 

allows us to maintain the mappings between the images associated annotations, 

as well as other features that are derived using image processing and supervised 

machine learning methods. This format facilitates retrieval using both textual 

and visual techniques. The text annotations in the collection as well as some 

visual features are currently indexed and we continue to add indexable fields for 

incorporating new visual and textual features. 

                                                 

8 http://www.ruby-lang.org/en/  

9 http://www.rubyonrails.org  

10 http://www.postgresql.org/  
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Text-based Search Engine 

Ferret11, a Ruby port of the popular Lucene 12 search engine, was used in our 

system for indexing and searching the text-based annotations. This system uses 

the well known TF-IDF (term frequency/inverse document frequency) to rank 

documents containing the search terms.  Ferret allows us to perform Boolean and 

fuzzy searches as well as many of the classical Natural Language Processing 

(NLP) techniques, including the use of stop words and stemming.  

Image processing 

Most of the computationally intensive portions of the CBIR aspect of our system 

were implemented in MATLAB13 using open-source toolboxes and in-house 

software.  This included the pre-processing, feature extraction and distance 

metric learning. The distance matrices were then exported and stored as text-files 

or in the database in order to easily visualize the efficacy of the various 

algorithms.   

 

 

                                                 

11 http://ferret.davebalmain.com  

12 http://lucene.apache.org/java/docs/  

13 http://www.mathworks.com  
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Preprocessing 

We created a library consisting of a variety of routines to preprocess images.   

Some of the images in our collection had wide, dark, frames while others had no 

border at all, while a majority had triangular dark patches at the corners. 

 

Figure 6 Variation in dark frames around images needs to be addressed before 
feature extraction 
 

This variation caused problems with most feature-extraction algorithms as 

features from the edges would be included along with features from the main 

region of interest. In comparing these images, the dark edge features were a 

prominent source of variation between images. We created an algorithm to create 

a mask to separate the frame from the main image. We developed two 

techniques for this. A Canny edge filter was first used with appropriate 

thresholds. A non-parametric snake was initialized at the outer boundary of the 

image and converged within two iterations on the desired boundary, if it existed.  

We also created a simple heuristic method where, starting at all 4 outer edges, we 

considered all pixels to be the mask until a certain pixel intensity threshold was 
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reached. The mask was saved for all images and used prior to feature extraction. 

In the case of some feature, we cropped the images and resized them to 256x256.  

We also normalized the images to have a mean of 0 and a variance of 1.  

The images in our collection were 8 bit images RGB images. However, as the 

RGB color space is not believed to correspond well to human perception, the 

images are transformed to HSV or CIE L*a*b* color spaces. 

 

 

Figure 7 a) Original RGB image b) Red channel c) Green channel d) Blue channel 
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Figure 8 a) Original HSV image b) Hue c) Saturation d) Value (false colors) 

Feature extraction 

Image processing techniques are employed to create an n-dimensional feature 

vector for each image that can be considered a “signature” of the image.  Feature 

extraction is a critical component of any image retrieval systems.  Ideal features 

are those that have the ability to be semantically discriminatory i.e distances 

using such features from images that are close to the query image should small 

while distances to images from semantically different images should be large. 

Below are a set of routines that were used to create feature vectors used in our 

visual retrieval system. 

Icon: this is a simple, but surprisingly effective feature vector in many cases [76]. 

The images is resized to 16x16 using bilinear interpolation and converted to a 

256-dimensional vector that is compared with other similar features in the 
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database. In the case of color images, a 16x16x3 icon is used, as shown below. 

 

Figure 9 16x16x3 icon of an endoscopic image 

GLCM: Four gray level co-occurrence matrices (GLCM) [77, 78] matrices with 

offsets of 1 pixel, 0, 45, 90 and 135 degrees were created for the image after 

rescaling the image to 16 levels. GLCM statistics of contrast, correlation, energy, 

homogeneity and entropy were calculated for each matrix. A 20 dimensional 

vector was created for each image by concatenating the 5 dimensional vector 

obtained by each of the four matrices. 

GLCM2: In order to capture the spatial variation of the images in a coarse 

manner, the resized image (256x256) was partitioned into 5 squares of size 

128x128 pixels (top left, top right, bottom left, bottom right, centre). A gray level 

correlation matrix was created for each partition. A 20 dimensional vector was 

created for each partition. Subsequently, the 5 vectors from each of the partitions 

were concatenated to created feature vector of dimension 100. 

 Histogram: We created a 32-bin gray-scale intensity histogram as well as a 96-

bin color histogram for each image. 
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DCT: A global discrete cosine transform was created for each image. The upper 

left (10x10) vectors were concatenated and used as inputs. 

Gist:   Images were convolved with a set of 32 multiscale-oriented Gabor filters 

[79-81]. We created a 512- dimensional vector using statistics from these filters. 

Principal component analysis was then used to reduce the dimensionality of the 

vector to 80. The 512-dimensinal vector as well as the 80-dimensional vector were 

evaluated. Feature vectors were also created by concatenating one or more of the 

above features. 

Texture:  Texture-based features are typically derived using filter response of a 

set of filters with the image. We have evaluated a variety of filters including 

Gabor, wavelet, Maximum response (MR8), Leung-Malik (LM) filter bank, and 

the Schmid Filter bank [82]. 

 

Figure 10 a set of 12 radial Schmid (S) filters  
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Figure 11 An endoscopic image with the response of the S filter bank 

 

 

Figure 12 an endoscopic image with the sum of the responses of the filter bank as 

well as individual filters 
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Textons:   Textons [83-85] are a popular and effective class of algorithm for 

texture categorization.  They are basic repeated units of texture learnt by 

clustering responses to a set of filters, where the cluster  centers are labeled 

‘textons’. As shown in the schematic below, filter responses from a set of images 

from each category are aggregated and quantized into textons using the k-means 

clustering algorithm.  These are combined into a texton dictionary in the training 

stage as shown in Figure 13. 

 

 

 

Figure 13 Creation of texton dictionary by quantizing filter responses 

In the class-model creation stage, images in the training set are convolved with a 

filter bank and the response of each pixel is labeled with the nearest texton. A 

histogram of texton frequency is created for each image in the training set 

Multiple models for each class are created by quantizing the filter responses of 

the images as shown below in Figure 14. 
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Figure 14 Class-model creation stage where images are convolved with filter 
bank to create histogram of textons 
 

Finally, each new image is classified based on the chi-squared distance of its 

histogram of textons to all other histrograms from the training set as shown 

below.  Additionally, more sophisticated classifiers can be used.  

 

Figure 15 Classification of image by minimizing chi-squared distance of image-
to-image histogram 
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Modified textons: We also created modified textons using image patches instead 

of filter responses as described in Varma and Zisserman [82]. In this case, instead 

of aggregating filter responses, random pixels in the image were sampled and an 

feature vector consisting of the pixel values in the neighborhood were used to 

create textons. 

Naive Bayes NearestNeighbor (NBNN): 

This surprisingly effective algorithm [86] uses a nearest neighbor approach with 

image descriptors like those used for textons. However, it differs from the texton 

-based approaches in two major aspects : there is no quantization of images 

descriptors, which the authors argue causes degeneration in performance; and 

image-to-class distances are calculated instead of image-to-image. A set of 

training images are identified and image descriptors for all these images are 

calculated. Similarly, descriptors for the test image are calculated. The class that 

minimizes 

 

where diare the image descriptors of the test image, NNC(di) is the nearest 

neighbor descriptor of di in class C is chosen as the class for the test image 

Classifiers  

Three types of classifiers were evaluated using a variety of the above features in 

categorizing images into one of 8 classes. All features were evaluated using the 
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nearest neighbor classifier as a baseline. In addition to the Euclidean distance, the 

Mahalanobis distance was also used. The classifier is the simplest and does not 

require training. On feature sets that performed well, Support Vector Machines 

(SVM)14 and a multi-layer perceptron (MLP) were used as additional classifier.  

All three classifiers were open-source implementations. The MLP, using the 

Netlab toolbox [87] had a two layer structure, with a hidden layer of 

approximately 50-400 nodes.  A variety of combinations of the above image 

features were used as inputs. All inputs to the neural network (the image feature 

vectors) were normalized using the training set to have a mean of zero and 

variance of 1. The architecture was optimized using the training and 

development sets provided. 

Affinity propagation: Frey et al. [88] recently formulated an algorithm for 

clustering they found to be significantly faster than many other clustering 

algorithms. It identifies exemplars are cluster centers using message passing. It is 

robust and does not require the number of clusters to be know a-priori but can be 

forced to converge to a required number of clusters. It also utilizes the 

incorporation of user-mandated exemplars. 

Hybrid Algorithm: We formulated a hybrid algorithm for the classification task.  

We first identified a small set of exemplar training images from each class using 

                                                 

14 http://www.igi.tugraz.at/aschwaig/software  
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the affinity propagation algorithm. Patch-based image descriptors were used for 

the feature vectors. Finally, we used the NBNN classifier and minimized the 

image-class distances, not the image-image distances. 

Distance metric learning:In addition to the image features, the distances used to 

compute similarity between images is also critically important in image retrieval. 

Historically, distances were calculated using Euclidean norm or other static 

measures like the Minkowski distance, earth-mover’s distance, histogram 

intersection [56, 89]. However, the user’s notion of similarity is subjective and 

context-dependent.  Distance learning algorithms use the distribution of the data 

to inform the distance spaces, either using the class information or pair-wised 

constraints. Relevant Component Analysis [91 ] is a simple and efficient 

algorithm for learning the Mahalanobis metric. 

We have evaluated the performance of a variety of distance metric-learning 

algorithms and enhanced constrained affinity propagation as a method to 

incorporate relevance feedback. We established pair-wise constraints in the form 

of must-link within class and cannot-link between class images on 20-100 images 

per class.  

Constrained affinity propagation [90]: Pair-wise constraints are specified on a small 

number of initial pairs. The affinity measures based on features is available for 

all image pairs. Each time a new constraint is provided in the form of relevance 

feedback, a row and column of the affinity matrix are updated, reflecting a new 
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order for similar images. 

Evaluation 

The system was evaluated both for classification as well as retrieval. In the case 

of the classification task, we evaluated the efficacy of the various feature vectors 

and classifiers for both the findings and the location task. 10-fold cross-validation 

was used when the time for training/testing was less than 15 minutes per fold. 

When more computationally-intensive algorithms were used, a 50-50 training-

test split was used for evaluation. 

Classification rate (or error rate) is the most commonly-used measure for 

classification accuracy. However, as described in the previous chapter, it has 

limitations as it does not account for classification by chance. We also measured 

Cohen’s kappa using the confusion matrix. 

Precision at 20 was measured for each category given using the original distance 

matrices as well as those obtained using the pair-wise constraints. 
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CHAPTER 4 

Results and Discussions 

Our three-pronged approach to building the image retrieval system consisted of 

a text-based retrieval engine that indexed any available annotations, an 

automatic annotation system based on visual features that could be used to 

attach class labels to the images and the use of distance-metric learning for 

relevance feedback.  For the evaluation shown in this chapter, we used the subset 

of CORI images for which the class labels as well as annotations were available. 

Here, we present the results obtained using the various image processing and 

machine learning algorithms that we evaluated for classification and retrieval of 

endoscopic image.  

Pre‐processing results 

We found that it was critical to pre-process the images. Sample results without 

pre-processing to remove the uneven black border can be seen below. In both 

cases, the top image in the list was the search image. As can be seen, it is the 

shape of the border similarity that predominates the ordering of the results 

rather than the image itself. 



 

39 

 

 

 

 

 

Our frame detection worked relatively well to generate masks. We reviewed all 

1500 images and the cropping was within a few pixels of the ideal border. Only 

pixels that were not masked out (white pixels) were used for the feature 

extraction. As seen in figure 17, we have three images with vastly different black 

borders.  Below each figure is the corresponding mask resulting from our simple 

frame detection algorithm. 

Figure 16 shows the importance of pre-processing prior to feature 
extraction.  Similarity of images retrieved without pre-processing is 
primarily determined by the shape of the border rather than the image 
contents. 
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Figure 17 Effectiveness of frame detection algorithm- lower row contains mask 
for the dark frames. Only the white areas are used for feature extraction 
 

Classification Results 

In this section, we present the results for the various eight-class classifiers that 

were described previously.  The goal was to annotate images with class labels 

consisting of the finding and the location.  Results provided are for a 10-fold 

cross validation where the data set was divided into ten random sets, nine of 

which are used as the training set and the last used as the ten set. This is repeated 

ten times.  A nearest-neighbor classifier was used for the different sets of features 

as shown in table 1 below. 

 

 



 

41 

 

Table 1 Results for nearest neighbor classifier 

Feature  Feature Size  N  Classification Rate  Kappa

Grey scale 

histogram 

256  5  24.8%  0.12 

DCT  100  5  25.3%  0.14 

Gist  512  5  36.1%  0.17 

GLCM  20  5  33.4%  0.16 

GLCM2  100  5  36.2%  0.18 

 

Results for a neural network classifier using some of the same feature vectors as 

shown above is given below in table 2. There is a substantial improvement in 

classification accuracy with the more sophisticated classifier. However, kappa 

does not always reflect the same level of improvement. This is primarily due to 

the uneven distribution of the class membership sizes. By more frequently 

classifying larger number of images as belonging to the most populous classes, 

the hit rate improves. But since kappa corrects for likelihood due to chance, it 

does not see a similar improvement. 
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Table 2 Classification results for a multi-layer perceptron classifier 

Feature  Feature Size  Classification Rate  Kappa

Grey scale histogram  256  34.2%  0.13 

DCT  100  29.6%  0.14 

Gist  512  44.3%  0.18 

GLCM  20  42.6%  0.17 

GLCM2  100  43.8%  0.19 

Table 3 Classification results for textons, NBNN and our hybrid algorithm 

Feature  Classification Rate Kappa 

Textons (Schmidt filters)  38.1%  0.20 

Textons (image patch)  42.4%  0.25 

Textons +RCA  44.3%  0.27 

NBNN  47.6%  0.3 

Hybrid  51.8%  0.35 

 

These results demonstrate that local features including textons are more effective 

that global features like histograms. We found, similar to the work performed by 

Varma and Zisserman [82] that patch-based textons are more effective than the 
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filter-based textons. Use of distance metric learning algorithms like RCA 

improves the classification performance by conveying the user’s notion of 

similarity to the system. The Naive-Bayes Nearest Neighbor classifier performed 

better than the filter-based or patch-based textons. Our hybrid algorithm that 

used Affinity propagation for identifying the class exemplars, patch-based 

descriptors and the NBNN classifier showed a lot of promise, producing the best 

classification results. 

Thus, we have demonstrated some success with the ability of our system to 

provide class labels to endoscopic images. This can be quite useful in either 

classifying unknown images or validating the labels of images for which the 

labels are extracted from noisy textual data. 

Retrieval results 

We created a set of simple queries for each finding similar to those used in 

ImageCLEF [9,63]. An example query was: “Show me endoscopic images of 

polyps”.  In order to evaluate the performance of the system in the absence of 

real users, we created “qrels” using the class information.  Since this was a well-

curated collection, we did not perform evaluate the text-based retrieval using the 

provided annotation as it is expected to be close to perfect. However, we 

evaluated the system using annotation-based retrieval where images were 

tagged with the purported finding based on our hybrid algorithm. This was to 

simulate situations where the class labels are not known on a larger test set but 
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are available on a small training set. Our overall mean average precision (MAP) 

was 0.14 and our P30 was 0.31. Although these numbers seem low compared to 

text-based methods, they are quite comparable to the visual runs submitted by 

most participants at ImageCLEF in 2007 and 2008. Additionally, by combining 

textual and visual methods, the precision of the system can be improved 

substantially as seen in [11]. We also evaluated the use of our modified 

constrained affinity propagation-based relevance feedback. This algorithm uses 

the user-provided relevances as pair-wise constraints to update the distance 

matrices. Not surpsingly, our precision improved by the use of relevance 

feedback. Our MAP improved to 0.16 and our P30 improved to 0.42. 



 

45 

 

CHAPTER 5 

Conclusions and Future Plans 

We have created a web-based multimodal image retrieval system written using 

the Ruby on Rails framework. Ferret, a ruby port of Lucene was used for the text 

indexing. Our database also contains a number of image-based features as 

described in previous chapters.  This system indexes the text-based annotations 

associated with the images, uses image processing to perform supervised 

automatic annotation based on available class labels, and facilitates interactive 

searching by allowing users to provide relevance feedback. We have also 

implemented an open source content-based image search engine (FIRE) created 

by Deselaers et al. [21].   

Although CBIR has great potential in patient care, research and education, 

purely content-based image retrieval can be quite challenging for clinical 

purposes due to the semantic gap. Low level global features like color and 

texture may not be sufficient for classification of findings. In order to achieve 

better performance, segmentation and detection of abnormalities might be 

necessary. Retrieval, unlike classification, can be somewhat ambiguous and user 

and specific need dependent. However, combining visual and textual 

information can greatly improve retrieval performance. The use of distance 

metric learning and relevance feedback can help the system produce results that 

are more relevant to the user. 
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Future plans 

Although our system has some basic image processing and machine learning 

tools written in ruby, most of our development has been in MATLAB and C++. 

However, we would like to port the algorithms written in MATLAB to C++ and 

create Ruby wrappers that will enable these functions to be called from within 

our web-based environment. We plan on release these as well as the entire 

system architecture as an open-source system. 

User Evaluation with Larger Collection 

We now have access to 250,000 images from the CORI collection. We plan to 

create a robust web-based system to retrieve these images using text and image-

based techniques. We hope to recruit users from OHSU’s Gastroenterology 

Department to evaluate the system. We are particularly interested in the area of 

learning to rank based on pairwise-constraints. Affinity propagation using 

spectral clustering will be used to evaluate if the retrieval performance can be 

significantly improved using a small amount of relevance feedback. 

Metrics Evaluation 

Information retrieval has given us popular metrics to evaluate search engines. 

These include precision, recall and mean average precision (MAP). However, 

there has been little work in medical image retrieval that demonstrates which, if 

any, of these measures is most meaningful to clinicians and students. It is also 
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likely that these measures should be evaluated within the context of the search 

task. Identifying suitable measures that take into account the role of the searcher 

and their task, and that correlate to user satisfaction with their search can be 

immensely useful to builders of clinical image retrieval systems. We would like 

to assess the correlation between user satisfaction with the system will be 

measured and standard information retrieval measures, taking into account the 

role of the searcher and their task.  
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