
Parallel Processing Research at OGC

David Maier

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-012

Parallel Processing Research at OGC

1. INTRODUCTION
We describe the research programs in the Department of Computer Science & Engineering

a t Oregon Graduate Center related t o parallel processing. We also describe a department-wide
research program on design management platforms. This work is included because i t directly
supports the creation of design environments for parallel programs and systems, and may
require database and proof systems with parallel processing power.

This paper is divided into major programs: Large-Grain Da ta Flow, Graph-Reduction
Architectures, Cognitive Architecture Project, and Platforms for Engineering Design, and
smaller projects: Parallel Simulation of VLSI, Datacube, Parallel Debugging, and Parallel Pro-
log. We include a brief description of each project, along with a list of related papers, reports
and theses. For further information on the major programs, there are four companion docu-
ments giving more detailed descriptions:

"Practical Support for Parallel Programming"
[Large-Grain Data Flow]

"A RISC Architecture for Symbolic Computation"
[Graph-Reduction Architectures]

"The OGC Cognitive Architecture Project: Silicon Implementation of
Connectionist/Neural Networks"

"Platforms for Engineering Design"

2. MAJOR PROGRAMS

The research programs in this section have all been underway for a year or more, and
each involves multiple doctoral students. The programs are described in chronological order of
their inception.

2.1. Large-Grain Data Flow: High-Level Parallel Programming with LGDF2

Investigator: Robert G . Babb I1

Parallel processing introduces a qualitative difference in architecture, which has proved
difficult t o manage by straightforward extensions of sequential programming technology.
Large-Grain Data Flow (LGDF) is a model of computation tha t combines sequential program-
ming with dataflow-like program activation. LGDF applications are constructed using networks
of program modules connected by datapaths. Parallel execution is controlled indirectly via the
production and consumption of data . With the aid of the LGDF Toolset, LGDF programs are
automatically transformed for efficient implementation on a particular (parallel) machine.

2.1.1. Approaches to Parallel Programming
There is a sharp discontinuity in complexity between programming for single and multiple pro-
cessor systems. Three currently popular approaches t o parallel programming all have draw-
backs: explicit coding of locks or message-passing lacks the high-level control structures tha t
encourage abstraction, understanding, and architecture independence. Switching t o new
languages, such as SISAL, ML, or VAL, can allow easier compiler detection of potential con-
currency, but a t the expense of most of the software engineering experience we have gained for
traditional imperative languages. Compiling standard sequential code with parallelizing com-
pilers exploits only a small percentage of the parallelism available.

Parallel Processing at OGC 7 February 1988

2.1.2. Large-Grain Data Flow 2

The Large-Grain Data Flow 2 (LGDF2) model provides a graphic language t o combine indivi-
dual sequential processes into a parallel program. Each of the processes is implemented in a
standard high-level language (Fortran, C, etc.), compiled with a standard compiler, and will exe-
cute in a guaranteed-safe environment--one where all effects of other concurrently-executing
processes are hidden from it . Thus, processes can be written without regard t o parallel hazards
(e.g., unsafe updates) and without explicit reference t o hardware-level synchronization mechan-
isms (locks, events, monitors, barriers, etc.). These processes are composed into a network tha t
specifies how and if they interact through 1 / 0 and control. Only restricted, "safe" interactions
are allowed. The behavior (semantics) of these interactions is defined formally in the LGDF2
model, and in such a way tha t they can be implemented efficiently on either shared- or
distributed-memory architectures. Because the individual sequential processes are well behaved
and interact only through the network, the behavior of the overall parallel program can be
understood by representing the processes by partial functions and analyzing the network. An
LGDF2 network explicitly represents a parallel program's high-level design in a permanent, visi-
ble way.

The LGDF2 research group a t OGC has investigated both theoretical foundations and
practical aspects of this technology, and has built a series of prototype software tools t o support
our research. The main avenues of research are:

LGDFB Language and Theory
Networks are expressed with the LGDF2 language, a base language from which higher-
level network constructs can be formed. We have already investigated abstractions
corresponding t o loops and subroutines with recursion. LGDF2's formal model provides a
foundation for analyzing and verifying the behavior of LGDF2 networks and for studying
the concepts of non-determinism, fairness, computational power, decision power, and time
complexity in parallel programs.

Dusty-Deck t o LGDF2 Conversion Tools
For LGDF2 t o be useful for the existing base of older scientific programs, tools must exist
t o help convert them. Conversion is easier than a total rewrite, since the base sequential
language can be preserved. We are involved in a joint research project with David Klap-
pholz, Stevens Institute of Technology, t o investigate application of Refined Language
tools t o aid in this task. We have used LGDF techniques t o restructure medium-sized
parallel physics codes.

Schedulers for Various Architectures
We have developed a scheduler for LGDF2 on a shared memory multi-processor, the
Sequent Balance, which should serve as a basis for other shared-memory processors. We
expect a distributed-memory scheduler to be more difficult t o implement, though the
LGDF2 model leaves many options for optimizing available bandwidth.

Cooperative Software Engineering
LGDF2 networks specify and illustrate all possible interfaces between processes. This
feature of the model can serve as the basis for a large-scale multi-user software engineer-
ing tool t o automatically prevent concurrent editing of related process code by multiple
programmers.

LGDF2-Specific Architecture
The LGDF2 computation model has attributes which enhance performance on certain
parallel architectures. The model provides maximum flexibility in where/when/what pro-
cess t o schedule next. Processes never block, so pre-emption is unnecessary. No state
needs t o be saved when a process finishes. Hardware locking for processes is not required,
since they are event driven.

Parallel Processing at OGC 7 February 1988

2.1.3. LGDF References

Books

R. G. Babb I1 (ed. and author), Programming Parallel Processors, Addison-Wesley, 1987.

Articles

R. G. Babb 11, "Parallel processing with large-grain da t a flow techniques," Computer 17, 7, July
1984.

R . G. Babb 11, "Programming the HEP with large-grain da t a flow techniques," in MIMD Compu-
tation: HEP Supercomputer and its Applications (J. S. Kowalik, ed.), MIT Press, 1985.

R. G. Babb 11, "A da t a flow approach t o unifying software specification, design, and implemen-
tation", in Proc. Third Int. Workshop on Software Spec$cation and Design, 1985.

R. G. Babb 11, "Parallel processing on the CRAY X-MP with large-grain da t a flow techniques,"
in The Book o f Supercomputers (S. Fernbach, ed.), North-Holland, 1986.

R . G. Babb 11, L. Storc, and W. Ragsdale, "A large-grain da t a flow scheduler for parallel pro-
cessing on CIIBERPLUS," Proc. 1986 Int. Conf. on Parallel Processing.

R. G. Babb I1 and R. Hamlet, "Proposal for a software Design Control System (DCS)", in Proc.
Fourth Annual Pacific Northwest Software Quality Conference, Nov. 1986, pp. 265-271.

D. C. DiNucci and R. G. Babb 11, "Practical Support for Parallel Programming", in Proc. dlst
Hawaii Int. Conf. on System Sciences, Jan. 1988. Software Track, Jan. 1988, pp. 109-118.

R. G. Babb I1 and D. C. DiNucci, "Design and implementation of parallel programs with Large-
Grain Data Flow", in The Characteristics of Parallel Algorithms (ed. by L. H. Jamieson, D. B.
Gannon, and R . J . Douglass). Cambridge, MA: The MIT Press, 1987, pp. 335-349.

Reports

R. G. Babb I1 and L. Storc, "Parallel Processing on the Denelcor HEP with Large-Grain Data
Flow Techniques", OGC Tech. Report No. CS/E 85-010, May 1985.

R. G. Babb I1 and R. Hamlet, "Software Design Revision Control, or, How to Keep Too Many
Cooks from Spoiling the Broth", OGC Tech. Report CS/E88-004, Jan. 1988.

D. C. DiNucci, "A Formal Model of Parallel Computation: LGDF2", OGC Tech. Report No.
CS/E-88-006, Jan. 1988.

R. G. Babb I1 and D. C. DiNucci, "A Parallel Architecture Based on LGDF2", OGC Tech.
Report no. CS/E-88-008, Jan. 1988.

D. C. DiNucci, "Building LGDF2 Nets from High-Level Constructs", OGC Tech. Report No.
CS/E88-009, Jan. 1988.

Theses

L. Storc, "Parallelization Schemes for 2D Hydrodynamics Codes Using the Independent Time
Step Method", M. S. Thesis in preparation. A paper on this work (with R. G. Babb I1 and P. G.
Eltgroth) was presented a t Vector and Parallel Processors in Computational Science 111, Liver-
pool, UI<, Aug 1987, t o appear Parallel Computing.

2.2. Graph-Reduction Architectures

Investigator: Richard B. Icieburtz

A reduction architecture evaluates an expression by transforming it through a series of
intermediate forms until i t cannot be further transformed, under a set of rewrite rules. The
expression is then said t o be in normal form, which is the value attributed t o the original

Parallel Processing at OGC 7 February 1988

expression. In a pure reduction system (such as beta-reduction, combinator reduction or string
reduction), the control-the selection of the next reduction step-is derived dynamically from
the form of the current expression. An alternative is programmed reduction, in which the steps
of a computation are still applications of reduction rules, but where control is derived from a
static analysis of the original expression.

By using a representation for a n expression tha t is a graph, rather than a simple string,
multiple occurrences of a common subexpression are captured a s multiple references t o a com-
mon subgraph. Graph reduction refers t o a reduction process in which expressions are
represented as such graphs, which avoids redundant re-evaluations of a common expression. In
a graph-reduction architecture, a reducer routines walks though the graph of an applicative
expression t o locate a redex (a subexpression for rewriting), chosen according t o the computation
rule followed. A graph-rewrite rule is then applied t o replace the redex with a subgraph
representation of its value. Other parts of the graph t ha t referenced the redex now have access
t o this value. In a programmed graph-reduction architecture, the reducer executes a program
derived from the definition of the function used a t the redex t o perform the replacement.

The G-machine is a particular architecture for programmed graph reduction. It was
defined by Thomas Johnsson and Lennart Augustsson (Gothenburg) as the evaluation model for
a compiler for lazy ML (LML). In it , the reduction step is quite efficient, as the program com-
putes in terms of a stack of pointers (the P-stack) into the expression graph.

2.2.1. The G-Machine

The original G-machine architecture was realized as a virtual machine t ha t interpreted
instructions (G-code) generated by the LML compiler. The G-machine project a t OGC is pro-
ducing a hardware design for this architecture, realized on a single-board subsystem composed
of custom VLSI chips. The principal features of the design are hardware support for graph
traversal, a vertically microcoded, pipelined internal architecture, a n instruction fetch and
translation unit with very low latency, and a new memory architecture specifically suited t o
graph reduction and very large memories.

It is the memory architecture in which the G-machine exhibits the most parallelism. The
strategy is t o provide a storage module t ha t behaves a s a dynamically allocatable, list-
structured memory. This goal is achieved by having a G-memory with its own processor tha t
garbage collects and allocates free list nodes in parallel with the reduction processor. The gar-
bage collection is based on a modified reference-counting scheme tha t works in the presence of
graph cycles, and requires time proportional t o the size of structure collected, not the total
amount of memory in use.

The G-machine design has been extensively simulated a t the macroarchitecture level, and
most components have been simulated a t lower levels of detail. The simulations have been car-
ried out for several different computation rules: lazy evaluation, strict evaluation and call-by-
value. The general conclusion is tha t the G-machine has the relative performance of a 3.6 Mips
VAX, using conservative assumptions about the VLSI technology used. Another observation is
t ha t the G-memory as currently designed is fast enough t o collect and allocate list nodes
without any waiting by the reduction processor.

2.2.2. G-machine References

Articles

R. B. Kieburtz, "The G-machine: a fast, graph-reduction evaluator," Proc. of IFIP Conf. on
Functional Prog. Lung. and Computer Arch., Sept. 1985.

R. B. Icieburtz, "Performance evaluation of a G-machine implementation," In Graph Reduction,
(R. B. Iceller and J. H. Fasel, eds.), Springer-VerIag, LNCS series, 1987

Parallel Processing at OGC 7 February 1988

R. B. Kieburtz, "The G-machine: a n architecture for symbolic processing," Proc. MCC University
Research Symposium, Austin, July 1987.

R. B. Kieburtz, "A RISC architecture for symbolic computation," Proc. ASPLOS I4 Palo Alto,
Oct. 1987.

Reports

R. B. Icieburtz, "Incremental collection of dynamic, list-structure memories," OGC Tech. Report
CS/E-85-008, Feb. 1985.

Theses

A. G. Sarangi, "Simulation and performance evaluation of a graph reduction machine architec-
ture" M. S. Thesis, July 1984.

M. H. Foster, "Design of a list-structure memory using parallel garbage collection," M. S. thesis,
Sept. 1985.

Richard P. Vireday, "Bit slice design of a graph reduction processor," M. S. Thesis, May 1986.

L. J. Rankin, "A dual-ported real memory architecture for the G-machine," M. S. thesis, Aug.
1986.

R . Tenneti, "A retargetable code generator using a machine description table and attributes" M.
S. thesis, Dec. 1986.

W. Hostmann, "An examination of designs for the instruction pipeline of the G-Machine," M. S.
Thesis, Jan. 1988.

S. L. Kuo, "A high performance instruction fetch and translation unit for the G-processor of the
G-machine," M. S. Thesis, Jan. 1988.

2.2.3. The Parallel Graph Reduction (PGR) Project
The P G R project is a relatively new program t o map graph-reduction computation t o a

distributed memory multiprocessor. The PGR system will run on a n Intel iPSC Hypercube,
roughly as a parallel emulation of the G-machine. I t will be programmed in a new language,
F+L, designed a t OGC. This language combines functional- and logic-programming semantics,
and includes parallel constructs. The PGR compiler for F+L generates G-code (G-machine
instructions), which is then translated into 80286-code and linked t o a run-time system for the
cube nodes being written in-house.

This work focuses on fine-grain concurrency, in contrast t o the LGDF project. A virtual
processor is allocated to every reducible expression in the program graph. Virtual processors are
multiplexed onto physical processors. Reduction of a single expression is very simple, so it is
possible t o use "flyweight" tasks in which the cost of a context switch is extremely low. At each
node, task scheduling is viewed as an instruction pipeline, with tasks waiting for communica-
tions shunted t o a side pool. When there are more tasks than are needed t o fill the pipeline, the
excess tasks are offloaded t o other processors, using diffusion scheduling. Diffusion scheduling is
a heuristic method for dynamic distribution of workload in a multiprocessor system, with con-
trol of load balancing distributed among all the participating nodes.

To prevent expressions whose value is never needed from "stealing" too much processor
time from useful expressions, expressions for reduction are tagged with a priority. A t each node,
reductions are scheduled according t o this priority. There are a number of aspects of the con-
current reduction scheme explored. One significant factor is the volume of useless work tha t
will result from speculative evaluation. We hope t o characterize the proportion of useless work
from various problem classes t o decide when speculative evaluation is profitable. The effects of
communication limitations are also of interest. The design is intended t o minimize the perfor-
mance penalty from latency in da t a exchange among application tasks. However, delays can

Parallel Processing at OGC 7 February 1988

indirectly affect the system, forcing the diffusion scheduler t o work with old information.

2.2.4. PGR References

Reports

R. B. Kieburtz, "Functions+Logic in theory and practice," OGC Tech. Report CSE-87-002, Feb.
1987.

Theses

B. Schaefer, Massive Asynchronous Concurrency Through Parallel Combinator Reduction, Ph.D.
Thesis in preparation.

2.3. The Cognitive Architecture Project (CAP)

Investigator: Daniel W. Hammerstrom

Important practical problems are often incompletely specificed and characterized by many
weak constraints requiring large solution spaces. Visual processing and speech recognition are
problems of this sort. For example, speech processing is difficult because speech is a high dimen-
sional da t a space with a large number of subtle, loosely connected, spatial and temporal sto-
chastic relationships (correlations) among the da ta elements. Due t o differences in individual
voices and speech styles, the information in the speech stream is primarily contained in these
high-order correlations. Processing this large da ta space overwhelms traditional sequential or
low-level parallel computation. Inexpensive hardware is required for most envisioned applica-
tions, thus limiting even further the computational power available for typical speech processing
applications. (At $1,000,000 per unit, you cannot put a Connection Machine on a secretary's
desk for speech processing.)

2.3.1. Massively Parallel Neural Network Emulation Using ULSI

Recently, a new style of massively parallel computation has been receiving attention a s a
candidate for processing these large dimensional spaces. Massively parallel networks, often
called connectionist or neural network models, are characterized by a large number of highly
connected, simple processors, and are loosely based on biological information processing systems.
A variety of neural network computational structures have been proposed for modeling such
cognitive phenomena as visual image analysis and speech recognition. Though still experimen-
tal, the results are encouraging: even simple models have demonstrated great power a t analyz-
ing complex, stochastic da t a spaces.

Researchers need t o emulate ever larger networks. However, they are approaching the
computational limits of existing computer hardware. To some degree this computational wall is
due t o the extreme connectivity of these networks (every node in even a moderate sized network
has hundreds of input and output connections). Since the number of connections grows geometr-
ically, and since the number of processors grows linearly, the emulation of large networks with
traditional architectures becomes impractical for even moderately sized networks.

The Cognitive Architecture Project (CAF') a t OGC was founded in 1985 t o examine radi-
cally new silicon-based computing structures tha t are optimized for the emulation of connection-
ist and neural network architectures. The project was based on several basic assumptions:

(1) Real applications of neural networks will require the emulation of large networks in close
t o real time (equivalent t o their biological counterparts) with inexpensive hardware.

(2) Only existing, state-of-the-art technology is t o be considered, in particular CMOS, since
neural networks will only be commercially viable when implemented in cheap, mass pro-
ducible technology. Because of its ease of use and functional density, existing CMOS
provides a significant cost/performance advantage for the next decade. This constraint

Parallel Processing at OGC 7 February 1988

precludes GaAs and a number of optical technologies.

(3) The emulation of large networks with CMOS technology will require ultra-large-scale
and possibly even wafer-scale integration. This level of integration will be possible
because of the inherent fault-tolerance of neural network models.

Over the last two years we have developed a set of hybrid analog/digital technologies for
solving efficiently the connectivity and computational problems. Several prototype chips have
been designed and fabricated by MOSIS, and four patent applications submitted (additional
patents are in preparation).

In addition t o our VLSI architecture work, we have developed a neural network simulation
environment for the Intel iPSC Hypercube a t OGC. This software system includes a
comprehensive network compiler tha t compiles a network description language, NDL, t o a n
intermediate form, BIF (Beaverton Intermediate Form), a network partitioning facility tha t
maps parts of the BIF network t o each iPSC processor, and a fault simulation program tha t
injects faults probabilistically into the BLF description of the network. The fault simulation
capability is used t o understand the effect of typical silicon fabrication faults on network perfor-
mance. The most important par t of the system is the ANNE (Another Neural Network Emula-
tor) system tha t reads in the partitioned (and possibly faulted) BLF file and generates a n iPSC
simulation system. We also have a silicon architecture emulator t ha t reads in the BIF file and
emulates our physical architecture models on the iPSC.

In addition t o silicon architecture, we have also studied network model scaling issues (in
both learning time and connectivity), and are developing a number of applications: magnetic
and optical character recognition, speech recognition, and simple dynamic control of a moving
object. By studying applications in parallel t o hardware design, we can more realistically simu-
late our silicon architectures and provide feedback on applications requirements for architecture
functionality. Real applications also provide a context for the network scaling studies.

We are now exploring with several industrial partners the sponsorship of the design and
fabrication of a small single board computing system using chips based on our architecture.
This board would emulate moderate sized networks a t several billion connection updates per
second for a range of algorithms.

2.3.2. CAP References

Articles

D. Hammerstrom, S. Thakkar and D. Maier, "The OGC Cognitive Architecture Project,"
SIGARCH, Computer Architecture News 14, 1, Jan. 1986.

D. Hammerstrom, "Connecting with the human mind," OGC Visions Magazine, Winter 1987.

R . D. Geller and D. W. Hammerstrom, "A VLSI architecture for a neurocomputer using higher-
order predicates," Proc. Workshop on Computer Architecture for Pattern Analysis and Machine
Intelligence, Oct. 1987.

Reports

J . Bailey and D. Hammerstrom, "How to make a billion connections," Jim Bailey and Dan Ham-
merstrom, Tech. Report CS/E-86-007, July 1986.

D. Hammerstrom and R. Icravitz, "A design methodology for high-performance, general-purpose
VLSI," Tech. Report CS/E-86-008, July 1986.

D. Hammerstrom, "The connectivity analysis of a class of auto-associative connection net-
works," Tech. Report CS/E-86-009, Aug. 1986.

D. Hammerstrom, C. Bahr, J . Bailey, T . Baker, G. Beaver, K. Jagla, J. Mates, N. May, H.
McCartor, M. Rudnick, "The OGC Cognitive Architecture Project: Silicon implementation of

Para l l e l Process ing at OGC 7 F e b r u a r y 1988

connectionist/neural networks," Cognitive Architecture Project White Paper, 1987.

D. Hammerstrom, "The connectivity requirements of simple association, or How many connec-
tions do you need?", 1987 IEEE Conference on Neural Network Information Processing, Poster
Session.

M. Rudnick, "VLSI implementation considerations of the broadcast hierarchy interconnect
architecture," Tech. Report, January, 1988.

Theses

R. Geller, "A VLSI architecture for a neurocomputer tha t uses higher-order predicates," M. S.
Thesis, Apr. 1987.

N. May, "Fault simulation of a wafer-scale integrated neurocomputer," M. S. Thesis in prepara-
tion.

J. Bailey, " A VLSI Interconnect Structure for Neural Networks," Ph.D. Thesis in preparation.

C. Bahr, "ANNE, a general-purpose neural network emulator for the Intel iPSC Hypercube," M.
S. Thesis in preparation.

K. Jagla, "A broadcast hierarchy simulator for the Intel iPSC," M. S. Thesis in preparation.

2.4. P l a t f o r m s f o r Engineer ing Design

Invest igators: Robert G. Babb 11, Goetz Graefe, Richard G. Hamlet, Daniel W. Hammerstrom,
Richard B. Kieburtz, David Maier

Engineering design is one of the applications in which computer support is indispensable:
were CAD tools stripped away, many modern design efforts would be literally impossible. But as
machines have extended the range of the possible, new demands are made for yet more support.
The hallmarks of state-of-the-art design are complexity and change. A large real-time embed-
ded computer system, for example, requires the dedicated attention of dozens of people over
years of time, and the resulting software may amount t o millions of lines of code. During
development, thousands of decisions are made t ha t significantly alter the course of the project,
and many of these decisions require modifications t o past efforts on the design. Existing com-
puter design systems are composed of isolated software tools, with human beings performing the
actions necessary t o interface each t o a particular design, and t o each other. Proposals for
"integrated environments" today are typically no more than the definition of standard inter-
faces so t ha t tools can communicate more easily and with fewer errors. Existing and proposed
systems do not address the question of controlling and facilitating change, nor the problem of
managing complexity; a t best they seek t o record it.

The principles of design are not so very different in different applications such as VLSI and
software engineering; nor do they differ much among projects within one application. Yet
methods are usually tailored t o each project, with a high cost in human organization and a high
potential for error. By investigating generators for design environments, rather than the
environments themselves, we believe tha t common principles can be identified, yet the final
environments adapted t o the details of each project. We call the collection of methods and gen-
eric tools necessary t o generate a n environment, a Design and Abstraction Management Plat-
form (DAMP). Its components are:

(1) Design methods of refinement and representation derived from da t a abstraction in the
programming-language discipline.

(2) The formalism of constructive second-order logic and its proof theory, t o express and ver-
ify properties of designs.

(3) An object-oriented database capable of the performance needed t o support complex
objects and their dependencies.

Parallel Processing at OGC 7 February 1988

(4) Generic tools and tool generators built upon these foundations, which can be easily
tailored t o particular applications, and even t o particular designs.

3. SMALL PROJECTS

The projects in the section are of smaller scope or are just in their early stages.

3.1. Parallel Simulation

Investigators: Daniel W. Hammerstrom, William Bain (Intel Scientific Computers and Block
Island Technologies)

Dr. Bill Bain has created an efficient, object-oriented, multi-tasking computing environ-
ment called Interwork (copyright Block Island Technologies). Interwork provides large numbers
of small, lightweight processes. T o create a computational framework, there are a number of
powerful intertask communication and synchronization primitives. Interwork is used in a
number of research projects and courses a t OGC. For example, in conjunction with Block
Island Technologies, we have developed a Register Transfer Level simulation environment
(Microsimulator), called BitSim, t ha t is used in the Advanced VLSI Design class and several
research projects a t OGC.

Interwork has been available on a large number of sequential machines for some time.
Recently, Block Island Technologies has ported Interwork t o the Sequent Balance and Symmetry
systems and t o the Intel iPSC Hypercube. The hypercube port is particularly attractive, since
i t provides transparent multiprocessing of applications on the cube. For example, our existing
BitSim programs will run directly on the cube without modification.

3.2. DataCube: A Cube-Connected Database Machine

Investigators: Goetz Graefe, Leonard Shapiro (Portland State), Joseph Brandenburg (Intel
Scientific Computers)

The performance of highly parallel database machines depends on the bandwidth between
permanent storage devices and the processing elements. Through the addition of 1 / 0 facilities
and file system software t o individual nodes in hypercubes, this architecture becomes a suitable
vehicle for database applications. We are currently working on the design and implementation
of a new database machine called DataCube. The goal of the design is t o provide fast response
for small transactions and high throughput for large queries by applying dataflow techniques.
Each file is distributed over some or all disks, and can be partitioned using round-robin-, key-
range-, or hash-partitioning. When optimizing database queries, da t a distributions and correla-
tions are taken into account t o reduce the amount of da ta transferred between processors, giv-
ing preference t o transfers between neighboring nodes. Range queries and exact-match queries
on partitioning attributes are evaluated only on the required nodes, a n important feature for
processing small update and retrieval transactions.

The purpose of the DataCube project is threefold: t o explore designs for a scalable, high-
performance database machine on a hypercube, t o develop query optimization techniques for
architectures t ha t have a concept of "near" and "far" between processors, and t o investigate
building a powerful and flexible Integrated Data and Compute Server for a workstation environ-
ment. The design builds on the experience of the GAMMA project, in which Goetz Graefe par-
ticipated a t the University of Wisconsin.

Baru and Frieder introduced da t a dynamic re-distribution in their hypercube database
machine design. Rather than using dynamic re-distribution, we concentrate on reliable optimi-
zation and estimation techniques t o avoid the need for dynamic re-distribution. Bratbergsengen
is currently porting single operator algorithms from the Cross-8 database machine t o hypercube
connected hardware, with justified expectations of excellent performance. While the individual
algorithms are basically the same, the DataCube effort goes far beyond this work as it includes
complex queries, concurrent queries, and query optimization.

Parallel Processing at OGC 7 February 1988

3.2.1. DataCube References

Articles

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Muralikrishna,
"GAMMA - A high performance dataflow database machine," VLDB, ICyoto, Japan, Aug. 1986.

G. Graefe, "Software modularization with the EXODUS optimizer generator," IEEE Database
Engineering, Nov. 1987.

Reports

G. Graefe, "Selectivity estimation using moments and density functions," Nov. 1987.

G. Graefe and L. D. Shapiro, "DataCube: A cube-connected dataflow database machine," sub-
mitted t o the International Conference on Parallel Processing 1988.

G. Graefe, "Query processing in DataCube, a cube-connected dataflow database machine," Feb.
1988.

Theses

G. Graefe, "Rule-Based Query Optimization in Extensible Database Systems," Ph.D. Thesis,
University of Wisconsin, Madison, Aug. 1987.

3.3. Parallel Debugging

Investigators: Richard G. Hamlet, Robert G. Babb II, Shreekant S. Thakkar (Sequent)

Computer architects have found in parallel processing the medium to exploit today's VLSI
technology, which is approaching theoretical and technological speed limits. Gate times cannot
easily be reduced, but i t is easy t o add processors. The software t o control parallel hardware is
notoriously difficult t o write and debug. The underlying model of concurrent computation, com-
municating processes, is so low-level tha t programmers find i t extremely difficult t o retain intel-
lectual control of their designs. Parallel programming has been supported largely by modified
conventional languages, with added hardware-level primitives for communication. These
languages are used because they accept existing sequential programs. They are error-prone
partly because the parallel versions are poorly defined and poorly implemented; a more lasting
difficulty is tha t they follow the difficult low-level model too closely.

Conventional debugging techniques have been uneasily adapted t o parallel languages, but
they do not address the significant new problems of concurrent computation. These arise from
the information explosion of multiple instruction streams overlapping in time. In particular:

(1) Conventional high-level debugging ideas such as variable monitoring and breakpointing
do not provide enough information t o be helpful. Message traffic is new important infor-
mation.

(2) Brute-force methods such as tracing and snapshot dumps founder when the number of
events and values multiply.

(3) Because the detailed sequencing of events is not fixed in parallel execution, bugs may be
difficult t o reproduce and study. Worse, the sequences t ha t display bugs may not arise
when code is instrumented for debugging.

(4) The information explosion makes da ta reduction and statistical processing crucial parts
of presentation.

The most urgent need in parallel debugging is for better models of concurrent computa-
tion. One of our efforts, using the conventional process model, isolates each process, tests i t
independently of all others, and then induces representative patterns of cooperative execution.
Dataflow scheduling of processes is a candidate for reducing the number of possible execution

Parallel Processing at OGC 7 February 1988

sequences. The Large-grain Dataflow model (LGDF) shows promise both in understanding
parallelism, and a s a practical tool for design and programming.

The time-sequence aspect of parallel computation can be attacked using screen display
techniques t o hide much of the information explosion. If necessary, the animated playback of
events can be driven by a trace so t ha t i t may be slowed down, replayed, or edited. Two prel-
iminary studies of pictorial debugging systems have been presented as Master's research. How-
ever, without altering the computation model, far too much information must still be displayed
and grasped by the debugger. Designs using LGDF have significantly smaller execution descrip-
tions; indeed, the information required t o "play back" a trace from the source is limited t o the
outcome of competition for input. A debugger is being developed t o exploit this feature of
LGDF, and t o display results in terms of the high-level source description.

Finally, a probabilistic theory of testing shows promise of being able t o compare parallel
programming methods in terms of the number of test points needed t o guarantee their reliabil-
ity.

3.3.1. Parallel Debugging References

Articles

R . G . Hamlet, "Step-wise debugging," ACM Symposium on High-level Debugging, Pacific Grove,
CA, Mar. 1983.

R. G . Hamlet, "Probable correctness theory," Info. Proc. Letters 25, Apr. 1987.

R. G . Babb I1 and D. C. DiNucci, "Design and implementation of parallel programs with Large-
Grain Data Flow," in Characteristics of Parallel Algorithms, Cambridge, MA: MIT Press, 1987.

D. C. DiNucci and R . G. Babb 11, "Practical support for parallel programming," Proc. 21st
Hawaii Int'l Conf. for System Sciences, Jan. 1988.

Reports

R. G. Babb 11, D. C. DiNucci, and L. Storc, "Multi-level monitoring of parallel programs," Tech.
Report CS/E 87-013, Oct. 1987.

Theses

R. C. Brandis, "IPPM: Interactive Parallel Program Monitor," M. S. Thesis, May 1987.

3.4. Parallel Prolog

Investigator: Peter Borgwardt (Tektronix)

Several student projects on the parallel evaluation of logic programs have been conducted
a t OGC under the direction of Peter Borgwardt, an adjunct faculty member from the Imaging
Research Laboratory of Tektronix. This work is an outgrowth of research started by Borgwardt
a t University of Minnesota, and a n NSF grant has supported the continuation of i t a t OGC.

One project builds on Borgwardt's work on a parallel Prolog implementation for shared-
memory multiprocessors. His method exploits stack-based execution, with pieces of the stack
distributed among multiple processors. AND-parallelism is supported via processors maintaining
lists of unsolved goals, which idle processors can examine for work. A compiler from Prolog t o
intermediate code was produced a t Minnesota. The work a t OGC produced a parallel inter-
preter for instructions in the intermediate code, which runs on a Sequent Balance multiproces-
sor. Several benchmarks were run through the interpreter, with the result t ha t parallel speed
up is achievable, but a t sub-linear rates. The speed-up was very program and da t a dependent.
On occasion, adding a processor resulted in longer elapsed time, because of added synchroniza-
tion constraints for goal transfer.

Parallel Processing at OGC 7 February 1988

Two other projects are looking a t logic programming on distributed-memory multiproces-
sors. The first is developing a n execution model for PARLOG, based on the work of Crammond,
but extending the AND/OR-tree model t o a processor network. The current plan is for a n
implementation of PARLOG on a network of INMOS transputers, with each transputer running
two processes, one for message direction and the other a n interpreter.

The other distributed-memory project concentrates on load-balancing in the OR-parallel
execution of Prolog. Diffusion scheduling is dynamically distribution scheme for message-passing
multiprocessor systems when static distribution is too expensive or ineffective. The effectiveness
of diffusion scheduling is dependent upon the accuracy of each node's perception of its neighbor's
load. The research seeks an analytical model of the effects of perceptive error on diffusion
scheduling (a la Keller and Lin), t o identify the sources and costs of perceptive error, and t o
determine how t o reduce sensitivity t o perceptive error. The model will be simulated on an Intel
Hypercube t o validate and tune i t .

3.4.1. Parallel Prolog References

Articles P . Borgwardt, "Parallel Prolog using stack segments on shared-memory multiproces-
sors," Proc. Int. Symp. on Logic Programming, Feb. 1984.

Reports
D. Pase, "Load balancing heuristics and network topologies for distributed evaluation of Pro-
log," Tech. Report CS/E 87-005, April 1987.

B. Schaefer and P. Borgwardt, "A model for execution of PARLOG on a distributed processor
network," Tech. Report CS/E 87-007, June 1987.

Theses

C. Hakansson, "The design and implementation of a parallel Prolog opcode-interpreter on a
multiprocessor architecture," M. S. Thesis, Dec. 1987.

