Microarchitecture Specification for
the Back-propagation State Machine (BSM)

John DeLacy, Subbarao Vanka, Dan Bedell,
Lea Williams, and Kamal Sarkez

Oregon Graduate Center
Department of Computer Science
and Engineering
19600 N.W. von Neumann Drive
Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-016

Abstract

This technical report contains the Microarchitecture Specification for the Analog Processor
Node or APN, which was designed in the 1987 OGC Advanced VLSI class, and fabricated by
MOSIS. In addition, the results of chip testing are included. The BSM is designed to operate in
conjunction with an APN by updating the weights in the APN according to the back-
propagation of error algorithm. Groups of BSM can be connected into feedforward, layered net-
works.

Microarchitecture Specification:
BSM Chip
CSE 529 - 1987
John DeLacy, Subbarao Vanka

Dan Bedell, Lea Williams and Kamal Sarkez
August 13, 1987

1. Introduction

1.1. General Description

The Back Propagation State Machine (BSM) chip performs the adjustment of "weights" associated
with inter-node connections in a neural-like connection network. The weights are used in the processing
node (PN) associated with each BSM. The BSM calculates new weights for each iteration of the net-
work.

The BSM implements the back propagation algorithm for a network which has input, output and
hidden processing nodes. It calculates new weights for the four inputs to the PN associated with it and
calculates error terms for the next lower level of nodes.

The following simplifying assumptions have been made to implement the BSM in silicon:

- each PN in the network connects to at most 4 other units,
- the parameter # is an externally programmable 4-bit value,

- The output function O, for all PN, is given by

4
Opj = f(zos“’q):
=1
where

O; represents one of the four inputs to the PN,
w;; represents the weight for that input,
1

f(z) is the function —, and
L+e¢°

The BSM requires five sets of input data for its calculations: the value %, programmed from out-
side the network; the PN’s inputs and output; an error term from the next higher level of nodes; and the
previous weights used by the PN.

The BSM outputs two sets of data. First, it calculates the new weights for the PN and writes
them into the PN. It then calculates an error quantity for each of the four new weights and sends them
to the next lower level of nodes.

1.2. BSM Equations
The equation for the change in weight (Aw) used in the BSM is

Aw; = 0;70;(1 —0;)X .
Since Aw = w,,,,—w,,;, the new weight calculated by the BSM is
wnewl. = 01' noj(l —OJ')X + woldi .

The quantity X could be two different values, depending on whether the BSM is in an output node
or a hidden node.

X, = TJ- —OJ-
or
4
X, = Zakwﬂe
k=1

(X, is for BSM in output node,
X, is for BSM in hidden node)

The variables are defined as follows:

7 is a constant loaded beforehand,
O; is one of four inputs to the PN,
O; is the output of the PN,

T; is the "teaching vector” or the expected output, and
6, wy, is the error quantity from the next higher level node.

The BSM must calculate four error quantities for transmission to the next lower level of nodes. It
calculates

1.3. BSM Algorithm
The algorithm executed by the BSM chip is:

Reset

Input 7 value
Input initial weights
Do (Forever)

{
Input PN input values

Input PN output value

Wait for "GO" signal

-3-

Disassert "DONE" signal
Input X input (error term from level above)
§= 0,1 - 0,)X

For (i =1 to 4) do
{

weight, = 610, + weight;
write weight; to PN’s weight;

write (& *weight;) to lower level node;

}
Assert "DONE" signal

2. External Interface

2.1. System Architecture

The Back Propagation State Machine (BSM) and the Processing Node (PN) form the basic pro-
cessing unit in the neural-like connection architecture. The architecture allows upto 3 levels of such pro-
cessing units. Each level consists of upto 4 processing units. The units are referred to as Input, Hidden or
Output units depending on which of the 3 levels they belong to. Figure 2.1 shows the system architec-
ture in terms of processing units.

The processing units are constructed using the BSM and the PN as building blocks. At the Output level
each processing unit is made up of one BSM and one PN. For the Output units Data propagates only in
the Forward direction (from Input to Hidden to Output levels). But for the Input and Hidden units data
propagates in the Forward and Backward directions. For these processing units an extra PN is used for
the backward path. Figure 2.1 shows the 2 types of processing units.

Each Input or Hidden processing unit is capable of communicating with upto 4 other processing
units at the next higher level for Forward data propagation. Similarly each Output or Hidden unit is
capable of communicating with upto 4 other processing units at the next lower level for Backward data
propagation. Since this involves a large number of interconnections between processing units, a virtual
connection is preferred to a physical connection. This is done via an addressing scheme which allows any
processing unit to address 4 other units, and to access upto 8 different registers within that unit.

2.2. BSM External Signals

The signals that interface the BSM to the other chips in the system are shown in Figure 2.3.
There are three distinct sections to the external interface.

2.2.1. System Bus Interface

-4-

The System Bus will be made up of three four-bit busses on the "a" and "b" interfaces. On the "a"
interface the busses are bidirectional while on the "b" interface they are input busses. The busses are
the Data bus, the Unit Address bus and the Register Address bus. All busses on the "a" interface and
"b" interface are connected to the shared System bus. The System Bus uses a Request/Grant (Daisy
chain) handshake protocol. (Refer to Figure 2.2.) It uses the following signals:

araddr_B1:

acaddr_B1:

adata_B1:

awtwr_1:

adelwr_1:

axwren_1:

avalwren_1:

braddr_B1:

bcaddr_B1:

bdata_B1:

bwren_1:

Four-bit Bidirectional Address bus used to specify the Register address. The bus is
driven by the BSM during accesses to an FPN or BPN. It is received by the BSM during
accesses by an FPN or BPN to the BSM and used to select one of the internal registers
of the BSM.

Four-bit output-only address bus used to specify the Unit address. The bus is driven by
the BSM for accesses to an FPN or BPN.

" Four-bit Bidirectional Data bus used to transfer data to or from the BSM. The bus is

driven by the BSM during write operations by the BSM to an FPN or BPN. It is
received by the BSM during write operations by an FPN or BPN to the BSM. It is also
used by the host processor for initialization.

Weight Write Strobe. This output is driven by the BSM to write new weight values into
the FPN.

Delta Write Strobe. This output is driven by the BSM to write new error values
(6w,)into the BPN.

X Write Enable. This input enables writing the error value from the BPN into the
BSM.

Value Write Enable. This input enables writing the input value from the FPN into the
BSM.

Four-bit Input Address bus used to specify the Register address. The bus is driven by an
FPN during write operations to the BSM.

Four-bit Input Address bus used to specify the Unit address. The bus is driven by an
FPN or BPN during write operations to the BSM.

Four-bit Input Data Bus used to transfer data to the BSM. The data lines are driven
by the FPN to write the computed output into the BSM.

Write Enable. It is driven by the bwrstrb_1 signal from the FPN to strobe data into the
BSM.

2.2.2. Host Processor Interface

reset_1:
rd_1:

wr_l:

cs_1:

go_1:

done_1:

clk_1:
clk_2:

System Reset. Used to initialize the entire network to a known state.

Host Processor Read Input. Used to read from internal registers within the BSM while
cs_1 (Chip Select) is active.

Host Processor Write Input. Used to write into internal registers within the BSM while
cs_1 (Chip Select) is active.

Chip Select Input. Used to put the BSM in an initialization or diagnostics mode. Nor-
mally inactive while the network is performing computations.

System Synchronization Input. Used to synchronize the computations of all the nodes in
the network externally.

BSM Done Output. Used to indicate that the BSM has completed the computations and
updated the FPN and BPN registers.

Clock Phase 1 Input. Phase one of a 2-phase non-overlapping clock.
Clock Phase 2 Input. Phase two of a 2-phase non-overlapping clock.

-5-

2.2.3. Bus Access Control Signals

regin_1: Bus Request Input. This signal, when low, enables an internal request onto the output
request pin, breqout_1. In addition to breqout_1 being low, the busbusy_1 signal must
also be low for the BSM to become the bus owner.

reqout_1: Bus Request Output. This signal is driven by the BSM when no higher priority agent
has requested the bus and no other agent {lower or higher priority) is currently using the
bus. Along with breqin_1, this signal is used to form a Daisy-chained priority resolution
circuit for bus access control.

busy_11: Bus Busy Bidirectional. This signal is activated by the node which is currently using the
bus. All nodes receive the signal as an input and hold off their accesses to the bus if this
signal is active.

3. Internal Architecture

The BSM consists of seven modules which together perform the functions of interfacing with the
System busses, storing data values internally, and performing computations within the BSM. Each
module is described in detail in the following sections. See Figure 3.1 for details.

3.1. Bus Interface Module (BiIMOD)

The Bus Interface Module handles the protocol necessary for the chips to share the system bus (the
bidirectional data bus and bidirectional address busses). It is assumed that all signals will be used dur-
ing phase 1. Thus, all outputs will be created with a phase 2 strobe. In fact, all outputs are created by
a standard dynamic PLA.

3.1.1. Signals to/from off chip
clocks: Phase 1 and phase 2; self explanatory.

wstrb_1: Write strobe. This output of the BIMOD indicates that valid data is on the busses and
should be strobed into the addressed unit. This output will probably have to be an open
drain signal. Note that in the BSM, this output does not go off chip; it is multiplexed
inside ResMOD.

reset_1: Reset. This input to the chip will reset all the state machines to their intitial states.

reqin_1: Request in. This input comes from a chip with higher priority for use of the bus. If it is
asserted, the BIMOD will not attempt to use the bus. Also, in the first clock period
after access has been granted, the BiIMOD will check reqin_1 and abort an output
attempt if it is asserted. This handles simultaneous requests.

reqout_1: Request out. This output of the BIMOD will signal to the lower priority chips that the
BiMOD demands the bus. It will be connected to one input of an OR gate, the other
input being connected to reqin_1 and the output of the OR gate from the next higher
priority source. When reqout_1 of a given chip is asserted, the external gates will cause
reqin_1 of all lower priority chips to be simultaneously asserted.

busy_1: Busy. This is a bidirectional signal that is an open drain output of the chip and an
input for the BIMOD. The gate for the open drain driver will be driven by reqout_1.
Busy_1 will indicate when the bus is in use for all chips, regardless of priority. This sig-
nal is to prevent a higher priority chip from intervening in the middle of a data transac-
tion.

-6-

3.1.2. Signals to/from on chip

outreq_1: Output request. This signal comes from another module. When it becomes asserted, the
BiMOD state machine will check the bus. If the bus is available, then an attempt is
made to send data out; otherwise, the BIMOD will wait until the bus is available to
attempt to send data. Outreq_1 must stay asserted until the BIMOD successfully gets
the bus (i.e., until outenab_1 goes high).

outenab_1: Output enable. This output signal from the BIMOD enables the output buffers, placing
the contents of the data bus and the address busses onto the interchip bus. It should
drive the output buffers of all address and data busses.

3.1.3. BiMOD Operation

The BiMOD controls access to the output bus of a chip. Since several chips can use a bus, and
more than one could request access simultaneously, a mechanism must be provided to handle the poten-
tial conflict. The BiMOD contains a state machine that arbitrates bus requests among the chips that
can write to the interchip bus.

The BiMOD state machine will produce an output on reqout_1 and consequently assert busy_1
when it receives a request for output (outreq_1 asserted) and busy_l1 and reqin_1 are disasserted. If
reqin_1 is asserted one clock cycle later by a higher priority chip, the state machine aborts the output
attempt.

Once the BIMOD gets control of the bus, it continuously asserts reqout_1 for the entire write
cycle. Since reqout_1 also drives the gate of the open drain buffer for busy_1I (the "I" is because the
open drain buffer will invert the signal; there needs to be an inverter between busy_1I and the input
busy_1 to BIMOD), assertion of reqout_1 will also assert busy. 1. These signals cause all chips on the
bus to wait until the current user is finished with the bus. The write cycle is three clock cycles long; the
data and address busses will be valid for all three cycles (except for the initial charge-up delay, which
will be somewhere around 40 to 60 ns). The ouput strobe signal (wstrb_1) will occur in the second clock
cycle of the write cycle.

3.1.4. BiMOD Use

In order for a chip to use the BIMOD, the following sequence of operations is suggested. When a
chip desires output, it will assert outreq_1. This should stay asserted until the chip is granted use of the
bus, which is indicated by outenab_1 going high. When outenab_1 goes low again, the write operation
was successfully completed. The chip is not allowed to change the inputs to the data and address out-
put buffers until outenab_1 goes low again.

3.2. Result Output Module (ResMOD)

The Result Output Module provides the sequencing and control necessary for writing the results of
the BSM’s computations to the various destination units. The ResMOD performs two operations; it
writes the four newly computed weights into the FPN of the local node, and it writes the product dw;
for i = 0 to 3 to the four lower level BPN’s.

3.2.1. Signals to/from off-Chip

clocks: Phase 1 and phase 2; self explanatory.
reset_1: Reset. This input to the chip will reset all the state machines to their intitial states.
go_1: This signal is an input from the host system. When it is asserted, the BSM begins its

calculations. It is used by ResMOD to reset the state of resdone_1 and return the state
machine to its idle condition.

awtwr_1: Weight write strobe. This output of the ResMOD goes to the other FPN’s on the bus
indicating that valid weight data is on the busses and should be strobed into the
addressed unit. This output will probably have to be an open drain signal.

adelwr_1: Error write strobe. This output of the ResMOD goes to the other BPN’s on the bus
indicating that valid error data (éw;) is on the busses and should be strobed into the
addressed unit. This output will probably have to be an open drain signal.

resdone_1: ResMOD done. This output of the ResMOD signals to the external processor that the
BSM is finished with all back propagation activities. (It is called "done_1" in the exter-
nal interface.) It will be asserted when the BSM has written all of its results into the
BPN’s and FPN’s. It will be disasserted again when the next go_1 signal is received.

3.2.2. Signals to/from on-Chip

compdone_1: Computation done. This input to the ResMOD comes from the Computation Sequencer
Module (SegMOD). It signals the ResMOD that all computations are done and the
ResMOD then begins its writing operations.

wrstrb_1: Write strobe. This input to the ResMOD comes from the Bus Interface Module
(BIMOD). It will be routed either to awtwr_1 or adelwr_1, depending on which PN is
being written to.

outenab_1: Output enable. This input signal comes from the BIMOD. It indicates that an output
cycle on the system bus is under way. When this signal falls low again, it indicates that
the write operation is over.

outreq_1: Output request. This output of the ResMOD goes to the BIMOD. It is used to request
an output write cycle on the interchip bus.
rrd_1: ResMOD read. This output from ResMOD goes to DecMOD. It requests a read cycle to

the register file.

regaddr_Bl: Register address bus. This output bus from ResMOD goes to the register address output
buffers and carries the address of the register currently being written.

unitaddr_B1: Unit address bus. This output bus from ResMOD goes to the unit address output buffers
and carries the address of the unit currently being written.

rraddr_B1: ResMOD register address bus. This bus goes to DecMOD to select the register being
read in the register file.

r8_B1: Register 8 ouput. This bus carries the contents of register 8 in the register file (the unit
address programmed into the chip). It is a static output of the register.

3.2.3. ResMOD Operation

The ResMOD sequences through two write operations; one to the FPN to write all four new
weights, and one to the BPN’s to write the newly-computed error quantities. It uses BIMOD to gain

access to the bus. It uses DecMOD to create the proper register select and register read signals to Reg-
MOD.

When compdone_1 is asserted, the ResMOD state machine begins the sequence of eight register
write operations. First it writes the four newly-computed weights to the FPN. It puts the BSM’s unit
address on the unitaddr_Bl bus and writes one new weight with 00 on the regaddr_B1 bus, the next
weight with 01 on regaddr_B1, and so on for all four new weights.

Next, the ResMOD will write the four error quantities to the next lower level BPN. It does this by
putting the BSM’s unit address on the regaddr_Bl bus and writing one new error quantity for each of
the four unit addresses, 0 to 3, on the unitaddr_B1 bus.

When the ResMOD is finished with all eight writes, it asserts done_1 and returns to its initial
state.

-8-

3.2.4. ResMOD Use

The Computation Sequencer Module (SeqMOD) must assert compdone_1 when it is finished with
all computations and has all the results stored away in the appropriate registers. Once ResMOD sees
compdone_1, it will begin its operation and go to completion. It needs no further enabling. Once
ResMOD has started, no other module or entity can be allowed to use the register file. There is no pro-
vision made to detect or avoid simultaneous accesses to the register file.

3.3. Decode Module (DecMOD)

The Decode module performs the decoding of addresses to generate the internal select, read and
write signals to the Register file module. Accesses to the Register file can be from outside the BSM (from
an FPN or BPN) or from inside the BSM (from the Sequencer Module or the Result Module). All
accesses are controlled by the Decode Module which multiplexes the control signals onto the select, read
and write signals which go to the Register file.

3.3.1. Signals to/from off Chip

araddr_B1: Register address from the System bus connected to the "a" interface of the BSM.
acaddr_B1: Chip address from the System bus connected to the "a" interface of the BSM.
braddr_B1: Register address from the System bus connected to the "b" interface of the BSM.
bcaddr_B1: Chip address from the System bus connected to the "b" interface of the BSM.

adelwr_1: Control signal generated by the Result module to indicate that a new Error quantity is
being written out to the bus.

awtwr_1: Control signal generated by the Result module to indicate that a new Weight is being
written out to the bus.

axwren_1: Control signal from the System bus to write the Xin data value into the BSM.

avalwren_1: Control signal from the System bus to write a new Input value into the BSM.

bwren_1: Control signal from the System bus to write a new Output (Oj) value into the BSM.

cs_1: Chip select input from the Host Processor.

wr_1l: Write input from the Host Processor.

rd_1: Read input from the Host Processor.

3.3.2. Signals to/from on Chip

xinrd_1: Control signal from the Sequencer module to read the Xin value from the Registerfile.

etard_1: Control signal from the Sequencer module to read the Eta value from the Registerfile.

idrd_1: Control signal from the Result module to read the Unit ID value from the Register file.

ojrd_1: Control signal from the Sequencer module to read the Output (Oj) value from the Regis-
ter value.

SOrd_1(1:4): Four control signals from the Sequencer module to read the four Input values from the
Register file.

SWrd_1(1:4): Four control signals from the Sequencer module to read the four Weights from theRegis-
ter file.

RWrd_1(1:4): Four control signals from the Result module to read the four Weights from the Register
file.

SWwr_1(1:4):
SEwr_1(1:4):
RErd_1(1:4):
rs_1(0:15):

rreg_1:

wreg_1:

-9-

Four control signals from the Sequencer module to write the four Weights into the Regis-
ter File.

Four control signals from the Sequencer module to write the four Error quantities into
the Register file.

Four control signals from the Result module to read the four Error quantities from the
Register file.

Sixteen select signals from the Decode module to select one of sixteen regsitersfrom the
Register file for a read or a write operation.

Read signal from the Decode module to read the selected register in the Register file.

Write signal from the Decode module to write the selected register in the Register file.

3.4. Register File Module (RegMOD)

This module contains sixteen four bit registers and the logic required to control the reading and
writing of these registers.

3.4.1. Signals to/from off Chip

RegMOD does not directly interface to any external signals.

3.4.2. Signals to/from on Chip

in_B1:
out_B1:

rreg_l:

wreg_1:

r0_B1:
r1_B1:
r2_B1:
r3_Bl1:
r4_B1:
r5_B1:
r6_B1:
r7_B1:
r8_B1:
r9_B1:
r10_B1:

Four bit data bus used to write to a selected register.

Four bit data bus used to read a selected register.

A signal which enables a register read.

A signal which enables a register write.

A four bit bus tied to the output (Q) bits of register 0.
A four bit bus tied to the output (Q) bits of register 1.
A four bit bus tied to the output {Q) bits of register 2.
A four bit bus tied to the output (Q) bits of register 3.
A four bit bus tied to the output (Q) bits of register 4.
A four bit bus tied to the output (Q) bits of register 5.
A four bit bus tied to the output (Q) bits of register 6.
A four bit bus tied to the output (Q) bits of register 7.
A four bit bus tied to the output (
A four bit bus tied to the output (
A four bit bus tied to the output (Q) bits of register 10.

Q) bits of register 8.
Q) bits of register 9.

-10-

r11_B1: A four bit bus tied to the output (Q) bits of register 11.
r12_B1: A four bit bus tied to the output (Q) bits of register 12.
r13_B1: A four bit bus tied to the output (Q) bits of register 13.
r14_B1: A four bit bus tied to the output (Q) bits of register 14.
r15_B1: A four bit bus tied to the output (Q) bits of register 15.
rsO_1: Select line for register 0.

rsl_1: Select line for register 1.

rs2_1: Select line for register 2.

rs3_1: Select line for register 3.

rs4_1: Select line for register 4.

rs5_1: Select line for register 5.

rs6_1: Select line for register 6.

rs7_1: Select line for register 7.

rs8_1: Select line for register 8.

rs9_1: Select line for register 9.

rsl0_1: Select line for register 10.

rsll_1: Select line for register 11.

rs12_1: Select line for register 12.

rsl13_1: Select line for register 13.

rsl4_1: Select line for register 14.

rsl5_1: Select line for register 15.

3.4.3. Internal Structure of RegMOD.

RegMOD has 16 4-bit registers which can be selected by individual Select lines. Along with a
rreg_1 and wreg_1 the registers can be read or written to. During read operations the data from the
register is put out on the individual output data bus (r0_B1 through r15_B1). The same data is also put
out on a common tristateable output data bus called out_B1. During write operations the data from the
common input data bus called in_B1 is written into the selected register.

3.4.3.1. Individual register

Each register consists of four independent RS type latches, configured as "data latches", with
Resets tied to Sets through inverters. An array of four latches, with Enable inputs tied to a single regis-
ter select line, comprises an individual four bit register.

3.4.3.2. Register file

Corresponding "Set" inputs of the data latches of each of the sixteen registers are wired together
with the corresponding line of the four bit input bus, in_Bl. Assertion of a register’s select line, the
write signal, wreg_1, and PH1, allows the register’s latches to load in_B1 on the trailing edge of PHI.
The contents of the register are therefore valid in PH2.

Corresponding bits of the sixteen register outputs are gated onto the output bus, out_B1, so that
when a register select signal, the read signal, rreg_1, and PH1 are asserted, the selected register’s value
is placed on out_Bl1.

-11-

Each register also directly drives its own output bus (one of: r0_B1, r1_B1, ... , r15_B1). These
bus signals are valid during PH1 and can be accessed in parallel by the other modules on the chip.

3.5. Sequence Control Module (SeqMOD)

This module generates the control signals required to sequence the ALU through the microinstruc-
tion sequence needed to perform the BSM’s internal computations. The computation sequence is trig-
gered by the "GO" signal received by the BSM from external logic. During the computation the BSM
computes the new weights and error quantities. At the end of the computation the Computation
Sequencer generates a "Computation Done" signal to the Bus Access Control logic. The new weights and
error quantities are then written out over the System Bus to the FPN and the BPN’s by the Result
module (ResMOD). The Computation Sequencer consists of 2 state machines and 3 combinational logic
blocks which generate the control signals to transfer data between registers and to perform arithmetic
operations using the ALU. The state machines and combinational logic are described below.

3.5.1. Signals to/from off Chip

go_l: The go_1 signal triggers SeqMOD to start the computation sequence. This signal is
received from an external system synchronization module.

reset_1: The reset_1 signal is used to reset all internal state variables within SeqMOD.
clk_1: Phase 1 of the 2-phase clock used to synchronize all the state machines.
clk_2: Phase 2 of the 2-phase clock used to synchronize all the state machines.

3.5.2. Signals to/from on Chip

in_B1: Internal 4-bit data bus used to transfer data to RegMOD. SegqMOD drives the data onto
this bus at the same time as it generates a write signal for one of the registers.
out_B1: Internal 4-bit data bus used to transfer data from RegMOD to SegqMOD. SeqMOD gen-

erates a read signal and expects data to be put on this bus from one of the registers.

xbus_B1: Internal 6-bit data bus used to transfer one of the operands from the SegMOD to
AmMOD. All intermediate results such as the contents of the temporary registers within
SeqMOD are transfered over this bus.

ybus_B1: Internal 4-bit data bus used to transfer the second operand from SegMOD to AmMOD.
Values such as "Eta", the weights and the input values from the register file are
transfered over this bus.

done_1: Indicates that AmMOD has completed the current operation, in response to an Add or
Multiply command from SeqMOD.

ojrd_1: Enables the Oj register contents onto the input bus of the Lookup Table within
SeqMOD.

xrd_1: Enables the most significant bit of the Xin register onto the input of a latch within
SegMOD.

etard_1: Enables the "Eta" value onto the ybus_B1 during the computation of new weights and

error quantities.

sord_1(1:4): These are 4 control signals used to read the Input values O1 through O4 out of Reg-
MOD. They are outputs from SegMOD to DecMOD.

-12-

swrd_1(1:4): These are 4 control signals used to read the Weights W1 through W4 out of RegMOD.
They are outputs from SegqMOD to DecMOD.

swwr_1(1:4): These are 4 control signals used to write the Weights W1 through W4 into RegMOD.
They are outputs from SeqMOD to DecMOD.

swwr_1(1:4): These are 4 control signals used to write the Errors Errl through Err4 into RegMOD.
They are outputs from SeqMOD to DecMOD.

mult_1: This signal initiates a multiplication operation using AmMOD. The signal is an output
from SeqMOD to AmMOD.

add_1: This signal initiates an addition operation using AmMOD. The signal is an output from
SeqMOD to AmMOD.

done_1: This signal indicates the end of an Addition or Multiplication operation. The signal is

an output from AmMOD to SeqMOD.

compdone_1: This signal is an indication to ResMOD that the computation is complete and that the
new Weights and Error values are in RegMOD.

3.5.3. Internal structure of SeqMOD

3.5.3.1. Sequence State Machine

The Sequence state machine implements the computation algorithm for the BSM. It has 7 states
and it works along with a 4-state counter to generate the control signals needed to read values out of
the RegMOD or the temporary registers within SegqMOD, to control the AmMOD and to write the
results of intermediate or final computations into appropriate registers.

3.5.3.2. 4-State Counter for Weights and Errors

The 4-State Counter is used in conjunction with the Sequence state machine to determine which of
the weights or errors is being computed at any given time. The state of the counter is used to generate
the read or write signals to one of the four weight or error registers.

3.5.3.3. Lookup Table

The Lookup Table logic generates the Oj(1-Oj) value using the Oj value from RegMOD. This
block consists of combinational logic whose output is ready to be used whenever the ojrd_1 signal goes
active.

3.5.3.4. Control Logic

The Control logic block consists of combinational logic which decodes the state of the Sequence
state machine and the Counter and some external signals to generate the read, write and computation
signals.

3.56.3.5. Encode Logic

The Encode logic block consists of combinational logic which encodes signals generated by the
Control logic block and provides the encoded address and read and write signals to DecMOD, to access
registers from RegMOD.

-13-

3.5.3.8. Temporary Registers

Three 6-bit temporary registers, Regl, Reg2 and Reg3, are used to store intermediate values which
are common to the rest of the computation.

3.6. Adder/Multiplier Module (AmMOD) (version 3)

The Adder/Multiplier module adds or multiplies any two integers. It can add any two 8-bit
unsigned data values or two 7-bit signed values. The signed data is in two’s complement form. It can
multiply two 6-bit unsigned data values and returns a 12-bit answer.

3.6.1. External Signals (off chip)

reset_1: The reset signal is used to reset all the pla inputs and outputs and to set the a register
(areg) to zero.

phil: Phase 1 of the 2-phase clock is used to load the input registers and set up the inputs and
latch the outputs for the plas. It also is used to signal the load for the output register
when the arithmetic operation is finished.

ph2: Phase 2 of the 2-phase clock is used to latch the inputs of the plas;to reset areg, and set
done_1 when the operation is finished.

3.6.2. External Signals (on chip)

xbus_B1: Internal 8-bit data bus (6 of which are used by the bsm, on that chip the 2 msb are
grounded) used to transfer one of the arithematic operands to AmMOD.
ybus_B1: Internal 8-bit data bus (4 of which are used by the bsm, on that chip the 4 msb are

grounded) used to transfer the second operand to AmMOD. Values used in any arith-
metic operation are transfered over these two buses.

obus_B1: Internal 12-bit data bus (6 of which are used by the bsm) used to transfer the results of
an addition or multiplication operation out of AmMOD to another module or off chip.
Obus_bl is valid after done_1 is high and stays valid until the next out overwrites it.

done_1: Indicates that AmMOD has completed the current operation, in response to an add or
multiply command. The done_1 signal goes high in phase 2 following a load of the
oreg_B1 in phase 1. This allows the output on the obus_B1 to be used in the next phase

1.
add_1: This signal causes AmMod to add the two numbers given on the input busses.
mult_1: This signal causes a multiplication of the two inputs to occur.

3.6.3. Internal Functionality

This module contains 3 submodules or units an adder/accumulator unit, a control unit, and a counter
unit(see attached block diagram). The timing requirements are shown in figure 3.6.1.

3.6.3.1. Adder/accumulator unit

The adder/accumulator contains four registers, 8 full adders, and some logic gates. Three of the
registers are loaded/unloaded from the previously mentioned buses. Two 8-bit registers xreg Bl and
yreg_B1 are loaded from xbus and ybus respectively and oreg_B1 a 12-bit register is unloaded by obus.
The other register is a 13-bit accumulator (areg_B) that stores the intermediate sums during multiplica-
tion. The xreg and the yreg are loaded when an add or mult,phl, and i or done are high. The signal i_2
comes from the control unit and is high if AmMOD is idle. The other signals have been discussed previ-
ously. The xreg is loaded directly from the bus. The ybus is loaded into bits 0-8 of the yreg if add is

-14-

PH1 N/ N /- N/ N\ ——
PH2 ______ / N/ N e / N/
done ~ /
XbUS _ _ _ o o o o o e e v
vyous _ _ _ _ _ _ X______ X _ _ _~_ _ _ _ _ _ ___-_-___X

valid
add I S : —_
mult / X _ _"_ _ -\ /
oreg _ _ _ — o — ———_____ _x

valid

1) All input signals must be valid during PH1.

2) Mult and add should be low before done goes high and stay low until
after the output is read.

3) The output is vaild the first PH1 after done is high.

4) Oreg is valid until the next output writes over it.

FIGURE 3.6.1. AmMOD Timing diagram

high and bits 2-8 if mult is high. The areg is gate delayed to be loaded after xreg during phase one. If
the operation is addition xreg is loaded into bits 4-11 of the areg. If the operation is multiplication xreg
is loaded into bits 0-5. Multiplcation is done by a sequence of shifts and adds, so the areg is shifted
right one bit when ps_2 is recieved from the control unit. The adder/accumulator unit also contains a
8-bit adder. The 8-bit adder is 8 full adders which preforms the addition operation. When pa_2 is
recieved from the control unit a parallel add is performed on yreg and bits 4-11 of the areg with the
results stored in areg.

3.8.3.2. Control unit

The control unit controls the function of what the module is doing. It is a pla with a small
amount of external logic. The input signals for the pla are n_2, a_2, k_2, m_2, and r_2. n_2 is mult
exclusive ored with add, a_2 is add and not mult,k_2 is the count signal, m_2 is the Isb of areg, and r_2
is the same as reset_2. The output signals for the pla are ps_2, pa_2, d_2, and i_2. ps_2 tells the areg
to shift right 1, pa_2 tells the adders to do a parallel add, d_2 is done_2 before it is phase 2 trapped,
and i_2 is one when AmMOD is idle. Ever phase 1 if the done signal or idle is high it checks to see if
the add or mult signal is high if not it remains idle (see attached flow chart).

If the add signal is high it begins a sequence of events to cause an add to occur. After the x regis-
ter is loaded in phase one, during that same phase the x register is loaded into the accumulator and d_2
and/or i_2 are set to 0. An addpulse is given to all the adders and a parallel add is done. In the next
phase one the answer is latched into the accumulator register. The data in the accumulator is then
shifted right four places and loaded into the output register. The number of shifts is keep track of by
the counter unit. The done signal is then set to a one.

If the mult signal is given the controller begans a sequence of events to cause a multiply to occur.
After the x register is loaded into the accumulator register done and/or idle are set to 0. The count,
which is a loop arround counter initially set to zero, is checked to see if it is equal to 6. If it is k is set

-15-

to one, if not k remains equal to zero. The least significant bit of areg (m_2) is checked, if it is a one
add (pa_2) and shift (ps_2) areg right one place. If it is a zero skip add and shift areg right 1 place.
Then check k if k is zero go back to check count step above and repeat sequence. If k is a one load the
areg into the output register. Set the done signal to one.

3.6.3.3. Counter unit

The counter unit is a state machine which counts to three for addition and five for multiplication.
The counter is used during addition to place the sum in the Isb of the areg, so it can be loaded into the
oreg. During multiplication it is used to keep track of how many bits have been shifted. When all 8-
bits have been shifted the multiplication is complete and the counter tells the control unit to stop.

3.7. Input/Output Module (PinMOD)
3.7.1. Signals to/from off Chip

xgo_1: External signal which starts the BSM computation of new weights and error quantities.

xrd_1: External signal which performs a read operation from one of the internal registers of the
BSM, as specified by araddr_B1 or braddr_B1.

xwr_l: External signal which performs a write operation to one of the internal registers of the
BSM, asa specified by araddr_B1 or braddr_B1.

xecs_1: External signal which selects the BSM for a read or write operations which originate

from the Host processor.

xavalwren_1: External signal which performs a write operation to one of the "input value" registers of
the BSM from the "a" interface of the BSM.

xaxwren_l1: External signal which performs a write operation to the "Xin" register of the BSM from
the "a" interface of the BSM.

xbwren_1: External signal which performs a write operation to one of the "input value" registers of
the BSM from the "b" interface of the BSM.

xreqin_1: External signal which indicates to the BSM that a higher priority BSM in the network
has requested access to the System bus.

xbusy_1: External signal which indicates to the BSM that the System bus is being used by some
other BSM or PN.

xreset_1: External System reset signal which resets all internal state machines within the BSM.

xbcaddr_B1: External "chip address” bus on the "b" interface of the BSM. This is an input bus.
xbraddr_B1: External "register address” bus on the "b" interface of the BSM. This is an input bus.

xacaddr_Bl: External "chip address" bus on the "a" interface of the BSM. This is a bidirectional tri-
state bus.

xaraddr_B1: External "register address" bus on the "a" interface of the BSM. This is a bidirectional
tristate bus.

3.7.2. Signals to/from on Chip

go_1: Internal signal which starts the BSM computation of new weights and error quantities.

-16-

rd_1: Internal signal which performs a read operation from one of the internal registers of the
BSM, as specified by araddr_B1 or braddr_B1.

wr_1: Internal signal which performs a write operation to one of the internal registers of the
BSM, asa specified by araddr_B1 or braddr_BI1.

cs_1: Internal signal which selects the BSM for a read or write operations which originate

avalwren_1:

from the Host processor.

Internal signal which performs a write operation to one of the "input value" registers of
the BSM from the "a" interface of the BSM.

axwren_l1: Internal signal which performs a write operation to the "Xin" register of the BSM from
the "a" interface of the BSM.

bwren_1: Internal signal which performs a write operation to one of the "input value" registers of
the BSM from the "b" interface of the BSM.

reqin_1: Internal signal which indicates to the BSM that a higher priority BSM in the network
has requested access to the System bus.

busy_1: Internal signal which indicates to the BSM that the System bus is being used by some
other BSM or PN.

reset_1: Internal System reset signal which resets all internal state machines within the BSM.

beaddr_B1: Internal "“chip address” bus on the "b" interface of the BSM. This is an input bus.

braddr_B1: Internal "register address” bus on the "b" interface of the BSM. This is an input bus.

acaddr_B1: Internal "chip address” bus on the "a" interface of the BSM. This is a bidirectional tri-
state bus.

araddr_B1: Internal "register address" bus on the "a" interface of the BSM. This is a bidirectional

tristate bus.

3.7.3. Internal structure of PinMOD

PinMOD consists of input and output buffers required to interface to the System Bus on the "a" and "b"
interfaces of the BSM. For input signals PinMOD implements the input buffers. For output and bidirec-
tional signals PinMOD also implements the tristate output buffers which are controlled by internal sig-
nals.

4, Timing Specifications
4.1. BSM Write Operations

The BSM writes the new weights to the FPN or the error quantities to the previous level BPN’s
using araddr_B1, acaddr_B1, adata_B1, awtwr_1, and adelwr_1. The timing diagram is shown in Figure
4.1

4.2. FPN Write Operations

The FPN writes the Input values into the next level FPN’s and BSM’s using araddr_Bl,
acaddr_B1, adata_B1, avalwren_1. It writes the computed output, O;, into the current level BSM with
bdata_B1, becaddr_B1, bwren_1, with braddr_B1 hardwired to don’t cares. The timing diagram is shown
in Figure 4.1.

-17-

4.3. BPN Write Operations

The BPN writes the computed output value into the BSM over the system bus using the adata_B1,
using xwren_1 for the write strobe. The BSM ignores both araddr_B1 and acaddr_B1 for this operation.
The timing diagram is shown in Figure 4.1.
4.4. Host Read/Write Operations

The Host processor can read or write registers within the BSM, FPN or BPN by asserting the
reset_1 signal and the appropriate cs_1 signal. The timing diagram is shown in Figure 4.1,
4.6. Bus Access Control

Bus access is controlled by the Daisy-chained reqin_1 and reqout_1, along with the busy_1 signal.
An example of this protocol is shown in Figure 4.1.

Ve s o oAb S b 2 rm

G(‘e,g-.'. Xfe%

4

dme'—b,i“&:o

thad yrea bive 4=7

-

looc]i(c%n\’to %\:\"‘:s‘f-\‘

N

done:=0,tdle=0

areoa = greq, + yfeq

ahifl acea, caht Y

by

O Yeq = aes,

done =]

ouny = coani4\

c.k\Hc aceqy Tahi \

| '\%u.(e_

Addec / Mo\ phec Evec ution Se7 uence

Appendix A
BSM IMPLEMENTATION ESTIMATES August 13, 1987

1. Transistor count, layout, and implementation time estimates.

The following table (BSM Table) contains a rough estimate of layout area, transistor
count, number of cell placements, number of required connections and a time estimate for com-
pletions of each section of the BSM chip. The layout area is in micron’s squared times 1000 and
is approximated from standard cell sizes currently available in scmos for magic. The pla sizes
are estimated from these formulas: height is 120+8p and width is 70+16i+80. The variable p is
the minterms, i is the inputs, and o is the outputs. The time was wstimated by the following
equation: layout time is (connections+placements)10min..

Table BSM. BSM IMPLEMENTATION ESTIMATES

Section Trans# Area Placements | Connections | Time
K microns sq hours

ResMOD 158 3734 23 73 45
AmMOD 1174 3225.6 178 369.5 145
BiMOD 26 88.8 11 8 8
DecMOD 398 1575 73 200 45.5
SegMOD 1322 TBD 102 636 123
RegMOD 818 2235 63 155 36.3
PinMOD 70+ 80.3+ 67 120 67
TOTAL

Appendix A.1
AM IMPLEMENTATION ESTIMATES August 13, 1987

1. Transistor count, layout, and implementation time estimates.

The following table (AM Table) contains a rough estimate of layout area, transistor count,
number of cell placements, number of required contections and a time estimate for completions
of each section of the AM module. The layout area is in lambda’s squared times 1000 and is
approximated from standard cell sizes currently available in scmos for magic. The pla sizes are
estimated from this formula: height is 1204-8p and width is 70+16i+80. The variable p is the
minterms, i is the inputs, and o is the outputs. The time was estimated by the following equa-
tion: Layout time is (connections+placements)10min.

Table AM. AMMOD IMPLEMENTATION ESTIMATES

Section Area Trans# Placements | Connections | Layout time | netlist/mossim
K lam**2 6hr/wk 6hr /wk
AMMOD** 428 1 PLA 1 5
73.7 | 65 pgates 65 130

79 | 7 inv 7 7

1.3 | 1 nor2 1 1.5

1.4 | 1 nand2 1 1.5

9.5 | 5 nand3 5 10
Total 93.7 182 80 155 3.75 3.75
REGISTER 2.3 | 2 pgates 2 4
UNIT 4.5 | 41inv 4 4
2-8bit reg - - - 24
1-10bit reg *26 *26 13 15
Total 290.3 | 312 19 47 1.83 1.83
CONTROL 69.2 | 1 PLA 1 8
UNIT 5.7 | 5 pgate 5 10

34 | 3inv 3 3

1.9 | 1 nand3 1 2

1.3 | 1 nor2 1 1.5
Total 814 | 26 11 24.5 .99 .99
ACAD 22.7 | 20 pgate 20 40
UNIT 5.7 | 5inv 5 5

26 | 2 nor2 2 3

1.9 | 1 nor3 1 2

5.7 | 3 nand3 3 6

414 | 13 dlatchr 13 26

Total 80 238 44 82 3.5 3.5
ADDER 9.1 | 8inv 8 8
SUBUNIT 3.9 | 3 nor2 3 45

1.9 | 1 nor3 1 2

4.1 | 3 nand2 3 4.5

1.9 | 1 nand3 1 2
8 adders *3 *8 8 20
Total 1668 | 416 24 51 2.08 2.08
TOTAL 716.8 1174 178 369.5 12.15 12.15

** These counts are for only the devices used to connect the units in the AM module.

2. TIME ESTIMATE FOR AmMOD
The total time to implement is 24.3 weeks X 6hr/week = 145 hours.

3. LAYOUT ESTIMATE FOR AmmMOD

Converting from lambda to microns and adding 100% for interconnect: 716.8K X 1.5 X 1.5
X 2 = 3,225,600 square microns.

Appendix A.1

SEQMOD IMPLEMENTATION ESTIMATES

Table SEQMOD. SEQMOD IMPLEMENTATION ESTIMATES

Section Area Trans# Placements | Connections | Layout time | netlist/mossim
K lam**2 8hr/week 6hr /week
CONTROL TBD 9 nand2 9 TBD
TBD 18 nand3 18 TBD
TBD 6 nor2 6 TBD
TBD 1 nand4 8 TBD
TBD 8 inv 8 TBD
TBD 192 42 1156
ENCODE TBD 8 nand2 8 TBD
TBD 1 nand3 1 TBD
TBD 2 nand4 2 TBD
TBD 1 nor2 1 TBD
TBD 1 nor3 1 TBD
TBD 8 inv 6 TBD
TBD 76 19 45
TABLE TBD 30 nand4 30 TBD
TBD 15 nand3 15 TBD
TBD 5 nor2 5 TBD
TBD 5 inv 5 TBD
TBD 380 5 188
SEQUENCE TBD 1 PLA 1 10
TBD 162 1 10
COUNT TBD 1 PLA 1 8
TBD 68 1 (i)
REGISTERS TBD 18 Cells 18 108
TBD 180 18 108
LATCHES TBD 7 Latches 7 42
TBD 70 7 42
TOTAL TBD 1322 102 636 123 40

Summary of Layout Estimates

DecMOD
RegMOD
ResMOD
BiMOD

SegMOD
AmMOD

PinMOD

Total

* = Transistor count for PLA's not included

102
TBD
53

293

Interconnects

Transistors

PLA's
0
0
1 (8,14,20)
1 (6,6,6)
2
TBD
0
4

CHIP
I
YPASS SNOR2 BSM 64P79x92 (padframe)
I | I I I | .
amm DECMOD 1logo pipla psqm regfile resmod
|

l.orégm 1l.gates 1.sn£r2 1.ctI 1.regIow 1.Ies_sm
/scellm /mygate 2.sinv /celll /nreglatchlx4 /m2poly
2.xregm /celll /nreglatchlxl /respla
/scellm /celld 2.sdlatch 2 .muxes
3.accm /cell5 3.sclkinv /2-1mux
/scellrm /cbuf 4 .nregdec /m2poly
4 .adderm
/fadd 2.tbl 3.1-2sel
5.yregm /cell2 /m2poly
/scellm /tbuf
6.amct /tpass
/amctsim /Xpass
/bsmltch2 3.rfl
/nltchb5 /rbit
/oltch4 /reg
7 .amcn /rpass
/amcnsim 4.enc
/bsmltch S.seqgpla
/nltch3 /sequence
/oltch /slatch

/nltch4

/oltch3

6.cntpla

/count

/slatch2

/nltch3

/oltch2

7.smbit

8.ypass

9.dlt

: B
(o]

EI
[eo]—5
oo 1—§
o |5
i
Corwad

=z
—
.-

BoM PRDFRAEME

04aP /IX3/

272 X1273

SE&MOD - TABRLE pPAcE |
L S [/] (3)
2z nlo (z)
! = ’L"(')
o= n,lo(o)
2
z ! A
7 v
¢—'.‘—_——‘ 1
3 ——
R — N B
T)
0 - 1
3 [)o
2 — c B
,)p___
= .
3
z !)
i D; -
[7)
R
L S
2 — E
T_______. -
0 o
?
2 F L-w)o__:r ,
' a—
0
3
2

NOT
USED

CELL2

SN

sEEMOD -

TILLE

PAGEZ

NOT
USED

1]
|

I}
|

3
2
T
0
;
P
f ———
0 —————
P
[R—
T

]

|

I

|

i

\
]

PAcE 3

TAELE

SELEMOD

OvTPYT 2)

1M N I~ ©

——— el

fenid ~ i

1l

Mol o

7

e
il

1 Wi~

:

a8 = o \Y N =09O

Seamop

TAELE , P*“ﬁi

Ole tlwy @ =1 hw O ~\Miw|

(

I
i

O =~ wi

Wﬂz;

T/BLE

- Pr6e &

SEEMOD —

ovrpur (1)

i

Mid ~\O

SEQ@MOD ENCODE PAct

———

i
NP S, —
S — —

7d

exf?»u(/xa/
5w

h2wr

130

CELIY.L

L 2

2 lnd

A rd

A

b"/id'l 3

-

-

Y]

(@]
~
1Y) S -
XY 3 m_ |
< 3 3 3
P} . ;
[=) . !
T H
2 |
O
© > >_
a . . : » .. _
o
=
S
W i
W

w _Mﬁ,w gﬁ;

%M,

N~ Q

mfﬁr

ZWZ_

a

SEQLENCE

PAGCE 1D
Do
|
nw Z % fé(flu; -
7 ,
riks | & Py
14 ' 4

FRUR RN

SEQMOD CONTROL

PAGE 8

(L4t)

V’-L"J/hzzhd

ZM#JL;L;,,'J

(}7&1) |

ol rd

CEUz.2

Wi r A

L wn

~ v

er wt

I]
N T
|
_ j
|

i

i 4

&

ah

p

i
|
t

S
EQMOD

Co
NTROL

PACEQ

B B R B putec

‘CNTPLAI

FACE 1/

¢
etibg_-*g: I;xé] nel
Winr'e [% ﬁcy
M COUNT
dove %
5
| ¢/
24
.

sSMeIT

PAGE 12

RsT1
RsT2

i
Uy

ReiT] PACE 14

Lo {>°

IN

Y
vy

RESET

L4

~J

ovr

ALubonE

ALUDONE . CNT4

ALUDONE . ENT 4

C

ALUDONE . ONT.
*Dﬁf,wu. 8 obdl 4

CONTROL

Olﬁb = 0/"' + O/"‘Jt.

NRD = Oy

XKD = 4’7 +

RINK = a/ n.Done

RiWR:- p;.Dowe +

Eswk; X¢ . DaNE

RIRD = 0;

E:RL = X.. Cetape + LE(. Corarg
R21Pp= X, . Compr + E[. comPL
ij_D = w;

ONERD = X;.CempL ¢ £, CHMPL
EFOFPD - Xy . COMPL f Ez , CATAPL
OFD = 0/. W72

D;ZP - 01 L4 0«73

OIéRD : O[.t M79

WIRD = W,. CAT/! 4+ o, w' . N7/
LULFp = N, T2 4+ o NT2
l2fp = W(.Cta73 4 Wy . CAT3
lit: £5 - bveo C’v7¢. + j,”(.C/\ﬂ/-
Wivk = N{_ ATl DonE 4

luelyp = Wi, .CAT2, DONE

‘JELJI‘ = N(:' CaT3, DDNE

v = Wi ONTq. DONE

EiwE = EL, ENTI, DONE

Ewwf = E7.CNTL DONE

E3wl - E:.caT3.Donve

E4if = E{.CNTy .DONE

MuLy = (O/q + 0/ 4 ¢) PoLse
ADD = (x; t w4 é) . pPuese
PuLse = (Go-f DONE + wl>o~&> Ddﬁ?—d
WDONE = W;. CAT4 . DONE |
EbvonE -

E;. eATY . DONE

0, veoo
W, poo | ORpD | SSA:;R
(o2 0010 RD ——— SWR
(w00l Oi‘z”———"l
0y 0100 W R — ENQODE
Wy ODIOY N‘. "
0} 0l10 EiWR -
eNT, ——
We O
¥ I
ua lovoo
") {oD} E
* jolo 0y
L o
w lott “z
g, ltoo 7
E. o] | E
Ey 1110 Xe
E? 1y : E,A
New
CAT4 -1 | GRD| NRD | ORD| Wi D WeWR| E; WR| <ABDDR |SRD |swe
v
X ! X x x X x m@o v o
_(X X ' X X x x b})o@ ! O
’ X X ! X X X 0boo ' o
. x | 2 4o x x x 00l \
3 B
X X \ X x X oﬁo : —
4 X X] b ¢ 4 X o | o
) —
X X ! X x 000@) o
z X x X X l
- | ' X 00@ ' e
3 X —
X X ' X X of’qojl v oo
X) ‘ f
¢ X X x | X oy v | o
' X X X X X ' ﬂ}%o o | i
2 —
X X X X X \ l i'oﬂ) » '
i P p] (e el
4 X X x X X | Ly o | ! o
| x X X X / X eoof) { 0 o
— % * X { X om_&) ! o
z X X X f X off ',/ 1)
3 i A - H of [] o | 1 | § [e | . f T Py

ot Ve o oveng

P POY . e PV W) B ; ‘4.. .w\.:.
nNOILDT I aer 3@ NOILITFaId a¢4 X IV ¥

—— - - 5 Tu.ﬁh‘r
. I x(Fa-i)ra T ogYI .
A+ 3wy IM QAN X Ld7Ix3 sIWA Ty \ !
(-0
G-a) 13 IA
\ - N
aley gL (NOILITRACD oy ms k ,’\ (v 0w =M 4.?%2
40 wowLFNA Jod 1 M Euvwa\wex.m_ w.m:\:; 14 10 ./_u.r\ﬁho\&ho =y 7
T+ TAY X -
NUIVL
dmilao

| ,_
.. T
10 ¥ N\c ¥ A O\Q.Q Q0G| a _ oaoo/ = il X 9090
o g | S N T TYY
AT/ A @1lto, = la1l x aja0
o011 |, rGE,ZE: = 001t x 1lQo
j L 01 i olatial) = 110 X Oojo
| ;
0y Eﬂ,,n:.;oe._ = atar X {oio
ont g ool = laay X allg
‘it om feee 1y B 0401 X g
«
X

1}

YEYE ﬂwo_ﬂoJo.._,d 1vta eaa|
oy ¢rjethenr = oi1ta lao|
/ Q| W Q_,,_.ﬂoo: = Jate x 010]
mwo_,o,,__o. = 0at0 x 1101
w,_wowo:oi S lieq x 001]
rnﬂ\ G

mo.:ee,,,n 1000 X% 011}
P 019909909 |= qo000 ¥ Il
(Jo-1)%0

. . *0
~—’ \—’ _

=o-l).

M h4-14
Set #M- M

17--a31 =

YR IE
- --lg 7 Ny
P
0, s - - e
,w.; I - | %
"oy ly e——nr _, _ _
ar\.:%) MNay L z
e e A1 D — \ H :
Y <
Sla-)tg <)
i T KRS
lgsng [< e
3IneL9a; S
iNoqg
INeqn <«———
35N &— 4
day «—r
oy «—o
AYoryzy ¢———
e}
G3ang
<
o e BNoqn Iy
G
QATLy
9 -
WI2zy <
€ Q ¥y ,
e [~ Je¢4 qQaiy €)
< Gaty gy €
k4] r||| Aty %4 .. \ |
dmiy L — ’
G .
1y h
amt Y e 10 JLNOD
o ! ._.-_ < I EE]
“V Gi—uii_ MM
19 vival - T
D
a0l 3 .._q | o
|
= : -_ 193
Jeavy ¥ri iy
. Avl!imlllli.il Q w3 " 1595
adlm
pHwaavs , ayl0 - < FININGTS birvo
— " INOQVIYY
| yaay, € — pro
~ydda
B 2G5 & P N
- e L)
Fatyz (RN

TRISTHTE FAROS

col M&la, 1

fho Fo

XARS

¥bvsy 11 D—«——j\)——ﬁ: oon
r

OBp GLDR _B1

e

X/

pADIO
out a1

ou'fewé,l

bwren 1

QoW Wy

SWAIR| uy W T snqA
t SyMI AN h
€ synduv1 9 €
FAY) U 2
A\Pwe "
b |
t-v T
< | ~2wop v-sd
7
z-vd

\-vPe \@24ue) T-y
_|.:$C.- T = *’ AV % o

.vol,d’.srr.jooo \)o Au.vG

I ?

SnQ O Mg X

GOW WMy »ow .C/y/) Fou*(’o_u
Z TL
- »o
| ..%.ﬁa) el |
<+) il
- wnxS .’30 2 RITOIV]
<-50 YR
A
(\o24v°2) Y14 o R ¢ -u
<4 a —— e
~1 Wi v 1 19595
*—5
= -1
< 44

-y

Youy 0.2 o 8V whuo Rl Ko RS s Bl vor.enz e €12

[SR AT 130 v [MNP 1 o R ‘A
e {en St n [RN den - (0
2o, Stea & en Y d 2 N e
Lot At R ot At et ot

| b q “] :
ek, 2 Xr @l xe Bl XrR& @M) ¥

(e RNy LN afen g2 M ares ¥ n_ﬁ,ﬁm avee 820 arpga.] acen-R2. b aem T avwep, 8.4 a0 - L
- s ® - - . —_— »
. . |) ﬁ !

s % o 4 v o IS ~t vy ot ; I8 ot 5 at e Al « a4 17 » o ot (-4
Sy ST Vien Darax JAenx AL TNY Cag o £223 4 qra ¥ : Syeal Jaea(
LY ST R b i~ 1AL 1A AT P Vo AT o AT L AT PA: vooNT AT b \

{ J| l J M 1 >) . 4 1 !

3 > & —t

;«.,L,O.,u‘ b f»m\”j Ao el ﬁ-.-,, ¢.¥ ac el A oGl ac{n b . i byl R
&.ﬂ T T Mg T LT LT Ko T LT
chg

. Ao ‘ > on . A . ~ «_ ‘ “Co t -
LC 20 [LN P Ty RN I U e o P awen X ok b
MV > T ? ¥/ > - QLV e
. q I |
Fa PR vA A F A m
"0 o £n a oo o -0 e on o co < o FA c ‘.c:y ¢ ..:l&l%/
A a e) A A [a) a e ¥
I {] T

] T
v y®] g 106l v

At A Aut ot oot Ty T Dcu,..
wea SE2A S N ?J Qeen G e
AT Al s S AT A ,‘ HT e _ AT - (A1 a _\ﬂ - el
G« 1 AT ,.qilx+ T — a v <] 4 _«/X%H

s m_lw/ = 1%.“_ p

4 wnLT FoRk A'm MoDO

Yhue-Bh] Yous-BLT yeug.tie yeut Ld oy iy vene-bLz NN ARA JEni g,y bmup«\o,anciﬂo,vmm

.w.dnmd@d 3°T QG(& C:(&o& ./.,,C./J .yoxd/z) WL AN 6\ .»dmvmru,

TP -
“« >
14d -
Ty ~p-N0 LRSNEE 3Ty Sasp o179 -Soup < ey
o’mO)ﬂQ»s .m.g...ﬂwvd b _ & .N&.‘A&s# L' .—4.,..:6 bes S0 ® 1 .N&;ﬂh&d L
_\ A
w Iy ul 1Pl ut Iy ur 1p ur I vy 1P ur 1l w o IP Ul api wr 1P v 0
.’4.6 o ymo AMo Ao . ‘ Ano ‘ A ANo Ave AMo e me
1*18-sm™e° L 19-anae S'19-mqe L'1@svgo b \RSTR pR-onae

7¢(9- %90 b e)'\Q-sMoe 8’3" S"O0 LN I 1 R-9naP

2oy Sq11 29
2INpow Wy -
Y 204 ylwng
Jrun »0)\5.5(:)300«\ »nyy 3

2 g A >9eRY 1S
.+..v00s wen Gas NS

" a=—a
<0

02>
* o) 9 e

= QOA

_
|
406 — A__ b
|
_

AmMMOD Tounter Unit State Machine

L

Iinputs
ps=shift areg

r=reset
a=add + multbar

Uutputs
k=1 at count max

count inputs next outputs
count
LB A T ps a G F E k
O v 0 [0 ¢ D 3 (O RO IS U
ANV o1 ¥ 00 1 0]
o0 1 00 X 01 C
o0 U1 X U1 0 [®]
O1 0 U0 X [S2NDaEN e U
G190 01 O o1 1 G
U 1 QU O 1 I O 1 1 1
011 000 G171 0
(U0 B 00 1 011 1
Ul 1 U1 U 1 UO0 (9]
G 11 o1 1 000 G
100 00 X 00 O
10U U U1 A 1 U1 1
1 U1 OO X 1701 1
101 01 X 000 o]
X X X 1 X X 000 0

C 8 hentO=E=riar(paz(Char(Bbariabar+Char(BYAbar+C{BbarTAbary =

7

O

6

«

¢

&

o

o

W

(S

psbar(Char (Bbar)A+Cbar (ByA+C(Bbar)A))

ncnti=F=rbar{Cbar(BbariAai{ps) + Cbar(B)Abar + Cbar(B)A(psbar)’

ncnt2=G=rbar (C(Bbar)Abar + C(Bbar)A(psbar) + Cbar(B)A(ps)abar)

k=rbar(a(Cbar(B)Abar (ps)+Cbar(B)A(psbar)) + C(Bbar)(Abar(ps)+Al(psbar)))

AMMOD Tontrol Unit ©tate Machine

Inputs Outputs
n=Emu 1 @ &3dd pPE=shift areg Tight I
a=add + multbar pa=add pulse
(k=1 at count max d=done -
’ m=lsb areg . i=system idle
T=Teset

i¥ ¥=1 go toc state Zerc set 1=1

C
(o
current inputs next outputs
state T 1t a m K ETSL 6 FSs b= 9 1
(B A FE
U0 OOX XX 00 LOJ O B & R
o0 11 X X 01 0 100
{ 00 [0 S o Bi MY SR o1 [O7NND S ¢ I S -
o0 100X 1 0 1 00 ¢
(0 i 0 X X X X 106 i 0C O
1 0 0 X1 XG0 10 i 000
' 170 OX1T X1 (e OO TTO
b 10 O X000 10 i 0060
IO O X 0O 1 0 U1 T 1T O
(10 0 XO0X 1t o Q ¢ 010
12 T e T o e T e o o e e T T e e e e e T e e e B e o T o o T o o s o o e D I s e O T T ST I T
X X 1 X X X X 00 ¢ 001
11
B
O U EE ST b aT U B AT (A S T TR aFabar () T F BlATST T S F (MR ST
¢
s Ryt IEFErhar(BraT (araTIn tabarImaT ¥ Bbar (AT ¥ Blatary(taFimbaryyktary T
(" P peeThar(Brar (AbeT ntabar ymbar # Bbar (AT ¥ BlUAbaTIkbar{aFmbar)y
e T ST T B T AT I T U T F B TA AT Ta b aT U R Ty
. .
6 —g=rhar(B(AbarIk)

Y

L

/

wet i B1

mody le

D&c MOB - né{(‘(ﬂ’;s doca dev

73 placements

398 Trersiclacs
Q00 (ires

re-B1 > ‘,/1 a 03
' XOR o2
a"‘y o1
. X o
écad@r-klm
Cs-1 > 7 watch_ 1
wr.1 l 3) | —
, _ -

b. D— selecta. 4
rd.1 : ‘ —
AVg\urcn_‘]_}__l_l) I |

L
, . |
busven_1 >———i‘1 l.sd.d-I-: l l
axwrew_4)—} I | j:).)—-
S5
yvd-1 — R4
Sefectr. 4
L r
svd 1 > 3 —‘i}) selects_1
| l
Suv-1 O e
selocta. i
ettt P
kQVA—(I— 81. ﬁﬂ T
breddr B2 97/ [i
> uled‘s-i
radds_ Q1 Ly Dq :
: 7 <
‘rrddl:.Bl "/ N f
0
¢1e 'tl XAC‘C‘I-BL W N
havd wyd -7 Dﬂ(defaslt. 4
(decrma) busswitel, //l 1

p >Yre%-i
J et
sdec'tq_i
1
defauit_t
“1b b —— r<g.1
4 e s vsto1
decpdey ‘
}
(R4}
I
!
! i
" —_—— vy 1
15— ¥SIS_{

N -
-5 = 4 N o
£ [i7 [Fi ke
;ﬂ3_'1 > . - - — t:, |
l 111 {>c redi 4
. h - _
n2.1 oy — — —
P | emcmnsnncd
[_{>¢ — - ol R {>o ref.1
- - ~ ,_) ' |
Wit =l ‘ . .
} i J
: _ } ‘)
l: } ' 1
\ ' { ’
g4 > — { (]
e o oy
| — -
4: 16 decoder €6 Wires
{
| ai.1
. L1
e

Int S——yd b ovt2

L |
;q: > > DJ+I
1
~l'w' > > ovl
\L v
x v
127 wires
Bst um\b

al. 4 > ——]
ag.1 >— T D__)m

_-l ol
b1 > j) >

b2y >—

et ISl
bggs >

XoR ARRAY

6 v e

oo

Bus_switc iy

Y X x
en-1)-I-—-‘ >0--J en-1>—I—>)-J

b4
'Fo r for

en en
n)—@00"’ " ggl ;‘O\H’

wrel b 4

~ %z 521

rhi A
phr] L ov vvﬁ.i
00»1 —F — vos dove 1 |
Compdone .1 ‘ ' |
om‘wk_l_ . Yes -G v ——— T'd-i
(vresmod stafe W’OLLMC>
reeef L
Y ¥ ¢ Yy Y VT
] 1 ol ¥ ~
SKIE <4l 33
bR s B
2l 3 s| U 4 .
&) bit3 N
btz) s [vraddr_Bt
T ,
R
7/
41
rraddr 81

l-als:;o S

2.4wmvx

r o

L — OQVQJJV_BI;..

"‘/ — OQCCJO/V- Bl

3 X w'fwr- A4

sz

W

4

> adelur &

52

[_2zsel

Pes oIt OvT(WT J“’d" le

‘RESMQDI

«t
. o«
<]
4 33
° & ' N n;ch_?-j
L] 7T
133 ' clbak
CnTuP-[q f—— —>OUT(€b,_1
_YE'—S-EL‘L— L | —> vesdone _ 1
l« -L-0 -G5 =5, vyospla.l — | —> vvd_1
<MPQ f) F— | — stvbsel.1
—— | — ressel.1
L - T }
olep- | — uniteel g
Cn“\ clk_L
clkcber (b bar
‘_“y v ¥ N AN T L2 A !
] Ay i - 9 -l Aa)
Y P B! I \ A2l N
Sy wi~] ~ B8] < -).;Lh
7% B 3 “)- o o R s <l
phi I O 3l 2 T Yl v ——— ph2
] o o | ———> el 1t
) e
Po— |) eyl
h’set17

] &S - W'} :
p‘!hod S‘h"’(wia ¢ t‘f\.‘e

|

ye se,T Comp?onc

resadg@ =
ouT:e g:i

C'"‘folo"¢ oolvep=1 &d-tb%

resedg=1 — >

yrd =1

vnitsef=1
vaitsel =
regcel =g
strbse| =g
yrd =g
hesllo-»e=ﬂ

o) OU*M\L,L

yeq LV=1
stebeel = 4

i
NOTE : EXTERNAL
conIFETIIN TO MAELE

CHNTUP.BVYT = CNTUfn

.

l chuP,[,, CVIT"P- "
i
; cnTop. "
Cn"}ij C"Ti’é — A
4 stete
cev hT(»f

) cv.Tup. l‘h
Q’ CnTUP-,‘n

(c VIT\’f - I. "

I

c nTuf- I

cn?up_lh

sfebsel=|
rvd =)

L

LV)TVF— oul >4

hedross Mefo

Oiz - BEBP Ontpd- | gog
We ~ZP2) E"OYF’ XA
Ocr-@821e Oy . - 104y
W, -1V Evwri- 1211
Oir ~PI1E8F 1t —)V | DB
Wa -21@0! Eror2- | 1O
Oizg @1t @ Xiw - 111D
Wy “ P11 EBrver3” R

Q@MMOd ;M(i‘{acl‘;nf
St=de Dw&jrwm;

SwuxL
ind3 >———dins
‘ I._.45 ovy — o013
‘Hi} >—“—|J-'11

Smuy?2

*—S out — out

oy iy

Ino1 — ey
. ov » ovtl
l'\ll >~]h1

)

indp >——inz
l»——.s ot ————> ouTy
in1g >—in1

52l

2_1mUK g 81T 21 MULTIPLEXEV

Do—@oda

oot L

I_2s%¢€L
Datr SELECTOVrL

U"l;‘f‘; ‘f‘or GS/“’

clkd clk2

B;P]‘\.
(mple -1 =0 -¢s -s... bipla.b)

Cllea clkh
—;L“{&!Dov c liebhar —
R+ &l [

N RS
A VEETYYY R

— FHZ'

wvsfvb‘—‘l
1o . ag\p

Bus :’ltﬂ(uﬁ«cf
Module _

1 B, Mod)
srote DincRRAM

<D
3¢ t'o W I's g :d
Jo ~ (24 =~ 2d z
&y oE 56 ¢ by 28
[a)
v Aw Sa o Iy 2
A ~ N A A N ~~ P
\P <V \,/ ‘,l/ \F ¥ ‘,V/ /,/ _\
14 Ay e /_/ :
//
p/c bCa{“c:v_.ﬁ.l '
<t bdata_R1
i RFrJ
—(—-X bvalwr-1
| N,
- i \,\
E) \\’\
f bt d-;-_-— a. 5 ce.
] |
BSM ? i Bs™ ‘
! ; ———Mokwrer_4
' i
i — ! € awcaddv. L
: | !
! | !
i bdaTe B + }w!adu‘f‘a _52
! i
i i i
, beaddr.Bik ' }(meoir_ﬁi
: buyer_1 S v wver 4
bYQ(L‘r_Bi }_— x—’;D\de‘iwv-l
! i — — | ———awtwn 2
o side bside o side b oside
havd wired N '
i
i i
t H
! i
v
— 7\/9.u'1'~ven,1
,"! | .bVq‘w*_l\\Ar }vaa’urcw_j
] f
| .
{ bdata _B1 >odata_B21 ,
1 FPy e FFPN ‘-
\ i bcaddr_B1/> —> avaddr_31 /
A\ b) K
\ ‘ / , \) ;
N\ ' /s — r\\aco&év- 31
. 4 A A A ,L N A\ ~ :
h I -~ ' J/ ~ v J/ N o ‘ B
. \ L ~ B
a s.'Jc.MMd-bs(Jg asde | beide
NOTES: PN ® BsSM o side. mosT ;6nor¢ unit address on
valve wyite but vnoel on weicht wrvite .
BYS hand shakin tgwals wnot show,, .
, g 5y Fle, 2.2

SYSTEM BUS INTERIC/ s 110K
MAORCH > Yag 2 7

— e . — o — e e e e e e e e e ——— — = e — - o DU “—

BsM WRITE TO [NTERNODE [3VS

REDOUT-1: L/ ‘ __~~ - - ___-
BUSY_1: I/ u [

ARADDR _B1 N N —
ACADDR _B1° <_ VALID)
ADATA _B1: """"“"(VALID >-__-___.
AWTLR_1
ADELLRIL: [] 1

RBSM READ FROM INTERNODE BUS
ARADDR - 81
ACADDR_ 81
BRADDR-B1 L
BcADDR. BI: C VALID)
ADATA _B1 Y T
R DATA L B1: (VALID >
AXWrReEN_1 I T
AN | | l
BwarEv_1

PROCESSOR ReEmD (BSHM WRITES TO PROCESSOR. BUS)
ARADDR _B1: ---= VALID Yoo -
ADATA _B1- ‘—-—< VALID >____

{sod . [] \L L
O3 : i A

PRoCESSOR WRITE (BSM RERDS FROM PROCESSOR BUS)

ARADDR - B1: - GALID P
A DATA _B1: - - VALID -———->___—
cs_1: j7 W \
wR._1: [T .

INPUT — e |
seTve —3 f€— \NPUT HOLD

arot i (aeio)
INPUT TIMING®

Fle. 4.1

Bsr{ Bus TIiMIVG
MARCH 2 1987

SysTEN

=

BUS HANDS HAK

3 2N

T

BSH

BsSM}

ool BSM

—%7 |
M |

U’WLIC

RS BYF

> L
Cir-1 e bdate BL \
ConTRUL
— SYsTEM

SIGNFLS CL\(—Z (.._"7,4_ tCQCIC“V—EL '::

RESET_1 —2 8 praddr_B1 | B-IiDt

——— pwren_1
(RL‘-_'}. —

oS T ! ~

K—-——} Qdu.?q_g‘l N
i

wr_1 —>
PROCELSOR
-

! \
BsM f :
NTCRFACEN L1 _—__—? Q(&dCY— 21 }
| e—> avafdvoR1 ()
"o &0-1 —> i SYSTEH
ST — srwyevi_ 4 By s
PROCESSOR{DONE-1 € i g -<DE
CONTROL K"—‘—- avalwrev_4 -
Busy - A1 < ————> arelwr- 1
DRISY ‘
reaovT-1 €1 —> awtwv-1
Ci+8it)

comoL| REGW_1 —

FIG, 2.3

RIM EXTERNAL INTERFALE
MARCH 2, 1977

BsH BLOCK DiACRAM

d

- QTIvd

S RETT DY HJ FETNAW WO
qaa _ S
Ta-Sagx 9
= N4 4
{ t8- 5000 v/..\« "
- L}
LAt ! A a $ TQuacYIVO
N + T Lrow o 2
¥ u
_ T Iv@Q X Y
a < ©
3 o Y | i v/ TUTWIVHYT
F-a2x M 12) 1D
ma¥d @ 1L1353v | T-1553%
w
N \
-anvoax b\ Ta-udavId [¢
v N - niIQyd
4000 ¥d T0-vaavus Y
| ———
T ads L —
Ty I8gwx A.IA - TTUmE | b RITHAD o
Leooavd | M
o 2 —
¢ N X <
T ynlmvX TA el € B I m T°s> 2?
3 N
drog kN
¥d 5 % S e
4 2 2 A vad ¢
Ta-YaawIvo ~l o o (uieod
N | - o 1 R N D! D e
22X = 0 +g-¥aavevo Q T-any
~O0HAPY IV . z () N N S < -
EGISEEEIN o T8 ¥dowey 7+ TV
1 e
1P x 3 T-¥n13dV @ il -
t 2 < S N N
“DPr TV ¢ TTwAlny L \
| — | — | = = — f— | — [_ —_ — T -~NovA I WAY
FriFSAYX 7 b A - 1 - , M « D)
=0T ﬂ\ddhmut/ mma K a o
W - ' 1o <
cvayd W .c.. ¢ @8 “u.. M W,M M 3 T -rvaunxy .
E 5 S _ 2L VA
Q ° e - - L
RRTTACEN'ES N 12 Ilr/l/..||| i
£ pé il - LT
~IT¥d ﬂ - zz/t,
d
_ T-~esy N T .
F-lro®3yx & - < a P | S
T ircway S) > <
. o /||/|A| « b
Leoakg ; S -] N M g LRS- N T e
m o B y " ToovAaLNG
b 2 4
TE “ASPg x 1 B N
|
(447 |
L_VGT T asna —

AvIS

PIMNOD ﬁ

+}

S P i
oTAW
M4
h |
Andsng

\

Lped

T9- V0ayowx

T3 - yqavevX

T A raayigdX

Xl\ﬂ« Ta- WA IDX

£osox

Faux

T ymx

< [T3 avx

Lrreado xwx

E-nAYMAY

Ta- uvagy

Fa ¥LQwN

