
Microarchitecture Specification for
the Back-propagation State Machine (BSM)

John DeLacy, Subbarao Vanka, Dan Bedeil,
Lea Williams, and Kamal Sarkez

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-016

Abstract

This technical report contains the Microarchitecture Specification for the Analog Processor
Node or APN, which was designed in the 1987 OGC Advanced VLSI class, and fabricated by
MOSIS. In addition, the results of chip testing are included. The BSM is designed to operate in
conjunction with an APN by updating the weights in the APN according to the back-
propagation of error algorithm. Groups of BSM can be connected into feedforward, layered net-
works.

Microarchitecture Specification:

BSM Chip

CSE 629 - 1987

John DeLacy, Subbarao Vanka

Dan Bedell, Lea Williams and Kamal Sarkee
August 13,1987

1. Introduction

1.1. General Description

The Back Propagation State Machine (BSM) chip performs the adjustment of "weights" associated
with inter-node connections in a neural-like connection network. The weights are used in the processing
node (PN) associated with each BSM. The BSM calculates new weights for each iteration of the net-
work.

The BSM implements the back propagation algorithm for a network which has input, output and
hidden processing nodes. It calculates new weights for the four inputs to the PN associated with it and
calculates error terms for the next lower level of nodes.

The following simplifying assumptions have been made to implement the BSM in silicon:

- each PN in the network connects to a t most 4 other units,
- the parameter q is an externally programmable 4 b i t value,
- The output function Opj, for all PNs, is given by

4

opj = f (COiwij)
i=l

where
0,. represents one of the four inputs to the PN,
wii represents the weight for that input,

1
1

f (x) is the function , and
1 + e-'

The BSM requires five sets of input data for its calculations: the value q, programmed from out-
side the network; the PN's inputs and output; an error term from the next higher level of nodes; and the
previous weights used by the PN.

The BSM outputs two sets of data. First, it calculates the new weights for the PN and writes
them into the PN. It then calculates an error quantity for each of the four new weights and sends them
to the next lower level of nodes.

1.2. BSM Equations

The equation for the change in weight (Aw) used in the BSM is

Awi = OiqOj(l -0,)X.

Since Aw = w,,,-wold, the new weight calculated by the BSM is

The quantity X could be two different values, depending on whether the BSM is in an output node
or a hidden node.

(XI is for BSM in output node,
X2 is for BSM in hidden node)

The variables are defined as follows:

77 is a constant loaded beforehand,
Oi is one of four inputs to the PN,
Oj is the output of the PN,
Ti is the "teaching vector" or the expected output, and
Sk wjk is the error quantity from the next higher level node.

The BSM must calculate four error quantities for transmission to the next lower level of nodes. It
calculates

1.3. BSM Algorithm
The algorithm executed by the BSM chip is:

Reset

Input 7 value

Input initial weights

Do (Forever)

{
Input P N input values

Input P N output value

Wait for "GO" signal

Disassert "DONE signal

Input X input (error term from level above)

For (i = 1 to 4) do

{
weight,. = 6qOi + weighti

write weighti to PN's weight,.

write (6*weighti) to lower level nodei

1
Assert "DONE signal

1

2. External Interface

2.1. System Architecture

The Back Propagation State Machine (BSM) and the Processing Node (PN) form the basic pro-
cessing unit in the neural-like connection architecture. The architecture allows upto 3 levels of such pro-
cessing units. Each level consists of upto 4 processing units. The units are referred to as Input, Hidden or
Output units depending on which of the 3 levels they belong to. Figure 2.1 shows the system architec-
ture in terms of processing units.

The processing units are constructed using the BSM and the P N as building blocks. At the Output level
each processing unit is made up of one BSM and one PN. For the Output units Data propagates only in
the Forward direction (from Input to Hidden to Output levels). But for the Input and Hidden units data
propagates in the Forward and Backward directions. For these processing units an extra P N is used for
the backward path. Figure 2.1 shows the 2 types of processing units.

Each Input or Hidden processing unit is capable of communicating with upto 4 other processing
units a t the next higher level for Forward data propagation. Similarly each Output or Hidden unit is
capable of communicating with upto 4 other processing units a t the next lower level for Backward data
propagation. Since this involves a large number of interconnections between processing units, a virtual
connection is preferred to a physical connection. This is done via an addressing scheme which allows any
processing unit to address 4 other units, and to access upto 8 different registers within that unit.

2.2. BSM External Signals
The signals that interface the BSM to the other chips in the system are shown in Figure 2.3.

There are three distinct sections to the external interface.

2.2.1. System Bus Interface

The System Bus will be made up of three four-bit busses on the "a" and "b" interfaces. On the "a"
interface the busses are bidirectional while on the "b" interface they are input busses. The busses are
the Data bus, the Unit Address bus and the Register Address bus. All busses on the "a" interface and
"b" interface are connected to the shared System bus. The System Bus uses a Request/Grant (Daisy
chain) handshake protocol. (Refer to Figure 2.2.) It uses the following signals:

araddrJ31: Four-bit Bidirectional Address bus used to specify the Register address. The bus is
driven by the BSM during accesses to an FPN or BPN. It is received by the BSM during
accesses by an FPN or BPN to the BSM and used to select one of the internal registers
of the BSM.

acaddrJ31: Four-bit output-only address bus used to specify the Unit address. The bus is driven by
the BSM for accesses to an FPN or BPN.

adataJ31: ' Four-bit Bidirectional Data bus used to transfer data to or from the BSM. The bus is
driven by the BSM during write operations by the BSM to an FPN or BPN. It is
received by the BSM during write operations by an FPN or BPN to the BSM. It is also
used by the host processor for initialization.

awtwr-1: Weight Write Strobe. This output is driven by the BSM to write new weight values into
the FPN.

adelwr-1: Delta Write Strobe. This output is driven by the BSM to write new error values
(bwi)into the BPN.

axwren-1: X Write Enable. This input enables writing the error value from the BPN into the
BSM.

avalwren-1: Value Write Enable. This input enables writing the input value from the FPN into the
BSM.

braddrJ31: Four-bit Input Address bus used to specify the Register address. The bus is driven by an
FPN during write operations to the BSM.

bcaddrJ31: Four-bit Input Address bus used to specify the Unit address. The bus is driven by an
FPN or BPN during write operations to the BSM.

bdataJ31: Four-bit Input Data Bus used to transfer data to the BSM. The data lines are driven
by the FPN to write the computed output into the BSM.

bwren-1: Write Enable. It is driven by the bwrstrb-a signal from the FPN to strobe data into the
BSM.

2.2.2. Host Processor Interface

reset-1: System Reset. Used to initialize the entire network to a known state.

rd-1: Host Processor Read Input. Used to read from internal registers within the BSM while
CS-1 (Chip Select) is active.

wr-1: Host Processor Write Input. Used to write into internal registers within the BSM while
cs-1 (Chip Select) is active.

cs-1 : Chip Select Input. Used to put the BSM in an initialization or diagnostics mode. Nor-
mally inactive while the network is performing computations.

go-1 : System Synchronization Input. Used to synchronize the computations of all the nodes in
the network externally.

done-1: BSM Done Output. Used to indicate that the BSM has completed the computations and
updated the FPN and BPN registers.

clk-1 : Clock Phase 1 Input. Phase one of a 2-phase non-overlapping clock.

c lk2 : Clock Phase 2 Input. Phase two of a %phase non-overlapping clock.

2.2.3. Bus Access Control Signals
reqin-1 : Bus Request Input. This signal, when low, enables an internal request onto the output

request pin, breqout-1. In addition to breqout-1 being low, the busbusy-1 signal must
also be low for the BSM to become the bus owner.

reqout-1: Bus Request Output. This signal is driven by the BSM when no higher priority agent
has requested the bus and no other agent (lower or higher priority) is currently using the
bus. Along with breqin-1, this signal is used to form a Daisy-chained priority resolution
circuit for bus access control.

busy-11: Bus Busy Bidirectional. This signal is activated by the node which is currently using the
bus. All nodes receive the signal as an input and hold off their accesses to the bus if this
signal is active.

3. Internal Architecture

The BSM consists of seven modules which together perform the functions of interfacing with the
System busses, storing data values internally, and performing computations within the BSM. Each
module is described in detail in the following sections. See Figure 3.1 for details.

3.1. Bus Interface Module (BiMOD)

The Bus Interface Module handles the protocol necessary for the chips to share the system bus (the
bidirectional data bus and bidirectional address busses). It is assumed that all signals will be used dur-
ing phase 1. Thus, all outputs will be created with a phase 2 strobe. In fact, all outputs are created by
a standard dynamic PLA.

3.1.1. Signals to/from off chip

clocks: Phase 1 and phase 2; self explanatory

wstrb-1: Write strobe. This output of the BiMOD indicates that valid data is on the busses and
should be strobed into the addressed unit. This output will probably have to be an open
drain signal. Note that in the BSM, this output does not go off chip; it is multiplexed
inside ResMOD.

reset-1: Reset. This input to the chip will reset all the state machines to their intitial states.

reqin-1: Request in. This input comes from a chip with higher priority for use of the bus. If it is
asserted, the BiMOD will not attempt to use the bus. Also, in the first clock period
after access has been granted, the BiMOD will check reqin-1 and abort an output
attempt if it is asserted. This handles simultaneous requests.

reqout-1: Request out. This output of the BiMOD will signal to the lower priority chips that the
BiMOD demands the bus. It will be connected to one input of an OR gate, the other
input being connected to reqin-1 and the output of the OR gate from the next higher
priority source. When reqout-1 of a given chip is asserted, the external gates will cause
reqin-1 of all lower priority chips to be simultaneously asserted.

busy-1: Busy. This is a bidirectional signal that is an open drain output of the chip and an
input for the BiMOD. The gate for the open drain driver will be driven by reqout-1.
Busy-1 will indicate when the bus is in use for all chips, regardless of priority. This sig-
nal is to prevent a higher priority chip from intervening in the middle of a data transac-
tion.

3.1.2. Signals to/from on chip

outreq-1: Output request. This signal comes from another module. When it becomes asserted, the
BiMOD state machine will check the bus. If the bus is available, then an attempt is
made to send data out; otherwise, the BiMOD will wait until the bus is available to
attempt to send data. Outreq-1 must stay asserted until the BiMOD successfully gets
the bus (i.e., until outenab-1 goes high).

outenab-1: Output enable. This output signal from the BiMOD enables the output buffers, placing
the contents of the data bus and the address busses onto the interchip bus. It should
drive the output buffers of all address and data busses.

3.1.3. BiMOD Operation

The BiMOD controls access to the output bus of a chip. Since several chips can use a bus, and
more than one could request access simultaneously, a mechanism must be provided to handle the poten-
tial conflict. The BiMOD contains a state machine that arbitrates bus requests among the chips that
can write to the interchip bus.

The BiMOD state machine will produce an output on reqout-1 and consequently assert busy-1
when it receives a request for output (outreq-1 asserted) and busy-1 and reqin-1 are disasserted. If
reqin-1 is asserted one clock cycle later by a higher priority chip, the state machine aborts the output
attempt.

Once the BiMOD gets control of the bus, it continuously asserts reqout-1 for the entire write
cycle. Since reqout-1 also drives the gate of the open drain buffer for busy-11 (the "I" is because the
open drain buffer will invert the signal; there needs to be an inverter between busy-11 and the input
busy-1 to BiMOD), assertion of reqout-1 will also assert busy-1. These signals cause all chips on the
bus to wait until the current user is finished with the bus. The write cycle is three clock cycles long; the
data and address busses will be valid for all three cycles (except for the initial charge-up delay, which
will be somewhere around 40 to 60 ns). The ouput strobe signal (wstrb-1) will occur in the second clock
cycle of the write cycle.

3.1.4. BiMOD Use
In order for a chip to use the BiMOD, the following sequence of operations is suggested. When a

chip desires output, it will assert outreq-1. This should stay asserted until the chip is granted use of the
bus, which is indicated by outenab-1 going high. When outenab-1 goes low again, the write operation
was successfully completed. The chip is not allowed to change the inputs to the data and address out-
put buffers until outenab-1 goes low again.

3.2. Result Output Module (ResMOD)

The Result Output Module provides the sequencing and control necessary for writing the results of
the BSM's computations to the various destination units. The ResMOD performs two operations; it
writes the four newly computed weights into the FPN of the local node, and it writes the product Swi
for i = 0 to 3 t o the four lower level BPN's.

3.2.1. Signals to/from off-Chip
clocks: Phase 1 and phase 2; self explanatory.

reset-1: Reset. This input to the chip will reset all the state machines to their intitial states.

go-1 : This signal is an input from the host system. When it is asserted, the BSM begins its
calculations. It is used by ResMOD to reset the state of resdone-1 and return the state
machine to its idle condition.

awtwr-1 : Weight write strobe. This output of the ResMOD goes to the other FPN's on the bus
indicating that valid weight data is on the busses and should be strobed into the
addressed unit. This output will probably have to be an open drain signal.

adelwr-1 : Error write strobe. This output of the ResMOD goes to the other BPN's on the bus
indicating that valid error data (6wi) is on the busses and should be strobed into the
addressed unit. This output will probably have to be an open drain signal.

resdone-1: ResMOD done. This output of the ResMOD signals to the external processor that the
BSM is finished with a11 back propagation activities. (It is called "done-1" in the exter-
nal interface.) It will be asserted when the BSM has written all of its results into the
BPN's and FPN's. It will be disasserted again when the next go-1 signal is received.

3.2.2. Signals to/from on-Chip

compdone-1: Computation done. This input to the ResMOD comes from the Computation Sequencer
Module (SeqMOD). It signals the ResMOD that all computations are done and the
ResMOD then begins its writing operations.

wrstrb-1: Write strobe. This input to the ResMOD comes from the Bus Interface Module
(BiMOD). It will be routed either to awtwr-1 or adelwr-1, depending on which P N is
being written to.

outenab-1: Output enable. This input signal comes from the BiMOD. It indicates that an output
cycle on the system bus is under way. When this signal falls low again, it indicates that
the write operation is over.

outreq-1: Output request. This output of the ResMOD goes to the BiMOD. It is used to request
an output write cycle on the interchip bus.

rrd-1: ResMOD read. This output from ResMOD goes to DecMOD. It requests a read cycle to
the register file.

regaddrJ31: Register address bus. This output bus from ResMOD goes to the register address output
buffers and carries the address of the register currently being written.

unitaddrJ31: Unit address bus. This output bus from ResMOD goes to the unit address output buffers
and carries the address of the unit currently being written.

rraddrJ31: ResMOD register address bus. This bus goes to DecMOD to select the register being
read in the register file.

r8J31: Register 8 ouput. This bus carries the contents of register 8 in the register file (the unit
address programmed into the chip). It is a static output of the register.

3.2.3. ResMOD Operation

The ResMOD sequences through two write operations; one to the FPN to write all four new
weights, and one to the BPN's to write the newly-computed error quantities. It uses BiMOD to gain
access to the bus. It uses DecMOD to create the proper register select and register read signals to Reg-
MOD.

When compdone-1 is asserted, the ResMOD state machine begins the sequence of eight register
write operations. First it writes the four newly-computed weights to the FPN. It puts the BSM's unit
address on the unitaddrJ31 bus and writes one new weight with 00 on the regaddrJ31 bus, the next
weight with 01 on regaddrJ31, and so on for all four new weights.

Next, the ResMOD will write the four error quantities to the next lower level BPN. It does this by
putting the BSM's unit address on the regaddrJ31 bus and writing one new error quantity for each of
the four unit addresses, 0 to 3, on the unitaddrJ31 bus.

When the ResMOD is finished with all eight writes, it asserts done-1 and returns to its initial
state.

3.2.4. ResMOD Use

The Computation Sequencer Module (SeqMOD) must assert compdone-1 when it is finished with
all computations and has all the results stored away in the appropriate registers. Once ResMOD sees
compdone-1, it will begin its operation and go to completion. It needs no further enabling. Once
ResMOD has started, no other module or entity can be allowed to use the register file. There is no pro-
vision made to detect or avoid simultaneous accesses to the register file.

3.3. Decode Module (DecMOD)

The Decode module performs the decoding of addresses to generate the internal select, read and
write signals to the Register file module. Accesses to the Register file can be from outside the BSM (from
an FPN or BPN) or from inside the BSM (from the Sequencer Module or the Result Module). All
accesses are controlled by the Decode Module which multiplexes the control signals onto the select, read
and write signals which go to the Register file.

3.3.1. Signals to/from off Chip

araddrJ31: Register address from the System bus connected to the "a" interface of the BSM.

acaddrJ31: Chip address from the System bus connected to the "a" interface of the BSM.

braddrJ31: Register address from the System bus connected to the "b" interface of the BSM.

bcaddrJ31: Chip address from the System bus connected to the "b" interface of the BSM.

adelwr-1 : Control signal generated by the Result module to indicate that a new Error quantity is
being written out to the bus.

awtwr-1: Control signal generated by the Result module to indicate that a new Weight is being
written out to the bus.

axwren-1: Control signal from the System bus to write the Xin data value into the BSM.

avalwren-1: Control signal from the System bus to write a new Input value into the BSM.

bwren-1 : Control signal from the System bus to write a new Output (Oj) value into the BSM.

cs-1: Chip select input from the Host Processor.

wr-1: Write input from the Host Processor.

rd-1: Read input from the Host Processor.

3.3.2. Signals to/from on Chip

xinrd-1: Control signal from the Sequencer module to read the Xin value from the Registerfile.

etard-1: Control signal from the Sequencer module to read the Eta value from the Registerfile.

idrd-1: Control signal from the Result module to read the Unit ID value from the Register file.

ojrd-1: Control signal from the Sequencer module to read the Output (Oj) value from the Regis-
ter value.

SOrd_l(l:4): Four control signals from the Sequencer module to read the four Input values from the
Register file.

SWrd-l(l:4): Four control signals from the Sequencer module to read the four Weights from theRegis-
ter file.

RWrd_l(l:4): Four control signals from the Result module to read the four Weights from the Register
file.

SWwr_l(l:4): Four control signals from the Sequencer module to write the four Weights into the Regis-
ter File.

SEwr_l(l:4): Four control signals from the Sequencer module to write the four Error quantities into
the Register file.

RErd_l(l:4): Four control signals from the Result module to read the four Error quantities from the
Register file.

s l (O : l 5) : Sixteen select signals from the Decode module to select one of sixteen regsitersfrom the
Register file for a read or a write operation.

rreg-1: Read signal from the Decode module to read the selected register in the Register file.

wreg-1: Write signal from the Decode module to write the selected register in the Register file.

3.4. Register File Module (RegMOD)

This module contains sixteen four bit registers and the logic required to control the reading and
writing of these registers.

3.4.1. Signals to/from off Chip

RegMOD does not directly interface to any external signals.

3.4.2. Signals to/from on Chip

inJ31: Four bit data bus used to write to a selected register.

outJ31: Four bit data bus used to read a selected register.

rreg-1: A signal which enables a register read.

wreg-1: A signal which enables a register write.

A four bit bus tied to the output (Q) bits of register 0.

A four bit bus tied to the output (Q) bits of register 1.

A four bit bus tied to the output (Q) bits of register 2.

A four bit bus tied to the output (Q) bits of register 3.

A four bit bus tied to the output (Q) bits of register 4.

A four bit bus tied to the output (Q) bits of register 5.

A four bit bus tied to the output (Q) bits of register 6 .

A four bit bus tied to the output (Q) bits of register 7.

A four bit bus tied to the output (Q) bits of register 8.

A four bit bus tied to the output (Q) bits of register 9.

A four bit bus tied to the output (Q) bits of register 10.

r l l J31 : A four bit bus tied to the output (Q) bits of register 11.

r 1 2 3 1 : A four bit bus tied to the output (Q) bits of register 12.

r1331 : A four bit bus tied to the output (Q) bits of register 13.

r1431 : A four bit bus tied to the output (Q) bits of register 14.

r1531 : A four bit bus tied to the output (Q) bits of register 15.

rsO-1: Select line for register 0.

rsl-1: Select line for register 1.

rs2-1: Select line for register 2.

rs3-1: Select line for register 3.

rs4-1: Select line for register 4.

rs5-1: Select line for register 5.

rs6-1: Select line for register 6.

rs7-1: Select line for register 7.

rs8-1: Select line for register 8.

rs9-1: Select line for register 9.

rslO-1: Select line for register 10.

rsll-1: Select line for register 11.

rs12-1: Select line for register 12.

rs13-1: Select line for register 13.

rs14-1: Select line for register 14.

rs15-1: Select line for register 15.

3.4.3. Internal Structure of RegMOD.

RegMOD has 16 4-bit registers which can be selected by individual Select lines. Along with a
rreg-1 and wreg-1 the registers can be read or written to. During read operations the data from the
register is put out on the individual output data bus (r o l l 1 through r15J31). The same data is also put
out on a common tristateable output data bus called outJ31. During write operations the data from the
common input data bus called i n 3 1 is written into the selected register.

3.4.3.1. Individual register

Each register consists of four independent RS type latches, configured as "data latches", with
Resets tied to Sets through inverters. An array of four latches, with Enable inputs tied to a single regis
ter select line, comprises an individual four bit register.

3.4.3.2. Register file

Corresponding "Set" inputs of the data latches of each of the sixteen registers are wired together
with the corresponding line of the four bit input bus, inJ31. Assertion of a register's select line, the
write signal, wreg-1, and PHI, allows the register's latches to load i n 3 1 on the trailing edge of PHI.
The contents of the register are therefore valid in PH2.

Corresponding bits of the sixteen register outputs are gated onto the output bus, outJ31, so that
when a register select signal, the read signal, rreg-1, and PHI are asserted, the selected register's value
is placed on o u t 3 1 .

Each register also directly drives its own output bus (one of: rOJ31, r lJ31, ... , r15J31). These
bus signals are valid during PHI and can be accessed in parallel by the other modules on the chip.

3.5. Sequence Control Module (SeqMOD)

This module generates the control signals required to sequence the ALU through the microinstruc-
tion sequence needed to perform the BSM's internal computations. The computation sequence is trig-
gered by the "GO" signal received by the BSM from external logic. During the computation the BSM
computes the new weights and error quantities. At the end of the computation the Computation
Sequencer generates a "Computation Done" signal to the Bus Access Control logic. The new weights and
error quantities are then written out over the System Bus to the FPN and the BPN's by the Result
module (ResMOD). The Computation Sequencer consists of 2 state machines and 3 combinational logic
blocks which generate the control signals to transfer data between registers and to perform arithmetic
operations using the ALU. The state machines and combinational logic are described below.

3.5.1. Signals to/from off Chip

go-1 : The go-1 signal triggers SeqMOD to start the computation sequence. This signal is
received from an external system synchronization module.

reset-1: The reset-1 signal is used to reset all internal state variables within SeqMOD.

clk-1: Phase 1 of the Zphase clock used to synchronize all the state machines.

clk-2: Phase 2 of the 2-phase clock used to synchronize all the state machines.

3.5.2. Signals to/from on Chip

Internal 4-bit data bus used to transfer data to RegMOD. SeqMOD drives the data onto
this bus a t the same time as it generates a write signal for one of the registers.

Internal 4-bit data bus used to transfer data from RegMOD to SeqMOD. SeqMOD gen-
erates a read signal and expects data to be put on this bus from one of the registers.

Internal Bbit data bus used to transfer one of the operands from the SeqMOD to
AmMOD. All intermediate results such as the contents of the temporary registers within
SeqMOD are transfered over this bus.

Internal 4-bit data bus used to transfer the second operand from SeqMOD to ArnMOD.
Values such as "Eta", the weights and the input values from the register file are
transfered over this bus.

Indicates that ArnMOD has completed the current operation, in response to an Add or
Multiply command from SeqMOD.

Enables the Oj register contents onto the input bus of the Lookup Table within
SeqMOD.

Enables the most significant bit of the Xin register onto the input of a latch within
SeqMOD.

Enables the "Eta" value onto the ybusJ31 during the computation of new weights and
error quantities.

These are 4 control signals used to read the Input values 01 through 0 4 out of Reg-
MOD. They are outputs from SeqMOD to DecMOD.

swrd_l(l:4): These are 4 control signals used to read the Weights W1 through W4 out of RegMOD.
They are outputs from SeqMOD to DecMOD.

swwr-l(l:4): These are 4 control signals used to write the Weights W1 through W4 into RegMOD.
They are outputs from SeqMOD to DecMOD.

swwr-l(l:4): These are 4 control signals used to write the Errors Err1 through Err4 into RegMOD.
They are outputs from SeqMOD to DecMOD.

mult-1: This signal initiates a multiplication operation using ArnMOD. The signal is an output
from SeqMOD to AmMOD.

add-1: This signal initiates an addition operation using ArnMOD. The signal is an output from
SeqMOD to AmMOD.

done-1 : This signal indicates the end of an Addition or Multiplication operation. The signal is
an output from ArnMOD to SeqMOD.

compdone-1: This signal is an indication to ResMOD that the computation is complete and that the
new Weights and Error values are in RegMOD.

3.5.3. Internal structure of SeqMOD

3.5.3.1. Sequence State Machine

The Sequence state machine implements the computation algorithm for the BSM. It has 7 states
and it works along with a 4-state counter to generate the control signals needed to read values out of
the RegMOD or the temporary registers within SeqMOD, to control the AmMOD and to write the
results of intermediate or final computations into appropriate registers.

3.5.3.2. 4-State Counter for Weights and Errors

The 4Sta te Counter is used in conjunction with the Sequence state machine to determine which of
the weights or errors is being computed a t any given time. The state of the counter is used to generate
the read or write signals to one of the four weight or error registers.

3.5.3.3. Lookup Table

The Lookup Table logic generates the Oj(1-0j) value using the Oj value from RegMOD. This
block consists of combinational logic whose output is ready to be used whenever the ojrd-1 signal goes
active.

3.5.3.4. Control Logic

The Control logic block consists of combinational logic which decodes the state of the Sequence
state machine and the Counter and some external signals to generate the read, write and computation
signals.

3.5.3.5. Encode Logic

The Encode logic block consists of combinational logic which encodes signals generated by the
Control logic block and provides the encoded address and read and write signals to DecMOD, to access
registers from RegMOD.

3.5.3.6. Temporary Registers

Three &bit temporary registers, Regl, Reg2 and Reg3, are used to store intermediate values which
are common to the rest of the computation.

3.6. Adder /Multiplier Module (AmMOD) (version 3)

The Addermultiplier module adds or multiplies any two integers. It can add any two &bit
unsigned data values or two 7-bit signed values. The signed data is in two's complement form. It can
multiply two 6-bit unsigned data values and returns a 12-bit answer.

3.6.1. External Signals (off chip)

reset-1: The reset signal is used to reset all the pla inputs and outputs and to set the a register
(areg) to zero.

phl: Phase 1 of the 2-phase clock is used to load the input registers and set up the inputs and
latch the outputs for the plas. It also is used to signal the load for the output register
when the arithmetic operation is finished.

ph2: Phase 2 of the %phase clock is used to latch the inputs of the plas,to reset areg, and set
done-1 when the operation is finished.

3.6.2. External Signals (on chip)

xbusJ31: Internal &bit data bus (6 of which are used by the bsm, on that chip the 2 msb are
grounded) used to transfer one of the arithematic operands to AmMOD.

ybusJ31: Internal &bit data bus (4 of which are used by the bsm, on that chip the 4 msb are
grounded) used to transfer the second operand to AmMOD. Values used in any arith-
metic operation are transfered over these two buses.

obusJ31: Internal 12-bit data bus (6 of which are used by the bsm) used to transfer the results of
an addition or multiplication operation out of AmMOD to another module or off chip.
Obus-bl is valid after done-1 is high and stays valid until the next out overwrites it.

done-1: Indicates that AmMOD has completed the current operation, in response to an add or
multiply command. The done-1 signal goes high in phase 2 following a load of the
oregJ31 in phase 1. This allows the output on the obusJ31 to be used in the next phase
1.

add-1: This signal causes AmMod to add the two numbers given on the input busses.

mult-1: This signal causes a multiplication of the two inputs to occur.

3.6.3. Internal Functionality

This module contains 3 submodules or units an adder/accumulator unit, a control unit, and a counter
unit(see attached block diagram). The timing requirements are shown in figure 3.6.1.

3.6.3.1. Adder/accumulator unit

The adder/accumulator contains four registers, 8 full adders, and some logic gates. Three of the
registers are loaded/unloaded from the previously mentioned buses. Two 8-bit registers xregJ31 and
yregJ31 are loaded from xbus and ybus respectively and oregJ31 a 12-bit register is unloaded by obus.
The other register is a 13-bit accumulator (aregJ3) that stores the intermediate sums during multiplica-
tion. The xreg and the yreg are loaded when an add or mult,phl, and i or done are high. The signal i 2
comes from the control unit and is high if AmMOD is idle. The other signals have been discussed previ-
ously. The xreg is loaded directly from the bus. The ybus is loaded into bits 0-8 of the yreg if add is

------- . ------- . - ----- -------
P H I \ ------- / \-------/ " \ ------- / \ ----- --

done ---------------------------------"---------/

o r e g - - - - - - - - - - - - - - - - -"- - -X----------------------
v a l i d

1) All input signals must be valid during PHI.
2) Mult and add should be low before done goes high and stay low until

after the output is read.
3) The output is vaild the first PHI after done is high.
4) Oreg is valid until the next output writes over it.

FIGURE 3.6.1. ArnMOD Timing diagram

high and bits 2-8 if mult is high. The areg is gate delayed to be loaded after xreg during phase one. If
the operation is addition xreg is loaded into bits 4-11 of the areg. If the operation is multiplication xreg
is loaded into bits 0-5. Multiplcation is done by a sequence of shifts and adds, so the areg is shifted
right one bit when ps-2 is recieved from the control unit. The adder/accumulator unit also contains a
8-bit adder. The 8-bit adder is 8 full adders which preforms the addition operation. When pa-2 is
recieved from the control unit a parallel add is performed on yreg and bits 4-11 of the areg with the
results stored in areg.

3.6.3.2. Control unit

The control unit controls the function of what the module is doing. It is a pla with a small
amount of external logic. The input signals for the pla are n-2, a-2, k-2, m 2 , and r-2. n-2 is mult
exclusive ored with add, a-2 is add and not mult,k-2 is the count signal, m 2 is the lsb of areg, and r-2
is the same as reset-2. The output signals for the pla are ps-2, pa-2, d-2, and i-2. ps-2 tells the areg
to shift right 1, pa-2 tells the adders to do a parallel add, d-2 is done2 before it is phase 2 trapped,
and i-2 is one when AmMOD is idle. Ever phase 1 if the done signal or idle is high it checks to see if
the add or mult signal is high if not it remains idle (see attached flow chart).

If the add signal is high it begins a sequence of events to cause an add to occur. After the x regis-
ter is loaded in phase one, during that same phase the x register is loaded into the accumulator and d-2
and/or i-2 are set to 0. An addpulse is given to all the adders and a parallel add is done. In the next
phase one the answer is latched into the accumulator register. The data in the accumulator is then
shifted right four places and loaded into the output register. The number of shifts is keep track of by
the counter unit. The done signal is then set to a one.

If the mult signal is given the controller begans a sequence of events to cause a multiply to occur.
After the x register is loaded into the accumulator register done and/or idle are set to 0. The count,
which is a loop arround counter initially set to zero, is checked to see if it is equal to 6. If it is k is set

to one, if not k remains equal to zero. The least significant bit of areg (m 2) is checked, if it is a one
add (pa-2) and shift (ps-2) areg right one place. If it is a zero skip add and shift areg right 1 place.
Then check k if k is zero go back to check count step above and repeat sequence. If k is a one load the
areg into the output register. Set the done signal to one.

3.6.3.3. Counter unit

The counter unit is a state machine which counts to three for addition and five for multiplication.
The counter is used during addition to place the sum in the lsb of the areg, so it can be loaded into the
oreg. During multiplication it is used to keep track of how many bits have been shifted. When all 8-
bits have been shifted the multiplication is complete and the counter tells the control unit to stop.

3.7. Input/Output Module (PinMOD)

3.7.1. Signals to/from off Chip

xgo-1 : External signal which starts the BSM computation of new weights and error quantities.

xrd-1 : External signal which performs a read operation from one of the internal registers of the
BSM, as specified by araddrJ31 or braddr31.

xwr-1 : External signal which performs a write operation to one of the internal registers of the
BSM, asa specified by araddrJ31 or braddrB1.

xcs-1: External signal which selects the BSM for a read or write operations which originate
from the Host processor.

xavalwren-1: External signal which performs a write operation to one of the "input value" registers of
the BSM from the "a" interface of the BSM.

xaxwren-1: External signal which performs a write operation to the "Xin" register of the BSM from
the "a" interface of the BSM.

xbwren-1: External signal which performs a write operation to one of the "input value" registers of
the BSM from the "b" interface of the BSM.

xreqin-1: External signal which indicates to the BSM that a higher priority BSM in the network
has requested access to the System bus.

xbusy-1: External signal which indicates to the BSM that the System bus is being used by some
other BSM or PN.

xreset-1: External System reset signal which resets all internal state machines within the BSM.

xbcaddrB1: External "chip address" bus on the "b" interface of the BSM. This is an input bus.

xbraddrJ31: External "register address" bus on the "b" interface of the BSM. This is an input bus.

xacaddrJ31: External "chip address" bus on the "a" interface of the BSM. This is a bidirectional tri-
state bus.

xaraddrB1: External "register address" bus on the "a" interface of the BSM. This is a bidirectional
tristate bus.

3.7.2. Signals to/from on Chip

go-1 : Internal signal which starts the BSM computation of new weights and error quantities.

Internal signal which performs a read operation from one of the internal registers of the
BSM, as specified by araddrJ31 or braddrJ31.

Internal signal which performs a write operation to one of the internal registers of the
BSM, asa specified by araddrJ31 or braddrJ31.

Internal signal which selects the BSM for a read or write operations which originate
from the Host processor.

Internal signal which performs a write operation to one of the "input value" registers of
the BSM from the "a" interface of the BSM.

Internal signal which performs a write operation to the "Xin" register of the BSM from
the "a" interface of the BSM.

Internal signal which performs a write operation to one of the "input value" registers of
the BSM from the "b" interface of the BSM.

Internal signal which indicates to the BSM that a higher priority BSM in the network
has requested access to the System bus.

Internal signal which indicates to the BSM that the System bus is being used by some
other BSM or PN.

Internal System reset signal which resets all internal state machines within the BSM.

Internal "chip address" bus on the "b" interface of the BSM. This is an input bus.

Internal "register address" bus on the "b" interface of the BSM. This is an input bus.

Internal "chip address" bus on the "a" interface of the BSM. This is a bidirectional tri-
state bus.

Internal "register address" bus on the "a" interface of the BSM. This is a bidirectional
tristate bus.

3.7.3. Internal structure of PinMOD

PinMOD consists of input and output buffers required to interface to the System Bus on the "a" and "b"
interfaces of the BSM. For input signals PinMOD implements the input buffers. For output and bidirec-
tional signals PinMOD also implements the tristate output buffers which are controlled by internal sig-
nals.

4. Timing Specifications

4.1. BSM Write Operations

The BSM writes the new weights to the FPN or the error quantities to the previous level BPN's
using araddrJ31, acaddrJ31, adataJ31, awtwr-1, and adelwr-1. The timing diagram is shown in Figure
4.1.

4.2. FPN Write Operations

The FPN writes the Input values into the next level FPN's and BSM's using araddrJ31,
acaddrJ31, adataJ31, avalwren-1. It writes the computed output, Oj, into the current level BSM with
bdataJ31, bcaddrJ31, bwren-1, with braddrJ31 hardwired to don't cares. The timing diagram is shown
in Figure 4.1.

4.3. BPN Write Operations

The BPN writes the computed output value into the BSM over the system bus using the adataJ31,
using xwren-1 for the write strobe. The BSM ignores both a r a d d r 3 1 and acaddrJ31 for this operation.
The timing diagram is shown in Figure 4.1.

4.4. Host Read/Write Operations

The Host processor can read or write registers within the BSM, FPN or BPN by asserting the
reset-1 signal and the appropriate cs-1 signal. The timing diagram is shown in Figure 4.1.

4.6. Bus Access Control

Bus access is controlled by the Daisy-chained reqin-1 and reqout-1, along with the busy-1 signal.
An example of this protocol is shown in Figure 4.1.

loo %<eg\n\o 'yt9bifsY-\ @=b

Appendix A

BSM IMPLEMENTATION ESTIMATES August 13,1987

1. Transistor count, layout, and implementation time estimates.

The following table (BSM Table) contains a rough estimate of layout area, transistor
count, number of cell placements, number of required connections and a time estimate for com-
pletions of each section of the BSM chip. The layout area is in micron's squared times 1000 and
is approximated from standard cell sizes currently available in scmos for magic. The pla sizes
are estimated from these formulas: height is 120+8p and width is 70+16i+80. The variable p is
the minterms, i is the inputs, and o is the outputs. The time was wstimated by the following
equation: layout time is (connections+placements)l0min..

Table BSM. BSM IMF'LEMENTATION ESTIMATES

PinMOD

TOTAL

70+ 80.3+ 67 120 67

Appendix A.l

AM IMPLEMENTATION ESTIMATES August 13,1987

1. Transistor count, layout, and implementation time estimates.

The following table (AM Table) contains a rough estimate of layout area, transistor count,
number of cell placements, number of required contections and a time estimate for completions
of each section of the AM module. The layout area is in lambda's squared times 1000 and is
approximated from standard cell sizes currently available in scmos for magic. The pla sizes are
estimated from this formula: height is 120+8p and width is 70+16i+80. The variable p is the
rninterms, i is the inputs, and o is the outputs. The time was estimated by the following equa-
tion: Layout time is (connections+placements)l0min.

** These counts are for only the devices used to connect the units in the AM module.

Section

AMMOD* *

Total

REGISTER
UNIT

2-8bit reg
1-lobit reg

Total
CONTROL
UNIT

Total
ACAD
UNIT

Total

ADDER
SUBUNIT

8 adders

Total

TOTAL

Table

Area
K lam**2

42.8
73.7

7.9
1.3
1.4
9.5

93.7
2.3
4.5

*26

290.3
69.2

5.7
3.4
1.9
1.3

81.4
22.7

5.7
2.6
1.9
5.7

41.4

80

9.1
3.9
1.9
4.1
1.9

*8

166.8

716.8

IMPLEMENTATION

Placements

1
65

7
1
1
5

80
2
4

13

19
1
5
3
1
1

11
20

5
2
1
3

13

44

8
3
1
3
1
8

24

178

AM. AMMOD

Trans#

1 PLA
65 pgates
7 inv
1 nor2
1 nand2
5 nand3

182
2 pgates
4 inv

*26

312
1 PLA
5 pgate
3 inv
1 nand3
1 nor2

26
20 pgate
5 inv
2 nor2
1 nor3
3 nand3
13 dlatchr

238

8 inv
3 nor2
1 nor3
3 nand2
1 nand3
*8

416

1174

netlist/mossim
6hr/wk

3.75

1.83

.99

3.5

2.08

12.15

Connections

5
130

7
1.5
1.5

10

155
4
4

24
15

47
8

10
3
2
1.5

24.5
40

5
3
2
6

26

82

8
4.5
2
4.5
2

20

51

369.5

ESTIMATES

Layout time
6hr/wk

3.75

1.83

.99

3.5

2.08

12.15

2. TIME ESTIMATE FOR AmMOD

The total time to implement is 24.3 weeks X 6hr/week = 145 hours.

3. LAYOUT ESTIMATE FOR AmMOD

Converting from lambda to microns and adding 100% for interconnect: 716.8K X 1.5 X 1.5
X 2 = 3,225,600 square microns.

Appendix A.l

SEQMOD IMPLEMENTATION ESTIMATES

Table SEQMOD. SEQMOD IMPLEMENTATION ESTIMATES

Section

CONTROL

ENCODE

TABLE

SEQUENCE

COUNT

REGISTERS

LATCHES

TOTAL

Area
K lam**2

TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD

TBD

Trans#

9 nand2
18 nand3
6 nor2
1 nand4
8 inv
192
8 nand2
1 nand3
2 nand4
1 nor2
1 nor3
6 inv
76
30 nand4
15 nand3
5 nor2
5 inv
360
1 PLA
162
1 PLA
6 6

18 Cells
180
7 Latches
70

1322

Placements

9
18
6
8
8

42
8
1
2
1
1
6

19
30
15
5
5
5
1
1
1
1

18
18
7
7

102

Connections

TBD
TBD
TBD
TBD
TBD
115

TBD
TBD
TBD
TBD
TBD
TBD

45
TBD
TBD
TBD
TBD
188
10
10

6
6

108
108
42
42

636

Layout time
6hr/week

123

netlist/mossim
6hr/week

40

BSM : Summary of Layout Estimates
.

Module

DecMOD
RegMOD
ResMOD
BiMOD
SewOD
AmMOD
PinMOD

Total

Placements

TBD
53

Interconnects

200
393
65
13

6 36
TBD
70

1377

Transistors

398
1130
144*
18*

1322
TBD
314

3326

PLA' s

0
0

2
TBD
0

4

* = Transistor count for PLA's not included

BSM CHIP LAYOUT CELLS'HIERARCHY
..

CHIP

I
YPASS

I
SNOR2

I
BSM

I
64P79x92 (padframe)

I
1. oregm
/scellm
2. xregm
/scel lm
3. accm
/scellrm
4. adderm
/fadd
5 .Y-regm
/scel lm
6. amct
/amctsim
/bsmltch2
/nltch5
/oltch4
7.amcn
/amcnsim
/bsmltch
/nltch3
/oltch

I I I I
DECMOD logo pipla psqm

I
regf ile

I
resmod

I
1. gates

I I
l.snor2 l.ctl

I
1. regrow

I
1. res-sm

/mygate 2.sinv /cell1 /nreglatchlx4 /m2poly
/cell3 /nreglatchlxl /respla
/cell4 2.sdlatch 2. muxes
/cell5 3.sclkinv /2 - lmux
/cbuf 4. nregdec /m2~0l~

/rbit
/reg
/rpass
4. enc
5. seqpla
/sequence
/slatch
/nl tch4
/oltch3
6. cntpla
/count
/slatch2
/nltch3
/oltch2
7.smbit
8. ypass
9.dlt

BSM PADFRAME

El

Bl IWI
I,, pdlOl

.($ g\pdlhli pjj Nofi*fi 1 1 N O 0 0
lPlrl

July 1987 1 R9l CHIP (PIN RSSICWPIT) 1

b D 0 M E z h/i. W+ DONE

E D D U E = Ei. oMtqe>OUE

I

-- . .

m-rm nZe--r.Vn -It.. -S f-af .@' -.PT=.- tnlnn @--'---.

.-

... . -. . .

ps=shift areg
----. .- ...

r=reset
a = a a d + multbar

k = i at c o u n t m a x
.- .- -- - --

.. ..

--- -. .-
1 t r = l g b t 0 s t aT%:zercrT~,TF'Jtzei;.B------.-- -

c o l ~ n t inputs next outputs - .- -

Count
L E A r ps a G F E k

-UU--X---- - - - -0-0~--
V - - - - - - - - . -

u u t?
n g i j 0 1 v 0 0 1 G
--..--------- - ---- - -.--------------------------------------

1c. ilia l r??r-r 0 0 X ."-X -- '
8 0 t

V1O-.-..-- - --------- ------------------------------- -.--. ---------------
--- - o---l-.. *.-. ' D..O..... ' 0..t-T3.----.. -.I-----.. -0 .- - . -

*
0 1 0 0 1 o 0 1 i G
0 1 0 V 1 I u 1 1 1 ---- ------------. .---.--------------------.-------------------

ut-T--- - - - ..--O--------- CI------- ' ~ -

- 0 1 f. 0 0 1 0 1 1 -O-f -O--.-----.lu-O-----'-- 1
T - T --f ---

-. - .-

0 1 1 0 1 1 0 0 0 0
.--- ------- -- - - - .----.
1 ir 15 0 0 X 1 0 0 0

.TI ---X---..----..
- - 1-v-I------ I-------.----- ' ...

----- --------------------------- --------------------- ----
T-O-3-----

-----T---.---- --I--m--f------ - - . . .

1 0 1 0 1 X 0 0 0 0
X X X

-
1 X X

0 0 0 0
-. - .

I I L K ? ~ ~ ? ~ - - . B ~ ~ . ~ pmmm- *ma mm.wrc' mmm-
psbar(Cbar (Bbar)A+Cbar (BiA+C(Bbar)A))

ncnt l=F=rbar (Cbar(Bber~Atps) + Cbar(B)Abar + Cbar(B)A(psbar) i - - -- -- - .. .- - - -.- - - - .

ncnt2=G=rbar CC(Bbar)Abar + C(Bbar)A(psbar) + Cba~(D)A(ps labar) --- ..- -. . . -

k=rbar(a(Cbar(B)Abar (p s) + C b a r A p s b a r)) + C(Bbar) (A b a r ips)+Aipsbar))

--- . .- - .

-- - ...- -- - . . -

I n p u t s O ~ r t p u t s
-- - = s3--m- ar e--g-T- igf;P-T" . - n-m"l * a7.------..-----.--I--.---------

a = a d d + m u l t b a r p a = a d d p u l s e - - - d-.a -o-------..-.-.-.---....--.- ---- - . .
k = l a 3 counfi max - n e -

(...
m = l s b areg i = s y s t e m i d l e
r=reSet

i' - .- ... - -. - . .

i
if r=1 go to s t a t e zero set > = I

- - -- -. -. - c
c urr e n t i n p u t s n e x t o u t p c t t s

s t a t e r n a r n ~ ;rate p'; p a a 1

(' B A F E
--- -u. ..r -x-- x-.T .- -- a--a----- -u -T)..tr.- *

G i c t c i
--

0 0 --- * 0 i l X X a... ,-.ax . .- - - -
0 1
O. . - - - . - - ' .---.T-O-m . .-' -'

i- 4

0 0 0 1 0 0 X 1 0 1 0 0 0 - ---- - ---- ------------ ---- - ---- - -------- ----------.--- --

0 1 Q X X X X 0 I O O Z -- - - - -- - -- - - --- -- - --. -. -- - . -- . ----- ------------------ ----------.---------- ---- -----------. -----
1 0 O X l X G 1 0 1 0 0 0 ----r-O------. **r' .rT.--.------- -0 --O-.-----.....-- .-

C
1 0 G X O O O 1 0 1 0 0 0

-
1 w V X V l V V 1 w 1 V U

n t r w a ~ ~ ----- - - - i"'

_ _ _ _ L _ _ - _ _ - _ _ _ - - - - - - - - - - - . - . .- . - - . -
BSM W R I T E T O /NTEf i#ODE nu<

AT-
~ -- -. . - . . -. -

RE3oUT-F: - -. . . - - . .
.- .. - ~~

I3osv,1: - \ \

- - - - - - - - - - - V A L I D - - - - - - -

- - - - - (V A L I D - - - - -

- - I - - - - - - - - -
PqOcessOR r 3 4 b (BSY WRITES T O ~ ~ O C ~ ~ S S O ~ Bus)

A R A O D R - B ~ : - - --(--- VALID) - - - -

VAL ID - - - -
ARABOR - B I Z - -

-.

- - - -- V A L l b A D A T A , (S1:

PHI: I I I 1 I I
I * J P w - - - k k- 1

SETUP It I UPuT H O L D

GENERAL
I NPVT TI W IYG : VAL/ D

F I G . 'f. l

osn LOCK DiACcRAy

