
Fault Simulation of a
Wafer-Scale Integrated

Neural Network

Norm May
Dan Hammerstrom

Oregon Graduate Center
19600 N.W. von Neumann Dr.

Beaverton, Oregon 97006

Technical Report No. CS/E88-020
May 1988

Abstract

The Oregon Graduate Center's Cognitive Architecture Project (CAP) is developing a flexible
architecture to evaluate and implement several types of neural networks. Wafer-scale integrated sili-

*

con is the targeted technology, allowing higher density and larger networks to be implemented more
cheaply than with discrete components. The large size of networks implemented in wafer-scale tech-
nology makes it difficult to assess the effects of manufacturing faults on network behavior. Since
neural networks degrade gracefully in the presence of faults, and $ice in larger networks faults tend
to interact with each other, i t is difficult to determine these effects analytically. This paper discusses a
program, FltSim, that simulates wafer manufacturing faults. By building an abstract model of the
CAP architecture, the effects of these manufacturing faults can be determined long before proceeding
to implementation. In addition, the effects of architectural design trade-offs can be studied during the
design process.

Fltsim May 1988

TABLE OF CONTENTS
1 . Introduction ... 4

2 . Simulation Environment ... 5

3 . Neural Network Model .. 7

4 . Defect Fault Models .. 13

5 . The Fault Simulator .. 18

6 . Simulation Results ... 27

7 . Summary and Conclusions .. 34

References ... 37

Fltsim May 1988

LIST OF FIGURES
1 . Neural Network Tool Interaction ...
2 . Connection Node Model ..
3 . N-graph to P-graph mapping ..
4 . Partial Hardware Block Diagram for a CN ..
5 . P N Block Diagram ..
6 . PTP Bus communication ..
7 . PBH Bus communication ..
8 . Wafer radial zone and quadrat grid ..
9 . Faults in a 4b i t microprocessor ..
10 . Logic vs Electrical topology ...
11 . Fault Locations in the n-graph ..
12 . Fltsim Processes ..
13 . P N Block Sizes ..
14 . Exponential PBH bus length ...

.. 15 . PBH Bus Lengths
16 . Hardware fault to n-graph mapping ..
17 . P N block sizes with DAC = 75000 ..
18 . P N block sizes with DAC = 0 and P N CONTROL = 0 ..
19 . Random Distribution of 100 faults ..
20 . Fault Simulator Fault Distribution ...

... 21 . Hardware block faults
22 . Fault statistics summary ...
23 . Fault clustering in the PNs ...
24 . Circuit model granularity ..

Fltsim

1. INTRODUCTION

May 1988

The Oregon Graduate Center (OGC) Cognitive Architecture Project (CAP) is developing a
flexible architecture to evaluate and implement several types of neural networks. Wafer-scale integra-
tion is the targeted technology for implementing the architecture, dowing higher density and larger
networks to be implemented than with discrete components. As the size of the networks implemented
increases, the effects of processing faults on the architecture become more difficult to evaluate. Neural
networks degrade gracefully in the presence of faults, making analysis difficult. Also, especially in
larger networks, faults tend to interact with each other. To what extent processing faults will effect
the operation of the network is the question the fault simulator, Fltsim, answers.

Neural networks are fault tolerant and are scalable. Each processing node is working asyn-
chronously on part of the problem to be solved. Messages, (current node output states) are passed
between nodes, but the actual function and memory of the network are completely
distributed[Ham86a]. This node independence allows additional nodes to be added to the architecture
with little or no overhead, thus achieving scalability. The node independence also improves the fault
tolerance of the network. If any of the nodes are damaged, the entire function is not lost, but nodes
may participate in several representations, only decreasing the fault tolerance if the node is damaged.

The neural network can be visualized as a large, multidimensional, directed graph of connec-
tion nodes (CNs), called the n-graph. The physical network is comprised of a repeated pattern of pro-
cessing nodes (PNs) interconnected by bus structures. The interconnections between the PNs form a
graph referred to as the p-graph. Typically, the n-graph is much larger than the pgraph, so that a
subset of connection nodes in the n-graph is mapped onto a physical node (p-graph node). The
number of CNs in each P N may vary. One extreme uses one PN to implement all the CNs, one con-
nection a t a time, which is too slow for large networks. The opposite extreme is a "direct" implemen-
tation using one CN per PN, which requires more silicon area for all the PNs and P N connections.

The fault tolerance of the architecture is affected by the pgraph t o n-graph mapping. M a p
ping a subset of CNs onto a P N reduces the amount of fault tolerance in the network implementation.
If a P N is defective due to processing faults, the entire CN subset is defective, having more impact on
the operation of the network. Although, some fault tolerance is preserved, since the the function and
memory of the physical network are distributed over the PNs. Losing one P N will not cause the
entire network function to be lost. The mapping of the n-graph to the pgraph has a major effect on
the fault tolerance of the network and can be evaluated using Fltsim.

The main limitation in the production of cost effective wafer-scale integrated devices is the
processing faults that occur. Each wafer has defects that cause malfunctions in their operation. Some
architectures that are implemented using wafer-scale integration try to route around dead cells and
have redundant nodes that can be swapped in to replace these dead cells[Lei85a,Har88a]. Swapping
cells involves effort to determine which cells are dead and redundant hardware and communication
paths to route around the dead cells. The cost for this extra effort and hardware redundancy made
wafer-scale integration more expensive than discrete implementations. Neural networks, however, are
inherently fault tolerant and do not require as much redundant hardware. The amount of redundant
hardware required can be evaluated using Fltsim.

Fault simulation of the CAP architecture is used to predict the operation of the network con-
taining manufacturing defects. These predictions can be used to improve the fault tolerance of the
networks by providing feedback before the design has been implemented. Large networks can be
simulated using Fltsim, due to the scalability of the architecture (e.g., all the PNs have the same
structure). More realistic faults can be modeled in the architecture using the fault characteristics of
wafer-scale integration and by taking fault interactions into account.

*This work was supported in part by the Semiconductor Research Corporation contract no. 861&097, and jointly by the
Office of Naval Research and Air Force Office of Scientific Research, O M contract no. NO0014 87 K 0259.

Fltsim May lg88

A fault simulator program tool developed to evaluate the CAP architecture is described in
this thesis. The purpose of the fault simulator is to use standard models to model the faults typically
found in a wafer, not to develop new ways to model faults in a wafer circuit. Chapters 2, 3 and 4 p r e
vide background information on the simulation environment, the CN/PN models and the fault
models, respectively. Chapter 5 discusses the design and operation of the fault simulator, followed by
the results of the simulation in Chapter 6 and a summary in Chapter 7. For the purposes of this
thesis, it is assumed that the reader is familiar with neural network concepts.

2. SIMULATION ENVIRONMENT

The Cognitive Architecture Project group at the Oregon Graduate Center has developed
tools and languages used to evaluate, simulate, and implement several different types of neural n e t
work architectures, as shown in Figure 1. These tools and languages are general in nature, allowing
several different types of neural networks to be simulated and evaluated. A brief overview of these
tools will help in understanding how the fault simulator interfaces with them.

A major goal in the design of the CAP tools is flexibility. To achieve this goal, much of the
information the tools need for modeling functions of the network is read from data fles. Obtaining
the information from input files allows many architectures and fault models to be simulated more
quickly than if the models were built into the actual code of the simulator. Also, some of the files are
read by several different tools being developed at OGC, avoiding redundant information between files
and helping to ensure information consistency between tools. More detail on the file formats is
presented in the OGC Tech report, CS/E88-021.

A network specification begins with general descriptions and proceeds to greater levels of
detail. A user first specifies a network with NDL, an extensible Network Description Language. NDL
is then translated and expanded into a BIF' file, which contains network structure, state, and state
transition information describing the n-graph. In order for the simulators to use the information thus
generated, a computer program, "Mapper", maps CNs to physical computational elements, PNs, using
a PAD (Physical Architecture Description) file and places the mapping information in the mBIF
file[Bai88a]. A physical computational element corresponds to a single processor on a multi-processor
machine, a device on a chip, or any other kind of processing element that simulates a connection node.
The input to either simulator is then a BIF file augmented with physical node mappings (mapped
mBIF file).

The PAD lile describes the physical implementation of the architecture. It contains the
number of PNs on the wafer and their geometry, the maximum number of CNs in a PN, the number
of data bits/signal lines for each word or communication path, and the connectivity for the communi-
cation paths. From this description, a complete block diagram of the circuitry (PNs and their inter-
connectivity) can be built.

There are two architecture simulators, each serving a different purpose. The more general
purpose simulator, ANNE (Another Neural Network Emulator), allows for the expedient testing and
debugging of a wide variety of connectionist/neural network models[Bah88a]. Models can therefore be
"stress tested" before committing them to the more special purpose simulator, HAS (Hardware Archi-
tecture Simulator), which simulates network behavior using a chronologically correct software emul*
tion of the targeted wafer-scale hardware[Jag88a]. HAS provides the user with performance assess-
ments of hardware design choices and points out potential weaknesses. Each simulator provides an
overall structure to emulate the network. Within the CNs in the network are various functions to cal-
culate a CN output. These functions are provided through user routines, which are supplied by the
user and called by the architecture simulators.

The fault simulator uses a PAD file, a silicon technology file and a mapped BIF file to gen-
erate a physical representation of the neural network on the wafer. To convert the blocks of the block

Fltsim

-

May 1988

High-Level
Network

Description

I
NDL

Physical

Fault Statistics
Test Data

iPSC Based Simulators

NDL - Network Description Language
BIF - Beaverton Intermediate Form
mBIF - mapped BIF
fBIF - BIF fault fields
ANNE - Another Neural Network Emulator
HAS - Hardware Architecture Simulator

Figure 1 - Neural Network Tool Interaction.

diagram described in the PAD file into actual physical representations of the architecture, the sizes of
the blocks must be known. The size information is read from a technology file. It contains sizes for
memory cells, buffers, and all the other basic elements that comprise the hardware blocks. These sizes

Fltsim May 1988

are multiplied by the number of devices internal to the block to obtain the block size, Faults are gen-
erated and located in the physical representation using the characteristics of wafer-scale statistical
fault models. The fault parameters required to generate the faults in the physical model are read from
the fault parameters file. Parameters such as the average defect density, fault clustering coefficients
and ratio of fault types are included.

The faulted BIF file, fBIF, which contains the fault fields for the mBIF file, is written by the
fault simulator. The network simulators, HAS and ANNE, read both the mBIF file and the fault
fields in the fBIF file to modify their operation accordingly. DiEerences in network operation due to
faults can be evaluated to determine the impact of the faults and hence the impact of certain design
decisions.

The fBIF file contains the fault fields to be included in the user routines of the architecture
simulators HAS and ANNE. The user routine will make subroutine calls to system fault routines a t
various points in the CN calculation. The fault routine calls will access the fault fields contained in
the fBlF file to simulate the faults in the hardware. The user routine will call the fault routine several
times, passing different parameters each time to model faults in various hardware blocks which afiect
different sections of the n-graph. The appendices provide more detail on the interface between the
fault simulator and the architecture simulators, and how faults in the various hardware blocks are
modeled in the n-graph.

Fltsim can generate two other output files, fstat and test. The fstat file contains all the fault
statistics for the fault simulation and test contains intermediate Fltsim values, which gives more detail
about the network size and fault calculations.

The fault statistics summarize the faults in the physical system and how these faults affected
the n-graph. They also indicate the n-graph utilization of the pgraph. These statistics lit each fault
type, the section of the hardware block that it occurred in, and where in the n-graph it was mapped.
Physical faults can affect the n-graph in multiple areas depending on the mapping of the n-graph onto
the pgraph. If multiple faults affect a single n-graph section, the worst case fault is determined and is
modeled in the network. The worst case fault is selected by either combining the faults into one fault,
or determining which of the faults has more impact on the network. The statistics file indicates the
physical defects that were combined to fault a single BIF section.

The utilization of the pgraph by the n-graph is listed with the fault statistics to help evaluate
the faults that occurred in the network. For example, a small n-graph mapped onto a large pgraph
will result in few faults in the pgraph affecting the operation of the network. When faults in the p
graph do not have much affect on the n-graph, it may mean either that the pgraph is underutilized or
the design is fault tolerant.

The test file contains intermediate values used in the fault simulator. Input file values are
echoed in the test file, such as the sizes of the PN blocks and the actual fault locations. The test file
can be used to debug the system or to give greater information about the fault generation in the net-
work.

3. NEURAL NETWORK MODEL

Neural Model
A neural network model is comprised of many processing units, referred to as CNs, operating

asynchronously. Each CN transforms its inputs into a single output value using non-linear functions.
The function that is used to calculate the node output value depends on the type of neural network
used. These CN functions are derived so that the overall function of the network is to map a set of
input values to a desired set of output values using a "best match" selection. The information stored
in the network that most closely matches the input selection criteria is selected as the output of the

Fltsim May 1988

network.

The CNs in the neural network are interconnected by direct, node-bnode links. Although
there is large connectivity, it is not total, i.e., not all nodes are connected together[Ham86a]. Figure 2
shows the conceptual model of a connection node (CN). Separate site functions, S,.t,, and a CN func-
tion, fCN1 are shown in the figure. The outputs of each site function are used as the inputs for the
CN function. A single value is calculated in the CN function to be passed to the output site. The
output site passes the CN output to the next destination, another CN input site or the output of the
network. If the destination is another CN, the output site signal will excite or inhibit the destination
CN(s).

Hardware Implementation

An n-graph to pgraph mapping combines groups of CNs into Processing Nodes (PNs) as
shown in Figure 3. The CN interconnections would be inefficient to implement directly with current
silicon technology due to their large number. Silicon provides a small number of high bandwidth con-
nections, but CNs require a large number of low bandwidth connections. Therefore, a connectivity
mismatch exists between silicon technology and the required architecture of the network. Interconnec-
tion buses are multiplexed since metal lines are too expensive to dedicate to a single CN
connection[Bai86a]. By combining CNs into PNs and using a multiplexed interconnection scheme, the
efficiency of the network is preserved.

Figure 4 shows a partial block diagram of the hardware implementation of a CN. The CN
input is received from another CN output or is an external input to the network. For the assumed
P N model, this value is stored in the CN memory. A corresponding weight value is stored in another
memory block. A Digital to Analog Converter (DAC) is used to convert these binary numbers to an
analog signal corresponding to the multiplication of the CN value and the weight. Each analog signal
is combined in the Analog to Digital Converter (ADC) which acts as an analog arithmetic logic unit,

Figure 2 - Connection Node Model.

U l ,'

'Nx ;

u, .

SITE

S
S I T E

>

IN1

>

u1 .

1% %

ux :

S I T E

'S ITE

OUTPUT
--+SITE

CN OUTPUT

May 1988

' 1
8 - 8

IN. ; ! r,, ,SuT?LT ' ch

I - - --
I

1 i
*\. : - , ,

1
'5:TE 1 L'. 1

z ?4

, -
-ch ::,-?,- C4 I !

1 ,. - -- -
d -,,

. C l i . . - - I. -ai7'
5;-r -- L-

, 's;-E . I
I

-,S;-E I , \ . , . ' i ,,] SITE I

, 'N,.SSrTE i i r i n . L, ,
i ,, - c , - I

-I IS;?: , u d ~ ? - ' T

Figure 3 - N-graph to P-graph mapping.

to convert the output back to a digital format. The ADC calculates the CN output using the equa-
tion:

where f CN is the CN function and each S is a site function. The site function uses as arguments the
link inputs and their respective weights from the other CNs. One arithmetic unit calculates several
CN function outputs in a time multiplexed fashion. For example, the initial networks a t OGC use the
site and CN functions shown below:

Arithmetic is performed wing analog techniques instead of digital in order to save silicon
space on the water, increase fault tolerance and increase the speed of the network.' Although digital
signals are preferred because digital signals are easier to multiplex over several interconnections and

P&nb Pendins - OGC

-

May 1988

Figure 4 - Partial Hardware Block Diagram for a CN.

provide more reliable communication.

The Learning Algorithm State Machine, LSM, implements the weight adjustment or learning
algorithm for the CN. Most learning algorithms use the current output for the CN, the current input,
a learning rate constant, and a second order term not included here. The arithmetic operations typi-
cally performed by the learning state machine include multiplication and subtraction, and perhaps
others, depending on the learning algorithm. Therefore, the learning state machine contains multiplier
and subtraction circuitry, tailored to the learning algorithm to be used and a Programmable Logic
Array, PLA, is used to implement the LSM control. The arithmetic circuitry calculates a new weight
to be stored in the WEIGHT memory hardware block. The LSM operates concurrently and asynchro-
nously with the other CN functions.

Figure 5 shows the P N block diagram. Several CNs (shown in Figure 4) are mapped onto
this block diagram. No global control signals are needed for the PNs, and each P N operates asynchro-
nously with respect to the rest of the PNs in the network. Only the messages that are passed between
PNs require synchronization.

Two modes of communication between PNs are implemented. One uses a grid network,
shown in Figure 6, which is called PointTo-Point (PTP) communication and the second is a tree-like

May 1988

M C H l ME

I
\L PBH TRQHSC:--El SrS

1 PTP CONTROL

PBH CONTROL M W E S S CJ-PaRE

DEnUX

1 I

PTP DRTfirn03R BUFFiQS I fN7L /

Figure 5 - P N Block Diagram.

r.

.A,

structure, shown in Figure 7, c d e d the P N Broadcast Hierarchy, (PBHJ* The PTP network connects
a P N with each of its four nearest neighbors. Messages include a destination P N address that is used
to route the message through each PN. The PN receives a message and determines whether it is the
destination PN. If the P N was not the final destination, the message is retransmitted to the next PN
using a predefined routing algorithm.

The PBH is used to broadcast messages to several PNs simultaneously, updating many CNs
with one message. PNs are grouped into PBH broadcast regions that are physically connected by a
common PBH bus. When any of the PNs in the region sends a message, d the PNs in the region
receive it. The PBH bus is split into transmitter and receiver link sections. To broadcast a message
using the PBH network, a P N sends ite own source CN address along with the data onto the PBH
transmitter bus. It is received by a concentrator which retransmits the message to the next higher
level concentrator in the tree. Each concentrator accepts messages from two lower level concentrator,
allowing d y one of the two to transmit at a time. At the top node, the message is then sent to the
receiver links. Messages are received by deconcentraton and are retransmitted to two lower level

* PPTP snd PBH bsve Prtcnta Pending - OGC

I 0'' 9-5 -
P-= 3.;

I I

"

e-P 3.5

PTP BLS

May 1988

PBH Transmitter Bus

Figure 6 - PTP Bus communication.

PBH Receiver Bus

Figure 7 - PBH Bus communication.

deconcentrators. All the PNs in the region receive the message from the broadcast tree. For each
message address that matches an entry in the CN address decoder, the data is stored in the CN
MEMORY hardware block. P N messages use the PBH transmitter line to traverse up to the top node
in the tree, and descend the receiver bus, communicating simultaneously to all connected PNs. Con-
trol lines are used to avoid collisions and perform arbitration as the messages traverse up the tree.

The PBH regions may overlap, allowing PNs to belong to multiple PBH regions. The P N
will transmit and receive messages from all the PBH regions it belongs to. Each CN in the P N will
determine which of the PBH regions to transmit messages to and which regions to receive messages
from.

In Figure 5, the PBH Control/Demux and PTP control/address compare/demux control their
respective communication channels, both in the sending and receiving of messages. One set of data
lines is used to send both the address (CN #) and data (CN output value) information in each of the
PTP and PBH communication schemes. This information may be sent in a serial mode, depending on
the architecture modeled. The width of the data bus is read in from an architecture description file.
Control lines are used to handshake the data (i.e., Data Valid and Data Accepted).

The information from other CNs is routed though the P T P or PBH section in the PN. The
address field is separated from the incoming word and sent to the address decoder to check for a
match. The address decoder uses a Content Addressable Memory, CAM, to check for the presence of

Fltsim May 1988

that CN number (address). If present, the data information is loaded into the matching CN
MEMORY location(s), which contain other CN output values.

As mentioned before, the contents of the CN MEMORY and corresponding weights are used
by the computation unit to calculate each CN output. The computation is performed by the DAC
and ADC blocks. Each CN in the P N has its output calculated in a cyclic manner. Each output and
its CN number are then routed to either the PTP or PBH communication channel, as predetermined
by the type of CN routing, to be passed on to other CNs.

A Learning State Machine monitors the CN outputs to calculate the new weight for that CN.
As each CN output is calculated, the LSM calculates the new weight value using a predetermined
learning algorithm. The new weight value to be used for the next incoming CN value is stored in the
WEIGHTS memory.

A P N control block is included to represent any control signals that are used throughout the
PN. The control circuitry represented is the portion of the P N circuitry that coordinates the oper*
tion of all the hardware blocks within a PN. For example, circuits controlling the timing of data
transfer between all the hardware blocks in a PN would be represented in the PN control block. Con-
trol circuitry local or affecting only one PN hardware block should be included in that hardware
block.

4. DEFECT FAULT MODELS

Originally, defects in integrated circuit fabrication were considered to be purely random. As
the defect densities were reduced by better process control, it was assumed that those defects were
random and could be modeled using a Poisson distribution[Sta86a]. Later, it was discovered that the
defects were not random. As integrated circuit size increased, it was discovered that the defect diitri-
butions deviated from the simple Poisson distribution model. Larger circuits exhibit fault clustering
which is not modeled using simple Poisson distributions and a more detailed model must be used. A
compound Poisson distribution can be used in which a wafer is sectioned into areas with the average
number of faults in each area specified by a variable. Clustering can be modeled as independent
regions with varying numbers of faults[St&6a,Che87a]. Within each area, the P o k n distribution
can be calculated as before.

CMOS circuit technology is the process chosen to implement the neural networks a t OGC. A
typical pwell CMOS process with one metal layer requires 7-8 processing steps and masks[Wes85a].
Each of these steps can potentially add new defects to the wafer. There are two categories of faults
that can occur in processing a wafer, global defects and local defects[Har88a,Che87a]. Global dejects
affect the operation of the entire wafer and are generally catastrophic in nature. Global defects are
generally process defects and include problems such as mask misalignment and oxide thickness defects.
All, or most of the cells on the whole wafer will have the same fault defect present. The number of
wafers with global defects can be derived statistically and affects the yield directly. Thus, global
defects are not considered by the fault simulator.

The second category, local dejects, are those that occur at single points on the wafer. Local
defects include extra or missing material defects, oxide pinholes, or via resistance faultspcD86a],
which result in opens and shorts in the circuit. The fault simulator will model local defects, as these
affect a single P N or groups of PNs which may not critically aflect the output of the network. The
network will operate despite faults due to the inherent fault tolerance of the neural network, but the
performance will be degraded. Fault simulation will provide an analysis tool to determine the degree
of performance degradation in large physical implementations of neural networks.

Fltsim May 1988

Fault Distribution

Local processing defects in a wafer can be characterized by statistical studies of defects on
other wafers, which indicates that the fault density increases towards the edge of a wafer and that
faults tend to cluster in groups[Sta86a]. These characteristics are used in the fault description model
to determine what the effects of actual processing faults would be on a particular network. Defects
tend to cluster within wafers and among wafers in a batch. Clustering can be attributed to the batch
oriented process, where the processing conditions vary from lot to lot[Wal86a], or from concentrations
of impurities in the air or in the process.

To get some idea of the fault spatial distribution, F. M. Armstrong and K. Saji examined 12
blank wafers from a manufacturing line to determine the location of all defects, which lead to circuit
faults[Sta86a]. Each wafer was sectioned off into s m d e r areas referred to as quadrats, and the
number of defects in each quadrat was counted. Various quantities of quadrats were used for each
wafer, consisting of a 12x12, 8x8, 6x6, 4x4 and a 2x2. The distributions of the numbers of defects per
quadrat were tabulated. The mean, variance and mean-bvariance were compared for each quadrat
size. The larger quadrats, (quadrats with the fewest grids, such as the 2x2), had the greatest deviation
from Poisson statistics. This deviation indicates faults were clustered within the quadrats[Sta86a].
The goodness of fit between the statistical model and the data was determined using the chi-square
test. The tabulated defect statistics were analyzed to determine which of four different compound dis-
tributions provided the best fit for these data. Of the twelve wafers tested, four wafers were best
modeled by a mixed Poisson-binomial distribution, four others by a Neymann Type A distribution,
three others by a negative binomial distribution, and one wafer fit all of these distributions equally
well. None of the compound distributions matched the data significantly better than the other distri-
butions. But, for all the wafers, each of these distributions gave a much better fit than Poisson's
distribution[Sta86a].

Several yield models based on mixed Poisson statistics are derived from observed statistical
data and not directly from the wafer fabrication process[Har88a]. Since fault distributions vary
between and within process lines and product lines, fault models tend to vary, causing some dispute on
their validity. The end result of the model though is to simplify the physical process of fabricating a
circuit, and as long as the model fits the actual data within the given tolerances, the model is valid.
Since all the distributions modeled the fault clustering similarly and all of them did better than the
Poisson distribution, any of the fault models can be used to model the fault distribution. For the
analysis in this thesis, a Poisson-negative binomial was used to model the fault clustering. The proba-
bility of finding x defects in a wafer quadrat is:

where 1 is the expected (average) number of defects in an area and is the clustering coefficient
between areas on the wafers. Lower values of a correspond to greater clustering. The variance for
the number of faults found in an area is:

These equations were found to fit Stapper's test data and were verified using the chi-square test.
Stapper concluded that these tests were conservative, and that actual wafers would exhibit even more
fault clustering traits[Sta86a].

A second trait of the spatial distribution of faults is related to the distance from the center of
the wafer. Defects in a wafer are more common around the edge of the wafer and exhibit a radial d i i
tribution of the form:

where h (r) is the probability of a defect occurring at a given distance T away from the center of the

Fltsim May 1988

wafer, and c l and c:! are constants(Wal86a]. There are many factors that contribute to this effect:
the edge being more exposed to air, tilting of the silicon wafers while processing, the lithography
defocusing towards the edge of the wafer, or the handling of wafers by the edges.

For this thesis, both fault clustering and the radial distribution of faults are modeled. The
fault simulator combines Stapper's fault clustering model with the radial fault distribution model, '.
which is the same concept used by Harden and Strader[Hargga].

Fault clustering is modeled in the neural network wafer by dividing it into a 12x12 grid with
varying defect densities in each area. The number of faults in each area will be determined by a two
zone radial distribution where the density of faults will be greater towards the edge of the wafer. The
inside zone will have a lower defect density than the outside zone. The average total number of
defects (ATD) to model in the network is equal to the defect density (defects per square inch) multi-
plied by the area required for the network. Each quadrat starts with a common base defect density
equal to ATD/144, or the total number of defects divided by the number of grid areas, or quadrats.
The common defect density for each quadrat will produce the fault clustering effect using the Pr(x)
equation to calculate the number of faults per quadrat area. This defect density is multiplied by a
radial distribution modifler that is greater than one for the outside zones and less that 1 for the inside
zones, resulting in a higher average number of defects for the outside zones, and lower average number
of defects per quadrat for the inner areas. The constraint is that the sum of the probabilities for each
quadrat (defect density) must equal unity to preserve the total average number of defects per wafer.

The radial distribution zones and quadrat grid are shown in Figure 8. The circular shape of
the wafer is approximated in the simulation by a square area as shown by the outside box. Likewise,
the radial zones are approximated with squares as shown by the inner box. Dashed lines represent the
144 quadrat boundaries. Once the number of defects have been determined for the quadrat area, the
defects are placed randomly inside this area.

Figure 8 - Wafer radial zone and quadrat grid.

b 4
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 '---?---?---+---?---?---?---?---?---?---?---? ----

I
I 1

1

"---t----
I

---?----
I

---?----
I

---?----
I

1
I
I

I
I
I ---+---.
I
I
I

---7----
I

I

----?----L
I

I
I .---+ ----
I
I
1 .---? ---.
I
1 ---- ----
I
I .---? ----

I

I I I ---? ----
I
8 '---?---.
I
I

----?---+ I I I I I I I I I r---?----
I l l i l l l l l l 8
I I t I l l l l l l l '---?---?---?---?---?---?---+---?---f---?---$ ---.

I
0 1 O I I I I I I
1 1 l I l t 1 1 1 1 1

I I I I I I I I I
I I I I I I t

1 1 1 l l l l
1 1 1 I I I l
I I I I I I I .---?----,---?---?---?---?---?---?---?----,
I I I I I I I
I I I I I I I ---t---?---t---?---f---?---f----
* I I I I I I
I I I I I I I ?---?---?---?---?---? ---- ---+---
I I I I I I * I

I I I I I I I ---+---?---?---?"-?---?---+---
I
l I I b l 1 I
I I I I I I I ---?---?---?---?---?---?---+--'-
I l l I t I l
I I I I I I I ---+---?---?---?---?---?---+ ----
I I
I I I I I I I
I I I I I I I ---?---?---?---?---t'----?---? - - - - ,

I I l l l l l
I I I I I I I

May 1988

Physical Faults
The basic local defects in a wafer modify the operation of the circuit. Most of the defects

manifest themselves as either opens in the signal path or shorts between signals or between signals and
fixed sources. For example, extra polysiiicon or metal can short two lines on the same layer, extra
polysilicon can cause an open by forming a new transistor if over an active wire, extra material can
cover a via or missing material can cause opens in signal lines. Walker discusses these defects in depth
and their implications on circuit behavior.[Wal86a]. Another study examined 43 failed circuits in a 4
bit microprocessor chip. The results of the observed failure modes are shown in Figure 9[Gal80a].
The physical fault types are modeled using the logic fault models, which modify the logical operation
of the network.

Logic Fault Models
One approximate model for physical defects is where signal paths are shorted or opened. This

model is adequate when the actual physical layout of the wafer is known, so that it can be determined
which signal paths are likely to be shorted together. The fault simulator works from a higher level
description of the network, and the actual layout has not been developed yet. Therefore, the
short/open model physical defect types are not used in the fault simulator. Instead a stuck-at model
augmented with special fault models is used.

Stuck-At Model

As the level of integration increases, the stuck-at model becomes progressively less
accurate[Gal80a]. There are two reasons for the inaccuracies. First, not all faults can be modeled
using the stuck-at fault model. Some faults will actually change the function of the gates, and not
always force it to a high or low state, and some faults create state-dependent behavior. For example,
in Figure 10, if the transistor with input e is shorted so i t is always on, whenever f is low, the path to
GND is completed, forcing the output low. If e was low, the output is correct, otherwise the opera-
tion of the circuit is defective.

Second, a topology for the transistor circuit has to be assumed for the logic gate topology.
Figure 10 shows a logic function and the transistor circuit to implement it. Faults are generally
modeled using the logic schematic, but this does not always correspond to the transistor circuit which,
in turn, does not always correspond to the layout. The X's shown in the logic schematic and transis-
tor schematic indicate points that cannot be modeled in the corresponding schematic.

CMOS uses a complementary set of transistors for connecting the output to either to VDD or
VCC. A fault in the path connecting the output to VDD will cause the output node never to be
discharged via that path. Yet, a parallel path connecting the output to VDD will discharge the node,
with seemingly correct operation. The fault is only detected when the faulty path is supposed to be
activated, and the output is still high. The stuck-at model does not model this type of "intermittent"
defective operation. By using the stuck-at model for "intermittent" nodes like this in the fault

Figure 9 - Faults in a 4b i t microprocessor.

Short between metalizations
Open metalization
Short between diffusions
Open between diffusions
Short between metalization & substrate
Unobservable
Insignificant

39%
14%
14%
6%
2%

10%
15%

uct

LOAD --?l

May 1988

Figure 10 - Logic vs Electrical topology.

simulation, the worst case operation for the node can be modeled. The model implies that the node is
always stuck high or low, but it is actually stuck only for a subset of input combinations.

A tradeon exists between the accuracy of the simulation and the amount of information about
the physical architecture to be supplied. To improve simulation accuracy, more information is
required. But, the purpose of the fault simulator is to model an architecture before the design is com-
plete to ensure fault tolerance, therefore, many simplifying conservative assumptions were made.

The fault simulator will produce a first cut yield estimate for the wafers. Fault modeling is
best done using a high level fault mechanism versus a more detailed model that is more accurate, but
requires a more detailed architectural description and design. The accuracy of the model will be lim-
ited due to this abstracted architectural description.

The stuck-at model forces a signal to an always high (SA-1) or always low (SA-0) state,
allowing single bits in data words to be faulted. A single physical defect will map to a hardware block
in the wafer, where a stuck-at fault will be assigned. Usually a single physical defect will map to a
single bit in a data and/or address field. But potentially, a single physical defect can cause multiple
stuck bib. For example, multiple stuck bits occur when a data word is transmitted in portions using a
multiplexed data bus with a defective signal line or a large defect can bridge several devices or wires.
Each data word portion will have the same faulty bit p i t i o n .

Physical defects can prevent data transfers between hardware blocks; these are usually defects
in handshake or control signals. Faults can inhibit the transfer of the weight data from the learning
state machine to the weight memory or data from one P N to another PN site input. One method of
modeling the inhibited data transfer is to fault all the bits in the data word. All the data lines would
be stuck-at 0 or 1. The destination hardware block of the transfer would be updated with a new
value that is either all high or all low. In reality, the inhibited data transfer will cause the destination
node to keep its old value, ignoring the new value. The fault simulator uses a "NO CHANGE" flag
which allows data transfers to be inhibited, forcing the destination to keep its old value.

Fltsim

6. THE FAULT SIMULATOR

May 1988

Several of the goals for the fault simulator development were:

Flexibility

High level architecture description input

Modular routines

Efficient memory storage (for large networks)

Efficient execution time (for large networks)

a Worst case fault model

The fault simulator provides a basic framework for modeling faults in a neural network wafer
described by a high level architecture description. This architecture will gain more detail as the
design progresses. The fault simulator can adapt to the changes without a major redesign of the con-
cepts used in the simulator. As the architecture becomes more detailed, the model and fault simula-
tion should become more accurate. This flexibility is accomplished by using a modular structure for
the simulator routines. For example, a single routine calculates the size of the PN. As this calculation
becomes more accurate, this routine can be modified to the new, more accurate model. The fault gen-
eration routine is another example of a modular routine. The original fault generation package placed
faults using a completely random distribution. The second fault generation package, which incor-
porated fault clustering and radial distribution, required that only one routine be replaced.

The fault simulator will be used to analyze ultra-large-scale integrated silicon neural net-
works. Networks to be simulated a t OGC will have 128 PNs, 4K CNs (16 CNs per PN), and 2 mil-
lion connections. The BIF' file to describe this network would require over 26 megabytes of data.
Therefore, utilizing the memory required to run the fault simulation efficiently is a constraint. Usually
as memory is conserved, the execution time is increased, which is another constraint. A proper bal-
ance of the required memory space and program execution time was needed. Minimizing the memory
requirements is the more important constraint to allow simulation of larger networks.

Fltsim reduces the amount of memory and execution time by using a high level architecture
description to model the hardware. For example, since the network is comprised of an array of similar
PNs, only one set of hardware block sizes internal to the PN is calculated. Only the outside boun-
daries for the PNs are replicated for the entire wafer, and not all the internals for the wafers. Also, to
reduce the amount of memory used, the entire mBIF file is not stored in memory, but only the con-
nectivity of the n-graph is stored.

A fault field in the DLF file consists of two numbers, a fault index and a fault modifier. The
fault index indicates the type of fault (SA-1, SA-0 or NO CHANGE), and the type of target value to
be faulted. The types of target values that can be faulted are a data word, a message address or both
the address and data portions. The fault modifier indicates the specific bits to be modified in the tar-
geted value. As an example, the index may indicate a SA-0 fault in a data word. The modifier will
contain 0's for the faulty bits that are stuck-at0 and the rest are 1's. The target value is AND'ed
with the modifier to give a new target value. The faulted bits are always low. The SA-1 fault is
modeled in the same way, except 1's are OR'ed with the target value. Another type of fault is the
'NO CHANGE fault, which forces the target value not to be updated with new values. NO
CHANGE faults are implemented one of two ways. For output links, the message's address field is set
to an invalid node in the network, causing the message to be lost. For input values, the new value is
set to its previous value. For example, if a handshake line is faulty, message transfers between PNs
will not occur, so that the target value is not updated. The update is inhibited by sending the mes-
sage to an invalid node in the network. As such, the target value in the destination CN does not get

Fltaim May 1988

updated and will keep its old value. NO CHANGE faults do not use the fault modifier field.

Faults in the hardware of the network can be modeled as faults in the n-graph model of the
network. Since BIF describes this n-graph model, faults will be mapped to the n-graph and then to
the BIF file.

In the n-graph, faults can manifest themselves in the CN output, the links between nodes, the
weight fields, or the output of the site to the CN. Figure 11 shows the diagram of the n-graph with
X's indicating where faults are to be modeled. To model n-graph faults, four fault fields are required
in the BIF file, one for each area mentioned, the CN, Site, Link and Weight. These fields allow multi-
ple faults to occur in different areas of a CN, but only one fault field per area is allowed, to reduce the
complexity of the system. Faults that modify a common n-graph area are combined using a set of
worst case fault rules. These rules combine, if possible, two faults to effect all faulty bits from both
fault modifiers, otherwise they choose a fault that has more impact on the operation of the network.
Faults will be combined if the fault fields of the indexes are equal, i.e., if both faults modify the same
address and/or data portions of the target values. The rules for determining the worst fault are listed
in order of precedence below:

1. "NO CHANGE" faulte

2. Address fault over Data faults

3. Address and Data faults over Data faults

4. SA-O over SA-1 faults and combine faulty bits

5. Combine faulty bits

"NO CHANGE? faults are assumed to be the worst type of fault, since they are the result of a control
or handshake fault, which affects all the bits in the word. Faults modifying only the message address

Figure 11 - Fault Locations in the n-graph.

\/
A)

S I T E

OUTPUT
S I T E
>

I N *)

ux

CN OUTPUT
\ /
A ?J

>

'SITE

IN1 _y
u1 +

1%

SITE

'Jx

Fltsim May 1988

bus have more impact than faults that modify the data words. Faults modifying both the address and
data are worse than faults that just modify the data. If the faults modify the same address and data
values, the fault modifiers are combined. If several faults are all S-A-1 (S-A-0) faults, the modifiers are
combined, faulting all the stuck bits. If several faults have a combination of S-A-1 and S-A-0 faults,
S-A-0 is assumed and the faulty bits are combined so that they will all be stuck a t 0. The main idea
is to provide a single worst case fault with only one field. So, although the type of fault is changed,
the impact on the network will be the worst case.

Assumptions

Some hardware and fault modeling assumptions had to be made when developing the fault
simulator. These assumptions were needed to simplify the design of the fault simulator and also
because the hardware architecture is not yet completely defined. As the hardware becomes better
defined, it can be modeled more accurately. Assumptions relating to how the physical hardware faults
are modeled and how they affect the operation of the network will be reassessed later.

The assumptions can be divided into two categories. The first category of assumptions
simplified the hardware model and the second category simplifies the modeling or representation of the
faults in the network. Each impacts the modeling of the network and is now described in more detail.

The connectivity for the PTP connections was assumed by the P N network locations in the
network as specified in the PAD fle. Although the P T P connectivity is explicitly stated in the PAD
file for the P T P connections, a simplification was to use the P N x,y location in the network and
assume physically adjacent PNs in the wafer are connected by a P T P bus. Minimal area is used when
connecting adjacent PNs and thus will be the most common configuration. The networks currently
planned to be modeled a t OGC will connect adjacent PNs.

The message routing algorithm for the P T P communication is assumed. A message sent from
one PN to another will travel in the x direction first until the correct column is reached, then in the y
direction until the destination P N is reached.

The PAD file specifies the number of LSMs in each PN. If one of the LSMs has a defect, all
the weights updated by the defective LSM will be faulted. The assumption that each LSM has an
equal number of weights is assumed. So one defective LSM will cause I/(# LSMs) of the weights to
be faulted.

The structure of both the PBH Transmitter bus and the Receiver bus was assumed to be a
binary tree. Concentrators have two input links from lower bus levels and one output link to a higher
level. Transmitters have one input link from a higher bus level and two output links to lower levels in
the bus.

PBH regions must have a common structure. That is, each region must contain the same
number of PNs and each level the same number of data and control signals, which reflects the
assumed symmetry in the n-graphs to be emulated.

The assignment of the CNs, Sites, Links and Weights to specific locations within a P N was
assumed to be in the order listed in the BIF' file. The BE' file uses a hierarchical notation to list the
n-graph sections; a CN section is first, then all the Sites for the CN, followed by all the Links for each
Site. Thus, all the information is grouped in order in the BIF file, and will therefore be adjacent in
the P N hardware.

The second category of assumptions concerned fault modeling. The defects modeled on the
wafer are point faults with zero diameter. Actual faults have a non-zero variable diameter size. If a
defect is located on a signal line, the defect diameter and the line width will determine if the line is
completely severed or just partially nicked. If the defect is between two metal runs, the defect diame-
ter and the line spacing will determine if the two lines are shorted together. The defect size, line
width and line spacing are not modeled explicitly in the fault simulator.

Faults are modeled as single bit faults, such as defects in a single data bit in a memory, a sin-
gle DAC or ADC output or a single data buffer. These single bit faults may affect several bits

Fltsim May 1988

depending on how the hardware is used, but only one bit is defective in the hardware block per physi-
cal defect. For example, the RAM structures may have defects in the row or column address decod-
ing, disabling a whole set of bits for the entire PN. These defects affect the control structure of the
individual hardware blocks. A future enhancement would be to add probabilities of faults in the con-
trol structures for individual hardware blocks that would affect sets of bits. For the LSM, a probabii
ity has been defined by catastrophic faults in the LSM. This concept could be expanded for other
hardware blocks.

Each hardware block contains the circuitry to perform the indicated function. The area
inside a block does not include any free area. Defects that occur inside a hardware block will aflect
the function of the block. No allowance for free areas between the lines and devices is made. This
free area can be compensated for by decreasing the defect density.

The fBIl? 6le conveys the fault actions to be performed in the architecture simulators. Only
one fault field was allowed per n-graph section. Either multiple faults that aflect a common n-graph
section are combined, or the worst case fault is used. The rules for choosing the worst case fault are
assumed to produce a fairly accurate model of the real system.

Basic F a u l t Simulator Processes
Figure 12 shows the basic execution flow of the fault simulator. Fltsim starts by building a

physical model of the circuitry. Size information read from a technology fle and a physical architec-
ture description, PAD, file are used to construct the model. The fault model parameters are obtained
from a fault parameter 6le that describes the characteristics of the faults. Stuck-abl and Stuck-at-0
faults are generated and placed on the wafer using an x,y coordinate system. These defects are then
mapped into the physical hardware blocks in the network. The impact on the operation of the p
graph network is assessed to determine how the n-graph is affected by the faults. Faults in the p
graph are mapped to the n-graph. Knowing the effects of the faults in the n-graph, the fBIF fle can
be created including a fault index and fault modifier to modify the n-graph operation. These fault
fields will indicate to the architecture simulators, HAS and ANNE, how to model the faulted network.
Fault statistics are generated to provide the needed feedback to evaluate the new operation of the net-
work simulation by HAS or ANNE. The following sections will describe each Fltsim execution phase
in more detail.

Physical Model
The fault simulator builds a block representation of the circuitry to be modeled. Each PN's

internal circuitry is identical, each P T P bus is identical, and each PBH bus communication region is
assumed to be identical. Therefore, to drastically reduce the number of calculations and stored infor-
mation, only one P N hardware block representation and one PTP and PBH bus representation are
calculated. The technology and PAD files contain the required information to build these represent*
tions.

The P N is modeled as a rectangular area containing the hardware blocks. An aspect ratio
determines the x and y dimensions for the PN. Given the P N x,y dimensions, each P N in the network
is assigned a physical location on the wafer. The PNs are separated on each side by a bus communi-
cation area, which is calculated from the bus line width and the number of bus lines. Note that the
locations of the hardware blocks within a P N are not assigned. The locations of the PNs, P N
hardware blocks and bus areas are discussed further in the placement of the faults in the hardware.

The technology file contains information describing the sizes of the basic elements used in the
blocks. The sizes are dependent on the technology used to fabricate the device. It contains fields that
describe line widths, sizes of memory cells, DAC cells, ADC cells and buffers. Basic element sizes are
multiplied by the hardware block dimensions given in the PAD file. Not only will the basic element
size indicate the space required for its basic function, but it will also contain an added amount for the
control of the function. For example, a memory cell can be implemented using a fixed amount of
area. Also included in the memory cell area is an amount for the row and column buffers and address

Fltsim May 1988

I Generate Faults

Map Faults to

Map Physical Faults mBIF File
to n-graph (rnBIF) dl-

1 . r--'-'-'-'-'----------------- 7

I Output fBIF I faulted BIF
I
I (optional) I
L -d

I

Figure 12 - Fltsim Processes.

Output Fault
Statistics

decoding that will be part of that hardware block. Some basic elements can be thought of as a bit
slice ppcessor, where sections of components are added to expand its capabilities. The LSM is an
example. As each LSM is added, a new separate structure is added to the existing circuit, expanding
the LSM's capabilities. Expanding the LSM's capabilities allows additional learning algorithms to be
used.

fault statistics

The PAD file describes the pgraph for the network, contains information used to organize
the basic elements into the hardware block sizes, and indicates the interconnectivity of the network.
The PAD file describes the PNs and CNs in the network, the layout of the PNs in the network, the
PTP communication structure and the PBH communication structure. Information regarding the
dimensions of the blocks in a PN, such as the number of bits in the weight field and the maximum
number of CNs in a P N is included in the PAD file. Figure 13 shows the dimensions of the blocks in a
PN. The actual values are given in the PAD file.

I

May 1988

C Arl

ADDRESS

Nun-CN-ENTRY[0 3 !I;NFLTgN FOR A PN iL NU~I-CN-ENTRY[Nun-CN-ENTRYC 2 1 1 I ~ ~ ~ U ~ S p N OF CN

Nun-CN-ADDR12 I
Nun-CN-ADDRC 1 I

NUfl-CN-ADORC 0 I
CNTL-SIZE

CAfl = CONTENT ADDRESSABLE flEflORY S IZE

UE I GHTS
flEflORY

* OF CN * OF CN
INPUTS INPUTS
FOR A PN FOR A PN FOR A PN

NUM-CN-DATA NUIY-CN-HEIGHTS DAC-SIZE AOC-SI ZE

MS = PlEflORY S IZE

STATE NUM-LSfl
PTP CONTROL

PTP-DEtlUX-SIZE LSf l -SIZE
DEflUX

PTP OATA/AOOR BUFFERS CNTL BUFFER-SIZE

PTP OATA/AOOR BUFFERS CNTL BUFFER-SIZE
PBH-OEnUX-SIZE

DEflUX
BUFFER-SIZE PTP OATA/ADDR BUFFERS CNTL

PTP-MTR PTP-CNTL
PBH-OATAC 0 IC 0 I PBH-CNTLC 0 I1 0 I

Figure 13 - PN Block Sizes.

The amount of silicon area covered by the PTP and PBH bus structures between the PNs is
calculated. The PTP uses a simple grid network where the bus area between two PNs is the product

-2s

PBH DATA/ADDR BUFFERS BUFFER-SIZE PTP OATR/AOOR BUFFERS CNTL BUFFER-SIZE CNTL

Fltsim May 1988

of the number of bus lines, the line width, and the distance between the PNs. The total bus area
between PNs is multiplied by the number of PTP buses between PNs.

The PBH bus size calculation is more involved, since it uses a tree structure communication
path to broadcast messages to several PNs simultaneously. To model faults in the PBH transmitter
bus, the bus area for each level of both the PBH transmitter bus and the receiver bus must be calcu-
lated, as faults in various levels affect the network differently. Bus signal lengths increase towards the
top concentrator and deconcentrator nodes in the PBH network. Every second level, while ascending
the PBH transmitter bus, the bus increases in length exponentially. If we assume the x and y dimen-
sions are the same for the P N and level 0 has length 1, then level 1 will have length 1, level 2 length 2,
level 3 length 2, and level 4 length 4. If the P N dimensions are p u and pn-y, and pnsep is the dis-
tance between the PNs, Figure 14 shows a table of the bus lengths for increasing levels. The relative
bus lengths are shown in Figure 15. Dark lines represent the PBH buses and the squares are the PNs
array in the network. Bus faults are more likely to occur in the upper levels of the PBH network due
to the longer bus lines and bigger buffers required to drive the longer lines. Worse yet, these upper
level faults corrupt a higher percentage of the P N messages in that PBH region.

Fault Generation

The fault generator produces a list of defects usiig the fault models discussed earlier. The
fault parameters used to calculate the fault locations and types are read from a fault parameter file.
Parameters can be varied quickly, without recompiling Fltsim, to determine how the fault parameters
affect the performance of the network. Of primary interest is how the fault density and fault cluster-
ing affect the operation of the networks. The fault parameter file will specify the fault density for a
network. The fault density is multiplied by the size of the network to determine the average number
of defects to place in the network. The number of defeck in the network is divided by the number of
quadrats to determine the base average number of quadrat faults. The base number is adjusted for

Figure 14 - Exponential PBH bus length.

Level
0
1
2
3
4
5
6

Figure 15 - PBH Bus Lengths.

Length

P m e P
P m e P

2 * (p w + pnsep)
2*(pn-y + P U ~ P)
4*(pn-x + pnsep)
4*(pn-y + P U ~ P)
8 * (p u + pnsep)

Fltsim May 1988

inner and outer zones to model the radial distribution.

An array of normalized fault location coordinates is generated, i.e., each coordinate ranges
from 0 to 1. The normalized coordinate is multiplied by the network overall dimensions to get the
actual physical x,y fault coordinates. With each fault the fault generator associates the fault type, S
A-1 or SA-O. The ratio of the fault types is specified in the fault parameters file.

Mapping Faults to Physical Model
The physical coordinates for each fault are used to determine which hardware section con-

tains the fault. The fault can occur in a P N or the bus area between the PNs. If the fault is in a PN,
the hardware block that the fault is in is determined statistically as a random number with uniform
distribution. The probability that the fault is in a block is given by:

Thus, on the large scale, faults use the wafer-scale fault model characteristics, but within the PNs, the
faults are placed according to the block sizes. Once the fault is isolated to a hardware block, the fault
is mapped to specific CNs within the PN which determines how the CNs are atrected.

If the fault is located between PNs, it is modeled in the PTP or PBH bus structure or the
unused area. Faults in the unused area do not have any impact on the network. The bus structure
that faulted is determined, along with a faulty bus segment within the bus structure. The faulty bus
segment determines which PN messages to corrupt. Bus segments include the PTP bus between two
adjacent PNs, the PBH bus between a PN and the concentrator/deconcentrator nodes or the bus
between concentrator/deconcentrator nodes. A uniformly distributed random number is generated to
determine in which bus and bus portion to place the fault. The probability of a fault in a bus is given
by:

area of the bus segment
segment) = total area between PNs '

where neither the PTP or PBH bus may be affected if the fault occurs in an area with no bus lines.
For a P T P fault, the faulty segment indicates on which side of the P N the fault occurred. Four P T P
buses are associated with each PN, one on each side. For the PBH transmitter and receiver buses, the
level in the PBH tree is indicated along with the closest P N to the fault. The closest P N to the fault
indicates which PBH region that contains the fault. If the P N is in overlapping PBH regions, one of
the PBH regions is chosen, with equal likelihood, to contain the fault. The faulty PBH level and
closest PN indicate which part of the PBH subtree is affected. The bus area required for each PBH
level for each transmitter and receiver bus determines the probability of a fault occurring in that bus
portion.

The buses that connect the PNs together are the most critical area to model in this architec-
ture. While faults in a PN will generally cause a single CN or PN to fail, a fault in the bus area will
cause several PNs to receive faulted data information. This is especially true for PBH structures
where a message is sent to several PNs simultaneously. The bus signal area itself is not the critical
factor for faults, as buses can be expanded to reduce bridging and open bus faults. What is more
likely to fail are active devices[Lei85a]. Bus wires only require a few masking steps, versus active dev-
ices which require many more. For the MIT Lincoln Laboratories project[Raf85a], yields were
predicted at 30 to 50 percent for cells and 95 percent for wires. Each PBH concentrator node and
deconcentrator node contain buffers to drive the bus line to the next node. Also, in the concentrator
nodes some form of contention avoidance circuitry is used to avoid bus collisions, which adds more cir-
cuitry and area. Larger bus buffers towards the top nodes in the tree will be required to drive the
longer bus lines. These concentrator/deconcentrator nodes are more susceptible to faults than just
simple bus lines. A PBH region connects several nonadjacent PNs. Bus line lengths increase by

May 1988

0 (2 ") for every second level. It does not take many levels to make this bus circuitry large and sus-
ceptible to faults.

Mapping faults to the n-graph

A &IF description is read which describes the n-graph. Subsections in the &IF file
describe each CN, each CN site, and all site links and weights. kr each subsection of the mBlF file is
read, the list of physical faults is checked for the faults pertaining that &IF subsection. If multiple
faults are found to affect a common subsection, the faults are combined into one set of fault fields to
model the worst case operation of the network. Each &IF subsection is read, checked for faults, and
the fault fields written before proceeding to the next subsection to reduce the memory requirements of
large networks. Figure I6 shows a partial mapping of hardware block faults to n-graph areas affected.
For example, each link input value is stored in the CN MEMORY hardware block. If a CN
MEMORY word is faulty, the corresponding link input to the CN will have a S-A fault modeled in
the input message. More detail on how the faults are mapped is provided in an OGC Tech report,
CS/E88-021.

RDORESS
DECODE

Figure 16 - Hardware fault to n-graph mapping.

Fltsim May 1988

The mBIF file describes the connections between CNs in the link subsection. This connection
can be via the PTP or PBH communication networks, as indicated in the link subsection. The entire
communication path that implements this connection must be checked for faults. If P T P communica-
tion is used, the PNs send a message that is potentially routed through several PNs in a grid network.
If PBH is used, messages are routed through intermediate nodes. If a fault has occurred in any part of
the communication path, the message will be corrupted or even lost. Corrupted or lost messages
correspond to the actual physical results of a defect. Therefore, the entire message path is checked for
faults for each mBIF link connection.

Another consideration for modeling faults in the PBH network is whether to modify the
source P N sending the message or the destination P N receiving the message. If a defect occurs in the
PBH transmitter tree link, all PNs sending messages in that subtree will have their messages cor-
rupted. PNs not using this faulty link can send messages that do not get corrupted. To model these
corrupted messages, the output links for the PNs in the faulty subtree will be faulted. Defects that
occur in a PBH receiver bus link for a given level will affect all messages sent to the PNs using that
link. All PBH messages to PNs in a faulty subtree portion will be corrupted, while the PNs not in
that subtree will receive the message uncorrupted. Therefore, receiver bus faults are modeled on the
input links to the CNs.

Both the P T P and PBH messages are sent over multiplexed buses. The message is divided
into subwords that are transferred over the bus. A defective data bus line will cause each subword
sent over the bus to have the same fault, faulting bits in both the address and data fields of the mes-
sage. Thus, one faulty signal line will cause a faulty bit in each subword. If the data and address are
multiplexed using only one signal line and it is faulted, all the address and data bits in the message
will be corrupted.

Output Fault Data

Two fault files are produced by Fltsim, P I F and fstat. The fBIF file contains a section of C
program code that is included by the architecture simulators to initialize an array of fault indexes and
modifiers. Three other arrays are also included in the @IF file and are used to access the fault array
by the architecture simulators. The modified operation of the network is evaluated using the architec-
ture simulators. At various point. in the network simulation, fault routines are called that modify
intermediate values in each CN. For example, the output of a site function may be faulty. A site
function routine calculates the site function output and passes it to a fault routine, which accesses the
jBIF fault fields to potentidy corrupt the site output. The fault routines modify the CN values using
one of the logic fault models presented here, SA-O, SA-1 or ''NO CHANGE.

The jstat file is the fault statistics file, which lists the defects and how the n-graph was
modified along with a summary of the faults. The fstat summary includes the percentage of faulted
CNs, links, sites, and weights in the network. More detail on the contents of the fstat file is in an
OGC Tech report, CS/E88421. Understanding and predicting the network's performance can be
done using the fault statistics.

A third file, test, can be generated which provides more detailed information on intermediate
calculations used in the fault simulation. Sizes of the various hardware blocks and bus structures and
actual fault locations are examples of the information contained in this file.

8. SIMULATION RESULTS

The fault simulator executes several basic processes to model faults in the neural network.
(These processes were introduced in Chapter 5.) The results of each intermediate process are
presented in this chapter.

Fltsim May 1988

The network discussed in this chapter is a feed forward 128 x 128 neural network. Three
layers of CNs are present in the network, each with 128 nodes, for a total of 384 CNs. Feed forward
implies all messages from a layer are sent to a higher layer. Each CN has one input site and one out-
put site which receives/sends messages, for a total of 384 input sites and 384 output sites. Since no
faults are modeled in the output sites, they are not included in the fault statistics.

Each CN in the first layer has one input link that receives the input to the network. Also,
each CN in the first layer has an output link with each CN in the second layer, which accounts for
128~ or 16,384 links. Likewise, each CN in the second layer has an output link to each CN in the
third layer. Each CN in the third layer has one output link, which is the output for the network. A
total of 32,896 links are present in the network. Since faults are modeled separately on the input and
output links, they are counted separately for the fault statistics, and are referred to as IN LINKS and
OUT LINKS. For this experiment, the simulated network used only PTP communication to imple-
ment the links. The PBH communication was not used.

The CNs are mapped to 8 PNs in the network. Each P N contains 48 CNs. Four of the PNs
have 6144 input links, one has 6017 input links, one has 2207 and two have 48 input links. Varying
quantities of input links is due to the first CN layer having fewer inputs.

The fault simulator first builds a physical model of the hardware to be faulted. The technol-
ogy file and PAD file determine the required area for the various hardware blocks. A 1~ CMOS pro-
cess is used to implement the network. As no actual hardware has been designed, estimated sizes,
some from the advanced VLSI class project designs, (which are scaled to 1 . 2 5 ~) ~ are used in this
thesis.

The sizes calculated by Fltsim for the network are shown in Figure 17. Preliminary size cal-
culations show that the largest P N hardware block is the DAC, covering 90% of the P N area, and
second largest is the P N control section, covering 6% of the P N area. The remainder of the hardware
block areas are insignificant. The area required by the DAC and P N CONTROL circuits were deter-
mined to be too large and would skew the results, so two additional sets of simulations were run, one
with the DAC size set to 0 and one with the P N CONTROL set to 0. These additional simulations
help determine how the DAC or P N CONTROL sizes effect the fault tolerance of the network. Fig-
ure 18 shows the resulting sizes of the networks. Although it is unreasonable to assume these two
areas can be eliminated completely in the circuit, stricter design rules and redundancy can be used to

Figure 17 - P N block sizes with DAC = 75000.

Percent
0.70

90.22
6.01
0.96
0.96
0.23
0.90
0.00
0.00
0.00
0.00
0.00
0.00

100

Section
ADC
DAC

P N CONTROL
MEMORY
WEIGHT

LSM
ADDRESS DECODER

PTPDEMUX
(1 of 4) PTP-CNTL

(1 of 4) PTP-BUFFER
PBHDEMUX
PBHCNTL

PBILBUF'FER
total P N

Area (Square microns)
4800000

614400000
40960000
6553600
6553600
16000MJ
6144000

100
100
100

0
0
0

681012100

Fltsim May 1988

Figure 18 - P N block sizes with DAC = 0 and P N CONTROL = 0.

effectively reduce the chance of faulty operation. The sizes of the hardware blocks will be further stu-
died as either the inputs to calculate these sizes are inaccurate, or the design should be changed to
reduce this area or increase the fault tolerance of the block. The results from these architectures will
have skewed results until more accurate size information is available. For the purpose of this thesis,
these sizes will be assumed to be correct. (The focus here is on the simulation tool and not the specific
architecture .)

To obtain a statistical sampling, the simulation was run 5 times with the original DAC and
P N CONTROL sizes and 5 times with the DAC set to 0 square microns and 12 times with the P N
CONTROL set to 0 square microns. The results of each set of simulations are compared in this
chapter. The network with the original DAC and PN CONTROL sizes will be referred to as D75, the
network with the 0 DAC size will be referred to as DO, and the network with the PN CONTROL size
of 0 will be referred to as PO.

Figure 19 shows a completely random defect distribution on a wafer, where a "1" indicates a
%A-1 fault and a "0" indicates a SA-0 fault. Compare this random distribution with a more accurate
model using fault clustering and radial distribution characteristics shown in Figure 20. The input
parameters for generating the fault distribution shown in Figure 20 specified a defect density of 15
defects per square inch, the percentage of SA-0 faults is 3%, the clustering coefficient is 0.49, and the
inner to outer zone fault density ratio is 1.0. These values are typical values. Fault densities observed
in industry range from about 15 defects per square inch to about 35 defects per square inch. For the
purposes of this simulation, the lower bound was chosen. The percentage of SA-0 faults was chosen
arbitrarily for these first simulations. This percentage does not have a major impact on the operation
of the faulted network, as a fault will be modeled in the network regardless whether it is a SA-0 or a
S-A-1 fault. The fault clustering coefficient of 0.49 produces less of an even distribution of faults and
is from Stapper's paper on fault clustering(Sta86a). The first architectures that are being modeled do
not cover an entire wafer, but represent a large die on a wafer. Since the radial distribution model
only accounts for the distribution of faults for an entire wafer, and not for individual die on a wafer,
the radial distribution is not taken into account here by setting the inner and outer fault densities
equal. The resulting fault distributions from the fault generator of the fault simulator correspond to
the figures shown in Stapper's paper on fault distributions[Sta86a].

Section
ADC
DAC

P N CONTROL
MEMORY
WEIGHT

LSM
ADDRESS DECODER

PTPDEMUX
(1 of 4) PTP-CNTL

(1 of 4) PTP-BUFFER
PBHDEMUX
PBHCNTL

PBILBUFFER
total P N

PO DO
Area
4800000

614400000
40960000
6553600
6553600
1600000
6144000

100
100
100

0
0
0

640052100

Area (Sq. microns)
4800000

0
40980000
6553600
6553600
1600000
6144000

100
100
100

0
0
0

66612100

Percent
0.75

95.99
0.00
1.02
1.02
0.25
0.96
0.00
0.00
0.00
0.00
0.00
0.00

100

Percent
7.21
0.00

61.49
9.84
9.84
2.40
9.22
0.00
0.00
0.00
0.00
0.00
0.00

100

May 1988

Figure 19 - Random Distribution of 100 faults.

Figure 20 - Fault Simulator Fault Distribution.

The calculated size of the neural network was 8.45 square inches for the D75 network, 0.83
square inches for the DO network and 7.94 square inches for PO. With a fault density of 15 defects per
square inch, an average of 126 faults should occur in the D75 network, 12.4 faults in the DO network

F ltsim May 1988

and 119 faults in PO. For the D75 network, the average number of physical faults was 123 with a
range of 99 to 151. For DO, the average number of faults was 11.2 with a range of 5 to 18 faults. For
PO, the average number of faults was 123.4 with a range of 101 to 142 faults. Removing the DAC cir-
cuitry reduces the total amount of silicon area considerably, thereby reducing the number of faults
present in the DO network, whereas removing the P N CONTROL has a smaller effect on the network
size and number of faults. Due to the randomness of the fault simulation, a wide range of faults occur
in the network. The actual number of faults varies from the predicted values, but they are reasonably
close. The average number of faults for PO is greater than for D75. This increase is due to the ran-
domness in the simulation. More simulations should increase the average for D75 and reduce the aver-
age for PO.

ks expected, for each network, there is a correlation between the relative hardware block size
and the percentage of faults present in the block. Consequently, the majority of P N faults generated
are either DAC or P N CONTROL faults. Figure 21 summarizes the average number of faults that
occurred in each hardware block for each of the simulations. These fault rates can be compared to
the hardware block sizes shown in Figures 17 and 18.

The impact of the faults on the pgraph is mapped to the n-graph. The physical faults gen-
erated an average of 25144.2 faults in the n-graph for the D75 network, 17702.8 faults for the DO net-
work and 1152.7 faults for the PO network. Figure 22 shows a n-graph fault summary, indicating the
number of entities in each n-graph section, the average number of entities that were faulted, the aver-
age percentage that were faulted and the range of faults that occurred in the n-graph section for the
simulations. The sections consist of CNs, IN SITES, IN LINKS, OUT LINKS and WEIGHTS, which
refer to the specific areas in the n-graph where the fault impacts are modeled.

The number of faults modeled in the CN, IN LINKS and WEIGHTS were consistent for all
three networks. These n-graph sections do not depend upon the size of the DAC or P N CONTROL
hardware blocks. The number of faults in the CN and IN LINKS was low, which indicates that these
sections should be reliable. The WEIGHTS section had a large average number of faults with a wide
variation of faults between simulations. Some simulations had a large number of faulted weights and
some did not have any weights faulted. This wide range of faults is due to the random quantity and
placement of the faults in the network and how the network is modeled. For example, a single fault

Figure 21 - Hardware block faults.

Section
ADC
DAC

P N CONTROL
MEMORY
WEIGHT

LSM
ADDRESS DECODER

PTPDEMUX
(1 of 4) PTP-CNTL

(1 of 4) PTPBUFFER
PBHDEMUX
PBHCNTL

PBHBUF'FER
total P N

PO
Faults

0.58
119.58

0
0.67
1.08
0.25
1.25
0
0
0
0
0
0

123.42

Percent
0.47

96.89
0.00
0.54
0.88
0.20
1.01
0.00
0.00
0.00
0.00
0.00
0.00

100

D75
Faults

1.2
107.8

8.4
2
1
0.6
1.8
0
0
0
0
0
0

123.0

DO
Percent

0.98
87.64
6.83
1.63
0.81
0.49
1.46
0.00
0.00
0.00
0.00
0.00
0.00

100

Faults
0
0
7.2
1.2
1.2
0.2
1.4
0
0
0
0
0
0

11.2

Percent
0.00
0.00

64.29
10.71
10.71
1.79

12.50
0.00
0.00
0.00
0.00
0.00
0.00

100

Fltsim May 1988

D75

DO

Figure 22 - Fault statistics summary.

Range
0 - 2

76 - 111
1 - 1

14416 - 32656
1 - 6144

PO

may occur in the weight memory, faulting a single weight, or it may occur in a LSM, affecting all the
weights in a PN. LSM defects fault all the weights that the LSM updates, which, if there are only a
few LSMs in a PN, will be a large number of weights.

The number of faults modeled in the IN SITES was dependent on the size of the DAC.
(Faults in the DAC fault the input SITE calculation.) Thus, the D75 and PO networks had more of
the input sites faulted than the DO network. The DAC will be a critical section to make fault tolerant
to ensure the integrity of the input site functions.

The number of faults modeled in the OUT LINKS was dependent on the size of the P N
CONTROL. The large number of faulty output links is due to the large P N control hardware block.
Defects in the P N control inhibit all the CNs in the PN, impacting a large section of the network,
resulting in a high percentage of faulty output links. The size of the P N control will need to be exam-
ined to determine if this calculated size accurately models the function expected by the fault simula-
tor, e.g., if a defect in the P N control section will not impact all the CNs in the PN, then it should be
modeled in one of the other hardware blocks.

Due to the large fraction of output links faulted, the PN CONTROL section will be the most
critical area to make fault tolerant. With the fault tolerance of this area increased, as implied by the
PO network, the number of OUT LINK fault becomes acceptable. A wide variation of faulted LINKS
occurred for the D75 and DO network. As with the WEIGHTS, this variation is due to the random
quantity and placement of the faults. Also, for the output links, recall that the number of links in a
P N varied from 48 to 6144. P N CONTROL faults in different PNs will fault varying quantities of
OUT LINKS, which adds to the wide range of OUT LINKS faults.

Percent
0.21

24.06
0.00

68.65
7.50

Section
CN

IN SITES
IN LINKS

OUT LINKS
WEIGHTS

Range
0 - 0
0 - 0
0 - 1

6446 - 26752
0 - 6144

Section
CN

IN SITES
IN LINKS

OUT LINKS
WEIGHTS

Section
CN

IN SITES
IN LINKS

OUT LINKS
WEIGHTS

Number
384
384

32896
32896
32896

Faulted
0.00
0.00
0.6

16473.0
1229.2

Number
384
384

32896
32896
32896

Faulted
0.4

102.1
0.3

21.3
1028.58

Number
384
384

32896
32896
32896

Faulted
0.8

92.4
1 .O

22582.4
2467.6

Percent
0.00
0.00
0.00

50.08
3.74

Percent
0.11

26.58
0.00
0.07
3.1

Range
0 - 2

90 - 111
0 - 2
0 - 96
0 - 6144

Fltsim May 1988

A consistently large number of faulty n-graph sections or a wide variation in the number of
faulty n-graph sections indicates that the hardware block contains critical logic. Using Fltsim, the
DAC, P N CONTROL and LSM hardware blocks have been identilied as containing critical logic for
the current network. Either the areas required to implement these. functions should be decreased or
the amount of redundancy increased to alleviate these problems.

For the preliminary networks simulated, there was no fault interaction; the number of com-
bined faults for all the simulations was zero. The lack of faults being combined can be attributed to
several factors. The foremost reason is the relative area of the bus structures is much smaller than the
size of the PNs. Faults in the bus areas are most common faults to be combined, but due to the rela-
tively s m d size of the bus, few faults occur in the bus. Also, the faults that occur in the P N CON-
TROL are modeled as NO CHANGE faults, which are not combined with other faults.

Fault clustering does have an impact on the operation of the network. Figure 23 shows a list
of each P N and the number of faults occurring in the PN. PNs 3 and 4 have a minimal number of
defects and have the greatest probability of operating normally. On the other hand, fault clustering
caused PNs 0 and 2 to have a higher quantity of faults, resulting in a greater chance that those PNs
will be unoperational. The actual fault impact would need to be examined in each case, as any fault
may disable the entire PN.

Execution times for Fltsim are dependent upon the physical size of the network and the
number of CNs, sites and links in the n-graph. As the size of the network increases, more faults are
generated that require a longer search time for the n-graph section. Also, as the number of CNs, sites,
and links in the n-graph increase, the greater the number of sections to check for faults.

Execution times were measured for Fltsim modeling a 12 PN, 1 CN per P N network and the
128 x 128 network, (with 8 PNs and 364 CNs). For the 12 PN network, the fault simulator with no
test output executed in 8 seconds on a VAX 11/780 with 2.4 seconds of user time and 0.6 seconds of
system execution time. Generating the test output increased the user time to 3.1 seconds, while the
other times remained constant. For the 128 x 128 network, the execution time was 30 to 40 minutes.
The total amount of area available on a 4 inch wafer is 12.5 sq. inches. The D75 network used 8.45

Figure 23 - Fault clustering in the PNs.

Fltsim May 1988

sq. inches, which is 68% of the total amount available. Using a similar network architecture, a full
wafer could be simulated in about 1.5 hours on the VAX. Running Fltsim on a more powerful com-
puter, such as a Sun 4, will reduce the time to 20 to 40 minutes. Larger wafers can then be simulated
on the Sun computer.

Verification of the fault simulator is complicated by the size and complexity of the network
being modeled. The only way to truly verify the correct modeling of process faults and their impact
on the neural network architecture is to fabricate several wafers, identify physical fault locations and
examine the faulted network's operation. Comparing the actual data collected to the fault statistics
produced by the fault simulator and the operation of the architecture simulators would determine the
accuracy of the fault simulator. Since actual implementation is not yet feasible, another verification
method is required.

One other verification method is to place faults into the physical hardware model and deter-
mine the faulted operation by hand. Placing faults in each different area to calculate the effects of the
network operation would be time consuming. Also, since processing faults tend to cluster, there is
fault interaction where multiple faults occur in a single message path. Fault interaction and the large
size of the networks prohibit a complete hand calculation of fault effects.

To verify the operation of Fltsim, several faults located by the fault generation routine were
studied for their impact on the operation of the network. These faults modify the network operation
according to predicted hand calculations.

Two extremes can be used to model the granularity of the circuitry in the architecture, as
shown by Figure 24. One extreme is to model the circuit as implemented in the silicon, as gates and
wires. Although this model is the most accurate, it requires too much detail that is not yet available
and would require extensive memory and time to simulate. The opposite extreme is to model the
architecture at the PN level. The inputs or outputs of the P N could be modeled as containing the
faults. This level is too coarse as each PN is comprised of several different functions. Faults in each
of these functions affects the operation of the network differently. Fltsim is in the middle of these two
approaches and models the network more accurately than the PN level, but not a t the gate level. The
question remains, how much accuracy is lost from the wire model? More research is required to
answer this question thoughly. Fltsim uses the information available to model the network at its
current level of implementation.

The ultimate goal of the fault simulator is to test the fault tolerance of the neural network
architecture being developed. The defects that occur in the hardware do not need to be modeled
exactly in the n-graph. The n-graph is faulted using the best approximation available, which is much
better than introducing random faults into the network. The modified operation of the network will
still determine the fault tolerance of the network, even though it is not a perfect model of the actual
defective circuit operation.

7. SUMMARY AND CONCLUSIONS

A fault simulator tool has been developed that models worst case local defects in a wafer-scale
integrated neural network emulation architecture. The fault simulator allows the fault tolerance of

I I I
P N Level Fltsim Level Wire Level

Figure 24 - Circuit model granularity.

Fltsim May 1988

the neural network to be modeled at a high level before the network is actually implemented. The
fault model used is a combination of the fault clustering model developed by Stapper and the radial
distribution model.

The contributions made by this work aid the study of the fault tolerance of the Cognitive
Architecture Project at OGC. Fltsim also provides a general technique for determining the impact of
processing faulta using a high level description of an architecture. The use of a high level description
allows fault tolerance to be incorporated into the design a t a higher level, where the fault tolerance is
easier to implement. The fault process could be expanded to other wafer-scale integrated architec-
tures where a repeated pattern of devices is arrayed on the wafer.

The fault simulator was originally designed to model faults in a silicon implementation of a
neural network. Conceivably, Fltsim could be extended to model faults in a biological system.
Several steps in the fault simulation would require new models, but the general processes would
remain unchanged. An n-graph can be used to describe the biological nervous system since biological
systems have much the same structure as described by the n-graph. Fltsim would, as before, fault the
n-graph operation according to known biological defects.

Fltsim builds a model of how the silicon hardware blocks are interconnected and each block's
size. The size of each block determines the probability of a defect in that area and the interconnec-
tivity determines which messages are corrupted by defects. A biological system has a network of
nodes or synapses that are interconnected. Sizes for the various regions can be assigned depending on
the probability of defects in those regions. The fault distribution model can be altered to model the
characteristics of biological defects. Stuck-at faults can model the incorrect activation between the
synapses. The n-graph operation could be faulted as normally done, and HAS or ANNE could be used
to simulate the faulted network.

Future Enhancements

As the network is refined, and can be modeled more accurately, the fault simulator can be
enhanced to provide a better fault analysis. The communication structure is of primary concern, as it
is the link for the neural network model, and ties many nodes together through time division multi-
plexing. Some assumptions were made to simplify the design of the fault simulator. The uniform
PBH areas should be expanded to non-uniform PBH areas with varying numbers of data/control lines
and different sizes of regions. The concentrator/deconcentrator nodes should be assigned sizes to add
to the bus area. These concentrator/deconcentrator node sizes could increase in size towards the top
nodes to model larger buffers sizes. Future versions of the PBH bus will possibly include a fat
tree[Rud88a], where the width of the data bus increases towards the top nodes, resulting in a higher
data bandwidth at the top nodes. The fat tree helps alleviate the bottleneck of many PNs sending
messages using the PBH bus. Also, redundant root nodes or communication channels should be added
to increase the fault tolerance of the network. Redundant hardware can be modeled by not faulting
the n-graph operation until a predetermined number of faults occur in the hardware block.

Bus line spacing, bus line width and defect sizes could be included in the simulation. Studies
have been done on how these parameters relate to one another. Incompletely severed bus lines or par-
tially damaged transistors could cause AC parameter faults. These faults could be modeled as delay
faults in the network, where the signal gets to the proper value, but it takes longer to make the transi-
tion. HAS and ANNE already model delays in the network for normal message transfer times.

Faults in the hardware blocks could have different effects on the network operation according
to predefined probabilities. Currently, single bit faults are modeled. A single defect may damage the
control structure in a hardware block or a large defect could effect multiple bits. For example, in a
RAM two adjacent bits may be faulty, or a whole row or column may be faulty. Information about
the layout of the cell will indicate the probabilities for multiple bit faults.

A modification to reduce the execution time of Fltsim would be to sort or hash the fault list.
For each section in the BIF file, the fault list is searched for faults that effect that section. If the list
could be searched faster by sorting the list of pointers by specific types of faults, this search time

Fltsim

would be reduced. Currently this search time is the major bottleneck for the simulation.

-

May 1988

References

May 1988

Ham86a.
Dan Hammerstrom, "Connectionist VLSI Architectures," Project Proposal, Dept. of Computer
Science, Oregon Graduate Center (Aug 1986).

Lei85a.
Tom Leighton and Charles E. Leiserson, "Wafer-Scale Integration of Systolic Arrays," IEEE
Transactions on Computers C-34 pp. 448-461 (May 1985).

Har88a.
Jim C. Harden and Noel R Strader 11, "Architectural Yield Optimization for WSI," E E E Tran-
sactions on Computers 37(1) pp. 88-110 (Jan 1988).

Bai88a.
Jim Bailey, "Mapper - A Program to Map CNNs to Physical Networks," Technical Report,
Dept. of Computer Science, Oregon Graduate Center (1988).

Bah88a.
Casey Bahr, ANNE: Another Neural Network Emulator, MS Thesis, OGC (1988).

Jag88a.
Kevin Jagla, Concurrent Neural Network Simulator - HAS, MS Thesis, OGC (1988).

Bai86a.
Jim Bailey and Dan Hammerstrom, "How to Make a Billion Connections," Technical Report
No. CS/E86007, Dept. of Computer Science, Oregon Graduate Center (August 1986).

Sta86a.
C. H. Stapper, "On yield, fault distributions, and clustering of particles," IBM Journal of
Research and Development 30(3) pp. 326338 (May 1986).

Che87a.
Chen, Ihao and Strojwas, Andrzej J., "Realistic Yield Simulation for VLSIC Structual Failures,"
IEEE Transactions on Computer-Aided Design CAD-6(6) pp. 965-980 (Nov 1987).

Wes85a.
Neil Weste and Kamran Eshraghian, Principles of CMOS VLSI Design, A System Perspective,
Addison-Wesley (1985).

McD86a.
J.F. McDonald, Capt. B. J. Donlan, R. H. Steinvorth, H. Greub, M. Dhodhi, J. S. Kim, and A.
S. Bergendahl, "Yield of Wafer-Scale Interconnections," W S I Systems Design, pp. 62-66
(December 1986).

Wal86a.
D. M. H. Walker, Yield Simulation for Integrated Circuits, PhD Thesis, CMU (July 1986).

Gal8Oa.
J. Galiay, Y. Crouzet, and M. Vergniault, "Physical Versus Logical Fault Models MOS LSI Cir-
cuits: Impact on Their Testability," IEEE Transactions on Computers C-29(6) pp. 527-531
(June 1980).

Raf85a.
J. I. Raflel, A. H. Anderson, G. H. Chapman, K. H. Konkle, B. Mathur, A. M. Soares, and P.
W. Wyatt, "A wafer-scale integrator using restructurable VLSI," Joint Special Issue on E S I ,
IEEE Journal Solid-State Circuits and IEEE Trans. Electron Devices, (Feb 1985).

Rud88a.
Mike Rudnick and Dan Hammerstrom, "Physical Broadcast Structure," OGC Technical Report

Fitsim

No. CS/E8&018 (April 1988).

May 1988

