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Abstract 

The Oregon Graduate Center's Cognitive Architecture Project (CAP) is developing a flexible 
architecture to evaluate and implement several types of neural networks. Wafer-scale integrated sili- 

* 

con is the targeted technology, allowing higher density and larger networks to be implemented more 
cheaply than with discrete components. The large size of networks implemented in wafer-scale tech- 
nology makes it difficult to assess the effects of manufacturing faults on network behavior. Since 
neural networks degrade gracefully in the presence of faults, and $ice in larger networks faults tend 
to interact with each other, i t  is difficult to determine these effects analytically. This paper discusses a 
program, FltSim, that simulates wafer manufacturing faults. By building an abstract model of the 
CAP architecture, the effects of these manufacturing faults can be determined long before proceeding 
to implementation. In addition, the effects of architectural design trade-offs can be studied during the 
design process. 
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The Oregon Graduate Center (OGC) Cognitive Architecture Project (CAP) is developing a 
flexible architecture to evaluate and implement several types of neural networks. Wafer-scale integra- 
tion is the targeted technology for implementing the architecture, dowing higher density and larger 
networks to be implemented than with discrete components. As the size of the networks implemented 
increases, the effects of processing faults on the architecture become more difficult to evaluate. Neural 
networks degrade gracefully in the presence of faults, making analysis difficult. Also, especially in 
larger networks, faults tend to interact with each other. To  what extent processing faults will effect 
the operation of the network is the question the fault simulator, Fltsim, answers. 

Neural networks are fault tolerant and are scalable. Each processing node is working asyn- 
chronously on part of the problem to be solved. Messages, (current node output states) are passed 
between nodes, but the actual function and memory of the network are completely 
distributed[Ham86a]. This node independence allows additional nodes to be added to the architecture 
with little or no overhead, thus achieving scalability. The node independence also improves the fault 
tolerance of the network. If any of the nodes are damaged, the entire function is not lost, but nodes 
may participate in several representations, only decreasing the fault tolerance if the node is damaged. 

The neural network can be visualized as a large, multidimensional, directed graph of connec- 
tion nodes (CNs), called the n-graph. The physical network is comprised of a repeated pattern of pro- 
cessing nodes (PNs) interconnected by bus structures. The interconnections between the PNs form a 
graph referred to as the p-graph. Typically, the n-graph is much larger than the pgraph, so that a 
subset of connection nodes in the n-graph is mapped onto a physical node (p-graph node). The 
number of CNs in each P N  may vary. One extreme uses one PN to implement all the CNs, one con- 
nection a t  a time, which is too slow for large networks. The opposite extreme is a "direct" implemen- 
tation using one CN per PN, which requires more silicon area for all the PNs and P N  connections. 

The fault tolerance of the architecture is affected by the pgraph t o  n-graph mapping. M a p  
ping a subset of CNs onto a P N  reduces the amount of fault tolerance in the network implementation. 
If a P N  is defective due to processing faults, the entire CN subset is defective, having more impact on 
the operation of the network. Although, some fault tolerance is preserved, since the the function and 
memory of the physical network are distributed over the PNs. Losing one P N  will not cause the 
entire network function to be lost. The mapping of the n-graph to the pgraph has a major effect on 
the fault tolerance of the network and can be evaluated using Fltsim. 

The main limitation in the production of cost effective wafer-scale integrated devices is the 
processing faults that occur. Each wafer has defects that cause malfunctions in their operation. Some 
architectures that are implemented using wafer-scale integration try to route around dead cells and 
have redundant nodes that can be swapped in to replace these dead cells[Lei85a,Har88a]. Swapping 
cells involves effort to determine which cells are dead and redundant hardware and communication 
paths to route around the dead cells. The cost for this extra effort and hardware redundancy made 
wafer-scale integration more expensive than discrete implementations. Neural networks, however, are 
inherently fault tolerant and do not require as much redundant hardware. The amount of redundant 
hardware required can be evaluated using Fltsim. 

Fault simulation of the CAP architecture is used to predict the operation of the network con- 
taining manufacturing defects. These predictions can be used to improve the fault tolerance of the 
networks by providing feedback before the design has been implemented. Large networks can be 
simulated using Fltsim, due to the scalability of the architecture (e.g., all the PNs have the same 
structure). More realistic faults can be modeled in the architecture using the fault characteristics of 
wafer-scale integration and by taking fault interactions into account. 

*This work was supported in part by the Semiconductor Research Corporation contract no. 861&097, and jointly by the 
Office of Naval Research and Air Force Office of Scientific Research, O M  contract no. NO0014 87 K 0259. 
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A fault simulator program tool developed to evaluate the CAP architecture is described in 
this thesis. The purpose of the fault simulator is to use standard models to model the faults typically 
found in a wafer, not to develop new ways to model faults in a wafer circuit. Chapters 2, 3 and 4 p r e  
vide background information on the simulation environment, the CN/PN models and the fault 
models, respectively. Chapter 5 discusses the design and operation of the fault simulator, followed by 
the results of the simulation in Chapter 6 and a summary in Chapter 7. For the purposes of this 
thesis, it is assumed that the reader is familiar with neural network concepts. 

2. SIMULATION ENVIRONMENT 

The Cognitive Architecture Project group at  the Oregon Graduate Center has developed 
tools and languages used to evaluate, simulate, and implement several different types of neural n e t  
work architectures, as shown in Figure 1. These tools and languages are general in nature, allowing 
several different types of neural networks to be simulated and evaluated. A brief overview of these 
tools will help in understanding how the fault simulator interfaces with them. 

A major goal in the design of the CAP tools is flexibility. To achieve this goal, much of the 
information the tools need for modeling functions of the network is read from data fles. Obtaining 
the information from input files allows many architectures and fault models to be simulated more 
quickly than if the models were built into the actual code of the simulator. Also, some of the files are 
read by several different tools being developed at OGC, avoiding redundant information between files 
and helping to ensure information consistency between tools. More detail on the file formats is 
presented in the OGC Tech report, CS/E88-021. 

A network specification begins with general descriptions and proceeds to greater levels of 
detail. A user first specifies a network with NDL, an extensible Network Description Language. NDL 
is then translated and expanded into a BIF' file, which contains network structure, state, and state 
transition information describing the n-graph. In order for the simulators to use the information thus 
generated, a computer program, "Mapper", maps CNs to physical computational elements, PNs, using 
a PAD (Physical Architecture Description) file and places the mapping information in the mBIF 
file[Bai88a]. A physical computational element corresponds to a single processor on a multi-processor 
machine, a device on a chip, or any other kind of processing element that simulates a connection node. 
The input to either simulator is then a BIF file augmented with physical node mappings (mapped 
mBIF file). 

The PAD lile describes the physical implementation of the architecture. It contains the 
number of PNs on the wafer and their geometry, the maximum number of CNs in a PN, the number 
of data bits/signal lines for each word or communication path, and the connectivity for the communi- 
cation paths. From this description, a complete block diagram of the circuitry (PNs and their inter- 
connectivity) can be built. 

There are two architecture simulators, each serving a different purpose. The more general 
purpose simulator, ANNE (Another Neural Network Emulator), allows for the expedient testing and 
debugging of a wide variety of connectionist/neural network models[Bah88a]. Models can therefore be 
"stress tested" before committing them to the more special purpose simulator, HAS (Hardware Archi- 
tecture Simulator), which simulates network behavior using a chronologically correct software emul* 
tion of the targeted wafer-scale hardware[Jag88a]. HAS provides the user with performance assess- 
ments of hardware design choices and points out potential weaknesses. Each simulator provides an 
overall structure to emulate the network. Within the CNs in the network are various functions to cal- 
culate a CN output. These functions are provided through user routines, which are supplied by the 
user and called by the architecture simulators. 

The fault simulator uses a PAD file, a silicon technology file and a mapped BIF file to gen- 
erate a physical representation of the neural network on the wafer. To convert the blocks of the block 



Fltsim 

- 

May 1988 

High-Level 
Network 

Description 

I 
NDL 

Physical 

Fault Statistics 
Test Data 

iPSC Based Simulators 

NDL - Network Description Language 
BIF - Beaverton Intermediate Form 
mBIF - mapped BIF 
fBIF - BIF fault fields 
ANNE - Another Neural Network Emulator 
HAS - Hardware Architecture Simulator 

Figure 1 - Neural Network Tool Interaction. 

diagram described in the PAD file into actual physical representations of the architecture, the sizes of 
the blocks must be known. The size information is read from a technology file. It contains sizes for 
memory cells, buffers, and all the other basic elements that comprise the hardware blocks. These sizes 



Fltsim May 1988 

are multiplied by the number of devices internal to the block to obtain the block size, Faults are gen- 
erated and located in the physical representation using the characteristics of wafer-scale statistical 
fault models. The fault parameters required to generate the faults in the physical model are read from 
the fault parameters file. Parameters such as the average defect density, fault clustering coefficients 
and ratio of fault types are included. 

The faulted BIF file, fBIF, which contains the fault fields for the mBIF file, is written by the 
fault simulator. The network simulators, HAS and ANNE, read both the mBIF file and the fault 
fields in the fBIF file to modify their operation accordingly. DiEerences in network operation due to 
faults can be evaluated to determine the impact of the faults and hence the impact of certain design 
decisions. 

The fBIF file contains the fault fields to be included in the user routines of the architecture 
simulators HAS and ANNE. The user routine will make subroutine calls to system fault routines a t  
various points in the CN calculation. The fault routine calls will access the fault fields contained in 
the fBlF file to simulate the faults in the hardware. The user routine will call the fault routine several 
times, passing different parameters each time to model faults in various hardware blocks which afiect 
different sections of the n-graph. The appendices provide more detail on the interface between the 
fault simulator and the architecture simulators, and how faults in the various hardware blocks are 
modeled in the n-graph. 

Fltsim can generate two other output files, fstat and test. The fstat file contains all the fault 
statistics for the fault simulation and test contains intermediate Fltsim values, which gives more detail 
about the network size and fault calculations. 

The fault statistics summarize the faults in the physical system and how these faults affected 
the n-graph. They also indicate the n-graph utilization of the pgraph. These statistics lit each fault 
type, the section of the hardware block that it  occurred in, and where in the n-graph it was mapped. 
Physical faults can affect the n-graph in multiple areas depending on the mapping of the n-graph onto 
the pgraph. If multiple faults affect a single n-graph section, the worst case fault is determined and is 
modeled in the network. The worst case fault is selected by either combining the faults into one fault, 
or determining which of the faults has more impact on the network. The statistics file indicates the 
physical defects that were combined to fault a single BIF section. 

The utilization of the pgraph by the n-graph is listed with the fault statistics to help evaluate 
the faults that occurred in the network. For example, a small n-graph mapped onto a large pgraph 
will result in few faults in the pgraph affecting the operation of the network. When faults in the p 
graph do not have much affect on the n-graph, it may mean either that the pgraph is underutilized or 
the design is fault tolerant. 

The test file contains intermediate values used in the fault simulator. Input file values are 
echoed in the test file, such as the sizes of the PN blocks and the actual fault locations. The test file 
can be used to debug the system or to give greater information about the fault generation in the net- 
work. 

3. NEURAL NETWORK MODEL 

Neural Model 
A neural network model is comprised of many processing units, referred to as CNs, operating 

asynchronously. Each CN transforms its inputs into a single output value using non-linear functions. 
The function that is used to calculate the node output value depends on the type of neural network 
used. These CN functions are derived so that the overall function of the network is to map a set of 
input values to a desired set of output values using a "best match" selection. The information stored 
in the network that most closely matches the input selection criteria is selected as the output of the 
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network. 

The CNs in the neural network are interconnected by direct, node-bnode links. Although 
there is large connectivity, it is not total, i.e., not all nodes are connected together[Ham86a]. Figure 2 
shows the conceptual model of a connection node (CN). Separate site functions, S,.t,, and a CN func- 
tion, fCN1 are shown in the figure. The outputs of each site function are used as the inputs for the 
CN function. A single value is calculated in the CN function to be passed to the output site. The 
output site passes the CN output to the next destination, another CN input site or the output of the 
network. If the destination is another CN, the output site signal will excite or inhibit the destination 
CN(s). 

Hardware Implementation 

An n-graph to pgraph mapping combines groups of CNs into Processing Nodes (PNs) as 
shown in Figure 3. The CN interconnections would be inefficient to implement directly with current 
silicon technology due to their large number. Silicon provides a small number of high bandwidth con- 
nections, but CNs require a large number of low bandwidth connections. Therefore, a connectivity 
mismatch exists between silicon technology and the required architecture of the network. Interconnec- 
tion buses are multiplexed since metal lines are too expensive to dedicate to a single CN 
connection[Bai86a]. By combining CNs into PNs and using a multiplexed interconnection scheme, the 
efficiency of the network is preserved. 

Figure 4 shows a partial block diagram of the hardware implementation of a CN. The CN 
input is received from another CN output or is an external input to the network. For the assumed 
P N  model, this value is stored in the CN memory. A corresponding weight value is stored in another 
memory block. A Digital to Analog Converter (DAC) is used to convert these binary numbers to an 
analog signal corresponding to the multiplication of the CN value and the weight. Each analog signal 
is combined in the Analog to Digital Converter (ADC) which acts as an analog arithmetic logic unit, 

Figure 2 - Connection Node Model. 
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to convert the output back to a digital format. The ADC calculates the CN output using the equa- 
tion: 

where f CN is the CN function and each S is a site function. The site function uses as arguments the 
link inputs and their respective weights from the other CNs. One arithmetic unit calculates several 
CN function outputs in a time multiplexed fashion. For example, the initial networks a t  OGC use the 
site and CN functions shown below: 

Arithmetic is performed wing analog techniques instead of digital in order to save silicon 
space on the water, increase fault tolerance and increase the speed of the network.' Although digital 
signals are preferred because digital signals are easier to multiplex over several interconnections and 

P&nb Pendins - OGC 
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Figure 4 - Partial Hardware Block Diagram for a CN. 

provide more reliable communication. 

The Learning Algorithm State Machine, LSM, implements the weight adjustment or learning 
algorithm for the CN. Most learning algorithms use the current output for the CN, the current input, 
a learning rate constant, and a second order term not included here. The arithmetic operations typi- 
cally performed by the learning state machine include multiplication and subtraction, and perhaps 
others, depending on the learning algorithm. Therefore, the learning state machine contains multiplier 
and subtraction circuitry, tailored to the learning algorithm to be used and a Programmable Logic 
Array, PLA, is used to implement the LSM control. The arithmetic circuitry calculates a new weight 
to be stored in the WEIGHT memory hardware block. The LSM operates concurrently and asynchro- 
nously with the other CN functions. 

Figure 5 shows the P N  block diagram. Several CNs (shown in Figure 4) are mapped onto 
this block diagram. No global control signals are needed for the PNs, and each P N  operates asynchro- 
nously with respect to the rest of the PNs in the network. Only the messages that are passed between 
PNs require synchronization. 

Two modes of communication between PNs are implemented. One uses a grid network, 
shown in Figure 6, which is called PointTo-Point (PTP) communication and the second is a tree-like 
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structure, shown in Figure 7, c d e d  the P N  Broadcast Hierarchy, (PBHJ* The PTP network connects 
a P N  with each of its four nearest neighbors. Messages include a destination P N  address that is used 
to route the message through each PN. The PN receives a message and determines whether it is the 
destination PN. If the P N  was not the final destination, the message is retransmitted to the next PN 
using a predefined routing algorithm. 

The PBH is used to broadcast messages to several PNs simultaneously, updating many CNs 
with one message. PNs are grouped into PBH broadcast regions that are physically connected by a 
common PBH bus. When any of the PNs in the region sends a message, d the PNs in the region 
receive it. The PBH bus is split into transmitter and receiver link sections. To broadcast a message 
using the PBH network, a P N  sends ite own source CN address along with the data onto the PBH 
transmitter bus. It is received by a concentrator which retransmits the message to the next higher 
level concentrator in the tree. Each concentrator accepts messages from two lower level concentrator, 
allowing d y  one of the two to transmit at a time. At the top node, the message is then sent to the 
receiver links. Messages are received by deconcentraton and are retransmitted to two lower level 
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PBH Transmitter Bus 

Figure 6 - PTP Bus communication. 

PBH Receiver Bus 

Figure 7 - PBH Bus communication. 

deconcentrators. All the PNs in the region receive the message from the broadcast tree. For each 
message address that matches an entry in the CN address decoder, the data is stored in the CN 
MEMORY hardware block. P N  messages use the PBH transmitter line to traverse up to the top node 
in the tree, and descend the receiver bus, communicating simultaneously to all connected PNs. Con- 
trol lines are used to avoid collisions and perform arbitration as the messages traverse up the tree. 

The PBH regions may overlap, allowing PNs to belong to multiple PBH regions. The P N  
will transmit and receive messages from all the PBH regions it  belongs to. Each CN in the P N  will 
determine which of the PBH regions to transmit messages to and which regions to receive messages 
from. 

In Figure 5, the PBH Control/Demux and PTP control/address compare/demux control their 
respective communication channels, both in the sending and receiving of messages. One set of data 
lines is used to send both the address (CN #) and data (CN output value) information in each of the 
PTP and PBH communication schemes. This information may be sent in a serial mode, depending on 
the architecture modeled. The width of the data bus is read in from an architecture description file. 
Control lines are used to handshake the data (i.e., Data Valid and Data Accepted). 

The information from other CNs is routed though the P T P  or PBH section in the PN. The 
address field is separated from the incoming word and sent to the address decoder to check for a 
match. The address decoder uses a Content Addressable Memory, CAM, to check for the presence of 
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that CN number (address). If present, the data information is loaded into the matching CN 
MEMORY location(s), which contain other CN output values. 

As mentioned before, the contents of the CN MEMORY and corresponding weights are used 
by the computation unit to calculate each CN output. The computation is performed by the DAC 
and ADC blocks. Each CN in the P N  has its output calculated in a cyclic manner. Each output and 
its CN number are then routed to either the PTP or PBH communication channel, as predetermined 
by the type of CN routing, to be passed on to other CNs. 

A Learning State Machine monitors the CN outputs to calculate the new weight for that CN. 
As each CN output is calculated, the LSM calculates the new weight value using a predetermined 
learning algorithm. The new weight value to be used for the next incoming CN value is stored in the 
WEIGHTS memory. 

A P N  control block is included to represent any control signals that are used throughout the 
PN. The control circuitry represented is the portion of the P N  circuitry that coordinates the oper* 
tion of all the hardware blocks within a PN. For example, circuits controlling the timing of data 
transfer between all the hardware blocks in a PN would be represented in the PN control block. Con- 
trol circuitry local or affecting only one PN hardware block should be included in that hardware 
block. 

4. DEFECT FAULT MODELS 

Originally, defects in integrated circuit fabrication were considered to be purely random. As 
the defect densities were reduced by better process control, it was assumed that those defects were 
random and could be modeled using a Poisson distribution[Sta86a]. Later, it was discovered that the 
defects were not random. As integrated circuit size increased, it was discovered that the defect diitri- 
butions deviated from the simple Poisson distribution model. Larger circuits exhibit fault clustering 
which is not modeled using simple Poisson distributions and a more detailed model must be used. A 
compound Poisson distribution can be used in which a wafer is sectioned into areas with the average 
number of faults in each area specified by a variable. Clustering can be modeled as independent 
regions with varying numbers of faults[St&6a,Che87a]. Within each area, the P o k n  distribution 
can be calculated as before. 

CMOS circuit technology is the process chosen to implement the neural networks a t  OGC. A 
typical pwell CMOS process with one metal layer requires 7-8 processing steps and masks[Wes85a]. 
Each of these steps can potentially add new defects to the wafer. There are two categories of faults 
that can occur in processing a wafer, global defects and local defects[Har88a,Che87a]. Global dejects 
affect the operation of the entire wafer and are generally catastrophic in nature. Global defects are 
generally process defects and include problems such as mask misalignment and oxide thickness defects. 
All, or most of the cells on the whole wafer will have the same fault defect present. The number of 
wafers with global defects can be derived statistically and affects the yield directly. Thus, global 
defects are not considered by the fault simulator. 

The second category, local dejects, are those that occur at  single points on the wafer. Local 
defects include extra or missing material defects, oxide pinholes, or via resistance faultspcD86a], 
which result in opens and shorts in the circuit. The fault simulator will model local defects, as these 
affect a single P N  or groups of PNs which may not critically aflect the output of the network. The 
network will operate despite faults due to the inherent fault tolerance of the neural network, but the 
performance will be degraded. Fault simulation will provide an analysis tool to determine the degree 
of performance degradation in large physical implementations of neural networks. 
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Fault Distribution 

Local processing defects in a wafer can be characterized by statistical studies of defects on 
other wafers, which indicates that the fault density increases towards the edge of a wafer and that 
faults tend to cluster in groups[Sta86a]. These characteristics are used in the fault description model 
to determine what the effects of actual processing faults would be on a particular network. Defects 
tend to cluster within wafers and among wafers in a batch. Clustering can be attributed to the batch 
oriented process, where the processing conditions vary from lot to lot[Wal86a], or from concentrations 
of impurities in the air or in the process. 

To  get some idea of the fault spatial distribution, F. M. Armstrong and K. Saji examined 12 
blank wafers from a manufacturing line to determine the location of all defects, which lead to circuit 
faults[Sta86a]. Each wafer was sectioned off into s m d e r  areas referred to as quadrats, and the 
number of defects in each quadrat was counted. Various quantities of quadrats were used for each 
wafer, consisting of a 12x12, 8x8, 6x6, 4x4 and a 2x2. The distributions of the numbers of defects per 
quadrat were tabulated. The mean, variance and mean-bvariance were compared for each quadrat 
size. The larger quadrats, (quadrats with the fewest grids, such as the 2x2), had the greatest deviation 
from Poisson statistics. This deviation indicates faults were clustered within the quadrats[Sta86a]. 
The goodness of fit between the statistical model and the data was determined using the chi-square 
test. The tabulated defect statistics were analyzed to determine which of four different compound dis- 
tributions provided the best fit for these data. Of the twelve wafers tested, four wafers were best 
modeled by a mixed Poisson-binomial distribution, four others by a Neymann Type A distribution, 
three others by a negative binomial distribution, and one wafer fit all of these distributions equally 
well. None of the compound distributions matched the data significantly better than the other distri- 
butions. But, for all the wafers, each of these distributions gave a much better fit than Poisson's 
distribution[Sta86a]. 

Several yield models based on mixed Poisson statistics are derived from observed statistical 
data and not directly from the wafer fabrication process[Har88a]. Since fault distributions vary 
between and within process lines and product lines, fault models tend to vary, causing some dispute on 
their validity. The end result of the model though is to simplify the physical process of fabricating a 
circuit, and as long as the model fits the actual data within the given tolerances, the model is valid. 
Since all the distributions modeled the fault clustering similarly and all of them did better than the 
Poisson distribution, any of the fault models can be used to model the fault distribution. For the 
analysis in this thesis, a Poisson-negative binomial was used to model the fault clustering. The proba- 
bility of finding x defects in a wafer quadrat is: 

where 1 is the expected (average) number of defects in an area and is the clustering coefficient 
between areas on the wafers. Lower values of a correspond to greater clustering. The variance for 
the number of faults found in an area is: 

These equations were found to fit Stapper's test data and were verified using the chi-square test. 
Stapper concluded that these tests were conservative, and that actual wafers would exhibit even more 
fault clustering traits[Sta86a]. 

A second trait of the spatial distribution of faults is related to the distance from the center of 
the wafer. Defects in a wafer are more common around the edge of the wafer and exhibit a radial d i i  
tribution of the form: 

where h ( r )  is the probability of a defect occurring at a given distance T away from the center of the 
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wafer, and c l  and c:! are constants(Wal86a]. There are many factors that contribute to this effect: 
the edge being more exposed to air, tilting of the silicon wafers while processing, the lithography 
defocusing towards the edge of the wafer, or the handling of wafers by the edges. 

For this thesis, both fault clustering and the radial distribution of faults are modeled. The 
fault simulator combines Stapper's fault clustering model with the radial fault distribution model, '. 
which is the same concept used by Harden and Strader[Hargga]. 

Fault clustering is modeled in the neural network wafer by dividing it into a 12x12 grid with 
varying defect densities in each area. The number of faults in each area will be determined by a two 
zone radial distribution where the density of faults will be greater towards the edge of the wafer. The 
inside zone will have a lower defect density than the outside zone. The average total number of 
defects (ATD) to model in the network is equal to the defect density (defects per square inch) multi- 
plied by the area required for the network. Each quadrat starts with a common base defect density 
equal to ATD/144, or the total number of defects divided by the number of grid areas, or quadrats. 
The common defect density for each quadrat will produce the fault clustering effect using the Pr(x) 
equation to calculate the number of faults per quadrat area. This defect density is multiplied by a 
radial distribution modifler that is greater than one for the outside zones and less that 1 for the inside 
zones, resulting in a higher average number of defects for the outside zones, and lower average number 
of defects per quadrat for the inner areas. The constraint is that the sum of the probabilities for each 
quadrat (defect density) must equal unity to preserve the total average number of defects per wafer. 

The radial distribution zones and quadrat grid are shown in Figure 8. The circular shape of 
the wafer is approximated in the simulation by a square area as shown by the outside box. Likewise, 
the radial zones are approximated with squares as shown by the inner box. Dashed lines represent the 
144 quadrat boundaries. Once the number of defects have been determined for the quadrat area, the 
defects are placed randomly inside this area. 

Figure 8 - Wafer radial zone and quadrat grid. 
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Physical Faults 
The basic local defects in a wafer modify the operation of the circuit. Most of the defects 

manifest themselves as either opens in the signal path or shorts between signals or between signals and 
fixed sources. For example, extra polysiiicon or metal can short two lines on the same layer, extra 
polysilicon can cause an open by forming a new transistor if over an active wire, extra material can 
cover a via or missing material can cause opens in signal lines. Walker discusses these defects in depth 
and their implications on circuit behavior.[Wal86a]. Another study examined 43 failed circuits in a 4 
bit microprocessor chip. The results of the observed failure modes are shown in Figure 9[Gal80a]. 
The physical fault types are modeled using the logic fault models, which modify the logical operation 
of the network. 

Logic Fault Models 
One approximate model for physical defects is where signal paths are shorted or opened. This 

model is adequate when the actual physical layout of the wafer is known, so that it can be determined 
which signal paths are likely to be shorted together. The fault simulator works from a higher level 
description of the network, and the actual layout has not been developed yet. Therefore, the 
short/open model physical defect types are not used in the fault simulator. Instead a stuck-at model 
augmented with special fault models is used. 

Stuck-At Model 

As the level of integration increases, the stuck-at model becomes progressively less 
accurate[Gal80a]. There are two reasons for the inaccuracies. First, not all faults can be modeled 
using the stuck-at fault model. Some faults will actually change the function of the gates, and not 
always force it to a high or low state, and some faults create state-dependent behavior. For example, 
in Figure 10, if the transistor with input e is shorted so i t  is always on, whenever f is low, the path to 
GND is completed, forcing the output low. If e was low, the output is correct, otherwise the opera- 
tion of the circuit is defective. 

Second, a topology for the transistor circuit has to be assumed for the logic gate topology. 
Figure 10 shows a logic function and the transistor circuit to implement it. Faults are generally 
modeled using the logic schematic, but this does not always correspond to the transistor circuit which, 
in turn, does not always correspond to the layout. The X's shown in the logic schematic and transis- 
tor schematic indicate points that cannot be modeled in the corresponding schematic. 

CMOS uses a complementary set of transistors for connecting the output to either to VDD or 
VCC. A fault in the path connecting the output to VDD will cause the output node never to be 
discharged via that path. Yet, a parallel path connecting the output to VDD will discharge the node, 
with seemingly correct operation. The fault is only detected when the faulty path is supposed to be 
activated, and the output is still high. The stuck-at model does not model this type of "intermittent" 
defective operation. By using the stuck-at model for "intermittent" nodes like this in the fault 

Figure 9 - Faults in a 4b i t  microprocessor. 
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Figure 10 - Logic vs Electrical topology. 

simulation, the worst case operation for the node can be modeled. The model implies that the node is 
always stuck high or low, but it is actually stuck only for a subset of input combinations. 

A tradeon exists between the accuracy of the simulation and the amount of information about 
the physical architecture to be supplied. To improve simulation accuracy, more information is 
required. But, the purpose of the fault simulator is to model an architecture before the design is com- 
plete to ensure fault tolerance, therefore, many simplifying conservative assumptions were made. 

The fault simulator will produce a first cut yield estimate for the wafers. Fault modeling is 
best done using a high level fault mechanism versus a more detailed model that is more accurate, but 
requires a more detailed architectural description and design. The accuracy of the model will be lim- 
ited due to this abstracted architectural description. 

The stuck-at model forces a signal to an always high (SA-1) or always low (SA-0) state, 
allowing single bits in data words to be faulted. A single physical defect will map to a hardware block 
in the wafer, where a stuck-at fault will be assigned. Usually a single physical defect will map to a 
single bit in a data and/or address field. But potentially, a single physical defect can cause multiple 
stuck bib. For example, multiple stuck bits occur when a data word is transmitted in portions using a 
multiplexed data bus with a defective signal line or a large defect can bridge several devices or wires. 
Each data word portion will have the same faulty bit p i t i o n .  

Physical defects can prevent data transfers between hardware blocks; these are usually defects 
in handshake or control signals. Faults can inhibit the transfer of the weight data from the learning 
state machine to the weight memory or data from one P N  to another PN site input. One method of 
modeling the inhibited data transfer is to fault all the bits in the data word. All the data lines would 
be stuck-at 0 or 1. The destination hardware block of the transfer would be updated with a new 
value that is either all high or all low. In reality, the inhibited data transfer will cause the destination 
node to keep its old value, ignoring the new value. The fault simulator uses a "NO CHANGE" flag 
which allows data transfers to be inhibited, forcing the destination to keep its old value. 
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Several of the goals for the fault simulator development were: 

Flexibility 

High level architecture description input 

Modular routines 

Efficient memory storage (for large networks) 

Efficient execution time (for large networks) 

a Worst case fault model 

The fault simulator provides a basic framework for modeling faults in a neural network wafer 
described by a high level architecture description. This architecture will gain more detail as the 
design progresses. The fault simulator can adapt to the changes without a major redesign of the con- 
cepts used in the simulator. As the architecture becomes more detailed, the model and fault simula- 
tion should become more accurate. This flexibility is accomplished by using a modular structure for 
the simulator routines. For example, a single routine calculates the size of the PN. As this calculation 
becomes more accurate, this routine can be modified to the new, more accurate model. The fault gen- 
eration routine is another example of a modular routine. The original fault generation package placed 
faults using a completely random distribution. The second fault generation package, which incor- 
porated fault clustering and radial distribution, required that only one routine be replaced. 

The fault simulator will be used to analyze ultra-large-scale integrated silicon neural net- 
works. Networks to be simulated a t  OGC will have 128 PNs, 4K CNs (16 CNs per PN), and 2 mil- 
lion connections. The BIF' file to describe this network would require over 26 megabytes of data. 
Therefore, utilizing the memory required to run the fault simulation efficiently is a constraint. Usually 
as memory is conserved, the execution time is increased, which is another constraint. A proper bal- 
ance of the required memory space and program execution time was needed. Minimizing the memory 
requirements is the more important constraint to allow simulation of larger networks. 

Fltsim reduces the amount of memory and execution time by using a high level architecture 
description to model the hardware. For example, since the network is comprised of an array of similar 
PNs, only one set of hardware block sizes internal to the PN is calculated. Only the outside boun- 
daries for the PNs are replicated for the entire wafer, and not all the internals for the wafers. Also, to 
reduce the amount of memory used, the entire mBIF file is not stored in memory, but only the con- 
nectivity of the n-graph is stored. 

A fault field in the DLF file consists of two numbers, a fault index and a fault modifier. The 
fault index indicates the type of fault (SA-1, SA-0 or NO CHANGE), and the type of target value to 
be faulted. The types of target values that can be faulted are a data word, a message address or both 
the address and data portions. The fault modifier indicates the specific bits to be modified in the tar- 
geted value. As an example, the index may indicate a SA-0 fault in a data word. The modifier will 
contain 0's for the faulty bits that are stuck-at0 and the rest are 1's. The target value is AND'ed 
with the modifier to give a new target value. The faulted bits are always low. The SA-1 fault is 
modeled in the same way, except 1's are OR'ed with the target value. Another type of fault is the 
'NO CHANGE fault, which forces the target value not to be updated with new values. NO 
CHANGE faults are implemented one of two ways. For output links, the message's address field is set 
to an invalid node in the network, causing the message to be lost. For input values, the new value is 
set to its previous value. For example, if a handshake line is faulty, message transfers between PNs 
will not occur, so that the target value is not updated. The update is inhibited by sending the mes- 
sage to an invalid node in the network. As such, the target value in the destination CN does not get 
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updated and will keep its old value. NO CHANGE faults do not use the fault modifier field. 

Faults in the hardware of the network can be modeled as faults in the n-graph model of the 
network. Since BIF describes this n-graph model, faults will be mapped to the n-graph and then to 
the BIF file. 

In the n-graph, faults can manifest themselves in the CN output, the links between nodes, the 
weight fields, or the output of the site to the CN. Figure 11 shows the diagram of the n-graph with 
X's indicating where faults are to be modeled. To model n-graph faults, four fault fields are required 
in the BIF file, one for each area mentioned, the CN, Site, Link and Weight. These fields allow multi- 
ple faults to occur in different areas of a CN, but only one fault field per area is allowed, to reduce the 
complexity of the system. Faults that modify a common n-graph area are combined using a set of 
worst case fault rules. These rules combine, if possible, two faults to effect all faulty bits from both 
fault modifiers, otherwise they choose a fault that has more impact on the operation of the network. 
Faults will be combined if the fault fields of the indexes are equal, i.e., if both faults modify the same 
address and/or data portions of the target values. The rules for determining the worst fault are listed 
in order of precedence below: 

1. "NO CHANGE" faulte 

2. Address fault over Data faults 

3. Address and Data faults over Data faults 

4. SA-O over SA-1 faults and combine faulty bits 

5. Combine faulty bits 

"NO CHANGE? faults are assumed to be the worst type of fault, since they are the result of a control 
or handshake fault, which affects all the bits in the word. Faults modifying only the message address 

Figure 11 - Fault Locations in the n-graph. 
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bus have more impact than faults that modify the data words. Faults modifying both the address and 
data are worse than faults that just modify the data. If the faults modify the same address and data 
values, the fault modifiers are combined. If several faults are all S-A-1 (S-A-0) faults, the modifiers are 
combined, faulting all the stuck bits. If several faults have a combination of S-A-1 and S-A-0 faults, 
S-A-0 is assumed and the faulty bits are combined so that they will all be stuck a t  0. The main idea 
is to provide a single worst case fault with only one field. So, although the type of fault is changed, 
the impact on the network will be the worst case. 

Assumptions 

Some hardware and fault modeling assumptions had to be made when developing the fault 
simulator. These assumptions were needed to simplify the design of the fault simulator and also 
because the hardware architecture is not yet completely defined. As the hardware becomes better 
defined, it can be modeled more accurately. Assumptions relating to how the physical hardware faults 
are modeled and how they affect the operation of the network will be reassessed later. 

The assumptions can be divided into two categories. The first category of assumptions 
simplified the hardware model and the second category simplifies the modeling or representation of the 
faults in the network. Each impacts the modeling of the network and is now described in more detail. 

The connectivity for the PTP connections was assumed by the P N  network locations in the 
network as specified in the PAD fle. Although the P T P  connectivity is explicitly stated in the PAD 
file for the P T P  connections, a simplification was to use the P N  x,y location in the network and 
assume physically adjacent PNs in the wafer are connected by a P T P  bus. Minimal area is used when 
connecting adjacent PNs and thus will be the most common configuration. The networks currently 
planned to be modeled a t  OGC will connect adjacent PNs. 

The message routing algorithm for the P T P  communication is assumed. A message sent from 
one PN to another will travel in the x direction first until the correct column is reached, then in the y 
direction until the destination P N  is reached. 

The PAD file specifies the number of LSMs in each PN. If one of the LSMs has a defect, all 
the weights updated by the defective LSM will be faulted. The assumption that each LSM has an 
equal number of weights is assumed. So one defective LSM will cause I/(# LSMs) of the weights to 
be faulted. 

The structure of both the PBH Transmitter bus and the Receiver bus was assumed to be a 
binary tree. Concentrators have two input links from lower bus levels and one output link to a higher 
level. Transmitters have one input link from a higher bus level and two output links to lower levels in 
the bus. 

PBH regions must have a common structure. That is, each region must contain the same 
number of PNs and each level the same number of data and control signals, which reflects the 
assumed symmetry in the n-graphs to be emulated. 

The assignment of the CNs, Sites, Links and Weights to specific locations within a P N  was 
assumed to be in the order listed in the BIF' file. The BE' file uses a hierarchical notation to list the 
n-graph sections; a CN section is first, then all the Sites for the CN, followed by all the Links for each 
Site. Thus, all the information is grouped in order in the BIF file, and will therefore be adjacent in 
the P N  hardware. 

The second category of assumptions concerned fault modeling. The defects modeled on the 
wafer are point faults with zero diameter. Actual faults have a non-zero variable diameter size. If a 
defect is located on a signal line, the defect diameter and the line width will determine if the line is 
completely severed or just partially nicked. If the defect is between two metal runs, the defect diame- 
ter and the line spacing will determine if the two lines are shorted together. The defect size, line 
width and line spacing are not modeled explicitly in the fault simulator. 

Faults are modeled as single bit faults, such as defects in a single data bit in a memory, a sin- 
gle DAC or ADC output or a single data buffer. These single bit faults may affect several bits 
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depending on how the hardware is used, but only one bit is defective in the hardware block per physi- 
cal defect. For example, the RAM structures may have defects in the row or column address decod- 
ing, disabling a whole set of bits for the entire PN. These defects affect the control structure of the 
individual hardware blocks. A future enhancement would be to add probabilities of faults in the con- 
trol structures for individual hardware blocks that would affect sets of bits. For the LSM, a probabii 
ity has been defined by catastrophic faults in the LSM. This concept could be expanded for other 
hardware blocks. 

Each hardware block contains the circuitry to perform the indicated function. The area 
inside a block does not include any free area. Defects that occur inside a hardware block will aflect 
the function of the block. No allowance for free areas between the lines and devices is made. This 
free area can be compensated for by decreasing the defect density. 

The fBIl? 6le conveys the fault actions to be performed in the architecture simulators. Only 
one fault field was allowed per n-graph section. Either multiple faults that aflect a common n-graph 
section are combined, or the worst case fault is used. The rules for choosing the worst case fault are 
assumed to produce a fairly accurate model of the real system. 

Basic F a u l t  Simulator  Processes 
Figure 12 shows the basic execution flow of the fault simulator. Fltsim starts by building a 

physical model of the circuitry. Size information read from a technology fle and a physical architec- 
ture description, PAD, file are used to construct the model. The fault model parameters are obtained 
from a fault parameter 6le that describes the characteristics of the faults. Stuck-abl and Stuck-at-0 
faults are generated and placed on the wafer using an x,y coordinate system. These defects are then 
mapped into the physical hardware blocks in the network. The impact on the operation of the p 
graph network is assessed to determine how the n-graph is affected by the faults. Faults in the p 
graph are mapped to the n-graph. Knowing the effects of the faults in the n-graph, the fBIF fle can 
be created including a fault index and fault modifier to modify the n-graph operation. These fault 
fields will indicate to the architecture simulators, HAS and ANNE, how to model the faulted network. 
Fault statistics are generated to provide the needed feedback to evaluate the new operation of the net- 
work simulation by HAS or ANNE. The following sections will describe each Fltsim execution phase 
in more detail. 

Physical Model 
The fault simulator builds a block representation of the circuitry to be modeled. Each PN's 

internal circuitry is identical, each P T P  bus is identical, and each PBH bus communication region is 
assumed to be identical. Therefore, to drastically reduce the number of calculations and stored infor- 
mation, only one P N  hardware block representation and one PTP and PBH bus representation are 
calculated. The technology and PAD files contain the required information to build these represent* 
tions. 

The P N  is modeled as a rectangular area containing the hardware blocks. An aspect ratio 
determines the x and y dimensions for the PN. Given the P N  x,y dimensions, each P N  in the network 
is assigned a physical location on the wafer. The PNs are separated on each side by a bus communi- 
cation area, which is calculated from the bus line width and the number of bus lines. Note that the 
locations of the hardware blocks within a P N  are not assigned. The locations of the PNs, P N  
hardware blocks and bus areas are discussed further in the placement of the faults in the hardware. 

The technology file contains information describing the sizes of the basic elements used in the 
blocks. The sizes are dependent on the technology used to fabricate the device. It contains fields that 
describe line widths, sizes of memory cells, DAC cells, ADC cells and buffers. Basic element sizes are 
multiplied by the hardware block dimensions given in the PAD file. Not only will the basic element 
size indicate the space required for its basic function, but it will also contain an added amount for the 
control of the function. For example, a memory cell can be implemented using a fixed amount of 
area. Also included in the memory cell area is an amount for the row and column buffers and address 
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Figure 12 - Fltsim Processes. 
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decoding that will be part of that hardware block. Some basic elements can be thought of as a bit 
slice ppcessor, where sections of components are added to expand its capabilities. The LSM is an 
example. As each LSM is added, a new separate structure is added to the existing circuit, expanding 
the LSM's capabilities. Expanding the LSM's capabilities allows additional learning algorithms to be 
used. 

fault statistics 

The PAD file describes the pgraph for the network, contains information used to organize 
the basic elements into the hardware block sizes, and indicates the interconnectivity of the network. 
The PAD file describes the PNs and CNs in the network, the layout of the PNs in the network, the 
PTP communication structure and the PBH communication structure. Information regarding the 
dimensions of the blocks in a PN, such as the number of bits in the weight field and the maximum 
number of CNs in a P N  is included in the PAD file. Figure 13 shows the dimensions of the blocks in a 
PN. The actual values are given in the PAD file. 

I 
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The amount of silicon area covered by the PTP and PBH bus structures between the PNs is 
calculated. The PTP uses a simple grid network where the bus area between two PNs is the product 
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of the number of bus lines, the line width, and the distance between the PNs. The total bus area 
between PNs is multiplied by the number of PTP buses between PNs. 

The PBH bus size calculation is more involved, since it  uses a tree structure communication 
path to broadcast messages to several PNs simultaneously. To  model faults in the PBH transmitter 
bus, the bus area for each level of both the PBH transmitter bus and the receiver bus must be calcu- 
lated, as faults in various levels affect the network differently. Bus signal lengths increase towards the 
top concentrator and deconcentrator nodes in the PBH network. Every second level, while ascending 
the PBH transmitter bus, the bus increases in length exponentially. If we assume the x and y dimen- 
sions are the same for the P N  and level 0 has length 1, then level 1 will have length 1, level 2 length 2, 
level 3 length 2, and level 4 length 4. If the P N  dimensions are p u  and pn-y, and pnsep  is the dis- 
tance between the PNs, Figure 14 shows a table of the bus lengths for increasing levels. The relative 
bus lengths are shown in Figure 15. Dark lines represent the PBH buses and the squares are the PNs 
array in the network. Bus faults are more likely to occur in the upper levels of the PBH network due 
to the longer bus lines and bigger buffers required to drive the longer lines. Worse yet, these upper 
level faults corrupt a higher percentage of the P N  messages in that PBH region. 

Fault Generation 

The fault generator produces a list of defects usiig the fault models discussed earlier. The 
fault parameters used to calculate the fault locations and types are read from a fault parameter file. 
Parameters can be varied quickly, without recompiling Fltsim, to determine how the fault parameters 
affect the performance of the network. Of primary interest is how the fault density and fault cluster- 
ing affect the operation of the networks. The fault parameter file will specify the fault density for a 
network. The fault density is multiplied by the size of the network to determine the average number 
of defects to place in the network. The number of defeck in the network is divided by the number of 
quadrats to determine the base average number of quadrat faults. The base number is adjusted for 

Figure 14 - Exponential PBH bus length. 
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inner and outer zones to model the radial distribution. 

An array of normalized fault location coordinates is generated, i.e., each coordinate ranges 
from 0 to  1. The normalized coordinate is multiplied by the network overall dimensions to get the 
actual physical x,y fault coordinates. With each fault the fault generator associates the fault type, S 
A-1 or SA-O. The ratio of the fault types is specified in the fault parameters file. 

Mapping Faults to Physical Model 
The physical coordinates for each fault are used to determine which hardware section con- 

tains the fault. The fault can occur in a P N  or the bus area between the PNs. If the fault is in a PN, 
the hardware block that the fault is in is determined statistically as a random number with uniform 
distribution. The probability that the fault is in a block is given by: 

Thus, on the large scale, faults use the wafer-scale fault model characteristics, but within the PNs, the 
faults are placed according to the block sizes. Once the fault is isolated to a hardware block, the fault 
is mapped to specific CNs within the PN which determines how the CNs are atrected. 

If the fault is located between PNs, it is modeled in the PTP or PBH bus structure or the 
unused area. Faults in the unused area do not have any impact on the network. The bus structure 
that faulted is determined, along with a faulty bus segment within the bus structure. The faulty bus 
segment determines which PN messages to corrupt. Bus segments include the PTP bus between two 
adjacent PNs, the PBH bus between a PN and the concentrator/deconcentrator nodes or the bus 
between concentrator/deconcentrator nodes. A uniformly distributed random number is generated to 
determine in which bus and bus portion to place the fault. The probability of a fault in a bus is given 
by: 

area of the bus segment 
segment) = total area between PNs ' 

where neither the PTP or PBH bus may be affected if the fault occurs in an area with no bus lines. 
For a P T P  fault, the faulty segment indicates on which side of the P N  the fault occurred. Four P T P  
buses are associated with each PN, one on each side. For the PBH transmitter and receiver buses, the 
level in the PBH tree is indicated along with the closest P N  to the fault. The closest P N  to the fault 
indicates which PBH region that contains the fault. If the P N  is in overlapping PBH regions, one of 
the PBH regions is chosen, with equal likelihood, to contain the fault. The faulty PBH level and 
closest PN indicate which part of the PBH subtree is affected. The bus area required for each PBH 
level for each transmitter and receiver bus determines the probability of a fault occurring in that bus 
portion. 

The buses that connect the PNs together are the most critical area to model in this architec- 
ture. While faults in a PN will generally cause a single CN or PN to fail, a fault in the bus area will 
cause several PNs to receive faulted data information. This is especially true for PBH structures 
where a message is sent to several PNs simultaneously. The bus signal area itself is not the critical 
factor for faults, as buses can be expanded to reduce bridging and open bus faults. What is more 
likely to fail are active devices[Lei85a]. Bus wires only require a few masking steps, versus active dev- 
ices which require many more. For the MIT Lincoln Laboratories project[Raf85a], yields were 
predicted at  30 to 50 percent for cells and 95 percent for wires. Each PBH concentrator node and 
deconcentrator node contain buffers to drive the bus line to the next node. Also, in the concentrator 
nodes some form of contention avoidance circuitry is used to avoid bus collisions, which adds more cir- 
cuitry and area. Larger bus buffers towards the top nodes in the tree will be required to drive the 
longer bus lines. These concentrator/deconcentrator nodes are more susceptible to faults than just 
simple bus lines. A PBH region connects several nonadjacent PNs. Bus line lengths increase by 
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0 ( 2 " )  for every second level. It does not take many levels to make this bus circuitry large and sus- 
ceptible to faults. 

Mapping faults to the n-graph 

A &IF description is read which describes the n-graph. Subsections in the &IF file 
describe each CN, each CN site, and all site links and weights. kr each subsection of the mBlF file is 
read, the list of physical faults is checked for the faults pertaining that &IF subsection. If multiple 
faults are found to affect a common subsection, the faults are combined into one set of fault fields to 
model the worst case operation of the network. Each &IF subsection is read, checked for faults, and 
the fault fields written before proceeding to the next subsection to reduce the memory requirements of 
large networks. Figure I6 shows a partial mapping of hardware block faults to n-graph areas affected. 
For example, each link input value is stored in the CN MEMORY hardware block. If a CN 
MEMORY word is faulty, the corresponding link input to the CN will have a S-A fault modeled in 
the input message. More detail on how the faults are mapped is provided in an OGC Tech report, 
CS/E88-021. 

RDORESS 
DECODE 

Figure 16 - Hardware fault to n-graph mapping. 
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The mBIF file describes the connections between CNs in the link subsection. This connection 
can be via the PTP or PBH communication networks, as indicated in the link subsection. The entire 
communication path that implements this connection must be checked for faults. If P T P  communica- 
tion is used, the PNs send a message that is potentially routed through several PNs in a grid network. 
If PBH is used, messages are routed through intermediate nodes. If a fault has occurred in any part of 
the communication path, the message will be corrupted or even lost. Corrupted or lost messages 
correspond to the actual physical results of a defect. Therefore, the entire message path is checked for 
faults for each mBIF link connection. 

Another consideration for modeling faults in the PBH network is whether to modify the 
source P N  sending the message or the destination P N  receiving the message. If a defect occurs in the 
PBH transmitter tree link, all PNs sending messages in that subtree will have their messages cor- 
rupted. PNs not using this faulty link can send messages that do not get corrupted. To model these 
corrupted messages, the output links for the PNs in the faulty subtree will be faulted. Defects that 
occur in a PBH receiver bus link for a given level will affect all messages sent to the PNs using that 
link. All PBH messages to PNs in a faulty subtree portion will be corrupted, while the PNs not in 
that subtree will receive the message uncorrupted. Therefore, receiver bus faults are modeled on the 
input links to the CNs. 

Both the P T P  and PBH messages are sent over multiplexed buses. The message is divided 
into subwords that are transferred over the bus. A defective data bus line will cause each subword 
sent over the bus to have the same fault, faulting bits in both the address and data fields of the mes- 
sage. Thus, one faulty signal line will cause a faulty bit in each subword. If the data and address are 
multiplexed using only one signal line and it is faulted, all the address and data bits in the message 
will be corrupted. 

Output Fault Data 

Two fault files are produced by Fltsim, P I F  and fstat. The fBIF file contains a section of C 
program code that is included by the architecture simulators to initialize an array of fault indexes and 
modifiers. Three other arrays are also included in the @IF file and are used to access the fault array 
by the architecture simulators. The modified operation of the network is evaluated using the architec- 
ture simulators. At  various point. in the network simulation, fault routines are called that modify 
intermediate values in each CN. For example, the output of a site function may be faulty. A site 
function routine calculates the site function output and passes it to a fault routine, which accesses the 
jBIF fault fields to potentidy corrupt the site output. The fault routines modify the CN values using 
one of the logic fault models presented here, SA-O, SA-1 or ''NO CHANGE. 

The jstat file is the fault statistics file, which lists the defects and how the n-graph was 
modified along with a summary of the faults. The fstat summary includes the percentage of faulted 
CNs, links, sites, and weights in the network. More detail on the contents of the fstat file is in an 
OGC Tech report, CS/E88421. Understanding and predicting the network's performance can be 
done using the fault statistics. 

A third file, test, can be generated which provides more detailed information on intermediate 
calculations used in the fault simulation. Sizes of the various hardware blocks and bus structures and 
actual fault locations are examples of the information contained in this file. 

8. SIMULATION RESULTS 

The fault simulator executes several basic processes to model faults in the neural network. 
(These processes were introduced in Chapter 5.) The results of each intermediate process are 
presented in this chapter. 
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The network discussed in this chapter is a feed forward 128 x 128 neural network. Three 
layers of CNs are present in the network, each with 128 nodes, for a total of 384 CNs. Feed forward 
implies all messages from a layer are sent to a higher layer. Each CN has one input site and one out- 
put site which receives/sends messages, for a total of 384 input sites and 384 output sites. Since no 
faults are modeled in the output sites, they are not included in the fault statistics. 

Each CN in the first layer has one input link that receives the input to the network. Also, 
each CN in the first layer has an output link with each CN in the second layer, which accounts for 
128~  or 16,384 links. Likewise, each CN in the second layer has an output link to each CN in the 
third layer. Each CN in the third layer has one output link, which is the output for the network. A 
total of 32,896 links are present in the network. Since faults are modeled separately on the input and 
output links, they are counted separately for the fault statistics, and are referred to as IN LINKS and 
OUT LINKS. For this experiment, the simulated network used only PTP communication to imple- 
ment the links. The PBH communication was not used. 

The CNs are mapped to 8 PNs in the network. Each P N  contains 48 CNs. Four of the PNs 
have 6144 input links, one has 6017 input links, one has 2207 and two have 48 input links. Varying 
quantities of input links is due to the first CN layer having fewer inputs. 

The fault simulator first builds a physical model of the hardware to be faulted. The technol- 
ogy file and PAD file determine the required area for the various hardware blocks. A 1~ CMOS pro- 
cess is used to implement the network. As no actual hardware has been designed, estimated sizes, 
some from the advanced VLSI class project designs, (which are scaled to 1 . 2 5 ~ ) ~  are used in this 
thesis. 

The sizes calculated by Fltsim for the network are shown in Figure 17. Preliminary size cal- 
culations show that the largest P N  hardware block is the DAC, covering 90% of the P N  area, and 
second largest is the P N  control section, covering 6% of the P N  area. The remainder of the hardware 
block areas are insignificant. The area required by the DAC and P N  CONTROL circuits were deter- 
mined to be too large and would skew the results, so two additional sets of simulations were run, one 
with the DAC size set to 0 and one with the P N  CONTROL set to 0. These additional simulations 
help determine how the DAC or P N  CONTROL sizes effect the fault tolerance of the network. Fig- 
ure 18 shows the resulting sizes of the networks. Although it is unreasonable to assume these two 
areas can be eliminated completely in the circuit, stricter design rules and redundancy can be used to 

Figure 17 - P N  block sizes with DAC = 75000. 
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Figure 18 - P N  block sizes with DAC = 0 and P N  CONTROL = 0. 

effectively reduce the chance of faulty operation. The sizes of the hardware blocks will be further stu- 
died as either the inputs to calculate these sizes are inaccurate, or the design should be changed to 
reduce this area or increase the fault tolerance of the block. The results from these architectures will 
have skewed results until more accurate size information is available. For the purpose of this thesis, 
these sizes will be assumed to be correct. (The focus here is on the simulation tool and not the specific 
architecture .) 

To obtain a statistical sampling, the simulation was run 5 times with the original DAC and 
P N  CONTROL sizes and 5 times with the DAC set to 0 square microns and 12 times with the P N  
CONTROL set to 0 square microns. The results of each set of simulations are compared in this 
chapter. The network with the original DAC and PN CONTROL sizes will be referred to as D75, the 
network with the 0 DAC size will be referred to as DO, and the network with the PN CONTROL size 
of 0 will be referred to as PO. 

Figure 19 shows a completely random defect distribution on a wafer, where a "1" indicates a 
%A-1 fault and a "0" indicates a SA-0 fault. Compare this random distribution with a more accurate 
model using fault clustering and radial distribution characteristics shown in Figure 20. The input 
parameters for generating the fault distribution shown in Figure 20 specified a defect density of 15 
defects per square inch, the percentage of SA-0 faults is 3%, the clustering coefficient is 0.49, and the 
inner to outer zone fault density ratio is 1.0. These values are typical values. Fault densities observed 
in industry range from about 15 defects per square inch to about 35 defects per square inch. For the 
purposes of this simulation, the lower bound was chosen. The percentage of SA-0 faults was chosen 
arbitrarily for these first simulations. This percentage does not have a major impact on the operation 
of the faulted network, as a fault will be modeled in the network regardless whether it is a SA-0 or a 
S-A-1 fault. The fault clustering coefficient of 0.49 produces less of an even distribution of faults and 
is from Stapper's paper on fault clustering(Sta86a). The first architectures that are being modeled do 
not cover an entire wafer, but represent a large die on a wafer. Since the radial distribution model 
only accounts for the distribution of faults for an entire wafer, and not for individual die on a wafer, 
the radial distribution is not taken into account here by setting the inner and outer fault densities 
equal. The resulting fault distributions from the fault generator of the fault simulator correspond to 
the figures shown in Stapper's paper on fault distributions[Sta86a]. 
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Figure 19 - Random Distribution of 100 faults. 

Figure 20 - Fault Simulator Fault Distribution. 

The calculated size of the neural network was 8.45 square inches for the D75 network, 0.83 
square inches for the DO network and 7.94 square inches for PO. With a fault density of 15 defects per 
square inch, an average of 126 faults should occur in the D75 network, 12.4 faults in the DO network 
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and 119 faults in PO. For the D75 network, the average number of physical faults was 123 with a 
range of 99 to 151. For DO, the average number of faults was 11.2 with a range of 5 to 18 faults. For 
PO, the average number of faults was 123.4 with a range of 101 to 142 faults. Removing the DAC cir- 
cuitry reduces the total amount of silicon area considerably, thereby reducing the number of faults 
present in the DO network, whereas removing the P N  CONTROL has a smaller effect on the network 
size and number of faults. Due to the randomness of the fault simulation, a wide range of faults occur 
in the network. The actual number of faults varies from the predicted values, but they are reasonably 
close. The average number of faults for PO is greater than for D75. This increase is due to the ran- 
domness in the simulation. More simulations should increase the average for D75 and reduce the aver- 
age for PO. 

ks expected, for each network, there is a correlation between the relative hardware block size 
and the percentage of faults present in the block. Consequently, the majority of P N  faults generated 
are either DAC or P N  CONTROL faults. Figure 21 summarizes the average number of faults that 
occurred in each hardware block for each of the simulations. These fault rates can be compared to 
the hardware block sizes shown in Figures 17 and 18. 

The impact of the faults on the pgraph is mapped to the n-graph. The physical faults gen- 
erated an average of 25144.2 faults in the n-graph for the D75 network, 17702.8 faults for the DO net- 
work and 1152.7 faults for the PO network. Figure 22 shows a n-graph fault summary, indicating the 
number of entities in each n-graph section, the average number of entities that were faulted, the aver- 
age percentage that were faulted and the range of faults that occurred in the n-graph section for the 
simulations. The sections consist of CNs, IN SITES, IN LINKS, OUT LINKS and WEIGHTS, which 
refer to the specific areas in the n-graph where the fault impacts are modeled. 

The number of faults modeled in the CN, IN LINKS and WEIGHTS were consistent for all 
three networks. These n-graph sections do not depend upon the size of the DAC or P N  CONTROL 
hardware blocks. The number of faults in the CN and IN LINKS was low, which indicates that these 
sections should be reliable. The WEIGHTS section had a large average number of faults with a wide 
variation of faults between simulations. Some simulations had a large number of faulted weights and 
some did not have any weights faulted. This wide range of faults is due to the random quantity and 
placement of the faults in the network and how the network is modeled. For example, a single fault 

Figure 21 - Hardware block faults. 

Section 
ADC 
DAC 

P N  CONTROL 
MEMORY 
WEIGHT 

LSM 
ADDRESS DECODER 

PTPDEMUX 
(1 of 4) PTP-CNTL 

(1 of 4) PTPBUFFER 
PBHDEMUX 
PBHCNTL 

PBHBUF'FER 
total P N  

PO 
Faults 

0.58 
119.58 

0 
0.67 
1.08 
0.25 
1.25 
0 
0 
0 
0 
0 
0 

123.42 

Percent 
0.47 

96.89 
0.00 
0.54 
0.88 
0.20 
1.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

100 

D75 
Faults 

1.2 
107.8 

8.4 
2 
1 
0.6 
1.8 
0 
0 
0 
0 
0 
0 

123.0 

DO 
Percent 

0.98 
87.64 
6.83 
1.63 
0.81 
0.49 
1.46 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

100 

Faults 
0 
0 
7.2 
1.2 
1.2 
0.2 
1.4 
0 
0 
0 
0 
0 
0 

11.2 

Percent 
0.00 
0.00 

64.29 
10.71 
10.71 
1.79 

12.50 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

100 



Fltsim May 1988 

D75 

DO 

Figure 22 - Fault statistics summary. 
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A consistently large number of faulty n-graph sections or a wide variation in the number of 
faulty n-graph sections indicates that the hardware block contains critical logic. Using Fltsim, the 
DAC, P N  CONTROL and LSM hardware blocks have been identilied as containing critical logic for 
the current network. Either the areas required to implement these. functions should be decreased or 
the amount of redundancy increased to alleviate these problems. 

For the preliminary networks simulated, there was no fault interaction; the number of com- 
bined faults for all the simulations was zero. The lack of faults being combined can be attributed to 
several factors. The foremost reason is the relative area of the bus structures is much smaller than the 
size of the PNs. Faults in the bus areas are most common faults to be combined, but due to the rela- 
tively s m d  size of the bus, few faults occur in the bus. Also, the faults that occur in the P N  CON- 
TROL are modeled as NO CHANGE faults, which are not combined with other faults. 

Fault clustering does have an impact on the operation of the network. Figure 23 shows a list 
of each P N  and the number of faults occurring in the PN. PNs 3 and 4 have a minimal number of 
defects and have the greatest probability of operating normally. On the other hand, fault clustering 
caused PNs 0 and 2 to have a higher quantity of faults, resulting in a greater chance that those PNs 
will be unoperational. The actual fault impact would need to be examined in each case, as any fault 
may disable the entire PN. 

Execution times for Fltsim are dependent upon the physical size of the network and the 
number of CNs, sites and links in the n-graph. As the size of the network increases, more faults are 
generated that require a longer search time for the n-graph section. Also, as the number of CNs, sites, 
and links in the n-graph increase, the greater the number of sections to check for faults. 

Execution times were measured for Fltsim modeling a 12 PN, 1 CN per P N  network and the 
128 x 128 network, (with 8 PNs and 364 CNs). For the 12 PN network, the fault simulator with no 
test output executed in 8 seconds on a VAX 11/780 with 2.4 seconds of user time and 0.6 seconds of 
system execution time. Generating the test output increased the user time to 3.1 seconds, while the 
other times remained constant. For the 128 x 128 network, the execution time was 30 to 40 minutes. 
The total amount of area available on a 4 inch wafer is 12.5 sq. inches. The D75 network used 8.45 

Figure 23 - Fault clustering in the PNs. 
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sq. inches, which is 68% of the total amount available. Using a similar network architecture, a full 
wafer could be simulated in about 1.5 hours on the VAX. Running Fltsim on a more powerful com- 
puter, such as a Sun 4, will reduce the time to 20 to 40 minutes. Larger wafers can then be simulated 
on the Sun computer. 

Verification of the fault simulator is complicated by the size and complexity of the network 
being modeled. The only way to truly verify the correct modeling of process faults and their impact 
on the neural network architecture is to fabricate several wafers, identify physical fault locations and 
examine the faulted network's operation. Comparing the actual data collected to the fault statistics 
produced by the fault simulator and the operation of the architecture simulators would determine the 
accuracy of the fault simulator. Since actual implementation is not yet feasible, another verification 
method is required. 

One other verification method is to place faults into the physical hardware model and deter- 
mine the faulted operation by hand. Placing faults in each different area to calculate the effects of the 
network operation would be time consuming. Also, since processing faults tend to cluster, there is 
fault interaction where multiple faults occur in a single message path. Fault interaction and the large 
size of the networks prohibit a complete hand calculation of fault effects. 

To  verify the operation of Fltsim, several faults located by the fault generation routine were 
studied for their impact on the operation of the network. These faults modify the network operation 
according to predicted hand calculations. 

Two extremes can be used to model the granularity of the circuitry in the architecture, as 
shown by Figure 24. One extreme is to model the circuit as implemented in the silicon, as gates and 
wires. Although this model is the most accurate, it requires too much detail that is not yet available 
and would require extensive memory and time to simulate. The opposite extreme is to model the 
architecture at the PN level. The inputs or outputs of the P N  could be modeled as containing the 
faults. This level is too coarse as each PN is comprised of several different functions. Faults in each 
of these functions affects the operation of the network differently. Fltsim is in the middle of these two 
approaches and models the network more accurately than the PN level, but not a t  the gate level. The 
question remains, how much accuracy is lost from the wire model? More research is required to 
answer this question thoughly. Fltsim uses the information available to model the network at its 
current level of implementation. 

The ultimate goal of the fault simulator is to test the fault tolerance of the neural network 
architecture being developed. The defects that occur in the hardware do not need to be modeled 
exactly in the n-graph. The n-graph is faulted using the best approximation available, which is much 
better than introducing random faults into the network. The modified operation of the network will 
still determine the fault tolerance of the network, even though it  is not a perfect model of the actual 
defective circuit operation. 

7. SUMMARY AND CONCLUSIONS 

A fault simulator tool has been developed that models worst case local defects in a wafer-scale 
integrated neural network emulation architecture. The fault simulator allows the fault tolerance of 

I I I 
P N  Level Fltsim Level Wire Level 

Figure 24 - Circuit model granularity. 
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the neural network to be modeled at  a high level before the network is actually implemented. The 
fault model used is a combination of the fault clustering model developed by Stapper and the radial 
distribution model. 

The contributions made by this work aid the study of the fault tolerance of the Cognitive 
Architecture Project at OGC. Fltsim also provides a general technique for determining the impact of 
processing faulta using a high level description of an architecture. The use of a high level description 
allows fault tolerance to be incorporated into the design a t  a higher level, where the fault tolerance is 
easier to implement. The fault process could be expanded to other wafer-scale integrated architec- 
tures where a repeated pattern of devices is arrayed on the wafer. 

The fault simulator was originally designed to model faults in a silicon implementation of a 
neural network. Conceivably, Fltsim could be extended to model faults in a biological system. 
Several steps in the fault simulation would require new models, but the general processes would 
remain unchanged. An n-graph can be used to describe the biological nervous system since biological 
systems have much the same structure as described by the n-graph. Fltsim would, as before, fault the 
n-graph operation according to known biological defects. 

Fltsim builds a model of how the silicon hardware blocks are interconnected and each block's 
size. The size of each block determines the probability of a defect in that area and the interconnec- 
tivity determines which messages are corrupted by defects. A biological system has a network of 
nodes or synapses that are interconnected. Sizes for the various regions can be assigned depending on 
the probability of defects in those regions. The fault distribution model can be altered to model the 
characteristics of biological defects. Stuck-at faults can model the incorrect activation between the 
synapses. The n-graph operation could be faulted as normally done, and HAS or ANNE could be used 
to simulate the faulted network. 

Future Enhancements 

As the network is refined, and can be modeled more accurately, the fault simulator can be 
enhanced to provide a better fault analysis. The communication structure is of primary concern, as  it 
is the link for the neural network model, and ties many nodes together through time division multi- 
plexing. Some assumptions were made to simplify the design of the fault simulator. The uniform 
PBH areas should be expanded to non-uniform PBH areas with varying numbers of data/control lines 
and different sizes of regions. The concentrator/deconcentrator nodes should be assigned sizes to add 
to the bus area. These concentrator/deconcentrator node sizes could increase in size towards the top 
nodes to model larger buffers sizes. Future versions of the PBH bus will possibly include a fat 
tree[Rud88a], where the width of the data bus increases towards the top nodes, resulting in a higher 
data bandwidth at  the top nodes. The fat tree helps alleviate the bottleneck of many PNs sending 
messages using the PBH bus. Also, redundant root nodes or communication channels should be added 
to increase the fault tolerance of the network. Redundant hardware can be modeled by not faulting 
the n-graph operation until a predetermined number of faults occur in the hardware block. 

Bus line spacing, bus line width and defect sizes could be included in the simulation. Studies 
have been done on how these parameters relate to one another. Incompletely severed bus lines or par- 
tially damaged transistors could cause AC parameter faults. These faults could be modeled as delay 
faults in the network, where the signal gets to the proper value, but it takes longer to make the transi- 
tion. HAS and ANNE already model delays in the network for normal message transfer times. 

Faults in the hardware blocks could have different effects on the network operation according 
to predefined probabilities. Currently, single bit faults are modeled. A single defect may damage the 
control structure in a hardware block or a large defect could effect multiple bits. For example, in a 
RAM two adjacent bits may be faulty, or a whole row or column may be faulty. Information about 
the layout of the cell will indicate the probabilities for multiple bit faults. 

A modification to reduce the execution time of Fltsim would be to sort or hash the fault list. 
For each section in the BIF file, the fault list is searched for faults that effect that section. If the list 
could be searched faster by sorting the list of pointers by specific types of faults, this search time 
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would be reduced. Currently this search time is the major bottleneck for the simulation. 

- 
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