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Abstract 

We outline three known algorithms for relational division, the algebra operator used to 
express universal quantification (for-all conditions), and a new algorithm called Hash-Division. 
By comparing the algorithms analytically and experimentally, we show that the new algorithm 
provides performance competitive or superior to  techniques used to-date, namely techniques 
using sorting or aggregate functions. Furthermore, the new algorithm can eliminate duplicates 
in the divisor on the fly, ignores duplicates in the divided, and allows two kinds of partioning, 
either of which can be used to  resolve hash table overflow or to efficiently implement the algo- 
rithm on a multi-processor system. 
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Abstract 

We outline three known algorithms for relational division, the algebra operator used t o  
express universal quantification (for-all conditions), and a new algorithm called Hash-Division. 
By comparing the algorithms analytically and experimentally, we show tha t  the new algorithm 
provides performance competitive or superior t o  techniques used to-date, namely techniques 
using sorting or aggregate functions. Furthermore, the new algorithm can eliminate duplicates 
in the divisor on the fly, ignores duplicates in the dividend, and allows two kinds of partitioning, 
either of which can be used t o  resolve hash table overflow or t o  efficiently implement the algo- 
rithm on a multi-processor system. 

1. Introduction 

Relational completeness [Codd1972a] includes universal quantification, i.e., the ability of a 

relational query system to  evaluate "for all" predicates. For-all predicates can be expressed in 

relational algebra using the division operator. Due t o  the lack of efficient algorithms, however, 

this operator has not been implemented in most systems. A number of reasons seem t o  justify 

this omission. First, the division operator can be expressed in terms of other relational opera- 

tors. If R( r , s )  and S(s) are relations, then R+S = n,(R) - n,((a,(R) x S )  - R) .  Second, i t  

can be expressed using aggregate functions, as  described in Section 2. Third, for-all predicates 

are not needed very frequently, so why bother? 

The first reason is of merely theoretical validity since the equivalent expression contains a 

Cartesian product operator. The second reason is valid, but as  we will see in Sections 4 and 5 ,  

implementing division by means of aggregate functions may result in the inferior algorithms. 

The third reason may be true for accounting databases; i t  probably does not hold for database 

systems tha t  support logic programming or enforce complex integrity constraints on sets. 



In this paper, we introduce a new algorithm for relational division called Hash-Division. 

This algorithm uses two hash tables, one for the divisor and one for the quotient. Both analyti- 

cal and experimental results show tha t  the performance of this new algorithm is competitive or 

superior t o  tha t  of previously used methods. 

The remainder of this paper is organized as  follows. Section 2 gives an  overview of three 

algorithms tha t  have been used for division. In Section 3, we describe the new division algo- 

rithm in detail. Section 4 contains an analytical comparison of the four algorithms, and Section 

5 shows our experimental results. Section 6 describes how hash-division can be used effectively 

in a multi-processor system. Section 7 contains our summary and conclusions. 

2. P rev ious  Work 

In order t o  describe the algorithms most clearly, we introduce two examples tha t  will be 

used throughout the paper. Assume a university database with two relations, Courses (course- 

no, title) and Transcript (student-id, course-no, grade) with the obvious key attributes. For the 

first example, we are interested in finding the students who have taken all courses offered by the 

university. In relational calculus, this is expressed as 

find the students (student-id's) such that  f o r  all  courses (course-no's) in Courses, a tu- 
ple with this student-id and course-no appears in the Transcript relation. 

In relational algebra, this query is 

r#trdent-id,corrse-no( nco,r,e-no ( 1' 
In this example, the projection of Transcript is the dividend, the projection of Courses is the 

divisor,  and the division result is called the quot ient .  The attributes of the divisor are called 

divisor a t t r i bu t e s ,  course-no in the example. The quot ien t  a t t r i b u t e s  are the attributes of 

the dividend t ha t  are not in the divisor, student-id in the example. 

I t  is important t o  notice tha t  in this example both relations are projected on their key 

attributes. Thus, the problem of duplicate tuples does not arise. If the inputs of the division 

may contain duplicates, either the division algorithm employed must be able t o  deal with them, 



or the inputs must be properly preprocessed. Duplicate elimination can be quite expensive, mak- 

ing an  algorithm very desirable tha t  is insensitive t o  duplicates in its inputs. 

As our second example, we are interested in finding the students who have taken all data- 

base classes, i.e., courses for which the title attribute contains the string "database". For this 

example, the divisor is restricted by a prior selection. While these two examples seem almost 

identical, the difference has ramifications when division is implemented using aggregations, 

which is described below. 

2.1. A Naive Sort-Based Algorithm 

The first algorithm is the most naive one; i t  directly implements the calculus predicate. 

First, the dividend is sorted using the quotient attributes as major and the divisor attributes as  

minor sort keys. In the examples, Transcript is sorted on student-id's and, for equal student-id's, 

on course-no's. Second, the divisor is sorted on all its attributes. Third, the two sorted rela- 

tions are scanned in a fashion similar t o  nested loops join. The dividend serves as  outer, the 

divisor as  inner relation. Differently than in nested loops join, when an  equality match has been 

found, both relation scans can be advanced. The dividend is scanned exactly once, whereas the 

divisor is scanned once entirely for each quotient tuple, and partially for each candidate quo- 

tient tuple which actually does not participate in the quotient. Note tha t  the dividend relation 

can contain a tuple tha t  does not match with any of the divisor tuples, e.g., a Transcript tuple 

of a physics course in the second example. Further details of the scan logic are left t o  the 

reader. Essentially this algorithm was proposed in [Smith1975a]. I t  is the first algorithm 

analyzed in Sections 4 and 5. 

2.2. Implementing Division by Aggregation 

Since repeated scans in the above algorithm suggest tha t  i t  may be rather slow, it  seems 

worthwhile t o  search for alternatives. One such alternative uses aggregations. In some rela- 

tional database management systems, aggregation is the only way to  express for-all predicates. 



The first example query can be expressed as 

find the students who have taken as many courses as there are  courses offered by the 
university1. 

This query is evaluated in three steps. First, the courses offered by the university are counted 

using a scalar aggregate operator. Second, for each student, the courses taken are counted 

using a n  aggregate function operator. Third, only those students whose number of courses 

taken is equal t o  the number of courses offered are selected t o  be included in the quotient. 

The second example query can be expressed as  

find the students who have taken as many database courses as there a re  database 
courses offered by the university. 

While the first and the third step in the algorithm above remain virtually the same, the second 

one becomes significantly more complex. Since it  is important t o  count only those tuples from 

the Transcript relation which refer t o  database courses, the aggregate function must be pre- 

ceded by a semi-join or simply a join of Transcript and Courses restricted t o  database courses. 

The scalar aggregate operator can be implemented quite easily, e.g., using a file scan, and 

similarly the final selection. The aggregate function and the join require more effort; in the 

remainder of this section, we will only concern ourselves with these operators. 

2.2.1. Division Using Sort-Based Aggregation 

The traditional way of implementing aggregate functions relies on sorting (Epsteinl979al. 

In the examples, Transcript is sorted on attribute student-id. Afterwards, the count of courses 

taken by each student can be determined in a single file scan. The exact logic of this scan is 

left to  the reader. An obvious optimization of this algorithm is t o  perform aggregation during 

Typically, i t  is necessary t o  explicitly request uniqueness of the student-id's and course- 
no's counted. In most systems, the default for aggregation is not t o  eliminate duplicates. The 
reason is tha t  many applications must consider duplicates, e.g., sum of salaries by department is 
different than sum of distinct salaries by department. Thus, in cases where aggregation is used t o  
express for-all predicates, a duplicate elimination step is explicitly requested and inserted into 
the query evaluation plan. 



sorting, i.e., whenever two tuples with equal sort keys are found, they are aggregated into one 

tuple, thus reducing the number of tuples written t o  temporary files. 

If the query requires a join prior t o  the aggregation as in the second example, any of the 

join algorithms available in the system can be used, typically merge join, index join, or their 

semi-join versions if they exist. If merge join is used, notice tha t  the relation must be sorted on 

different than the grouping attributes. In the example, i t  must be sorted first on course-no's for 

the join and then on student-id's for aggregation. 

Sort-based aggregation has been used in a number of systems, e.g., INGRES 

[Epsteinl979a]. I t  is the second algorithm analyzed in Sections 4 and 5. 

2.2.2. Division Using Hash-Based Aggregation 

It was an  interesting insight tha t  sorting actually results in more order than necessary for 

a number of relational algebra operations. In the examples, i t  is not important tha t  the Tran- 

script tuples be rearranged in ascending student-id order. It is only necessary t ha t  Transcript 

tuples with equal student-id attribute are brought together. The fastest way to  achieve this 

uses hashing. Thus, a number of hash-based algorithms have been proposed for join, duplicate 

elimination, and aggregate functions, e.g. [Bratbergsengenl984a, DeWittl984a, DeWittl985al. 

Hash-based aggregate functions keep the tuples of the output relation in a main memory 

hash-table. The output relation contains the grouping attributes, student-id in the examples, 

and one or more aggregation values, e.g., a sum, a count, or both in the case of average compu- 

tation. Each input tuple is either aggregated into a n  existing output tuple with matching 

grouping attributes, or i t  is used t o  create a new output tuple. When the entire input in con- 

sumed, the result of the aggregate function is stored in the hash table. Note tha t ,  since the 

hash table contains only the aggregation output, i t  is not necessary tha t  the aggregation input 

fit into main memory. In the examples, if there are 500 students with a total of 10,000 Tran- 

script tuples, the hash table needs t o  hold only 500 tuples. Thus, hash aggregation performs 

well, i.e., without 1/0 for temporary files, for much larger files than sort-based aggregation. 



If the aggregate function is preceded by a join as  in the second example, the join can also 

be implemented using hashing. The hash table used for the join is a different one than the one 

used for aggregation, just as  sort-based join and aggregation require two sorting steps on 

different attributes. The hash table in the semi-join is built by hashing on course-no's, whereas 

the hash table for the aggregation is built on student-id's. 

Hash-based aggregation has been used only in a small number of systems, e.g. in GAMMA 

[DeWittl986a]. Division using hash-based aggregation is the third algorithm analyzed in Sec- 

tions 4 and 5. 

As a n  aside, let us briefly consider duplicates again. In the naive division algorithm and in 

sort-based aggregation, duplicates can be conveniently eliminated during the initial sort phase. 

Hash-based aggregation, however, cannot include duplicate elimination, since only one tuple is 

kept in the hash table for each group. While efficient duplicate elimination schemes based on 

hashing exist [Gerberl986a], they require tha t  the entire input must be kept in main memory 

hash tables or  in overflow files. Thus, duplicate elimination based on hashing may be impracti- 

cal for a very large dividend relation. 

3. Hash-Division 

This section contains a description of the new algorithm followed by an  example, a discus- 

sion of the algorithm, and some considerations on hash table overflow. 

3.1. Description 

In this section, we describe the new algorithm for relational division. A pseudo-code ver- 

sion of the hash-division algorithm is given in Figure 1. I t  uses two hash tables, one for the divi- 

sor and one for the quotient. The first hash table is called the divisor table, the second the quo- 

tient table. With each tuple in the divisor table, an  integer value is kept, called the divisor 

number. With each tuple in the quotient table, a bit map is kept with one bit for each divisor 

tuple. 



/* step 1: building the divisor table */ 
assign divisor count t 0 
initialize empty divisor table 
open divisor input 
for each divisor tuple 

calculate hash bucket in divisor table 
insert divisor tuple into hash bucket 
assign tuple's divisor number t divisor count 
assign divisor count t divisor count + 1 

close divisor input 

/ *  step 2: building the quotient table */ 
initialize empty quotient table 
open dividend input 
for each dividend tuple 

calculate hash bucket in divisor table 
scan hash bucket for a matching divisor tuple 
if match is found in divisor table 

calculate hash bucket in quotient table 
scan hash bucket for a matching quotient tuple 
if no match is found in quotient table 

create new quotient tuple and bit map 
insert into hash bucket of quotient table 
project dividend tuple into quotient tuple 
clear bit map 

set bit corresponding to divisor tuple's divisor number 
close dividend input 
free divisor table 

/ *  step 3: finding result in the quotient table * /  
for each bucket in quotient table 

for each tuple in bucket 
test bit map for a zero bit 
if no zero is found 

print quotient tuple 
free quotient table 

Figure 1. The Hash-Division Algorithm. 

The algorithm proceeds in three steps. First, it inserts all divisor tuples into the divisor 

table. The bucket is determined by hashing on all attributes. In the process, the algorithm 

counts the divisor tuples, and stores the current count to the divisor number when the tuple is 

inserted. Thus, all divisor tuples receive a unique number. 



Second, the algorithm consumes the dividend relation. For each dividend tuple, i t  first 

checks whether it  corresponds t o  a divisor tuple in the divisor table by hashing and matching 

the dividend tuple on the divisor attributes. If no such divisor tuple exists, the dividend tuple is 

immediately discarded. In the second example, a student's Transcript tuple for a physics course 

does not pass this test and is not considered further as a candidate for the quotient. If a 

matching divisor tuple is found, its divisor number is kept and the dividend tuple is considered a 

quotient candidate. Next, the algorithm determines whether a matching quotient candidate 

already exists in the quotient table by hashing and matching the dividend tuple on the quotient 

attributes. If no such quotient candidate exists, e.g., because the quotient table is empty a t  the 

beginning, a new quotient candidate tuple is created by projecting the dividend tuple on the 

quotient attributes, and the new quotient tuple is inserted into the quotient table. Together 

with the new tuple, a bit map is created with one bit for each divisor tuple in the divisor table. 

This bit map is initialized with zero's, except for the bit tha t  corresponds t o  the divisor number 

kept earlier. If, however, a matching quotient candidate tuple already exists, all tha t  needs t o  

be done is t o  set one bit in the quotient candidate's bit map. 

Finally, after all dividend tuples have been consumed, the quotient of the relational divi- 

sion consists exactly of those tuples in the quotient table for which the bit map contains no zero, 

which can be determined by a simple algorithm scanning all buckets in the quotient table. 

3.2. An Example 

Let us consider a concrete example. Assume tha t  we have, after suitable selections and 

projections, the relations shown in Figure 2. We need t o  find the students who have taken all 

database courses, i.e. the quotient of the two relations. 

First, the Courses relation is read and its tuples are inserted into the divisor table. Divi- 

sor number 0 is assigned t o  tuple (Databasel), and 1 to  (Database2). Second, the Transcript 

relation is read. For its first tuple, (Ann,Databasel), a matching divisor tuple, (Databasel), is 

located in the divisor table, but no matching quotient tuple can be found since the quotient 



Transcript 
student-id course-no 

Ann Database 1 
Barb Database 2 
Ann Database 2 
Barb Optics 

Courses 
course -no 
Database 1 
Database 2 

Figure 2. Example Relations. 

table is still empty a t  this point. Thus, a new quotient tuple, (Ann), is created and a bit map 

with two bits is initialized with zero's. The first bit (indexed by 0) in the bit map is then set t o  

one since i t  corresponds t o  the divisor tuple, (Databasel). For the second dividend tuple, 

(Barb,Database2), another quotient tuple and a bit map are created in the same way. For the 

third dividend tuple, (Ann,Database2), both a matching divisor tuple, (DatabaseS), and a match- 

ing quotient tuple, (Ann), can be found in the two hash tables, and the second bit (indexed by 

1) in the bit map of (Ann) is set to  one. The last dividend tuple, (Barb,Optics), does not have a 

matching divisor tuple in the divisor table, i.e., (Optics), and this dividend tuple is discarded. 

Finally, the quotient table is scanned for tuples and bit maps with no remaining zero's. 

The only such tuple and bit map is (Ann), and this tuple is printed as the quotient table. In 

fact, this is the only student who has taken both database courses. 

3.3. Discussion 

A number of observations can be made. First, the algorithm does not require a stop-and- 

go operator on its input, i.e., a n  operator tha t  has t o  consume its entire input before producing 

its first output such as  sort. Thus, i t  can smoothly receive its inputs from a dataflow query pro- 

cessing system. 



Second, the algorithm is a stop-and-go operator itself; only after both inputs are  consumed 

does it  produce the quotient relation by scanning the quotient table. Fortunately, this problem 

can be alleviated by associating an additional counter with each quotient tuple and some minor 

modifications of the algorithm. When a quotient tuple is first created, the counter is set t o  zero. 

Before setting a bit in the quotient table, the modified algorithm tests whether or not this bit 

position is set already. If i t  is, the dividend tuple is discarded. If i t  is not, the bit in the bit 

map is set t o  one, and the counter is incremented and compared with the divisor count. If the 

counters are  equal, the quotient tuple is produced immediately. With these modifications, the 

algorithm can also be used a s  a producer in a dataflow query processing system. 

Third, if one or both of the inputs of the division are stored in disk files, the algorithm 

may outperform other division algorithms simple because i t  does not require random 1/0 and 

thus allows efficient read-ahead of physically clustered or contiguous files. Since this is common 

to  most hash-based database processing algorithms, we will not explore this issue further. 

Fourth, the algorithm requires efficient handling of bit maps, including a scan over a possi- 

bly large bit map. Since many computer architectures provide special instructions for bit maps, 

we do not consider this t o  be a problem. Note tha t  initializing a bit map and searching for a 

single zero in a bit map can be done by inspecting a word a t  a time. 

Fifth, duplicates in the divisor can be eliminated while building the divisor table. Dupli- 

cates in the dividend are ignored automatically since they map t o  the same bit in the same bit 

map. 

Sixth, i t  is interesting t o  compare hash-division with division using on hash-based aggrega- 

tion with prior semi-join. In either case, there are two hash tables. The first contains the divi- 

sor relation for the semi-join or as  divisor table, respectively. The second hash table is used t o  

develop the quotient relation. The counter used for aggregation serves the same function as  the 

bit map in hash-division. Using bit maps, however, provides the additional functionality tha t  

duplicates in the dividend are ignored. If duplicates are known not t o  be a problem, hash- 



division could be modified t o  employ counters instead of divisor numbers and bit maps. 

Finally, hash-division depends on sufficient main memory t o  hold both hash tables. Recall, 

however, tha t  the divisor and the quotient are the smaller relations involved; the big relation is 

the dividend a s  i t  is a superset of the Cartesian product of divisor and quotient. Even though 

the quotient table contains actually some more tuples than the quotient, we expect t ha t  the 

memory requirements do not pose a major problem in most cases. 

If, however, the divisor table or the quotient table are larger than the available main 

memory, hash table overflow occurs and portions of one or both tables must be temporarily 

spooled t o  secondary storage. Alternatively, hash-division can be modified t o  take advantage of 

a multi-processor system. In the next section, we describe techniques for handling hash table 

overflow in a single processor database system. Adaptations of the hash-division algorithm for 

multi-processor systems are discussed in Section 6. 

3.4. Hash Table Overflow 

If the available memory is not sufficient for divisor table and quotient table, the input 

da t a  must be partitioned into disjoint subsets called clusters tha t  can be processed in multiple 

phases. The clusters are  processed one a t  a time. The first cluster in kept in main memory 

while the other clusters are spooled to  temporary files, one for each cluster, in a way similar t o  

hybrid hash-join [DeWittl984a]. For hash-division, there are two partitioning strategies which 

can be used alone or  together. 

In the first strategy, called quotient partitioning, the dividend relation is partitioned on the 

quotient attributes using a partitioning strategy such as  range-partitioning or hash-partitioning. 

Each phase produces a quotient cluster, which is the quotient of one dividend cluster and the 

divisor. The quotient of the entire division is the union (concatenation) of all quotients clusters. 

Since all dividend clusters are divided with the entire divisor, the divisor table must be kept in 

main memory during all phases. While this may be a problem for large divisors, i t  certainly is 

not a problem if the divisor is rather small. 



The second strategy, called divisor partitioning, partitions both the divisor and the divi- 

dend relations using the same partitioning function applied t o  the divisor attributes. Each 

phase performs the division algorithm, producing one quotient cluster. Notice tha t  the quotient 

clusters are different for quotient partitioning and divisor partitioning. For quotient partition- 

ing, the quotient clusters must be gathered in a final collection phase. Only the quotient tuples 

tha t  were produced by all single-phase divisions, i.e., the tuples tha t  appear in all quotient clus- 

ters, participate in the final result. This set can easily be determined since this problem is 

exactly the division problem again. Thus, in order t o  obtain the final result, each quotient tuple 

produced by a the single-phase division is tagged with the phase number. The collection phase 

divides the union (concatenation) of all quotient clusters over the set of phase numbers. How- 

ever, instead of using a divisor table t o  determine which bit t o  set in the bit maps, the phase 

number can be used. Thus, the collection phase can skip the first step of hash-division. 

4. Analytical Comparison of the Algorithms 

In this section, we first develop the cost formulas for the algorithms discussed above and 

then apply these formulas t o  some relation sizes. 

For the analytical comparisons, we assume a dividend relation R (tuple cardinality IRI, 

page cardinality r )  and a divisor relation S (tuple cardinality IS[, page cardinality s )  with quo- 

tient relation Q (tuple cardinality IQI, page cardinality q ) .  Further, we assume rn main 

memory pages, with s+q < na < r .  Our cost measure consists of both CPU and 1/0 costs, both 

measured a s  delay times without overlap of CPU and I/O activity. The cost units, their values 

(in milliseconds), and their description are given in Table 1. 

We will give the cost formula for the easy case of R = Q x S ,  i.e., all tuples of R partici- 

pate in the quotient. The reason for chosing this case is the difficulty of defining a n  average 

case. For the division algorithms based on aggregation, the cost formulas for the versions with 

and without join are given. None of the cost formulas includes the cost of projecting the quo- 

tient tuples from dividend tuples and writing the quotient as  these costs are common t o  all 



Unit ms Description 
RIO 30 random I/O, one page from or t o  disk 
SIO 15 sequential I/O, one page from or t o  disk 
Comp 0.03 comparison of two tuples 
Hash 0.03 calculation of a hash value from a tuple 
Move 0.4 memory t o  memory copy of one page 
Bit 0.003 setting a bit in a bit map, and clearing 

and scanning a bit in a bit map 

Table 1. Cost Units. 

algorithms. Furthermore, we restrict our analysis t o  duplicate free inputs because we feel tha t  

i t  is the more frequent case. Notice, though, tha t  duplicate elimination may be very expensive, 

in particular for large relations. 

4.1. Sorting 

Since several of the algorithms require sorting, we first give the formulas for the cost of 

sorting. We distinguish for relations tha t  fit in main memory and those tha t  do not. For the 

former we assume quicksort with a n  approximate cost function of 

2 1 sI log, (I sI ) Comp (1) 

for relation S since it  fits in main memory. For relations larger than main memory, we assume 

a disk-based merge-sort algorithm. Its cost is 

logrn ( r /m)  ( r  (2 RIO + Move) + I R I  log2 (m) ~ o m p )  + 2 I R I  log2 (IRI m / r )  Comp (2) 

for relation R since i t  does not fit in main memory. The first portion of the formula is the pro- 

duct of the number of merge passes and the cost of each merge, the second portion calculates 

the cost of sorting the initial runs using quicksort. 



4.2. Naive Division Algorithm 

For sorted inputs, the analysis of the naive algorithm is as  straightforward as  the a l p  

rithm itself. In the assumed case, the cost for the actual division step is 

( r  + s )  SIO + I R I  Comp (3) 

as  the outer relation is scanned once and the inner is assumed t o  be kept in buffer memory. 

4.3. Division Using Sort-Based Aggregation 

If we assume for simplicity tha t  the aggregation step is performed in the output procedure 

of the final merge step, the cost of a sort-based aggregate function consists of sorting plus the 

cost of comparing grouping attributes, i.e., 

I R I  Comp. (4) 

Since the aggregation consist of simply incrementing a counter, we ignore its cost. The cost of 

the scalar aggregate, i.e., counting the cardinality of the divisor, is 

s SIO. ( 5 )  

If a merge-join is required before aggregation, the cost for a n  additional sort step and the 

cost of merging must be added t o  the actual aggregation cost. In the assumed case of 

R = Q x S ,  the merge step uses the same logic as the naive algorithm, except tha t  more com- 

parisons are performed. Thus, the merge-join cost is 

( r  + s )  SIO + I R I  I SI Comp. (6 )  

We assume tha t  the entire S relation is kept in buffer memory during join processing. We 

ignore the cost of memory t o  memory copying since the join is actually a semi-join, which can 

be implemented without copying. 

4.4. Division Using Hash-Based Aggregation 

For hash-based aggregation, the cost is 

r SIO + I R I   ash + hbs ~ o m p )  + s SIO, (7) 

where hbs is the average size of each hash bucket, and the last par t  is the cost of the scalar 

aggregate. If a semi-join is required, its cost is 



( s+r )  SIO + Is I  Hash + I R I  (Hash + hbs Comp). 

4.5. Hash-Division 

Recall tha t  we assumed tha t  s+q < m < r ,  meaning tha t  divisor and quotient tables fit 

in main memory and no hash table overflow occurs. When hash-division is used, a join is never 

necessary (just as  in the naive algorithm), and the cost for the division is 

( r  + s )  SIO + I s I  Hash + I R I  (2 (Hash + hbs Comp) + Bit). (9) 

Both input relations are read sequentially. For each divisor and each dividend tuple, a hash 

bucket is calculated and the tuple is compared with all tuples in this bucket, on the average 

two tuples. 

4.6. Some Example Relation Sizes 

Let us use the formulas derived above t o  compare the four algorithms for relational divi- 

sion. We consider three sizes for S and Q,  25, 100, or 400 tuples. We assume tha t  10 tuples of 

either S or Q fit on one page, which implies tha t  5 tuples of R fit on one page. The memory 

used for sorting or hash tables is 100 pages, the average hash bucket size hbs is 2. Furthermore, 

we assume tha t  neither R nor S are sorted originally. 

Table 2 shows the run-times of the algorithms calculated with the formulas provided 

above. We realize tha t  the formulas are not precise and tha t  the assumption of R = Q x S 

does not represent all cases or the "typical" case. Nevertheless, we believe tha t  Table 2 allows 

some interesting insights. 

First, division by sort-based aggregation does not perform much better than the naive 

algorithm. In fact, if a semi-join is necessary to  ensure tha t  only valid tuples are  counted, the 

additional sort cost makes division by aggregation significantly more expensive. 

Second, if hash-based algorithms are used for the aggregation, the division can be per- 

formed much faster. The reason is tha t  the cost for sorting the large dividend relation with 

multiple passes strongly dominates the cost for aggregation. 



Sort-Aggregation Hash-Aggregation IS[ I QI Naive Div. Hash-Div. no join with join no join with join 
[Times in milliseconds] 

18529 1969 
73738 7763 

294572 30938 
79766 7875 

317475 31050 
1268311 123750 
409160 31500 

1629996 124200 
6513339 495000 

Table 2. Analytical Cost of Division. 

Third, the new hash-division algorithm performs competitively with division by aggrega- 

tion based on hashing. However, if a semi-join is needed, hash-division outperforms division by 

hash-based aggregation. 

At  this point, i t  may be allowed to  do some speculations. If we drop the assumption tha t  

R = Q x S ,  i.e., the dividend relation contains tuples tha t  either do not match with any divisor 

tuple or do not participate in the quotient, we expect tha t  hash-division always outperforms all 

other algorithms because tuples tha t  do not match with any divisor tuple are eliminated early, 

even though dividend tuples tha t  do not participate in the quotient are inserted in the quotient 

table. 

In order t o  verify this analysis, we implemented the algorithms and obtained experimental 

results. 

6. Experimental Comparison of the Algorithms 

Before we report on the experiments, we give a n  overview of how we implemented the 

algorithms. 



5.1. Implementation 

All experiments were run on a Digital Equipment Corp. MicroVax II on top of a record- 

oriented file system developed a t  the Oregon Graduate Center using experiences from WiSS 

[Chou1985a] and GAMMA [DeWittl986a]. I t  simulates a disk using a UNIX file or main 

memory. Its main services are extent-based files, records, B+-trees, scans, a fast buffer manager, 

and a main memory manager. Copying is avoided as  scans give memory addresses t o  records 

fixed in the buffer pool. When all buffer slots are fixed and a new request cannot be satisfied, 

the buffer pool grows dynamically until the main memory pool is exhausted, and shrinks as  

buffer slots are unfixed. An unfix call indicates whether the page can be replaced immediately 

or should be inserted into an  LRU list. The initial buffer size is 256 KB, 100 K B  of which can 

be used as sort buffer. For intermediate query results, the buffer manager also supports virtual 

devices, i.e., records can have a record identifier and can be fixed in the buffer pool but disap- 

pear when unfixed. Thus, all operators are programmed as if input and output were permanent 

files. 

All relational algebra operators are implemented as  iterators, i.e., they support a simple 

open-next-close protocol2. A tree-structured query evaluation plan is used t o  execute queries by 

demand-driven dataflow passing record identifiers and record addresses in the buffer pool 

between operators. All functions on da ta  records, e.g., comparison and hashing, are compiled 

prior t o  execution and passed t o  the processing algorithms by means of pointers t o  the function 

entry points. 

The naive division algorithm was implemented in such a way tha t  if first consumes the 

entire divisor relation, building a linked list of divisor tuples fixed in the buffer pool. I t  then 

consumes the dividend relation, advancing in the linked list of divisor tuples as  matching divi- 

Opening a sort operator prepares sorted runs and merges them until only one merge step 
is left. The final merge is performed on demand by the next function. 



dend tuples a re  produced by the dividend input, and producing a quotient tuple each time the 

end of the divisor list is reached. 

Sort-based aggregation is implemented by the sort procedure. Our implementation of sort 

performs aggregation and duplicate elimination as  early as  possible, i.e., no intermediate run 

contains duplicate sort keys. Merge join consists of a merging scan of both inputs, in which 

tuples from the inner relation with equal key values are kept in a linked list of tuples pinned in 

the buffer pool. For semi-joins in which the outer relation produces the result, no linked lists are 

used. 

In our implementation of hash-based algorithms, we use bucket chaining as conflict resolu- 

tion in hash tables. The hash algorithms use the file system's memory manager t o  allocate 

space for hash tables, bit maps, and chain elements. Chain eldments are auxiliary da t a  struc- 

tures tha t  contain a pointer t o  the next tuple in the bucket, a tuple's record identifier and main 

memory address in the buffer pool, and the divisor count or the pointer t o  the bit map respec- 

tively. 

Since we wanted t o  shield our measurements as much as  possible from the operating 

system's file system, we used only the operating system measure for CPU cost (milli-seconds in 

user mode, from getrusage UNM system call). The 1/0 cost was calculated based on statistics 

collected by our file system. The transfer size, i.e., the unit of I/O, was chosen t o  be 8 KB, 

except for sort runs where i t  was 1 KB to  allow high fan-in. Table 3 shows the statistics gath- 

ered and their weight as  used in reporting experimental results. Unfortunately, we could not use 

very much disk space, so we had t o  restrict our record sizes t o  8 bytes for the divisor and the 

quotient, and t o  16 bytes for the dividend. 

5.2. Results 

Table 4 shows the run-time of the algorithms as  observed in our experiments. The experi- 

mental results verify all observations made in the analytical comparisons. In particular, the 



ms Cost 
20 Physical seek on device 

8 Rotational latency per transfer 
0.5 Transfer time per KByte 
2 CPU cost per transfer 

Table 3. Experimental Cost of Division. 

15'1 I QI Naive Div. 
Sort-Aggregation Hash-Aggregation 

Hash-Div. no join with join no join with join 
[Times in milliseconds] 

1288 438 
5000 1130 

27987 3850 
5120 1100 

28393 3750 
115678 14226 
29573 3920 

120412 14376 
490765 56094 

Table 4. Experimental Cost of Division. 

ranking of the algorithms is as  i t  were in the analytical comparison. The sort-based algorithms 

perform significantly poorer than the hash-based algorithms, and a preceding semi-join makes 

division expressed with aggregate functions inferior t o  direct implementations of division. The 

differences are marked for small relation sizes, but the factor of difference grows as  the relations 

grow. Even for small relation sizes, I R ~  = 625,l Q I  = 25, and IS! = 25, we observed a factor of 3 

difference between the fastest and slowest division algorithms, 1288ms vs. 428ms. Thus, the 

implementation of division is unimportant only for very small dividend and divisor relations. If 

the dividend or the divisor are results of other database operations, e.g., selection or projection, 

the possible error in the selectivity estimate makes i t  imperative t o  choose the division algo- 

rithm very carefully. 



The differences in the relative performance of the algorithms between the analytical and 

the experimental results come from the fact tha t  the buffer size and management is different 

than assumed in the analytical comparison. In several cases in the experiment, the entire divi- 

dend relation fits into the buffer, so tha t  no 1 / 0  costs occur due t o  sorting. Furthermore, only 

40% of the entire buffer is used as sort space (100 KB of 256 KB), so tha t  temporary file pages 

remain in the buffer pool from run creation t o  merging and deletion. Only when a large divi- 

dend relation has t o  be sorted twice, i.e., in the case of sort-based aggregation with preceding 

join, this effect cannot be observed, and the preceding join and additional sort more than double 

the cost of sort-based aggregation (e.g., I SI = I QI = 400, 490,765ms vs. 190,745ms). 

I t  is interesting t o  note tha t  if a universal quantification is expressed in terms of an  aggre- 

gate function with preceding join and the query optimizer does not rewrite the query t o  use 

relational division, the query may be evaluated using an  inferior strategy. This is true for both 

sort-based query evaluation systems such as System R or Ingres (sort-based aggregation vs. 

naive division) and for hash-based systems such as  GAMMA (hash-based aggregation vs. hash- 

division). Since i t  is much easier t o  implement a query optimizer tha t  rewrites a division opera- 

tor into an aggregation operator than vice versa, universial quantification should be included as  

a language construct in database query languages, e.g., as a "contains" clause. 

In summary, hash-division is only about 10% slower than the fastest algorithm considered 

(hash-based aggregation without preceding semi-join), but i t  is more powerful as  i t  never 

requires a preceding semi-join or duplicate elimination on its inputs. 

6. Multi-Processor Implementations 

In this section, we want t o  consider three questions. First, if a multi-processor system of 

the shared-nothing type such as  GAMMA [DeWittl986a] is available, can the hash-division algo- 

rithm be adapted t o  make good use of this "horse power?" Second, if hash-division's divisor table 

is larger than main memory, can a multi-processor configuration alleviate the problem? Third, 

if hash-division's quotient table is larger than main memory, can a multi-processor configuration 



alleviate the problem? We will explore the first question is some detail; answers t o  the other 

two questions will then be easy t o  find. Two more issues will be addressed towards the end of 

the section. 

The key for efficient parallel algorithms seems to  be tha t  the input da ta  for the problem 

a t  hand can be partitioned into disjoint subsets tha t  can be processed distributedly without 

requiring too much synchronization. Fortunately, both partitioning strategies discussed above 

for hash table overflow, i.e., quotient partitioning and divisor partitioning, can be employed. 

When quotient partitioning is used, the divisor table must be replicated in the main 

memory of all participating processors. After replication, all local hash-division operators work 

completely independently of each other. 

If divisor partitioning is chosen, the resulting clusters are processed in parallel instead of 

in phases as  discussed for hash table overflow. If the basic hash-division algorithm is modified 

such tha t  i t  produces quotient tuples as soon as  possible (as described in Section 3.3)) the collec- 

tion phase can be overlapped with producing the clusters. Instead of tagging the quotient tuples 

with phase numbers, processor network addresses are attached t o  the tuples, and the collection 

site divides the set of all incoming tuples over the set of processor network addresses. In the 

unlikely case tha t  the central collection site becomes a bottleneck, i t  is possible t o  decentralize 

the collection step using quotient partitioning. 

Now let us return t o  the second and third question posed a t  the beginning of this section. 

If the divisor table is too large t o  fit in each local main memory, the divisor can be partitioned 

over all local main memories available in the database machine. If the quotient is larger than 

each local main memory, i t  is possible t o  partition the quotient after replicating the divisor. 

The obvious fourth question is: what happens if neither one of these partitioning strategies 

work because both divisor and quotient are too large? In this case i t  will be necessary to  resort 

t o  combinations of the techniques discussed above, i.e., divisor partitioning, quotient partition- 

ing, and hash table overflow management. The optimal mix of partitioning strategies may be 



interesting but too specialized t o  be discussed here. 

Finally, since network activity can become a bottleneck in a shared-nothing database 

machine, i t  may be worthwhile t o  reduce network activity by bit vector filtering [Babbl979a]. 

The bit vector can be used to avoid shipping tuples for which no divisor record exists, e.g., Tran- 

script tuples for a n  optics course in the second example. As with bit vector filters for join, the 

selection of tuples is only a heuristic, e.g., in the second example, a Transcript tuple for a n  agri- 

culture course will erroneously pass the bit vector filter if i t  maps t o  the same bit as  one of the 

database courses. Nevertheless, bit vector filters may reduce significantly the network cost for 

the dividend relation, which is the larger of the division operands. 

Let us briefly consider how well the other division algorithms are suited for multi-processor 

dataflow implementations. We believe tha t  sort-based methods have two inherent problems, 

namely tha t  sorting is a stop-and-go operator, and tha t  the final merge pass of the sort opera- 

tion either introduces a bottleneck or requires very sophisticated scheduling and partitioning. 

Division using aggregate functions based on hashing are definitely competitive if no semi-join is 

required (first example above). However, if a semi-join is required (second example above), the 

dividend relation must be partitioned and shipped across the interconnection network twice, 

thus increasing the cost significantly in most environments. 

7. Summary and Conclusions 

In this paper, we have described and compared three known algorithms for relational divi- 

sion, naive division and sort- and hash-based aggregation (counting), and a new algorithm called 

hash-division. 

Hash-division uses two hash tables. The divisor table is used t o  match dividend tuples with 

divisor tuples and t o  determine a unique divisor number. The quotient table contains all quo- 

tient candidates; a bit map with each quotient candidate (indexed by divisor numbers) is used 

t o  keep track of which matching dividend tuples have been encountered so far. Hash table 

overflow can be resolved efficiently using divisor-partitioning, quotient-partitioning, or both. 



Hash-division can be used very effectively in a dataflow scheme or in a multi-processor system. 

Both analytical and experimental comparisons reported here demonstrate the competitive- 

ness of hash-division. Naive division is slow because it  requires sorted inputs. Division by sort- 

based aggregate functions is almost as expensive, even more expensive if a semi-join and an 

additional sort are required to ensure that only proper dividend tuples are counted. Division by 

hash-based aggregate functions is slightly faster than hash-division, but only if no preceding 

semi-join is required. All algorithms except hash-division require uniqueness in their inputs, 

which may require further expensive preprocessing. 

An additional result of our comparisons is that direct algorithms can outperform aggre- 

gate functions, both in sort-based and in hash-based query evaluation systems. Thus, it  is desir- 

able either to include for-all predicates in the query language, or to detect them automatically 

in a complex aggregate expression. 

Universal quantification and relational division have been neglected in database systems, 

not because they are useless (in fact, they are very powerful), but because efficiency posed a 

major problem. Hash-division is an interesting new algorithm as it is both fast and general. 
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