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Abstract 

An interesting network topology, called the star graph, has been recently proposed, that 
interconnects more processors with fewer connections and smaller communication delay than the 
popular n-cube. In this paper it  is shown that although the message latency is lower for the 
star graph, messages require a larger proportion of the network links, which could increase con- 
tention within the network. 



Contention and The Star  Graph 
as  a Network Topology 

Douglas M. Pase 

Abstract 

An interesting network topology, called the star graph, has been recently proposed, t ha t  
interconnects more processors with fewer connections and smaller communication delay than  the 
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1. Introduction 

A number of different network topologies have been proposed for distributed, message 
passing computing systems [1,6,7]. The most popular topology has been the binary n-cube, or 
hypercube. Another topology, the s ta r  graph, has been proposed [2,4] which offers a smaller 
degree, diameter, and average diameter [3]. The star  graph is a sub-family of a larger class of 
graphs known as  Cayley graphs. This paper proposes a new criterion of topology evaluation, 
and compares the s ta r  graph with the binary n-cube. Section 2 discusses performance issues of 
a network topology, in particular, latency and contention. A general discussion of Cayley 
graphs and the definition of a s tar  graph may be found in section 3. Section 4 compares the 
hypercube and s ta r  graph topologies. 

2. Network Topology and Performance 

The processing power of parallel systems is determined almost exclusively by power of the 
computing elements and the interconnection network. Much work has already been done on 
improving the performance of the computing elements and the problems are  fairly well 
understood. A communication network consists of a network topology, and hardware which 
actually sends and receives da ta .  Here we consider only the effect of topology. Initially only 
problems with relatively simple communication patterns were attempted, so only simpke 
topologies, such as  a ring, mesh, or torus, were needed. However, progressively more complex 
problems are being solved on distributed processors - problems which demand higher 
performance from the communication network. 

The two major costs associated with communication are message latency and contention. 
Network topology plays a relatively minor role in message latency. Topology determines the 
distance a message must travel t o  reach one node from another. Larger distances imply longer 
message latencies. Message pipelining is a simple technique tha t  reduces the effect of distance 
on message latency. If messages are sent as  complete indivisible units from one neighbor t o  
another, the latency is 

or the total distance d times the time it  takes t o  send the message one hop. If the message is 
divided into packets, and each packet is sent independently the latency becomes 

or the time it  takes t o  ship one packet d hops plus the time i t  takes t o  ship each of the 
remaining packets one hop. Since ti  oc t / p ,  the latency of the second case is generally much 
smaller. The importance of this is tha t  if p is large latency grows very slowly with the distance 
a message must travel. 

Contention occurs when two different messages compete for the same link between two 
nodes. I t  may occur if both messages are intended for the same node, the source of one message 
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is the destination for the other and vice versa, or if the two routing paths otherwise happen t o  
share some of the same links. The amount of contention is a function of the network resources 
in use, which is a function of the network topology and message traffic. As messages travel 
farther they use more links - links which cannot be used for other transmissions until tha t  
packet or message has been transmitted. As more links are  used, fewer links are  available, and 
the  likelyhood tha t  a message will be delayed increases. 

More specifically, the contention increases with increasing distance a message must travel, 
and decreases with a n  increase in the number of links in the system. In other words, i t  increases 
with the fraction of resources used by each message. If we assume the message destinations 
have a random distribution with the source node in the center, we can model the fraction of 
links used per message by 

average distance fraction of links used per message = 
number of links 

If we assume the whole network is included in the distribution, t ha t  is, every node is equally 
likely t o  receive a message from every other node, the equation becomes 

average diameter fraction of links used per message = 
number of links 

The average diameter of a graph is the average distance a message must travel. The number of 
links in a regular network is network degreexnetwork order/2 so by substituting this value into 
the previous equation i t  becomes 

2 ~ a v e r a g e  diameter fraction of links used per message = 
network degreexnetwork order 

Now, if we assume tha t  each node is contributing the same number of messages t o  the system as  
every other node, we can derive the communication resources in use within the system?. We 
multiply the previous formula by the network order t o  get 

2Xaverage diameter fraction of links used = 
network degree 

Since what  we wanted was a relative indicator of contention, we may drop the constant factor 
2. Here we have a rough estimate of performance for a topology. This assumes 

(1) Every node sends messages t o  every other node with equal probability. Each node does 
not have a preferred node or neighborhood t o  whom it  sends messages. 

(2) The network topology is regular - tha t  is, each node has the same number of connections 
t o  other nodes. 

(3) Network saturation is not significant. 

This measure indicates the relative performance required of the links for two networks t o  yield 
approximately the same performance. Thus if one network has a value of %, and another, 1, the 
second network has twice the contention of the first, and the second network would need t o  
have links which were double the speed of the first t o  match its level of contention. Note tha t  
the  first network could have a longer latency and still have less contention. 

The network degree has another effect on the system - cost. As the degree increases both 
the number of links and the board complexity of each node increase. This in turn pushes up the 
dollar cost of the system. 

t If no assumptions were made about  the  message traffic one could still derive upper and lower bounds for the 
available communication resources. One could conceivably have an application which excercised the  network in such a 
way t h a t  the  t h e  full bandwidth were used, or one so perverse t h a t  every node in the  system had a message scheduled 
for every link within i t s  routing map. If the message traffic is so heavy t h a t  saturat ion occurs, other parameters ig- 
nored by this  model become important ,  such as how the conflicts a re  resolved, whether circuit or packet switching is 
used, the  exact distribution of the messages, t h e  routing method, etc. 
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3. Cayley Graphs 

Now we turn t o  a specific collection of network topologies. Given a set of generators for a 
finite group G, one can draw a graph, called the Cayley graph, in which the nodes of the graph 
correspond to  the elements of the group, and the edges correspond to  the actions of the 
generators. Cayley graphs offer many advantages over other topologies which have been 
proposed for interconnection networks. For example, they are vertex symmetric. From any node 
the rest of the network appears the same, regardless of the node from which the view is taken. 
The graphs are  regular, and routing within a Cayley graph is relatively simple. Many families 
of Cayley graphs grow very rapidly with small degree. 

CAB 

t 

A Simple Cayley Graph 

From the definition i t  is obvious tha t  only the elements and  generators of the  group are 
important t o  the graph, not the group operations themselves. For example, consider the group 
whose elements are {ABC, ACB, BAG, BCA, CAB, CBA}, and whose generators are (213, 321). 
The first generator transposes the first and second letters of the element. The second generator 
transposes the first and last letters. This creates the simple graph shown in the figure. In all 
cases we specify t ha t  the set of generators must be closed under inverses so we may view the 
graph as  being undirected. It is obvious tha t  the number of generators determines the degree of 
the graph. 

ABwm BACDEF 

A 3-Dimension Cube 

The boolean hypercube is another Cayley graph. Addresses in a hypercube are  usually 
presented as  bit vectors, where each bit represents a dimension in the cube, and the values 
taken as  a binary integer represent the node address. One may form a hypercube as a Cayley 
graph by representing each dimension of the cube a s  a pair of unique letters. In any such pair 
there are two orderings of the letters. One ordering represents the bit value 'I,, the other 
represents '0'. The generators connect single dimensions by transposing the letters which 
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represent tha t  dimension. A three-cube might be represented by {ABCDEF, BACDEF, 
ABDCEF, BADCEF, ABCDFE, BACDFE, ABDCFE, BADCFE) and the generators (213456, 
124356, 123465). Other generators exist which are isomorphic to those given here. 

CADB DACB ADBC BDAC 

A 24-Node Pancake Graph (Degree 3) 

Dense vertex symmetric graphs may also be generated in this fashion. Two such graphs 
are the pancake graph and the star graph. Both graphs grow as the factorial of the degree (i.e. 
(d+l)!), as opposed to  the hypercube which only grows exponentially (i.e. 2d). Both graphs also 
have the advantage tha t  they may be constructed recursively - a graph of degree d may be 
constructed from d+l  graphs of degree d-1. (A hypercube of degree d may also be formed 
recursively from 2 graphs of degree d-1.) The pancake graph is obtained by viewing the string 
of letters as a stack of pancakes to  be flipped by a spatula. The spatula is inserted into the 
stack, and the pancakes above the spatula are inverted together. The inverted pancakes are 
placed once again on top of the original stack. The generators of a pancake graph of degree 
three would be (Rl84, 5214, 4521). An exact formula for the diameter and average diameter of 
this graph not yet been determined, but a more complete discussion, with references, of the 
problem and its solution may be found in [4]. 

Douglas M. Pase 
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A 24-Node Star Graph (Degree 3) 
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The s ta r  graph of degree d may be created by selecting d + l  unique letters. Each node 
would be given a name which is a unique permutation of the letters. This yields a graph of 
( d + l ) !  nodes. The d generators are formed by transposing the lSt  and i th letters. Thus the 
generators of a s ta r  graph of degree three would be (2134, 3214, 4231). The diameter and 
average diameter of this graph are  known t o  be [ 3 d / 2 J  and d+Hd+l -3+2 / (d+ l ) ,  respectively, 
where H, is the nth harmonic number [5 ] .  

4. The Hypercube and The Star-Graph 

Star  graphs, because of their smaller degree, diameter, and average diameter, are an  
improvement in some respects over the more widely accepted binary n-cube. The message 
latency will often be better for the s ta r  graph because of its smaller average diameter. If a 
large number of packets is used in message transmission the difference in latency may be small. 

A more significant difference is the communication resources available t o  each node. The 
ratio for the hypercube is 

The ratio for the s tar  graph is 

2 
d+Hd+l-3+- 

2 
Hd+l-3+- 

d + l  which simplifies t o  1+ d + l  
d d 

This value is somewhat more difficult t o  analyze than for the hypercube, but i t  is sufficient t o  
note t ha t  the factor Hd+l-3+2/d+l  star ts  small and grows much more slowly than d .  In fact, 
the whole formula climbs quickly t o  just above 1 then slowly converges back on 1.  I t  first 
exceeds 1 for the 8-star (degree 8), and reaches its maximum value ( -1 .037)  with the 23-star. 
The following table gives the formulas and their values for several moderately large networks. 

5. Conclusions 

Average Avg. Diam. Network Degree Order Diameter Diameter 
Degree 

A measure has been presented here which appears t o  be a reasonable relative indicator of 
contention for network topologies. I t  does not attempt t o  predict the time lost t o  contention, 

Hypercube 

Star-Graph 
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d 

7 
9 
12 

d 

4 
5 
6 

2d  

128 
512 

4096 

( d + l ) !  

120 
7 2 0  

5040 

d - 
2 

3.5 
4.5 
6 .O 

2 
d + H d + ~ - S + ; i r r  

-3.68 
"4.78 
-5.88 

d 

7 
9 
12 

1 3 4  

6 
7 
9 

Jh 

% 
'h 
'h 

2 
Hd+l-3+- 

I+ d + l  
d 

-0.920 
"0.957 
-0.980 



nor the number of messages which will collide in a particular system. It  does provide a basis for 
comparing topologies by comparing the number of links required by an  "average" message. No 
empirical da ta  has yet been accumulated which would verify its suitability a s  this type of 
measure. 

According to  this measure the hypercube topology has a relatively small amount of 
contention in message passing, primarily because of its large number of links. The star  graph 
has a much smaller degree and as such would be less expensive to  build than a hypercube of 
equal size. The message latency would also be lower. However, an average message in the s tar  
would use about twice the percentage of system links a s  it would on a hypercube, and that  
could increase the contention. This imbalance between the two topologies could be rectified by 
faster links on the star,  but i t  is not clear if such a solution would be worth the additional cost. 
If the message contention of the intended application set were low, it certainly would not be 
worth reducing i t  by half by moving to the more expensive hypercube topology. 

The star  graph's small ratio makes i t  a much better contender for general purpose 
computing (non-topology specific applications) than, say, a grid, whose average diameter grows 
rapidly and degree remains constant. But whether a s tar  graph or a hypercube is less expensive 
for the performance depends on whether i t  is less expensive to have many channels or faster 
links, which is a function of current technology. 

6. References 

[I] J.-C. Bermond, C. Delorme, and J.-J. Quisquater, "Strategies for Interconnection 
Networks: Some Methods from Graph Theory", Journal of Parallel and Distributed 
Computing, pp 433-449, Volume 3, Number 4, December 1986 

[2] Sheldon B. Akers and Balakrishnan Krishnamurthy, "A Group Theoretic Model for 
Symmetric Interconnection Networks", Proceedings of the 1986 International Conference on 
Parallel Processing, pp 216-223, August 1986 

131 Steven P. Levitan, "Evaluation Criteria for Communication Structures in Parallel 
Architectures", Proceedings of the 1985 International Conference on Parallel Processing, pp 
147-154, August 1985 

[4] Sheldon B. Akers and Balakrishnan Krishnamutrhy, "Group Graphs as  Interconnection 
Networks", 14th International Conference on Fault Tolerant Computing, pp 422-427, 
Kissimmee, Florida, June 1984 

[5] Donald E. Knuth, The Art of Computer Programming, Volume 1, Addison Wesley, 1973 

[6] Tse-yun Feng, "A Survey of Interconnection Networks", IEEE Computer, pp 12-27, Volume 
14, Number 12, December 1981 

[7] Kai Hwang and Faye A. Briggs, "Computer Architecture and Parallel Processing", 
McGraw-Hill, New York, 1984 

Douglas M. Pase Page 6 November 19,1987 


