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Abstract 
For simulation of systems with many processes on multi-processor architec- 

tures, i t  is necessary t o  partition the problem and assign subsets t o  each processor. 
In this paper, one such application, the emulation of Connectionist/Neural Net- 
works (CNNs), is considered and a program t o  perform the required partitioning is 
described. 

In addition to  the description of the program design and usage, the theoreti- 
cal background of the problem is presented along with a survey of some of the 
research on related problems. Finally, possible program enhancements and future 
research directions are described. 
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CHAPTER 1 

Introduction 

In this chapter the problem of partitioning large Connectionist/Neural Net- 
work (CNN) systems and allocating the resulting pieces among multiple physical 
processors is introduced. This is followed by a brief introduction t o  the CNN com- 
putational model and a number of necessary definitions. Then two possible 
approaches t o  solving the mapping problem are presented and the chapter concludes 
with a brief analysis of the complexity of the mapping problem. 

1. Introduction 
The Cognitive Architecture Project (CAP) a t  the Oregon Graduate  Center 

was created t o  develop and study architectures for efficient VLSI based emulation of 
very large Connectionist/Neural Network (CNN) systems. The mapping program 
presented here is designed t o  accept a s  input the description of a CNN and the tar-  
get architecture i t  is t o  be mapped onto. The program is currently used in mapping 
CNN systems for simulation programs and ultimately will be used t o  assign the pro- 
cessors of emulation engines. 

The mapping problem is a n  example of the class of graph embedding or par- 
titioning problems and a s  such is NP complete. For the purposes of the CAP 
research effort, optimal solutions are not required so the heuristic approaches 
presented in this paper are feasible. These heuristics a t tempt  t o  take into account 
what is known about both the source and destination graphs t o  improve the quality 
of the mapping while reducing the computational effort required. 

2. The CNN Model 
Although a knowledge of the CNN computational model is not required t o  

understand the work described in this paper, the following brief presentation is pro- 
vided a s  supplementary background material. 

A C N N  system consists of many simple processors or CNs (CNN nodes) com- 
municating together t o  reach a consensus decision. Each C N  independently and 
repeatedly calculates a new output and s t a te  function using i ts  current s t a t e  and 
inputs. The new output is in turn used by other CNs a s  input. In most models, the 
inputs are weighted before being used. 

An example of a CN's update function is the C - computation illus- 
t ra ted  in figure 1.1. Here each input is multiplied by the appropriate weight, the 
results are  added together, and a sigmoid function is applied to the sum t o  generate 
the output.  Currently, most CNN models use computations similar t o  the C - n[ 



Figure 1.1 C - n Computation 

formula, but more complex in tha t  historic values of inputs, various combinatorial 
groupings of the inputs, or the past s t a t e  of the C N  may be included in the compu- 
tation. 

In addition to  the update or  output function described above, most CNN 
models incorporate a learning function t h a t  adjusts the weights t o  change the 
behavior of the system over time. The major distinguishing characteristic of C N N  
models is tha t  the information contained in a system is stored in the weights 
applied t o  the connections between CNs rather than being kept in named memory 
locations as the in typical algorithmic approach t o  computer architecture. 

The C N N  model is derived from the neuronal model of biology. Each neuron 
generates i ts  output a s  a function of its past s t a t e  and the inputs impinging upon it.  
Many researchers believe t h a t  memory and learning are the result of changes in how 
neurons affect each other. For a more complete introduction t o  the reasons for 
using the CNN model and some of the different approaches t h a t  have been used see 
[RuM86]. 

The precise computations used in a CNN model only impact the mapping 
process by setting lower limits on the required functionality of the physical proces- 
sors and upper limits on the number of CNN nodes t h a t  can be effectively emulated 
by each physical processor. The major impact on the mapping process is from the 



number and the physical dispersement of the CNs t h a t  are inputs t o  and outputs 
from each node. This interconnection pattern can be represented as  a directed graph 
with CNN nodes as  vertices and the dependencies between them as  edges in the 
graph. 

3. Definitions 
This section presents some elementary definitions for use throughout the 

remainder of the paper. 
De3nition 1: A directed graph G(V,E) is a set of vertices V and a set of 

edges El where E C VxV. T h a t  is, each element of E is an  ordered pair ( i , j )  where 
i , j  E V. The edge ( i , j )  is different from the edge ( j , i )  and is said t o  originate with 
vertex i and terminate with vertex j. 

For an  example of a graph see figure 1.2 where the set of vertices is {a,b,c,d) 
and the set of edges is {(a,b),(a,c),(a,d),(b,d),(c,a)}. The arrow heads on the edges 
indicate their direction. For example, (a,d) is an outgoing edge from vertex a and 
an incoming edge t o  vertex d. In this paper the term node is used as  a synonym for 
vertex. 

Definition 2: A connection matrix is an NxN matrix where the i , j  entry 
represents the edge from node i t o  node j in the related directed graph. 

Figure 1.3 shows the connection matrix for the graph of figure 1.2. Note 
tha t  a 0 in a given position indicates the absence of a connection and a 1 indicates 
i ts  presence. I t  is possible t o  use values other than 0 and 1, with the magnitude of 
the i , j  entry indicating some attr ibute of the connection between i and j. 

Figure 1.2 A Directed Graph 



center; ccccc. a b c d a 0 1 1 1 
b 0 0 0 1 c 1 0 0 0 
d 0 0 0 0 

Figure 1.3 A Connection Matrix 

Definition 3 A c-graph is the directed graph of a C N N  where the CNs are  
represented by vertices and the connections between them are  represented by 
corresponding edges. 

In a c-graph, the existence of the edge ( P , ~ )  implies t h a t  the output of C N  p 
is a n  input to C N  q. The edge (p,p) is not included in the c-graph, even if the past 
s t a t e  of node p is a n  input t o  i ts  update function, since the model is only of inter- 
processor communication. In general, c-graphs are  asymmetrical, t h a t  is the 
existence of edge (p,q) does not imply the existence of edge (q,p). Asymmetry is not 
a requirement. Several CNN models, such a s  Hopfield networks [Hop82], have sym- 
metrical graphs. 

Definition 4: A p-graph is a directed graph representing the physical proces- 
sor interconnect of a system. The vertices represent physical processing nodes and 
the edges represent the communication channels between them. 

Although the communication channel between any two P N s  (physical nodes) 
p and q can be bi-directional, and is in most physical systems we are  considering, in 
a p-graph this situation is represented by including both edges (p,q) and (q,p). This 
convention is used because the connection may consist of a pair of physically 
separate conductors or a single conductor together with switching circuitry t o  turn 
i t  around. AIso, i t  allows for more general models than if only bi-directional connec- 
tions were considered. The existence of local memory in, or connections between 
multiple CNs assigned to, node p is not represented by the edge (pip), again because 
the model is of interprocessor communication only. 

4. The Mapping Problem 

While i t  is possible t o  simulate or emulate a C N N  with a single processor 
system, enhanced performance requires the use of multi-processor systems. This 
need can be readily seen by considering the computations involved in updating a 
C N N  consisting of lo6 CNs with each C N  connected to  only 1% of the other CNs. 
With one of the simplest of the proposed computational models, the C - model 
presented earlier, there are a total  of 10'' multiplications and lo6 additions for a sin- 
gle network update, ignoring the time required t o  record the new s t a t e  for each 
node. For a real-time system t h a t  needs t o  perform thousands of such network 
updates per second, a solution other than the use of a single processor must be 
found. 



While the easiest and fastest method of storing the d a t a  for a uni-processor 
system is by having a single array of CN states tha t  is referenced for each computa- 
tion, this is not feasible for a multiple processor system. With every C N  computa- 
tion accessing the same structure, even with a sparse matrix, there will be a large 
amount of memory access contention. The solution is either t o  use a message pass- 
ing multi-processor system or  a variation on the Ultra architecture developed a t  
NYU [GGK83]. A typical shared memory multi-processor system would not be 
appropriate, because of the high locality of memory references. 

In order t o  effectively emulate a CNN on a message passing multi-processor 
system, i t  is necessary t o  partition the network and have each P N  responsible for 
emulating a subset of the CNs. Two possible ways t o  partition a c-graph and t o  
assign i t  t o  a p-graph are matrix splitting and graph embedding. 

The first technique consists of considering the c-graph as a connection 
matrix and assign each P N  a section of the matrix. Each P N  would then calculate 
the partial sums for the CNs in its region and forward these values t o  designated 
PNs, such as those on the diagonal, for inclusion in the final computations. The 
computation completing PNs would then send new s ta te  values back and the cycle 
would repeat. 

A disadvantage t o  this approach is that ,  with each CN's s t a te  distributed 
over multiple PNs, there is the potential for d a t a  incoherency. T h a t  is, there are 
multiple copies of each CN, with each possibly in a different s ta te  a t  the same time. 
T o  solve this problem requires synchronizing t o  insure tha t  all copies of each C N  are 
in the same s ta te  before updating calculations are performed. A second problem 
with the matrix partitioning approach is decreased fault tolerance. The loss of a 
P N  deletes the computation of an  entire section of the matrix and all rows and 
columns containing tha t  section are disrupted. 

Matrix partitioning is primarily of value in situations where PNs are power- 
ful, so they are able t o  update multiple C N  s ta tes  easily; the system is synchronous, 
t o  reduce the probability of incoherent states; the connection matrix is uniformly 
dense, sparse connections reduce the efficiency of this approach and uniformity 
allows balanced use of all PNs; and interprocessor communication costs are expen- 
sive, so fewer, but longer, messages are preferable. Examples of message based 
multi-processor systems tha t  would be appropriate for this approach are the BBN 
Butterfly and the Intel iPSC, with synchronizing messages broadcast system wide 
between node updates. 

The second way t o  partition a c-graph is t o  assign one or more CNs t o  each 
P N  and map each c-graph edge t o  the corresponding p g r a p h  path. When a set of 
CNs has more external co-incident edges than the equivalent PN,  either a group of 
PNs can be considered as  a unit t o  provide the needed fan-in/fan-out or p-graph 
edges can be multiplexed and each c-graph edge mapped t o  a path in the pgraph .  
All intermediate PNs on a given path would only provide message forwarding, with 
no processing of messages not intended for them. 

The  primary thrust of CAP is t o  consider problems related t o  VLSI design, 
in particular the design of wafer-scale integrated CNN emulators, so processors are 
restricted in power and size, while the connections between them are fast and 



inexpensive, although constrained in number. T h a t  is, the design specification 
requires maximal performance for the cost, ruling out the use of large complex pro- 
cessors connected with an  intelligent interprocessor communication structure. For 
these reasons, together with fault tolerance considerations, the matrix partitioning 
approach will not be considered further. 

6. Mapping Metrics 

Since the goal is t o  find optimal mappings of c-graphs t o  p-graphs, i t  is 
necessary t o  define a measure of mapping goodness so t h a t  mappings may be com- 
pared. If each edge in the p-graph is assigned a cost, where the exact definition of 
cost is not specified, but might include such factors as  power loss or transit time, 
then i t  is possible t o  sum the costs resulting from a particular mapping t o  provide a 
quantitative rating for tha t  mapping. 

Definition 5: A path in a graph is a sequence of edges e,,e,, . . . ,en such t h a t  
if e,=(i,j) and e,+,=(k,l) then j = k .  The beginning and end of a path are the vertices 
v1 and v,,, where e,=(v,,j) and e,=(k,v,). As used in this paper, paths are restricted 
t o  include no loops. T h a t  is, no two edges of a path  have the same start ing or end- 
ing vertex. 

De$nition 6: The length, I(i,j), of a path is the number of edges it contains. 

Definition 7: A mapping M:C+P, where C is a c-graph and P is a p-graph, 
is a function of V c d V p u P s i  and Ec+Pp (Pp is the set of all paths in P) such tha t  if 
( i , j )  E E, then either M(i) = M(j)  or M(i, j)  = p E Pp and M(i) is the beginning of p 
and M( j )  is i ts  end. Q 

In other words, a mapping from a c-graph t o  a p g r a p h  is an  assignment of 
each C N  t o  a PN. In addition, each edge connecting two CNs either disappears 

c-graph c p-graph P M:c+p 

Figure 1.4 A mapping example. 



(when both CNs go t o  the same PN), or is mapped t o  a path  in the p-graph t h a t  
connects the destination P N s  and preserves the direction of the connection. An 
example of such a mapping is shown in figure 1.4. Vertex a has a fanout of five so 
tha t  path  {(5,6),(6,7)) is used t o  connect a and j, while all the other edges of e are 
mapped directly t o  edges of p .  

Dejnition 8: The cost of a mapping M: C -> P is e(M(e)) where e is a n  

edge from Eel the set  of edges of C, and e is a function, t h a t  assigns a non-negative 
value to each path  of P. 

If each edge traversed is assigned a cost of 1, then the mapping in figure 1.4 
has a total  cost of 6. This is the lowest possible mapping cost given the graphs e 
and p .  A poorer mapping is {(a ,l), ( b  ,7), (e ,8), (d19), (e ,6), ( j  ,3)). I t  would have a 
cost of 2 + 3 + 4 + 3 + 2, or 14, twice the cost of the minimal mapping. 

It is also possible t o  assign a cost t o  P N s  based on size and complexity. S u p  
porting more CNs with each P N  will increase the area  required, so the cost function 
of a mapping could include a P N  cost function t o  show the effect of varying the 
C N / P N  ratio. In the work presented here, i t  is assumed t h a t  there is a n  upper limit 
t o  the number of CNs per PN.  All mappings tha t  do  not exceed this limit are  given 
the same cost. This simplifies the calculations of cost and is sufficient for the pur- 
poses of this report. 

The optimal, or target, mapping is the one with smallest such cost. T o  
restate this in another way, the best mapping of a c-graph t o  a p-graph is the one 
in which each C N  is placed t o  minimize the cost of the paths t o  all other CNs t o  
which i t  is connected. 

6. Mapping Complexity 

In considering how t o  select a n  optimal mapping for a given c-graph and p- 
graph pair, i t  is instructive t o  realize the number of possible alternatives. Let C be 
the size of the c-graph, P be the p-graph size, and only map  one C N  t o  each PN.  If 
P > C there are  a total  of C! possible mappings. Increasing the number of CNs per 
P N  makes the number of possible mappings even greater. 

The problem of determining an optimal mapping is extremely difficult with 
so many possibilities t o  consider. Clearly, the use of exhaustive search techniques is 
impossible for all but  the smallest mappings. In chapter two several related prob- 
lems and the heuristics t h a t  have been developed t o  provide usable solutions t o  
them are  presented. 

7. Summary 

The CNN model incorporates large numbers of communicating processes. 
For efficiency reasons, i t  is desirable t o  use multi-processor systems t o  emulate 
them. This requires some method of partitioning the C N N  system. Two possible 
ways of doing this are graph embedding and matrix splitting, VLSI design considera- 
tions favor the use of graph embedding for the systems proposed by the C A P  group. 

In order t o  facilitate further discussion, the concept of a mapping was for- 
mally defined along with algorithms for assigning costs t o  mappings for comparative 



ranking purposes. Finally, i t  was shown t h a t  the large number of potential map- 
pings requires the use of heuristic approaches since no algorithm exists t h a t  provides 
a solution in polynomial time. Future chapters will present approaches t h a t  have 
been used for similar problems, suggestions for techniques t h a t  could be used here, 
and a description of how the mapper program is designed. 



CHAPTER 2 

Related Work 

The mapping problem introduced in Chapter 1 is an  example of the more 
general class of graph embedding or partitioning problems. In this chapter, other 
examples from this general set  of problems are explored t o  see what approaches 
have been proposed for finding solutions. The solution techniques described here are 
all applicable t o  the mapping problem with slight modifications, but with varying 
degrees of efficiency. 

1. Introduction 
The  CNN t o  physical processor assignment problem, when considered a s  a 

mapping from a c-graph t o  a p-graph, has similarities t o  many other graph parti- 
tioning and embedding problems. A variety of these problems have been studied 
with results published in the computer science literature. Examples of related prob- 
lems include virtual memory utilization, partitioning of electronic circuits among a 
set  of chips or boards, and assignment of processes t o  processors on multi-processor 
computers. 

2. Iterative Improvement 

The seminal treatment of the graph partitioning problem in computer sci- 
ence literature is the paper by Kernighan and Lin [KeL70]. Their problem state-  
ment is "given a graph G with costs on i ts  edges, partition the nodes of G into sub- 
sets  no larger than a given maximum size, so a s  t o  minimize the total  cost of the 
edges cut." In the paper they show why a variety of solution techniques are  invalid. 
The rejected approaches include generating a series of random solutions, use of max 
flow - min cut algorithms, identifying "natural clusters", and X-opting. 

The approach t h a t  they propose is t o  s t a r t  with two subgraphs and recur- 
sively decrease the cost of the partitioning by swapping elements between them. 
The algorithm used t o  choose which elements t o  exchange is: calculate the potential 
change in cost for each pair of elements t h a t  could be swapped, pick the pair with 
the largest such change, set  i t  aside on a list, and repeat the calculation and selec- 
tion steps using the remaining elements until all pairs have been placed on the list 
in decreasing order of cost reduction. The final step is t o  swap all pairs t h a t  contri- 
bute the largest partial sum of differences. This sequence of steps is then repeated 
until no further gain is possible. 

For a partitioning into more than two subgraphs, the graph is first divided 
into the required number of subgraphs, which are then processed by the above algo- 
rithm until they are  pair-wise optimal. This approach is said t o  take  order of n2 



time for each pass over all pairs of subgraphs, with another pass required t o  solve 
the problem of one pair of subgraphs needing adjustment after the exchange of ele- 
ments in either one with a third. In their experiments, Kernighan and Lin found 
tha t  for networks of size 100 or less divided into 6 or fewer subgraphs i t  took fewer 
than 5 passes t o  reach equilibrium. 

3. Filling Modules 
Russo e t  a1 [ROW711 examine the problem of partitioning a graph and 

assigning portions of i t  t o  modules. This is closer t o  the problem t h a t  this paper 
addresses. The difference is tha t  the graphs tha t  they have represent electrical or 
logic circuits and typically can be broken into graphs in a straight-forward manner. 

n! 
They show tha t  the number of possible partitions is - , where there are n nodes 

p!mrn! 
in the graph, m modules t o  assign them to, and m = n / p .  

Their approach is t o  generate a collection of subgraphs, then assign certain 
of these subgraphs t o  modules t o  eliminate the cost of the connections internal t o  
each subgraph. All such assignments of subgraphs t o  modules are tried, with a 
recalculation of the mapping cost for each set of assignments. This approach is an 
improvement on the general problem because by limiting the choices of sets of nodes 
to  predetermined subgraphs, rather than allowing arbitrary grouping, the number of 
possibilities t o  try is reasonable allowing exhaustive search. Unfortunately, their 
approach is not practical for the CNN mapping problem since the C N  t o  P N  ratio 
is so small compared with the total  number of CNs in the system. The major con- 
tribution their work provided t o  the techniques of this paper was the statement 
that ,  in our terms, "use a C N  t o  P N  ratio tha t  approaches the maximum possible t o  
provide more efficient partitionings." 

4. Use of Random Choices 

Bokhari [BokSl] shows tha t  the mapping problem a s  described here is 
equivalent t o  the graph isomorphism problem, the bandwidth reduction problem, 
and the quadratic assignment problem. He concludes tha t  a s  the probability of ever 
finding an  efficient exact algorithm is unlikely, research should concentrate on 
developing good heuristics. The heuristic presented in this paper is similar t o  tha t  
of Kernighan and Lin except tha t  periodically random selections are used t o  pick 
the nodes t o  exchange. The use of occasional random choices helps the algorithm t o  
avoid local minima. Bokhari's final conclusion though is "However, a s  the growth 
ra te  of time is bounded from below by 9, the algorithm will probably not be suit- 
able for very large arrays (say 32x32). For such arrays, entirely different heuristics 
will need t o  be developed." 

6. Linear Time Heuristic 

Fiduccia and Mattheyses [FiM82] have developed a variation on Kernighan 
and Lin tha t  has worst case computation time per pass t h a t  grows linearly with the 
size of the problem. Their approach is similar t o  tha t  of Russo et.  al. in tha t  it 
a t tempts  t o  minimize the networks tha t  are split between multiple blocks. Unfor- 
tunately, the CNN mapping problem has a fanout per C N  much larger than the 



number of CNs per P N  so the technique is of limited value. 

6. Mapping Parallel Algorithms 
In their paper "On Mapping Parallel Algorithms into Parallel Architectures" 

[BeS84], Berman and Snyder show tha t  the problem has two dimensions. The first is 
cardinality variation and in our terms means more CNs than PNs. The second 
dimension is topological variation and is the differences in the underlying graph 
structures. 

Their approach is t o  first reduce the cardinality variation by contracting the 
algorithm graph. This is done by combining nodes with an  adjacency preserving 
mapping. The problem is then reduced t o  a mapping from one graph t o  another of 
equal cardinality and is much easier. For the families of graphs they discuss in the 
paper the edge grammars with which they are defined provide a straight-forward 
automat able con traction algorithm. Some of the CNN models form similar families, 
such a s  the group of feed-forward layered networks with full interconnect between 
layers. For this family, a possible contraction algorithm would be t o  combine CNs 
tha t  are in the same layer. This algorithm can be generalized for all feed-forward 
layered networks, by combining CNs tha t  are in the same layer and share inputs or 
outputs. The  mapping shown in figure 3.1 is an example of this algorithm carried t o  
the ultimate where three virtual nodes replace the three layers. 

This work has a great deal of promise a s  a possible technique for mapping 
well structured CNNs. Unfortunately, i t  requires a method of describing the struc- 
ture of the CNN, such as edge grammars or layer definitions. For those situations 
where the structure of the CNN is either unknown or  more arbitrary, the choice of 
which nodes t o  combine is equivalent t o  the original mapping problem in complex- 
ity. In any case, the concept of joining nodes based on their common connections t o  
other nodes rather than on any connections between them is one t h a t  should be 
explored in future research on the mapper program. 

7. Neural Network Mapping 
Ghosh and Hwang, in their paper "Mapping Neural Networks onto Highly 

Parallel Multiprocessors" [HwG87], provide a good comparative analysis of a variety 
of computer architectures a s  tools for simulation of CNN models. Their mapping 
approach assumes tha t  the c-graph has dense subregions with sparse interconnection 
between them. The algorithm is to  cluster these regions onto  adjacent PNs. Unfor- 
tunately, they do not describe a technique for recognizing these regions, nor do they 
mention how t o  handle graphs tha t  are not of this nature. 

8. Simulated Annealing 
In his paper "Placement of Communicating Processes on Multiprocessor Net- 

works" [Ste], Steele proposes the use of simulated annealing as  a method of improv- 
ing iterative mapping techniques. This approach is similar t o  t h a t  of Bokhari in 
t h a t  random choices are sometimes made during the selection process t o  avoid hav- 
ing the system settle into a local minimum. The difference is t h a t  with simulated 
annealing, the percentage of random choices s tar ts  high and decreases t o  zero as the 
network settles t o  a solution. It has been shown tha t  simulated annealing will 



generate solutions in general tha t  are optimal or near optimal. The drawback is 
tha t  the technique is even more computation intensive than iterative resolution 
alone and for this reason it is not feasible for our application due t o  the large sizes 
of the graphs involved. 

9. Summary 

The papers summarized in this chapter are only a small selection of the 
many tha t  have been written on this subject. A number of authors have developed 
theoretical limits on the quality of mappings for different architectures. These 
papers were chosen t o  give a feel for some of the alternatives tha t  have been pro- 
posed and t o  provide the reader with some pointers for further reading. 

There are several basic approaches tha t  have been proposed in the papers 
presented here. The first is t o  use an iterative algorithm, possibly with the addition 
of random choice t o  avoid local minima, another is t o  divide the network up into 
subgraphs tha t  have some commonality and map these subgraphs, and the final is 
t o  compact the network by mapping i t  t o  another member of the same family of 
interconnect graphs. For the design of the system described in the remainder of this 
paper, the last two alternatives appear t o  have more applicability since iterative 
improvement algorithms scale non-linearly with the size of the problem. The cost of 
this choice is tha t  the mappings generated are probably not a s  good a s  they would 
be otherwise. As explored in Chapter 4, if this cost becomes excessive, adding an  
iterative improvement algorithm as  a second step after the initial assignment is a 
definite possibility. 



CHAPTER 3 

Mapper System Design 

The  mapper program accepts a s  input a BIF file and a PAD file. The  output 
is either a list of node-to-node mappings or a mapped BIF file depending on the 
invoking arguments. In this chapter, 1 will first present the user interface, briefly 
describe the input and output file formats, and finally go into detail on the internal 
d a t a  structures and algorithms. 

1. Usage 

The mapper command line definition is: 
m a p p e r  - p  padfile -b biffile [-dc]  [ -dp]  

The arguments can be in any order, with the first two required and the oth- 
ers optional. A -pad is followed by a space and the name or path of the input pad- 
file. Similarly, the -bij is followed by a space and the name of the input bif-file. 
The -dump arguments are primarily intended for debugging purposes. They print 
the results of the mapping t o  stdout. T h a t  is, - d c  generates a list of the CNs and 
which P N  each is assigned to, while - d p  prints a list of PNs and the CNs each con- 
tains. If there are no "-d" arguments, then the mapped bif is written t o  stdout. In 
any case, any error messages are written t o  stderr. 

Thus, for most work, the proper usage is: 
mapper -p padfile -b biffile > out-biffile 

or 
mapper -p padfile -b biffile next-command 

with the second form being preferred when next-command is capable of reading from 
stdin. The advantage of the second form is that  disk space usage is reduced by not 
saving a copy of the temporary file out-bijdle. When other versions of mapper, 
t h a t  require more computation, are developed, the use of a temporary file may be 
more advantageous if the d a t a  it contains is t o  be used more than once and 
sufficient disk space is available for temporary file storage. 

2. Input File Formats 

Since both formats are defined formally in other papers, BIF in [Bah88] and 
PAD in [May88], this is an informal presentation and should not be taken as  a 
definitive specification. For mapper, the information of interest in either a BIF or  
PAD file is the interconnection or graph description; most other d a t a  is ignored. 
2.1. BIF 

BIF (Beaverton Intermediate Format) is a CNN description language. I t  
consists of a header section tha t  lists the types of CNs present in the network 



followed by a series of C N  descriptions. Each CN description has a type indicator, 
an  index tha t  is a unique identifier in the network, a variety of s t a te  variables, and 
finally a collection of sites tha t  indicate input and output dependencies. Each site is 
marked as being either input or  output and broadcast or point-tc-point. Each site 
is further broken down into links. A link consists of an  index t o  identify it, a desti- 
nation site, and other s ta te  information (ignored by mapper). 

From this information, i t  is possible t o  construct a graph t h a t  shows the 
connections between CNs. The site value is kept t o  resolve multiple links t o  the 
same destination CN. Only output links are used in mapper's c-graph model. The 
c-graph is stored a s  a linked list of nodes. Each element in the list contains a 
pointer t o  a list of connections for tha t  CN. 

2.2. PAD 
PAD (Physical Architecture Description) is a language t h a t  describes the 

physical system t o  be used t o  emulate the CNN. A PAD file begins with a header 
section t h a t  contains the number of PNs in the system, the maximum number of 
CNs per PN, and a variety of other descriptive values, not used in mapper. The 
header section is followed by an  optional point-tc-point (ptp) description. For each 
P N  in the system the ptp  section contains a list of the PNs  i t  is directly connected 
to. The final two sections of the PAD file, also optional, are the P N  region descrip- 
tion and the physical broadcast hierarchy (pbh) section. P N  regions are sets of PNs 
used as  a convenience so that  common sets do not have t o  be individually listed 
each time they occur. The pbh section lists groups of PNs  (either individually or by 
region identifier) tha t  have a common broadcast communication structure. A mes- 
sage sent by one P N  in a group is received by all other members of the group. 

Two separate lists are maintained by mapper t o  show the structure of the 
p-graph. One shows the nodes connected by ptp  communication and the other 
shows those connected by broadcast. A more complete description is provided later 
in this chapter. 

2.3. Mapping Hint File 
The mapping hint file is still under development. I t  is intended t o  allow the 

designer of the BIF file t o  show how the c-graph is organized. This information may 
include a list of what subgraphs are appropriate for allocation t o  broadcast groups 
and is intended as  an aid t o  efficient mapping of broadcast regions without requiring 
massive amounts of computation in mapper (also, the problem of deciding what CNs 
are "related" t o  others does not appear t o  be solvable in general). 

3. Internal Data Structures 

The  mapper program is written in C++ with .h files tha t  define the classes 
of d a t a  structures and operators. Full program listings are provided in the appen- 
dix t o  this paper. There are three classes of objects: general purpose, c-graph, and 
p-graph. General purpose objects are definitions of elementary d a t a  structures tha t  
are used in defining the other two classes and in the utility sections of the program. 



3.1. C-graph Objects 

A c-graph is represented as a linked list of nodes. Each node contains the 
head of a linked list of connections. Each node is identified by a unique integer. A 
connection contains the identifier of the destination node along with the identifiers 
of the source and destination sites. This lat ter  information is only used t o  check for 
duplicate connections and is not considered in determining connectivity. 

In addition t o  the linked list, a hashed table of CNs is maintained s o  t h a t  a 
given node and i ts  connection list can be located without scanning the C N  list. This 
is strictly an  efficiency device and does not impact the underlying structure. 

The c-graph is accessed by a set of procedures: 
get -- reads a BIF file and loads the c-graph structures 

rank -- returns the number of CNs in the c-graph 

build-tab -- builds the hash table 

g e t n o d e  -- returns a pointer t o  a C N  

nextregion -- returns a new subgraph (for disjoint subgraphs) 

next-cn -- returns the closest cn t o  the previously gotten ones 

log-pn -- logs a C N  -+ P N  assignment 

dump-assigns -- prints all CNs with their assigned PNs  

fil-bif -- reads the BIF file and writes i t  out, adding P N  numbers and out- 
put types (ptp or broadcast) 

3.2. P-graph Objects 

The p g r a p h  set of objects is similar t o  the c-graph set. There are two 
linked lists of nodes, one for those whose connectivity was defined by the p tp  section 
of the file and the other for those defined by the pbh section. There is also a p- 
graph hash table t o  provide rapid access t o  the ptp list. 

The p g r a p h  accessing operators are: 
get -- reads a PAD file and builds the linked lists 

rank -- returns the number of PNs in the graph 

cns2pn -- returns the maximum allowable CN t o  P N  ratio 

next-pn -- returns the next P N  t o  assign CNs t o  

build-tab -- builds the hash table after get is done 



g e t n o d e  -- returns a pointer t o  a node given i ts  identifier 

4. Algorithms 
The program consists of a main procedure tha t  provides the logical flow t o  

the system, a parser tha t  reads a file and returns the next token, a set of utilities 
for list and table manipulation, and the procedures instantiating the c-graph and 
p-graph objects. The general flow of control is: 

1) parse the command line 
2) read the BIF file into the c-graph list 
3) read the PAD file into the p-graph lists 
4) build the c-graph and ptp  access tables 
5) perform the required mapping 
6) dump the mapping results if requested 
7) generate the mapped BIF otherwise 

Any errors cause execution t o  terminate with an  appropriate message. 
The only section of the program tha t  is detailed here is the mapping section. 

Command line parsing, file reading and d a t a  structure filling, d a t a  structure listing, 
and the insertion of mapping results in the BIF are all fairly straight-forward p r e  
cedures executed in relatively obvious ways. 

4.1. Broadcast Mapping 
The broadcast regions of the p-graph are mapped first if they exist. This 

ordering of mapping reflects the feeling tha t  broadcast provides a high potential 
degree of interconnect and should be used where feasible and not excessively expen- 
sive. 

There are two considerations in mapping broadcast regions. The first is 
whether the p-graph region is large enough for all CNs t h a t  are t o  be assigned t o  it. 
The solution used in mapper is t o  maintain the region lists ordered by size and 
assigning the next largest c-graph region t o  the next largest p-graph region a t  each 
step. Although such a procedure may waste space by using p-graph regions tha t  are 
larger than necessary, it is easy t o  implement and guarantees t h a t  a s  many c-graph 
regions will be mapped using broadcast a s  possible. 

The second design consideration in mapping broadcast regions is how t o  
effectively use overlapping or hierarchical regions when they are available. When 
the c-graph model consists of dense subgroups tha t  are sparsely interconnected, the 
above selection process in adequate. For feed-forward layered networks, a structure 
common t o  many CNN models, allocating the layers t o  different broadcast regions 
t o  effectively use the overlapping feature is desirable. An example of such a map- 
ping is shown in figure 3.1. 

The information on p-graph structure, tha t  is necessary in order t o  provide 
such a use of overlapping, can be presented in the PAD file by using the P N  region 
convention. As described earlier, in a PAD file groups of PNs may be listed as  
belonging t o  the named regions and these regions used in turn t o  specify pbh groups. 
(This nomenclature is poor and should probably be changed with subregion 
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replacing region in future PAD definitions.) T o  map a feed-forward network, assign 
the CNs t o  regions such tha t  pbh groups may be used t o  provide the communication 
between layers as  well a s  any intra-layer connections. In figure 3.1, layer 1 is in 
region A, layer 2 is in region B, layer 3 in region C and the broadcast groups consist 
of each region alone for intra-layer communication, regions A & B combined for 
layer 1 t o  layer 2 connections, and regions B & C combined for layer 2 t o  layer 3 
connections. 

Other c-graph structures can be efficiently supported by judicious use of 
overlapping regions, but may require special case code in the mapper program 
together with structure specification in the hint file. 

4.2. Point-to-point Mapping 

The point-to-point communication mapping is done after any broadcast 
regions are filled. I t s  purpose is t o  provide for those edges in the c-graph t h a t  are 
not mapped in the broadcast or  when there is no broadcast available. This portion 
of the mapper program is most similar t o  the other research presented in Chapter 2. 
T o  date,  a simple, greedy heuristic has been sufficient for the networks and architec- 
tures being simulated. In the next chapter, possible alternatives are described. 

The algorithm currently used assigns an  average number of CNs t o  each PN.  
This approach was used since the goal was load leveling, t o  maximally use the Intel 
iPSC, rather than minimization of communication costs. If communication costs 
are t o  be reduced, each P N  should be completely filled with CNs before going on t o  
the next one. For load leveling, the number of CNs t o  assign t o  each P N  is deter- 
mined by dividing the total  number of CNs by the total  number of PNs. The choice 
of which goal t o  pursue, level load or minimal communication, is a n  option tha t  
may need t o  be changed based on the hardware characteristics. Later versions of 
mapper may implement the ability t o  vary this choice with either a command line 



flag or  a n  entry in the PAD file. 
Mapper loops until all CNs are used. In each cycle, the next C N  is assigned 

t o  the current PN.  Whenever a P N  reaches the predetermined limit, the next P N  is 
selected and the process continues. New CNs are chosen from the set  of CNs t h a t  
are connected t o  those already mapped. When a set  of CNs has  been mapped, the 
number of edges t o  CNs not in the set are counted. If any outside CNs have multi- 
ple edges from the set, use the one with the most such connections. If two or more 
CNs have the same number of connections t o  the set ,  use the one with the most 
connections in common with the CNs of the set. Otherwise use the C N  with the 
fewest additional connections outside of the set of already mapped CNs. When 
start ing the algorithm, or  when there are no CNs connected to the set, s t a r t  with 
the C N  and P N  t h a t  have the largest fanout. 

While the above algorithm provides good mappings for c-graphs t h a t  have a 
spreading pattern of connections, for example two dimensional grids, i t  fares badly 
with many layered networks; especially when there is a high degree of inter-layer 
connectivity coupled with a low degree of intra-layer connectivity. Networks of 
t h a t  form are  better handled by the earlier described pbh approach. In the net- 
works used for verifying mapper, it was usually 10% to 30% away from optimal 
mappings. These results were derived by examining ten small networks by hand 
and may not hold for larger, more complicated cases. 

The major advantage of the current design is t h a t  the choice of which C N  or  
P N  t o  use next is isolated from the logic t h a t  does the mapping and keeps track of 
assignments. I t  would be very simple t o  plug in a different algorithm for either the 
P N  or C N  selection procedure. 

6. Summary 

The  mapper program was designed t o  provide a flexible and easy to use 
interface for the user. In addition, the modular approach allowed by the use of 
C++ hides any knowledge of the input and output file structures in procedures t h a t  
can be separately modified and maintained. Similarly, the choice of which sub- 
graphs should be mapped together in broadcast mapping and which CNs go t o  
which PNs  is isolated from the code tha t  provides the logical flow of the program. 
This use of objects and operators allows the implementor or maintainer t o  readily 
change one pa r t  of the system without having t o  worry about what impact the 
change will have on the remainder of the system. 



CHAPTER 4 

Future Directions 

There are several open questions t h a t  could be answered by further research 
with the mapper program. They include comparing the efficiency of mapping vari- 
ous classes of c-graphs t o  different p-graph architectures, looking a t  the performance 
versus the cost of adding a n  iterative improvement s tep  after the original assign- 
ment is completed, and which algorithms perform best for the initial mapping. 

1. Mapping Comparisons 

Before alternative approaches t o  mapping a particular c-graph and p-graph 
pair can be compared i t  is necessary t o  define the metrics t o  be used in the com- 
parison. One simple way is t o  assign a cost of one t o  each p-graph edge and use the 
formula from the definitions section of Chapter 1 t o  calculate the cost of each map- 
ping. Such a calculation could be implemented either a s  a final s tep  in the mapper 
program or by a separate procedure tha t  reads the mapped BIF and generates the 
result for each file. Installing the procedure a s  a subroutine in the mapper program 
would allow its  use in implementing an iterative improvement technique. 

One potential area of interest is how different mappings compare a s  the cost 
function is varied t o  reflect different values for broadcast versus point-to-point com- 
munications. O r  another possibility is adding a weighting factor t h a t  allows for the 
increased size and complexity of PNs  a s  the C N  t o  P N  ratio is increased. This 
second option would provide d a t a  on the effectiveness of calculation versus commun- 
ication trade-offs. 

2. Classes of Mappings 

One critical research question is which p-graph architectures best support 
different classes of c-graph models. I t  is obvious t h a t  a p-graph can be tailored t o  
efficiently support a particular c-graph. What  is not readily apparent  is what are  
the classes of c-graphs and what variations in p-graph structure best support them. 
What  is the break-even point between the use of broadcast and point-to-point? Are 
there any p-graphs t h a t  effectively support a range of c-graph models? 

These questions, along with similar ones, can be answered by mapping a 
wide variety of both c-graphs and p-graphs and comparing the costs. The CNN 
literature is a rich source of potential c-graph models t o  examine. One concern in 
the design of such research is verifying the quality of the mapper program so t h a t  
the results reflect differences in the graphs rather than artifacts of the mapping pro- 
cess. 



3. Iterative Improvement 
Most of the papers reviewed in Chapter 2 describe some sort  of iterative 

improvement technique for producing good mappings. The mapper program a s  
currently implemented does not use such an approach. One problem is t h a t  adding 
an iterative step with the size of the c-graphs of interest, tens of thousands t o  mil- 
lions of nodes, together with the number of separate groups tha t  they are t o  be par- 
titioned into, the number of PNs, may be prohibitively expensive. As indicated by 

k 
Kernighan and Lin in their previously referenced paper, there are (-) pairs of sub- 

2 
sets t o  consider, for k the number of PNs, and the time for a single pass through all 
such pairs is 0(n2), where n is the number of CNs. They found t h a t  fewer than six 
passes were required for sets of 100 or fewer points divided into six or fewer sets. 
But, the number of passes is an  increasing function of both the number of points 
and sets, it is possible tha t  obtaining mappings close t o  optimal would require 
thousands of passes each taking O(10 sup 12) operations. 

I t  would definitely be worthwhile t o  examine how much improvement a few 
passes would provide and how expensive i t  would be t o  do them. The most expen- 
sive par t  is calculating the cost of the exchange of the pairs of CNs and t h a t  can be 
reduced t o  counting the number of affected connections since the cost of swapping 
between two PNs  is constant for each pair. Dividing the c-graph into subgraphs 
and repeating tha t  procedure using an iterative approach a t  each point might have 
merit, but more work is needed on this question also. 

4. Initial Selection Algorithms 

The cost of performing a mapping is a function of both the number of CNs 
and PNs. For this reason a division of the initial c-graph into a set of subgraphs 
tha t  are then separately processed would favorably impact the mapping perfor- 
mance. What the impact would be on quality is an open question as  well a s  what 
criteria would be used t o  make the divisions. Given some information on c-graph 
structure in the "hint" file would provide a starting point for such a divide and con- 
quer algorithm. 

The area with the best potential for improvement is replacing the current 
point-to-point mapping algorithm. Would i t  be better t o  keep adding the C N  tha t  
has the most connections a t  every step? What  about the use of input connections 
a s  well a s  the output connections currently being used? As is mentioned in the dis- 
cussion on the Berman and Snyder paper, there might be more value in choosing 
CNs tha t  are not connected t o  the ones already chosen, as is done currently, but 
choose ones tha t  have connections t o  common sources or  destinations. Should some 
random selection be made when two or more CNs are potential choices t o  overcome 
the bias from the original BIF ordering? Another possibility is use the connectivity 
matrix and swap rows and columns until non-zero entries are grouped together. 
These dense regions would then be mapped t o  neighboring PNs. 

6. Conclusions 
Although researchers have done much work in developing techniques for solv- 

ing graph partitioning and mapping problems, the particular area of CNN mappings 



remains largely unexplored. Possible areas for future research include determining 
classes of c-graphs and the p-graph structures best suited for each class and 
methods of improving the quality of the mappings. 



CHAPTER 5 

Summary and Conclusions 

In this paper some of the underlying theory for the mapper design has  been 
presented together with the implementation detail of the programs. Related 
research has been reviewed and possible future research directions detailed. 

1. Summary 

CNN models require larger and faster implementations to provide adequate 
performance for many real world problems. The use of parallel computational sys- 
tems is a means t o  such improved performance. Parallel systems require partition- 
ing of the problem. Two partitioning techniques are graph mapping and matrix 
splitting. Graph mapping is better suited t o  VLSI implementation. The graph 
mapping problem has  too many possible solutions t o  consider all and pick the best, 
some sort of heuristics must be used t o  generate adequate solutions. Two heuristics 
have been developed, one for mapping of pre-specified groups of CNs t o  broadcast 
regions and the other for individual mapping of CNs t o  PNs  for point-to-point com- 
munications. They have proven t o  be adequate for the networks examined so far, 
but  several possible future directions for improvement are  suggested. 

In designing the mapper program the use of the C++ language together with 
the concept of objects and operators on them has been used t o  isolate implementa- 
tion details, file structures, node and region selection algorithms, and the logical 
organization of the program. This design allows for easy modification of some sub- 
pa r t  of the program without requiring rewriting of other sections. I t  also facilitates 
the plugging in of new algorithms for testing purposes. 

2. Conclusions 

The mapper program a s  i t  currently exists provides a solution to the need t o  
partition CNN networks among systems of multiple processors. It is designed t o  be 
readily upgraded when research indicates the appropriate directions for improve- 
ment. The performance has been adequate, without requiring large amounts of 
computation time or space. This program is not presented a s  being optimal, just as 
being a working solution t o  the problem. 
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