
Technical Report CS/E88-028 August 1988

ANNE:
ANOTHER NEURAL NETWORK EMULATOR

Casey S. Bahr
Oregon Graduate Center

Dept. of Computer Science & Engineering
Beaverton, Oregon 97006-1999

(503) 690- 1 15 1

ANNE:
ANOTHER

NEURAL NETWORK
EMULATOR

August 4, 1988

ABSTRACT

ANNE:
ANOTHER NEURAL NETWORK EMULATOR

Casey S. Bahr
Oregon Graduate Center

August 4, 1988

Supervising Professor: Dan Hammerstrom

ANNE is a neural network simulation system designed for a n MIMD distributed-memory
computer and implemented on Intel's iPSC. ANNE is one part of a neural network hardware
development system tha t includes a network description language, a standardized network
structural format, and a utility t o map network connection nodes t o physical processor nodes.

ANNE features user-variable, message-driven synchronization between iPSC nodes. This
synchronization technique relies on a replication of the simulation clock among the iPSC nodes
and the cube host processor. Each node clock runs independently of other node clocks for some
number of cycles, before synchronizing with the global host clock. Messages between network
connection nodes must cross processor boundaries are packaged according t o one of two
methods: synchronous packetization (SP) or asynchronous packetization (AP). These messages
are timestamped according t o the clock of the local physical node, and this timestamp is used t o
determine a message's "alignment" upon arrival.

Performance results were obtained using several back-propagation networks and small
"receptive field" networks. The SP and AP methods are constrasted as well as preliminary
results from a direct porting of ANNE to an iPSC/2.

TABLE OF CONTENTS

LIST OF FIGURES ..

.. LIST OF TABLES

... LIST OF GRAPHS

CHAPTER
.. . 1 INTRODUCTION

1.1 Connectionism ..
1.2 Neural Network Definition ..
1.3 CAP ...

.. 1.4 The Target Machine
... 1.5 Overview

2 . DESIGN ISSUES ..
2.1 Development Cycle for Neural Network Simulations
2.2 Design Limitations ...

.. 2.2.1 Memory
.. 2.2.2 Inter-processor Communication

2.3 Design Assumptions ...
... 2.3.1 Network Size

.. 2.3.2 Internal Network Communications
2.3.3 Simulation Accuracy ..

................................. 2.3.4 User's Knowledge of Network Structures
2.4 Timing and Synchronization Techniques

2.4.1 Misra's Algorithm ...
.. 2.4.2 Time Warp

2.4.3 Why not Misra? ...
... ... 2.4.4 and Time Warp?

... 2.4.5 Message-driven Synchronization
2.5 Software Architecture ...

3 . IMPLEMENTATION ...
3.1 Beaverton Intermediate Form ..

... 3.1.1 Objects in BIF
3.1.2 BIF Syntax ..

3.2 Building the Network ..
3.2.1 Loading and Parsing BIF ...

.. 3.2.2 Network Da ta Structures
3.3 Network Emulation ...

3.3.1 User Network Procedure ..
... 3.3.2 ANNE System Calls

.......................... 3.3.3 Timing, Synchronization, and Checkpointing
.. 3.3.3.1 Local Synchronization

3.3.3.2 Global Synchronization ..
3.3.4 CN-to-CN Communications ..

3.3.4.1 Output msg Table ...
... 3.3.4.2 Msg Packetization Methods

.................................... 3.3.4.3 Sending and Receiving msg Packets
3.3.4.4 Msg Delay ..

3.3.5 Network 1 1 0 ...
3.3.6 User Interface ...

.. 3.3.6.1 User Commands
... 3.3.6.2 Terminal Display

... . 4 PERFORMANCE TESTING
.. 4.1 Test Networks

4.2 Xps Tests ..
.. 4.3 Functional Components Performance
.. 4.3.1 Loading and Parsing Performance

... 4.3.2 Other Components
4.4 Cpc Tests ..

4.4.1 Cpc Results for the iPSC ...
4.4.2 Cpc Results for the iPSC/2 ...

4.5 Network Locality Testing ...

. .. 5 CONCLUSION
5.1 Summary ...
5.2 Future Work ...

.. REFERENCES

LIST OF FIGURES

2.1 Development Cycle in CAP Simulation System
2.2 ANNE'S simulation clocking model ...
2.3 Conceptual model of the timestamp window
2.4 Simulator components ..
3.1 Conceptual structure of a CN and its sub-components
3.2 Structure of a single CN after parsing ...
3.3 Example of Local CN Table in an HN ..

... 3.4 Portion of a user's network procedure

.. 3.5 Cycle-params structure

3.8 Msg table a t HN 0 ...
......................... 4.1 Back-propagation network mapped t o two HNs

4.2 Receptive field network ..

LIST OF TABLES

4.1 Xps tests ... 41

4.2 Msg packet sizes for n16 ... 44

iii

LIST OF GRAPHS

4.1 iPSC xps performance: SP method ...
4.2 Xps vs . number of external connections per HN
4.3 iPSC xps performance: AP method ...

.. 4.4 iPSCI2 xps performance: SP method

4.5 iPSC/2 xps performance: AP method ...
4.6 Functional component performance on the iPSC: SP method

...
4.7 Functional component performance on the iPSC: AP method

...
4.8 Functional component performance on the iPSC/2: SP method

...
4.9 Functional component performance on the iPSCI2: AP method

...
... 4.10 Cpc results on the iPSC: SP method

4.11 Seconds elapsed for cpc tests on the iPSC: SP method
4.12 Cpc results on the iPSC: AP method ..
4.13 Seconds elapsed for cpc tests on the iPSC: AP method
4.14 Cpc results on the iPSC/2: SP method ...
4.15 Seconds elapsed for cpc tests on the iPSC/2: SP method
4.16 Cpc results on the iPSC/2: AP method ..
4.17 Seconds elapsed for cpc tests on the iPSC/2: AP method
4.18 Speedup vs . locality on the iPSC: SP method
4.19 Processor efficiency vs . locality on the iPSC: SP method

............................. 4.20 Speedup vs . locality on the iPSC: AP method

.......... 4.21 Processor efficiency vs . locality on the iPSC: AP method

... . 4.22 Speedup vs locality on the iPSCI2

CHAPTER 1

Introduction

1.1. Connectionism
Recently the interest in massively parallel computational models, commonly

referred t o a s connectionist models or neural networks, has increased tremendously.
This interest is due t o a number of reasons, not the least of which are these net-
works' abilities t o efficiently compute a variety of problems considered t o be resource
intensive for conventional serial computation. Connectionist models t h a t feature a
distributed d a t a (knowledge) representation also promise a high degree of fault toler-
ance even in the face of faulty structural components, or "noisy" input da ta . This
promise does not mean t h a t neural network models can enjoy universal application
in all areas of computation. Rather, connectionist models may be viewed as comple-
mentary t o von Neumann computational models. They often exhibit optimal perfor-
mance when solving problems for which serial computation is most inefficient, but
they are unsuitable for the many problems t h a t require precise, deterministic solu-
tions a t which conventional digital computation excels.

Examples of the best applications for neural networks may be categorized into
two classes [LaF86]. The first class consists of difficult constraint satisfaction prob-
lems, such a s The Traveling Salesman [HOT]. The second class of problems relates t o
content addressable memories; i.e., being able t o extract stored information by asso-
ciation rather than by explicitly naming the information's location. Many connec-
tionist models extend this lat ter property t o the point of automatically producing
generalizations of the knowledge explicitly stored in the network [MRH86a].

In both classes of problems the function performed by these networks is t h a t
of finding a "best match" solution. The neural network approach differs from con-
ventional computational paradigms, where exact results are obtained through a
series of highly specified steps. The goal of connectionist models is not necessarily t o
obtain the single, correct answer t o a problem, but rather t o obtain an answer
among several t h a t is "close" (within some error acceptable t o the application). T o
accomplish this goal, connectionist models use a process of satisfying multiple, simul-
taneous, and mutual constraints by relaxation of the network toward some attrac-
tive point in a problem's solution space. This relaxation is often measured in terms
of a global network energy value [HopSZ]. This process is implemented through a
highly parallel interaction among a large number of computationally simple units.

The connectionist approach has been inspired by observations of the brain's
ability t o perform such complex tasks as vision, hearing, and motor control with
units (neurons) tha t are orders of magnitude slower (milliseconds) than the silicon
devices in today's digital computers. Conversely, some researchers hope tha t the
study of connectionist models will shed light on some of the workings of the human

brain. However, the inspiration for research more logically flows from neuro-science
towards connectionist theory, since current network models have a complexity fa r
less t han t h a t possessed by even elementary structures in the human brain. Many
people feel uncomfortable with the term "neural network" when describing these
models, preferring instead t o call them connectionist networks. Nonetheless, the
t e rm "neural network" persists in the field and in turn is applied throughout this
paper. However, i t is by no means implied t h a t these network models actually resem-
ble the brain in their workings, except a t a gross level. Te rms such as neuron, axon,
o r synapse are therefore avoided in describing the components of these network
models.

1.2. Neural Network Definition
Since the main purpose of this thesis is t o describe a n implementation of a

neural network emulator, a detailed description and analysis of the large variety of
neural network models and their algorithms is not given. I t is assumed t h a t the
reader already has a working knowledge of these models.'

This paper adopts a common definition of neural network models t h a t use a
distributed representation of their memory. This definition says t h a t such a model
consists of a network of computationally simple units t h a t interact with one another
by exchanging d a t a over weighted connections (links). A s tandard requirement is
t h a t the information exchanged between these units is minimal and non-symbolic.
T h e information in a network is distributed among the units (or connection nodes) in
the network, most notably in the weights associated with each unit's links. A net-
work "learns" by the application of a learning rule t h a t makes adjustments t o these
weights. In addition t o a learning function, each unit normally possesses a few sim-
ple functions, which might include a n activation function, a threshold function, or a n
error function.

1.3. CAP
There are a large number of network models and learning algorithms t h a t fit

this definition. Research of these models relies on simulations running on conven-
tional computers. Due t o the nature of the neural computat ional paradigm (distri-
buted s t a t e and "program"), serial computer architectures a re unsuited for express-
ing the full potential of neural networks. Neural network research needs hardware
t h a t matches the massively parallel characteristics of these networks.

Some neural network designs have been cas t in silicon. Researchers a t AT&T
Bell Labs have implemented, for instance, a Hopfield chip containing 512 nodes.
O the r chips have been produced for the areas of vision and speech processing
[Bro86a][Bro86b][MeM88]. These chips, however, a re limited in their practical appli-
cat ion due t o their small size and network-specific design. Few have faced the prob-
lems of large-scale implementation of neural networks in silicon. Scaling problems

' For the reader not familiar with neural networks an excellent introduction is provided by Rumelhart and
McClelland [RuG86].

are due mainly t o the high connectivity required between connection nodes in many
neural networks [BaH88]. A wafer-scale integrated (WSI) chip architecture,
specifically designed t o emulate a variety of connectionist designs, would provide an
engine t o explore the possibilities of neural networks. Such a n implementation is the
aim of the Cognitive Architecture Project (CAP) a t OGC.

Before designing such a n architecture, the CAP group must depend on neural
network simulation, using conventional computer technology, in order to discover
which of many neural network models are best suited t o our prototype applications.

(1. The group's approach t o the necessity of simulation is t o create in house" multi-
purpose software rather than individual network simulations. Ad hoc simulations
offer little a s a consistent measure of each model's effectiveness.

The CAP group is developing software for an integrated WSI neural network
architecture development system, including a high-level Network Description
Language (NDL), and three simulators. The Hierarchical Architecture Smula to r
(HAS) is aimed a t specifically modelling the group's proposed architectural features
for a silicon neural network emulator [Jag88]. ANNE (Another Neural Network
Emulator), is designed a s a general-purpose neural network emulator with a bias
towards networks with localized communications. The third simulator, Fltsim (Fault
Simulator), introduces stochastically determined faults into the network models run
by both HAS and ANNE [May88a][May88b]. Each simulator utilizes a n intermedi-
a t e network specification produced by NDL.

The CAP group has a bias toward networks t h a t exhibit high locality of com-
munications between connection nodes.2 However, our first applications use models
t h a t are non-localized, such as back-propagation [Hin87]. Such models are best han-
dled by techniques similar t o full matrix computation, whereas non-localized models
are efficiently simulated with sparse matrix techniques. Current neural network
hardware generally takes the full matrix approach, utilizing digitial signal processing
chips [Wor88]. These "neurocomputers" can be considered first generation hardware
solutions t o neural network simulation.

Our group is developing a second generation approach. Our prototype
hardware design is specialized for fast, virtual connection node processing. In gen-
eral, though, this design embodies full matrix techniques for network emulation.
Long-range plans call for the development of third and fourth generation neural
hardware t h a t more closely models biological neural networks, in particular cortex
[LyB86][HSA84][Lin88]. Sparse matrix techniques work well for such networks due t o
their lower, more localized, connectivity characteristics.

Due t o our bias toward localized networks, we have chosen t o represent net-
works a s collections of connection node objects, each with its local segment of an
entire network's connection matrix. This representation is the basis for our inter-
mediate network specifications and the internal network representations for HAS

Intuitively, high locality refers to networks whose connection nodes communicate almost exclusively with
neighboring or near-neighboring connection nodes. Networks in which connection nodes communicate mainly with
distant nodes exhibit low locality. For a formal definition of locality see [Ham86].

and ANNE. Thus, ANNE utilizes something akin t o sparse matrix techniques in its
t reatment of neural network connection matrices.

1.4. The Target Machine
The fine-grained parallelism inherent in neural networks, make ANNE and

HAS well-suited for implementation on a n MIMD computer. Furthermore, our net-
work representations influence the type of MIMD machine t o chose. The choice of
machines was between a loosely-coupled machine such as the iPSCm and a tightly-
coupled one such a s one of Sequent's Balancem or Symmetrym series3. The choice of
the iPSC a s the implementation vehicle was influenced by several factors, not the
least of which is its geographical proximity. The lat ter consideration aside, there
are issues of simulation scaleability, ease of use, machine cost, and future extensibil-
ity.

With Intel's and Sequent's machines the lat ter issue is moot. Both companies
continue t o design their computers t o be upward-compatible. Shared memory sys-
tems have the advantage in terms of ease of use, although this advantage will be
minimized with the advent of high speed concurrent 1 1 0 systems for distributed sys-
tems. Distributed systems have the advantage in cost per processor. The main issue,
of scaleability, depends on the amount of core memrory available, the inter-processor
communications medium, the expected locality of communications within the neural
networks being simulated, and the nature of the network representation.

In general, distributed memory systems are able t o provide more core memory
than shared memory systems. Furthermore, distributed memory implies increased
system memory bandwidth. This increased bandwidth is most often obtained over
multiple, serial channels, which are slower than the high bandwidth busses normally
found in shared memory systems. However, in a shared memory environment con-
nection updates would pass twice over a single bus. Moreover, neural network com-
putation is characterized by frequent memory references, which exhibit poor d a t a
reference locality. In such a situation, a shared memory system suffers from bus and
d a t a lock contention. This situation is aided little by high-speed caching [Wor88].

The performance of distributed memory systems also suffers if the memory
references in a neural network simulation must frequently cross processor boun-
daries. However, a good partitioning of highly localized networks over a distributed
memory machine minimizes inter-processor memory access. No such partitioning will
improve the performance of a shared memory system for localized networks. Thus, a
distributed memory machine is favored, which updates connections simultaneously
across a neural network with reduced message passing between processors. Although
not dealt with in this thesis, sequential and shared memory parallel versions of
ANNE are planned. They should make for interesting comparisons.

iPSC is a registered trademark of Intel Corporation. Balance and Symmetry are registered trademarks of
Sequent Computer Systems, Inc.

1.5. Overview
The objective of this research is the design and implementation of a general-

purpose neural network simulator, ANNE, a s par t of an extensive WSI development
system for neural networks. The following two chapters cover the design and imple-
mentation details of ANNE, including a look a t the user interface and a brief
description of the development cycle for ANNE's neural network simulations.
Chapter 4 presents the results of validation tests and their analysis. The final
chapter discusses future work including improvements and extensions t o ANNE as
well a s discussion of ANNE's most serious limitations and the direction a next gen-
eration simulator might take.

CHAPTER 2

Design Issues

ANNE offers the designer of experimental neural networks a virtual machine
on top of a distributed memory multiprocessor computer. ANNE provides a pre-
built framework for network loading and initialization, and pre-defined communica-
tion and synchronization facilities be tween connection nodes in a network. ANNE
also provides a debugging interface for observing and manipulating network d a t a
and network runtime parameters.

HAS simulates neural networks via a virtual architectural model. ANNE'S
purpose is t o shake out the major bugs in a neural network design before moving it
t o HAS for specialized performance testing. Both simulators must solve problems
concerning d a t a distribution in the iPSC nodes, updating this da ta , and synchroniz-
ing neural network nodes in an asynchronous environment. Both ANNE and HAS
have adopted similar approaches in their solutions t o these problems [BHJ88].

Each simulator uses its own version of one basic method of synchronization
between neural network nodes. This method allows the user t o alter the "tightness"
of synchronization between individual node processors. Thus, the user directly
affects the degree t o which individual hypercube nodes can operate independently
before explicit synchronization with one another. This synchronization method has
the potential for speeding up simulator performance.

2.1. Development Cycle for Neural Network Simulations
A brief description of how a particular neural network design is implemented

using the CAP development system is presented to illustrate the environment in
which ANNE operates. Seeing the "big picture" helps make later descriptions of
ANNE'S limitations and design assumptions more meaningful. The description t h a t
follows focuses on ANNE, but the steps taken using HAS are similar. A pictorial
view of this development cycle is shown in figure 2.1.

The development cycle for a neural network design in the CAP system
requires the following steps:

(1) A high-level description of the connectivity of a neural network is developed
using CAP'S network specification utility, NDL (pronounced "noodle")
[Joh88a] [Joh88b].

(2) NDL is compiled into an intermediate structural form known a s BIF (Beaver-
ton Intermediate ~ o r m) . ' BIF describes a network's s t a t e and connectivity.

' As part of the next chapter an overview is given of the objects represented in BIF. BIF's technical
specification is forthcoming in [Bah88].

NDL

PAD

ANNE no fault simulation

HAS ' MIF

Figure 2.1: Developnaent Cycle in CAP Simulation System

(3) Connection nodes described in a BIF file are augmented with physical proces-
sor numbers by a BIF mapping utility, Mapper [Bai88]. Mapper assigns con-
nection nodes t o physical processors. It uses a Physical Architecture Descrip-
tion (PAD) file in attempting near optimal connection node mappings for a
target machine (for ANNE and HAS, the iPSC).

(4) The mapped BIF (or MIF) is read by either ANNE or HAS t o construct a n
internal representation of the network. Fltsim uses MIF a s input t o produce
a Fault Description f i l e (FDF), which is referenced by Fltsim routines a t
simulation runtime.

In addition t o specifying the structural characteristics of the neural network
using NDL, the user writes two segments of code specifying the behavioral charac-
teristics of the network. One segment, known a s the network procedure, resides in
the iPSC nodes. This code describes one complete cycle of network operation, i.e., it
contains the network node and link functions and the "script" for interactions
between connection nodes. The second code segment, the convergence procedure,

resides in the iPSC host processor and determines, globally, if the user's network has
converged. This procedure is activated whenever the network sends external net-
work output t o the host. The user's host code might determine convergence, for
example, based on a comparision between a network's output vector and a pre-
determined target vector. The user code is independent of the particular
configuration of the iPSC chosen for mapping the BIF file. Once written, the user
need not change her network code t o suit different dimensions of the hypercube; she
need only re-map the original BIF file.

When ANNE is invoked, the user directs the simulator t o parse a BIF file.
After network building is complete the user specifies the input and output vector files
(and possibly a target vector file if supervised learning is t o take place), and certain
simulation parameters. When ANNE is running, the user's code guides the communi-
cations between connection nodes and sequences local network cycles a t each iPSC
processor. During a network simulation the user may suspend the network and
access fields in the network's structure. The user can also direct ANNE t o save the
current s t a t e of the network in a new file in BIF format.

2.2. Design Limitations
ANNE's current capabilities are, in part , bounded by two major limitations of

the iPSC hardware a t OGC. These limitations are memory space and the time t o
route and deliver messages between hypercube processor nodes. A third factor limit-
ing ANNE's performance is related t o the task of performing accurate, timed simula-
tions in a distributed, non-shared memory, processing environment. This last point
is especiaIly important, since even if the limitations of memory and message time
were relaxed there still remains the difficulty of distributed synchronization between
hypercube processors. A synchronization scheme t h a t sequentializes the interaction
between hypercube nodes t o any large degree defeats the purpose of implementing
the simulator as several parallel processes.

These three factors alone might seem t o preclude the use of the iPSC for
ANNE without a substantial performance penalty. The remainder of this section
discusses the first two limiting factors of memory space and message passing time. A
brief discussion concerning how ANNE synchronizes events (communication) between
connection nodes within neural networks is deferred t o the third section in this
chapter. Section 2.3 also presents the qualifying assumptions and adaptations made
in ANNE's design t o accomodate these limitations.

2.2.1. Memory
For a fixed percentage of interconnect in a given network, the number of con-

nections (or links) grows geometrically in proportion t o the number of connection
nodes (CNs). For neural networks represented in BIF, the number of links in the net-
work is a proportional approximation of the network's memory requirements. Due t o
the tendency of neural networks t o be memory-intensive, space t o store network
structures is a t a premium. Also, loading large networks into hypercube node (HN)
memory is a potential bottleneck in the initialization phase of simulations, since the
the HNs have no direct file I /O capabilities. The network structure must pass from
the host processor t o the HNs via a single message channel. (To avoid confusion

between nodes in a user's network and the nodes of the iPSC, connection nodes are
henceforth called CNs, while the hypercube nodes are referred t o a s HNs.)

Once the network structure is in place, there is another serious memory limi-
tation a t run time. Buffer space is necessary in which t o store the messages passed
between CNs. I t is possible during a single cycle of a network t o generate a C N mes-
sage (output) for every link in the network. The iPSC system pre-allocates buffer
space for H N messages. This space is partly utilized, by ANNE, a s a n input buffer.
Additional buffers are allocated, by ANNE, for sorting C N output messages prior t o
their placement into the HN buffers.

As the number of links grows, so does the demand on ANNE's and the HN's
buffers. Depending on the specific network configuration, and the communication
patterns between CNs tha t pass messages across H N boundaries, these demands
vary widely, even within a single network during the course of a single simulation.
Thus, the number of links in a network has a dual impact on the available space t o
store and simulate networks.

One aspect of the neural network computational strategy is advantageous in
terms of memory requirements. Due t o the relatively simple C N functions t h a t are
normally used, the space needed t o store user object code is minimal. This assump-
tion is true for the network models most likely t o be emulated by ANNE. These
models' object code consists of small functions shared by a large number of the CNs
in the network. This assumption goes hand in hand with the concept of distributed
representations of knowledge within neural networks [MRH86b].

2.2.2. Inter-processor Communication
The time t o generate and pass iPSC messages between HNs is the greatest

intrinsic limitation on ANNE's performance. The iPSC has inter-HN message
latency times of - 2 ms for a 1K buffer, the largest discrete d a t a unit passed
between HNs [Int85]. The latency period increases linearly up t o the maximum
buffer size of I ~ K B . ~ The time t o generate and deliver a single C N message by
ANNE is significantly less. Thus, the time required for message passing is often a n
upper bound on ANNE's overall performance.

For larger networks, efficient use of the message passing facilities of the iPSC
becomes more important. In the work described here, the solution sought t o compen-
sa te for H N message delays has been t o minimize the number of H N messages a s
much as possible. Communication is not considered t o be a severe constraint, since
ANNE is intended for the simulation of networks with highly localized communica-
tion patterns. Network communication requirements are discussed shortly.

Future hypercubes are improving this constraint. Intel Scientific's newest machine, the iPSCI2, has rnes
sage latency times that range from - 2 ms for a 1K buffer to - 7 ms for 16KE3. Moreover, HN messages are virtu-
ally unlimited in size INug881.

2.3. Design Assumptions
This section and its sub-sections cover fundamental assumptions about

ANNE's design. Three of these assumptions concern: (1) the size of the user's net-
works, (2) the networks' communications requirements, and (3) the expected behavior
of distributed neural networks. This third assumption is crucial t o ANNE's C N syn-
chronization scheme.

Finally, there is a n assumption about the programming skills of a n ANNE
user t h a t simplifies the interface between ANNE's communication and synchroniza-
tion facilities and the user's network code.

2.3.1. Network Size
Given the present configuration of OGC's hypercube (32 iAPX 286-based

nodes), i t was assumed t h a t ANNE have the ability t o simulate networks containing
a quarter of a million links. This number might translate, for instance, into a net-
work of one thousand CNs with a CN-to-CN interconnect density of 25% (meaning
t h a t every C N is connected on average t o one quarter of the other CNs in the net-
work). Throughout the design of ANNE a network of this configuration has been
considered the worst case. This size network is not overwhelming by present neuro-
computer standards, but i t is enough t o provide an adequate assessment of ANNE's
design before porting ANNE t o another computer with more memory resources, such
a s Intel's newest hypercube, the ~ P S C / ~ @ ~ .

Little more was done t o improve network storage space in ANNE than had
already gone into the design of BIF, the network connectivity specification parsed by
ANNE into internal d a t a structures. For specific networks BIF could be more
streamlined. The tradeoff in the BIF model is between a complex syntax allowing
"tight" specifications of individual networks, and a simpler, more general format.
The la t ter was chosen and this philosophy is carried through t o ANNE's network
representations.

Related t o the choice of a generalized BIF is the issue of the user's mental
model of network design. In part , BIF's structure (the available fields and the field
layout) is designed in a user-friendly and straightforward manner, since the user has
full access t o the network d a t a model. A more efficient encoding of BIF in ANNE
would be a t the expense of requiring an interface for the user between the BIF model
and ANNE's internal representation of tha t model.

2.3.2. Internal Network Communications
Concerns about network size aside, an assumption was made concerning the

overall communication requirements of neural networks. I t is assumed t h a t the
models ANNE simulates are homogeneous in their inter-HN communication patterns.
The homogeneity of the inter-HN communications for a given network simulation
depends on both the ability of the BIF mapping utility t o find a n optimal mapping of
the CNs onto the HNs, and the dynamics of the user's network a t runtime.

9iPSC/2 is a trademark of Intel Corporation

Furthermore, a network's locality strongly affects the amount of HN-to-HN commun-
ications required by a network. Locality is inversely related t o inter-HN communica-
tions requirements in tha t a connection node with high locality has less (if any) need
t o communicate with connection nodes on another physical processor.

Neither ANNE nor Mapper can be relied on t o make up for network
configurations t h a t have intrinsically lopsided inter-HN communications. For-
tunately, most network models do not exhibit such behavior. Moreover, the CAP
group's future interests lie mainly with high locality network models, so t h a t
ANNE's limited abilities t o simulate networks with poor locality are not of great
concern now.

The bottom line on overcoming performance limitations imposed by inter-HN
messages is t o reduce the number of these messages. The BIF mapper does this
indirectly t o some degree by trying t o eliminate, statically, extra-HN communication
a s much a s possible. ANNE's design at tempts t o reduce the number of HN-to-HN
messages directly by exploiting the fact t h a t C N messages need only carry minimal
information. Therefore, iPSC messages are capable of holding a number of these
smaller messages. Up t o 63 inter-CN messages are packed into a single 1K byte
iPSC message. Another way t o minimize message traffic between HNs is t o use mul-
tiple copies of all C N structures [Pla87]. This technique requires more memory, and
a great deal of complexity t o maintain coherency between C N copies. Such a
scheme also makes the CN-to-HN mapping task more difficult. This scheme is not
used here, but is discussed in the final chapter under future work.

Network models based on a localized representation of knowledge in the indi-
vidual CNs could be simulated by ANNE a s long as such a model conformed t o the
need for balanced communications between physical processors. However, these
types of network models often require the exchange of symbolic information between
CNs, and thus might find ANNE'S built-in premise of non-symbolic C N messages
cumbersome. Such models would suffer in performance, and be implemented more
efficiently a s stand-alone programs.

2.3.3. Simulation Accuracy

The architecture of the hypercube is best suited for problems consisting of
independent processes for each node, or interdependent processes requiring a
minimum of inter-HN communication. A distributed simulation of neural networks is
likely t o have inter-HN communication, despite the assumptions discussed in the pre-
vious section, thus requiring HN synchronization. I t is costly t o tightly synchronize
HNs in order t o produce a completely accurate simulation.

An accurate simulation is defined here as a simulation t h a t produces results
identical with those t h a t could be obtained using a sequential process. Other
researchers have proposed solutions to the problem of producing accurate simula-
tions in the context of a distributed, non-shared memory system. Why those solutions
were found unsuitable are covered in more detail shortly.

A less stringent method for synchronization between the CNs in ANNE takes
advantage of the demonstrated robustness of most neural network models. The per-
formance of these models degrades gracefully in the face of incomplete or noisy

inputs, missing links, or faulty CNs. This advantage means t h a t the simulations can
tolerate a degree of error in the strict sequencing of events and still produce a valid
simulation. T h a t is, the results of the simulation are valid if the network produces
answers within some error value of the answers produced by an accurate simulation
and t h a t these answers are reproducible, compared again t o the accurate results f
the same error value. The error value is determined by the user.

ANNE's lenient view towards the accuracy of i ts simulations permits greater
asynchrony between network CNs and consequently the HNs. This higher degree of
asynchronous operation averages out differences between the time taken by HNs t o
process their local network cycles, and leads t o a simpler design of the entire syn-
chronization scheme.

Given the three assumptions just outlined, i t can be seen t h a t the limitations
of the 286 hypercube are not overwhelming. The issues discussed so far are less
significant when considering a port of ANNE t o Intel's iPSC/2, which has more
memory and improved message passing capabilities. In the meantime, small net-
works, such as t h a t used t o demonstrate NetTalk [SeR], are adequate for yielding
useful results.

2.3.4. User's Knowledge of Network Structures
An ANNE user has full read and write access t o all d a t a fields represented in

any BIF network specification. BIF's design assumes users are familiar with neural
network models in terms of CNs and links. This familiarity leads t o a natural
understanding of BIF, and consequently the structure of ANNE's networks. Further-
more, i t is assumed t h a t the user has enough programming experience, not neces-
sarily in 'C', t o be undaunted by complex access paths t o network data . D a t a access
is assisted through numerous macros tha t provide short-hand specification of indivi-
dual d a t a fields. Full access t o ANNE's network representation minimizes the user
interface t o this d a t a and provides the user maximum flexibility in network manipu-
lation.

The user is able t o approach a network algorithm's design in a top-down
fashion aided by several ANNE system calls provided specifically for use in the net-
work code. An earlier design alternative was t o have the user write routines t h a t
were applied t o single CNs. Each C N was t o have a set of functions bound t o it and
these would be called in order. This method leads the user t o tackle the network
algorithm bottom-up, C N by CN. Instead, ANNE's model encourages the user t o t o
write network routines tha t apply t o groups of one or more CNs. An example of a
user's network algorithm is presented in the chapter on ANNE's implementation.

2.4. Timing and Synchronization Techniques
Two alternatives for the design of ANNE's timing and synchronization

methods were considered. Both methods are used for event-driven, distributed simu-
lations. The first, by Jayadev Misra (Mis861, does without a shared global clock or
shared event list. Instead, simulation time is kept by timestamping messages used t o
communicate between simulation objects and by following a certain messsage
exchange protocol. The second method, Time Warp [JeS82], also uses timestamped

messages and, in addition, features a method of rolling back the simulation when
out-of-order messages are encountered. The implementation of both methods
depends on sophisticated distibuted synchronization techniques.

2.4.1. Misra's Algorithm
In Misra's approach, each object being simulated has a separate input mes-

sage queue for each object from which i t receives messages. Within each input queue
messages are ordered by their timestamps. The message a t the head of the queue
carries the most recent time. T o ensure t h a t messages from all objects are processed
in timed order, Misra's algorithm requires tha t all objects produce some message a t
each tick of an object's local clock. If an object is not scheduled t o produce any
message a t a particular time step, it must produce a null message, which requires no
action, but carries t h a t object's current clock value.

The production of null messages serves two purposes. First, i t allows the
receiving object t o determine which sending object has produced the most current
event. Second, i t avoids deadlocks of the "deadly embrace" type in which two or
more simulation objects are waiting on each other t o produce output, but each must
receive input from the others.

2.4.2. Time Warp
Jefferson and Sowizral's method for distributed synchronization, Time Warp,

differs from Misra's in tha t objects are restricted t o a single input queue into which
timestamped messages are deposited without time-ordering them. Also, unlike
Misra's method, an object can block on a n empty input queue.

Time Warp uses a rollback of events t o restore correctness of a simulation
should a message appear out-of-order in a n object's input queue. Rollback requires
both the saving of past s t a t e for objects and the issuance of anti-messages to cancel
the effects of out-of-order messages. Anti-messages may in turn require the rollback
of other objects' s ta tes and so on. The authors contend t h a t the time saved in pro-
cessing incoming events without the overhead of ordering these events offsets the
cost of this rollback procedure. This method relies on the hope t h a t a simulation is
more or less well-behaved and t h a t the ordering of messages is of high precision a s a
simulation progresses. Thus, Time Warp is sensitive t o the probabilities of receiving
out-of-order messages, making its performance application dependent.

2.4.3. Why not Misra?
If each CN's output is considered t o be a n event it is easy t o see t h a t a large

number of messages are generated, in a network where the CNs have a large fan-out.
For the worst-case network, if all the CNs fired simultaneously, 250,000 messages are
created throughout the system. These messages almost fill the available HN mes-
sage buffer space over the iPSC.

Assume t h a t some CNs delay firing so t h a t 50% fire a t each s tep in a simula-
tion. This is not an uncommon situtation in many neural network designs. Misra's
algorithm still requires t h a t a quarter of a million messages be generated, though
half of them are null. If a uniform dispersal of these messages is assumed throughout

a 5 dimensional configuration of the iPSC (32 processors), these extra 125,000 mes-
sages take roughly a n extra 100 milliseconds t o pass through the cube's communica-
tion channels per simulation cycle. This calculation does not take into account
channel contention nor the processing time for each message upon i t s arrival. This
additional time is more significant if the messages are queued a t the input and
ordered by timestamp a s Misra's algorithm requires.

Not only are twice a s many messages generated a t each simulation s tep using
Misra's algorithm, but, if a good mapping of the network over the iPSC has been
obtained, the CNs most likely t o communicate non-essential information (null mes-
sages) are furthest away. In other words, CNs are waiting the longest time for
meaningless messages for the sake of strictly ordering all events in the network. In a
hypercube of dimension 5, a particular HN's nearest 16 neighbors (including itself)
are a n average of about 1.7 cube links from each other, whereas the furthest 16 HNs
are twice this distance. Few neural networks would map t o the hypercube network
so a s t o require CNs t o communicate heavily with their nearest neighbors and still
have links with the furthest, but this is essentially the effect of Misra's algorithm a s
i t applies t o neural network simulation.

The semantics of a null message, by Misra's definition, are not clear when
applied t o the high connectivity and parallellism of most neural nets. Misra's
approach is designed for situations in which only a single message among a n object's
input queues is used t o initiate events in t h a t object. The messages arriving a t a C N
are usually coincident and interdependent. They are not events t o be chosen indivi-
dually and processed one a t a time. Often they are summed, or operated on a s a
whole in some other way, t o provide input for the entire CN. In this context, single
messages do not have a great deal of importance, so the sending of null messages is
not cost-effective, especially if there are a large number of them.

2.4.4. ... and Time Warp?
Time Warp seems t o offer a more reasonable model for neural network simu-

lations with i ts single input queues and absence of null messages. Despite i ts prom-
ise, a large number of coincident messages pose a n even greater problem than in
Misra's technique. The authors claim tha t coincident messages can be handled,
though they do not describe exactly how. I t is assumed t h a t the coincident messages
are used in their spatial order, which seems simple enough. But i t is difficult t o see
how Time Warp might efficiently handle the occurrence of a single out-of-order mes-
sage in a queue of several messages having an earlier time. The number of regen-
erated messages and anti-messages t h a t would be required in the case of the rollback
of even portions of a neural network is formidable.

Time Warp could be adapted for our purposes by defining "out-of-order" t o
mean for a message what it means in ANNE (allowing messages t o fall within a time
range). Aside from this, however, the requirements of saving past s t a t e and m e s
sages is untenable in a system in which the knowledge of the network is held in hun-
dreds of thousands of links, not just the s t a t e of relatively few CNs. Even saving a
single past s ta te , which Jefferson and Sowizral say is least efficient, because it
requires more anti-messages t o be sent a t rollback, requires almost a s much storage
a s the original network structure.

2.4.5. Message-driven Synchronization
Both Misra's technique and Time Warp are designed for general-purpose

large-grain simulations. These algorithms must be concerned with the str ict require-
ments of an accurate, event-driven simulation. Both methods require substantial run-
time overhead t o generate and manage the events in neural network simulation with
potentially thousands of messages a t each clock cycle. This overhead is costly in
terms of both memory space and processor time. For neural network simulation this
extra overhead is not cost-effective. The large number of coincident messages (mes-
sages with the same timestamp and destination) also raises concerns about the wor-
kability of either algorithm. Furthermore, Misra's algorithm and Time Warp appear
t o require algorithms and d a t a structures too complex t o implement in a reasonable
amount of time.

ANNE utilizes a timing and sychronization scheme t h a t is essentially
message-driven, though a t a higher level i t is also clock-driven. This scheme is
tailored for localized, fault-tolerant networks. I t is not offered a s a general-purpose
simulation technique. Our scheme yields minimal message overhead, faster simula-
tions than possible with the alternative methods just described, and no possibility of
deadlock. This technique lets the user tune synchronization parameters t o suit the
particular network a t hand. I t does all this through simple methods requiring little
extra overhead in terms of time or memory.

ANNE pays for i ts lack of complexity in i ts synchronization scheme by not
always being able t o emulate networks in a completely correct manner, but compen-
sates for this by allowing the user, with a little experimentation, t o tune the simula-
tions t o her satisfaction for accuracy and performance.

The basic premise t h a t makes this method possible is t h a t CNs are able t o
produce output even if new inputs have not arrived or have arrived out of order.
From the beginning of the simulation until the end there is an input value available
a t each CN's input links, whether it is a previously used value or a new one. This
condition removes the possibility of deadlock among the CNs, since no C N ever
blocks indefinitely, waiting for input messages from another CN. Thus, it is no
longer necessary t o consider sending null messages, since a C N continues t o operate
without checking for the earliest message along i ts links.

Under this synchronization scheme, simulations are run using two closely cou-
pled clocks, one global clock in the host processor, and a local clock t h a t is repli-
cated in each HN. One clock step equals one cycle of the network being simulated.
At the host level the clock value refers t o the global s t a t e of the network, whereas
the value of an H N clock refers t o the s t a t e of i ts local portion of the network.
These two clocks use the same metric, but are incremented in different ways.

All H N clocks are set a t a global synchronization point; when H N clocks syn-
chronize with the host clock. The time between global synchronization points is the
synchronization interval. The host clock is incremented by the value of the synchron-
ization interval. H N clocks are incremented by one for each cycle of their local por-
tion of the network. Between global synchronization points each H N is free to run
on i ts local clock without regard t o the local time on other HNs. Global synchroniza-
tion points are determined by the user. See figure 2.2.

clock

-
Increment local clocks by 1, up to synch-point

Figure 2.2: ANNE'S simulation clocking model

From cycle t o cycle HNs may differ in the speed a t which they complete their
local simulation cycles. This speed variance is H N clock drift. Assuming Mapper
has done i ts job, the amount of drift should be minimal. Varying the time between
global synchronization points varies the average clock drift among processors. In
general, longer times between global synchronization points diminish the effect of
clock drift. The user can collect statistics t o get a feel for the amount of clock drift
for a particular network and set of simulation parameters.

The user's control over the number of local clock cycles t h a t HNs complete
between global synchronization points is advantageous during the learning phase of
many network models. Often during learning, network input vectors are clamped for
many (thousands) of network cycles before the network converges [HSA84]. The user
can vary the HN clock drift based on observations of the convergence behavior.

Messages sent between CNs are timestamped with their HN's clock value.
The use of timestamps in ordering messages a t a receiving CN is not absolute.
Instead, for arriving C N messages a timestamp window is defined t h a t "slides" along
with the H N clock as shown in figure 2.3. This window determines the "alignment" of
an arriving input message. If the message does not fit in the window, the C N uses
the old value on t h a t link, and the current message is discarded.

In each H N process, message generation and message reception are inter-
leaved, in order t o avoid H N message buffer overflow and t o balance communications

nowheresville

i simulation i \< \. time
i \

incoming msgs

Figure 2.3: Conceptual model of the timestamp window used in ANNE

among HNs. After generating all the output messages for a single C N during one
clock cycle, the HN process enters a message reception interval. The length of this
interval is called the message probe timeout. If any incoming messages are detected
during the message reception interval, the timeout is reset and those messages t h a t
have arrived are processed. Afterwards, continued message reception is driven by
the arrival of more messages, otherwise the message reception interval expires, and
new C N outputs are generated. This message-driven behavior tends t o make the
entire network self-synchronizing a t the H N level. This synchronization technique is
described in more detail in Chapter 3.

2.5. Software Architecture
Before going into the details of ANNE'S implementation, a brief outline of i ts

organization is presented. ANNE has three major functional components. These are
the user interface, the network builder, and the network runtime system or network
control. Only the user interface resides solely in the host of the iPSC, while the
la t ter two components each have one sub-component in the host and in the HNs.
The user interface interacts with both the network builder and network control,
though only minimally with the builder. How these three components fit together is

initialization

Figure 2.4: Simulator components

runtime

displayed in figure 2.4.
The network builder's (both host and node components) task is straightfor-

ward. This pa r t of ANNE has a s input the BIF description of the network t o be
simulated. An auxiliary utility, outside of ANNE, post-processes the original BIF file
into multiple subfiles t o be distributed t o the HNs. These subfiles are parsed in
parallel by the HNs into the internal d a t a structures representing the user's net-
work. The network budder also constructs auxiliary d a t a structures used a t network
runtime.

After the network structure is loaded into the HNs, the simulator enters i ts
runtime mode when the network control component of ANNE takes over. I t s sub-

components in the host and the HNs work together t o run the network and provide
the user with access t o the network structure. These sub-parts constitute the nuts
and bolts of the network runtime system.

At the host level, network control is responsible for global synchronization of
the HNs and global network 1 / 0 operations. I t is the go-between for the user inter-
face and network control in the HNs, functioning synchronously with each in turn.
At runtime, network control delivers t o the network an input vector and possibly a
target vector. An output vector, representing the network's global results, is col-
lected by the host in segments from each HN and passed t o the user's convergence
procedure. When the network is suspended (after network initialization, or a t a
breakpoint), network control in the host passes t o the HNs requests to read network
d a t a and assign d a t a t o network fields. I t also delivers new simulation parameters,
including a new clock value.

In the HNs, network control, in addition t o interacting with the host, runs the
network according t o the user's network procedure. This procedure guides inter-CN
communications and performs local network computations.

The main tasks of the user interface are providing control over simulation
parameters, accessing network da ta , and displaying these d a t a and simulation state.
Besides the three simulation parameters mentioned earlier, the user has control over
the inter-HN message packet size and simulation breakpoints. The user interface
allows multiple runs with a single network loading, and the specification of new input
and output vector files.

The following chapter discusses how ANNE'S functional components have been
implemented, including the ANNE system calls available t o the user t o write the
network procedure. I t also introduces the simulator's command set.

CHAPTER 3

Implementat ion

First in this chapter, a brief description of BIF is given t o assist in under-
standing ANNE's internal d a t a structures and algorithms, which are described later.
Then there is a detailed discussion of ANNE's two major modes of operation: 1) t h a t
of constructing the network and auxiliary d a t a structures, and 2) executing the con-
structed neural network model. Access t o and control over both modes, via the user
interface, is also covered.

3.1. Beaverton Intermediate Form
The inspiration for BIF's original format grew from the network representa-

tion used for the ISCON simulator developed a t University of Rochester
[SSB83][Fan86]. BIF has since evolved through several revisions a s the CAP group
has customized i t t o fit their needs.

3.1.1. Objects in BIF
A BIF file represents the connectivity specification of a neural network. This

file contains the "raw" structure of the user's network in terms of three basic objects:
CNs, sites, and links. Functions associated with each of these objects are not
specified within the BIF file. The association of CNs (or groups of CNs) with partic-
ular functions occurs within the user's network procedure by direct manipulation of
the network d a t a structures t h a t are derived from the BIF specification.

A BIF file has two parts. The first contains a listing of the CNgroups, each of
which consists of a unique group index, a string name, and two initialization values
for CNs belonging t o the group. Each C N carries an index corresponding t o the
group t o which the C N belongs. The group name allows the user t o address groups
of CNs symbolically. At present there are only two initialization fields in the CN
group specifications, vestiges from early BIF versions. These fields can be used t o re-
initialize the state and potential fields in CNs. Re-initialization fields such as these
are used for a "reset" of the network a t runtime. The second par t of a BIF file con-
sists of individual C N records. These records are composed of a hierarchy of CNs,
sites, and links. Sites nest within CNs, and links nest within sites (see figure 3.1).
Input or output sites are not listed in any particular order.

Essentially, a C N contains s t a t e information t h a t is global t o itself and i ts
sub-parts. Some of this information is directly related t o the characteristics of the
network model, such a s a CN's output, potential, error, etc. Other fields are per-
tinent t o a simulator's internal d a t a structures. These include fields indicating on
which physical processor a C N resides, and t o which group of CNs a C N belongs.

The primary function of a site is t o group the links entering into or emanating
from a CN. Sites are specified in BIF as being either input or output, although this

Figure 8.1: Conceptual structure of a C N and its sub-components.

designation is ignored in ANNE, where sites are bidirectional. In a typical case for
a n input site (or bidirectional site being used for input) a site's link values are
summed together and the resulting intermediate value is used in internal C N calcu-
lations. An output site may be used t o broadcast the CN's output value (if any)
along the links at tached t o the output site.

In BIF, each link specification within a single site is the specification of one of
two ends of a single connection between two CNs. Each end contains the address
(index) of the CN, site, and link t o which i t connects a t i ts other end. All links have
a weight t h a t can be used t o modify values passing along the link. In other words, a t
each of two CNs, which are connected t o one another, there is complementary
address information and identical weight information in their links. This bidirec-
tional nature of the links greatly facilitates the specification of networks such as
back-propagation and Hopfield. I t is also utilized during weight updates to keep
weights consistent a t both ends of a link. The weights are sent a s messages along
the link in this update technique.

3.1.2. BIF S y n t a x
Six reserved words plus four bit flags are used t o facilitate BIF parsing. There

is one bit vector per CN, site, and link. Three reserved words are used t o delimit the
beginning and end of the C N groups par t and each group within this par t (sgbk,
e g b k , and egrp) . In a similar manner, the other three reserved words mark the
s t a r t and end of the C N record section (scbk, ecbk) with a word t o end each C N
(endc). In each site and link specification there is a bit t h a t tells the parser when it
is reading the last site or link in the current sub-block. Two additional bits indicate
which of certain optional fields are present in C N and link records.

The use of a small number of reserved words and a few bits t o aid parsing is
due t o a desire t o keep the parsers simple (and quick), and in the interests of com-
pact files. Moderately large networks could easily require BIF files of several mega-
bytes. I t may seem contradictory tha t BIF files in current use are ascii. Early BIF
files were binary, but have since been made human readable, while the group is
engaged in developing the simulation environment. Given our current BIF, these
files, and the parsers, can easily be moved t o a binary format later.

3.2. Building t h e N e t w o r k

Constructing the network d a t a structures takes three basic steps. The first is
the loading of the BIF network specification into the HNs. Next, the HNs parse the
BIF specification into local network d a t a structures t o hold the CNs, their sites and
links. Finally, auxiliary d a t a structures are built in both the host and HNs t o aid in
executing the network procedure.

3.2.1. Loading a n d P a r s i n g BIF
Reading a BIF specification was originally done exclusively in the host. The

ascii d a t a was converted to binary and shipped one CN a t a time t o the HNs. Load-
ing networks of 11 2,000 links was noticeably slow with this method and i t was easy
t o extrapolate t h a t the load time for large networks would be hours. A scheme of
parallel parsing was devised t h a t improved the network loading time on average by
a factor of 10.

In this scheme, a n auxiliary utility splits a n already mapped BIF file into as
many subfiles, plus one, a s there are HNs t o be utilized. Each subfile holds the C N
records t o reside on a particular HN. In other words, the C N blocks are sorted into
separate files according t o their procid fields, which contain the HN processor
number given t o the C N by Mapper. Each subfile is designated by the name of the
original BIF file appended with an HN number. One additional file carries the C N
group information augmented by the C N indices belonging t o each group and a table
showing t o which HN each CN is assigned. This lat ter information eliminates an
additional scan of the BIF file by the host process a t BIF load time.

The host sends each BIF subfile t o the HN corresponding t o the subfile's name
suffix. The HNs use the same parsing mechanism a s used in the old host parser,
adapted t o read from a buffer instead of a file. An entire subfile can be dumped into
each H N despite the 16K byte limit for HN messages. HN message buffering is done
automatically by the operating system into a large (loOK+ bytes) space. This buffer

space can be increased t o approximately 200K bytes when loading the HN portion of
ANNE'S object code. No buffer management currently exists for BIF subfiles larger
than 200K bytes, but the amount of space now available is adequate for the test net-
works used in this thesis.

3.2.2. Network Data Structures
As each HN reads i ts BIF subfile, it builds i ts local portion of the neural net-

work one C N a t a time. An entire CN with sites and links is placed into a tem-
porary list structure before allocating contiguous arrays t o hold the CN's sub-parts.
First t o be read are a CN's "global" fields. These are assigned t o the fields of a sin-
gle structure. In addition t o these CN fields, there is a field for the number of total
sites belonging t o this CN and a pointer t o the CN's site list. As each site is encoun-
tered in the C N specification, a site structure is allocated t o hold the site fields read
in from the BIF file. This structure also contains a field for the number of links
belonging t o the site, a pointer t o the next site structure, if any, and a pointer t o the

Figure 8.2: Structure o j a single C N after parsing i t s
BIF spec i j ca t ion and before assigning i t to the local C N table.

site's links list. Each link is then read in and a linked list of links constructed for
the site. Once a n entire C N structure has been constructed (see figure 3.2), site and
link arrays of the correct size are allocated and the structures in the site and link
lists are transferred t o these arrays. The original list structure is then deallocated.

The final C N structure, site, and link arrays are entered into a local table, a s
seen in figure 3.3. The C N table a t each H N is pre-allocated t o fixed length. Local
C N records are placed in the table according t o their unique index in the network.
This scheme eliminates one level of indirection in accessing the C N fields a t the cost
of some wasted space for non-local C N table entries. Site and link structures were
also placed into arrays t o reduce the time in accessing their fields.

CN HN Sites CN struct

links

non-local cn's

Figure 3.3: Example of Local CN Table
in an HN, showing CN 0 mapped to HN 5

The first entry in a C N table indicates on which HN a C N resides in the sys-
tem. There is a n entry for each C N in the entire network. These entries make up a
map used t o direct C N output t o the appropriate HN. The next entry for a C N is a
pointer t o the list of sites for tha t CN. Through this pointer and a site's links
pointer, ANNE gains access to the link fields. Last, but not least, the final CN table
entry is a pointer t o the C N structure. For a non-local C N table entry, the site and
C N pointers a re null.

As an example of how a link's weight field would be accessed, ANNE uses the
index of the C N t o which a link is at tached t o gain access t o the proper C N table
entry. Then the site index of the link is used t o select the correct link array:
C N t b l [a] .sites [j] . l i n k s [k] . w e i g h t , in 'C' vernacular. There is no need t o
search for the correct link structure, it is addressed directly. It takes several index
computations to reach the links array, but thereafter all the links can be accessed
quickly, for instance when updating all of a CN's weights.

At this point a n estimate can be made of the size of a C N table. This esti-
mate assumes a roughly even distribution of 1,000 CNs over the hypercube, so t h a t
there are about 33 CNs per HN. The distribution will vary depending on the net-
work and how the BIF file was partitioned by Mapper. Pointers are four bytes in
length. HN fields are 1 byte. There are 1,000 table entries, though 967 of these are
non-local entries. Thus, a t this point the table has consumed 1,000 bytes of H N
numbers plus 8,000 bytes of table pointers.

Each C N structure present in the table consumes a minimum of 24 bytes.
Depending on field alignment, slightly more bytes are used. With padding, each C N
might require, roughly, 30 bytes. Again, a s in the worst-case network proposed in
the previous chapter, this hypothetical network has an interconnection density of
25%. However, there are twice this many link terminations, since link specifications
a re shared between CNs, giving a total of 500 link structures for each CN. Each
link structure consumes 14 bytes, and with padding about 16 bytes. I t is assumed
there are 2 sites per CN, used for input and output, and t h a t these take a total of 12
bytes per CN.

There are 999 bytes of C N global information, 360 bytes of sites, and 264,000
(8000 x 33) bytes of link information a t each HN, for a subtotal of 265,359 bytes of
useful information. In addition there are 9,000 bytes in H N indices and null table
entries. In to ta l then, the table requires roughly 274K bytes.

Note t h a t despite the large number of empty table entries (97%), they only
comprise 3% of the total space occupied in this example. The reduced indirection in
accessing the fields in a local entry easily offsets this small cost. The other major
consumer of memory is the HN object code (ANNE plus the user's network pro-
cedure), but this code takes less than 40K bytes. With 391K of usable memory space
in each H N (not counting message buffer space) there is adequate memory space.
There is even room t o expand the iPSC message buffer space if needed.

3.3. Network Emulation
ANNE'S "network engine" is a runtime framework for the user's network code.

This framework includes routines t o set the simulation time clocks, and t o

synchronize HNs and CNs. I t also includes system calls t o effect CN-to-CN commun-
ications and produce global network output.

3.3.1. User Network Procedure
A network's structure is specified in a BIF file through use of the NDL com-

piler. The user specifies network operation by writing two 'C' procedures t o be
loaded with ANNE's object code. The first of these is the user's network procedure.
This code is loaded with ANNE's H N image. The second program is the convergence
procedure, which ANNE's host code accesses when determining global network con-
vergence. The convergence procedure is called a t global synchronization points,
when the HNs send output results from their local sub-networks t o the host. This
procedure has access t o the network's global output vector and possibly a target vec-
tor (the desired output vector).

The network procedure has two parts. The first is a n initialization procedure
t h a t ANNE calls once during a single simulation run. This procedure, Init,userJx(),
allows the user t o set up local variables or structures t h a t are used during subse-
quent operation of the network. The second par t of the network procedure is a func-
tion UserJx(). I t describes a single complete cycle of the user's network. This pro-
cedure is the script for ANNE t o follow in delivering input t o the network, propagat-
ing t h a t input through the network, and finally producing the network's global out-
put. T o aid in writing the network procedure, ANNE supplies procedural calls t o
effect communication between network connection nodes a s well a s external network
110.

The user must implement the network procedure using a "go-to" paradigm. In
other words, t o effect communications between CNs, or from CNs t o the host, the
user's code makes calls t o send C N output, but no system calls are provided t h a t
explicitly handle functions for either local CN or global network input. Input opera-
tions are handled internally by ANNE, transparent t o the user. The user must t rea t
C N message reception as being immediate.

In actual practice ANNE does not guarantee t h a t the input values for any
C N are the "latest" values, but does guarantee tha t some value exists a t every input
link. Depending on the particular simulation, this practice might exhibit differences
in actual C N output values for different runs with the same input da ta . How these
differences effect the validity of the simulation is dependent on the fault-tolerance of
the network and the application.

3.3.2. ANNE System Calls
ANNE provides a small number of system calls for the user's network pro-

cedure. One set of calls are necessary t o access ANNE's C N communication
mechanisms, and t o perform link weight updates, possibly across HN boundaries.
Another set of system calls are used a t the convenience of the user. Included in this
la t ter set a re standard site functions and 'C' macros t o simplify access to network
d a t a structures.

Many of the system calls in the first set of procedures address entire groups of
CNs by their C N group name. Therefore, there is a procedure for returning a list of

void Init-user-fx () {
/* get the different CN groups */
cns-in = Get-cnlist("input");
cns-hid = Get-cnlist("hiddenW);
cns-out = Get-cnlist("output");

3
void User-fx () (

int cnx :

/* get global input, pass to next layer */
input-site-fx () :
Send-group-output("inputV ,TOP) ;

/* sum weighted inputs at hidden layer */
other-site-fx (cns-hid, BOTTOM) :
/* pass input through "squashing" func. */
squash (cns-hid, BOTTOM) :
/* pass squashed value to output site */
assign~to~outsite(cns~hid,TOP):

/ * send this output to next layer */
Send-group-output("hiddenM ,TOP);

/* sum weighted inputs at output layer, */
/ * continue as for hidden layer * /
other-site-fx (cns-out, BOTTOM) :
squash (cns-out , BOTTOM) :
assign~to~outsite(cns~out,TOP):

/* send output layer's output to host */
Send-net-output() ;

1
Figure 5.4: Portion of a user's network procedure for a feed-forward network with three layers.
Procedure calls beginning with an upper-case letter and in this font are ANNE system calls,
those in lower-case are written by the user.

C N indices when passed a CN group's name. This call is useful for individual opera-
tions on CNs within a single group. Calls tha t operate on groups of CNs are
designed t o encourage the user t o make a functional partitioning of the network pro-
cedure according t o the C N groups listed in the network's BIF specification.

Here is a partial listing of the ANNE system calls provided for the user's
UserJx() procedure. Figure 3.4 shows a simple example of such a procedure.

Send~node~output(cn~index,site~index):
Sends the output from a single C N along all the output links belonging to the
named site.

Send~group~output(group~name,site~index):
Performs the same operation a s Send-node-output () for a named group of
CNs.

Send-net-output(fi1ename):
Used specifically for global network output t o the host process. The output vector
is written by the host t o the named file.

Update-node-weights(cn-index,site-index);
If the user has set the link weights on a particular node and the link is used
bidirectionally the user makes this call t o transmit the new weights to the other
end of the links. The C N and site indices in the parameter list name the group of
links t h a t transmit their weights.

Update~group~weights(group~name,site~index);
Performs the same function as Update-node-weights () for the named group
of CNs.

cnlist * Get-cnlist(group-name);
Returns a structure t h a t holds both a list of the local C N indices belonging t o the
group name and the number of CNs in the list.

From within the network procedure the user has full access t o C N structures,
including sites and links. Addressing these structures in 'C' closely follows BIF struc-
tures. The user may perform any operation on the d a t a t h a t she wishes, though the
user must match fields' d a t a types and take care not t o corrupt local d a t a struc-
tures.

3.3.3. Timing, Synchronization, and Checkpointing
There are two simulation clocks and two levels of synchronization during a

simulation. CNs synchronize t o a local clock on each HN and the HNs synchronize
t o the global clock of the host. At a global synchronization point the two clocks
have equal values. This occurrence is known a s a synch-point.

A "run" is the presentation of a set of input vectors from a single input file.
Before and during a single network run the user may manipulate several parameters
governing a simulation's behavior. These parameters are included in a single struc-
ture t h a t is passed between the host and the HNs a t synch-points. This structure is
presented in figure 3.5, and its fields discussed shortly.

3.3.3.1. Local Synchronization
Whenever a new input vector is presented t o a network the global and local

clocks are set to zero. Both the host and HNs are a t their first synch-point. The

struct cycle-params {
short global-clock, / * host clock value * /
local-clock, / * HN clock value * /
msg-window, / * CN message window * /
synch-count, / * # of HN clocks to run * /
synch-point, / * next global synch point * /
checkpoint, / * next suspension point * /
mintime, / * oldest msg to accept * /
maxt ime , / * newest msg to accept * /
maxmsgnum, / * # msgs per iPSC message * /
timeout: /* # probes for input msgs * /
char outfile[NAMELEN]:/* net output file name * /

>:
Figure 3.5: Cycle-pararns structure containing simulation parameters.

next synch-point is determined by the simulation parameter synch-count.
Synch-count is equivalent t o the synchronization interval. Once a network is
activated, each H N simulates its portion of the network asynchronously for
synch-point cycles, incrementing i ts local clock value by one after each call t o the
user's network procedure. The host clock is incremented by synch-count, thus being
preset t o the next global synchronization point.

Messages passed between CNs carry the time of their HN clock. When a C N
receives a message from another CN, the receiving C N compares the message's
timestamp t o its own HN clock. The difference (if any) between the received
message's timestamp and the local time is the "alignment" of the message. How this
alignment is intrepreted depends on another user-settable parameter, msg-window.
Msg-window tells CNs what message timestamps are acceptable. If the absolute
alignment of an incoming message is greater than msg-window the message is dis-

carded.' Otherwise, the value passed in the message is stored in the destination link.
In the structure cycle-params, mintime and maxtime define the boundaries of the
message window derived from msg-window. C N messages bound for a CN residing
on the same H N are the exception t o the method of C N communication just
described. These messages bypass this mechanism and are delivered directly t o the
local CN.

' One variation would be to only apply mag-window to messages in the "past", and to buffer "Tuture" me5
sages.

C N message generation and reception alternate within a n H N during network
simulation. Timeout determines the number of calls made t o the iPSC system call
probe(), which is used by ANNE t o detect new incoming C N messages. After each
call t o probe(), timeout is decremented. Upon the detection of C N input, a message is
processed, timeout is restored t o i ts original value, and message reception continues.
If no messages are received, the HN returns t o the message generation interval.

3.3.3.2. Global Synchronization
At a synch-point, final probe is made for C N input messages. CNs in each H N

continue t o process incoming messages t h a t are within msg-window of their local
clock, but cannot produce additional CN-to-CN outputs. HNs signal the host upon
reaching a global synchronization point by sending their portion of the global net-
work output. The global network output received from a network is sorted by C N
index by the host. The user's convergence procedure uses this output t o determine if
the network has converged. T o avoid interference due t o the asynchronous operation
of the HNs, a network is restricted t o sending global output only a t global synchroni-
zation points.

After receiving all the network output, several things may happen a t the host
level. If the network has converged, then a new input vector, and new target vector,
if any, is delivered t o the network before the HNs resume. If the network did not
converge, a new synch-point is calculated, equal t o the last synch-point plus
synch-count, and network simulation continues.

I t might happen also, t h a t the network has reached a checkpoint set previ-
ously by the user, or t h a t the user has issued a "stop" command since the network
last reached a synchronization point. In either case, the simulation is suspended.
Suspension of the network occurs, too, if the set of input vectors are exhausted, in
which case the user specifies a new (or previous) input file for additional network
runs.

3.3.4. CN-to-CN Communications
Messages between CNs not resident on the same H N must be passed using the

iPSC message passing facilities. Most of the time used by the iPSC t o send an inter-
HN message is taken in message set-up. Therefore, i t is advantageous t o pack as
much information a s possible into a single iPSC message. Other than a n address,
necessary t o the delivery of a message between CNs, the information exchanged
between CNs is a single value. Therefore, these messages are small. T o reduce mes-
sage traffic between HNs, C N outputs are packaged as sub-messages t h a t are par t of
one H N message. These CN-to-CN sub-messages are called msgs here t o distinquish
them from H N messages.

Each msg is 16 bytes in length. A msg includes seven fields: the msg type, a
timestamp, a destination C N index, a destination site index, a destination link index,
an "output" value, and a "weight" value. What either the output or weight fields in
msgs actually contain is determined by the user. For example, the output field
might be a CN's error value, and the weight field might be transmitting a weight
change value instead of a n absolute weight value.

Except for the weight value, which is single precision floating point, all fields
are two byte integers. The type field determines which of the la t ter two fields is
being used in the msg, since the same CN-to-CN message mechanism is used for pass-
ing output values and link weights. Which H N a message is bound for is determined
by the global CN-to-HN map incorporated into an HN's local C N table. Where the
value in the message is finally delivered is determined directly by the destination
indices in the msg.

3.3.4.1. Output msg Table
A t each H N there exists a n output msg table (see figure 3.6), each entry of

which points t o a 1K msg packet t h a t is shipped a s a single HN message. Each
packet contains a count of the number of msgs i t currently contains. Sixty-three
msgs are packed into a 1IC iPSC message.

There are a s many entries in the output msg table a s there are nodes in the
hypercube, less one. So, for instance, there are 31 table entries for a 5d hypercube.
A thirty-second entry is not necessary, since local msgs are delivered directly,

dest
HN

1K
message packet

16 bytes => 63 msgs per packet

/ '
/ ' '.. .

/. CN mag -. 1.
,/' 1. -.

/ ..

9.6: Msg table at HN 0

type time cn site link val wt

bypassing the iPSC message mechanism. The table is indexed directly by the HN
index found in the local C N table corresponding t o the C N tha t is to receive the
msg. At most, the entire output structure consumes about 31K of d a t a space a t any
one time since msg packets are shipped when, or before, they reach the maximum
length set by the user. The packet length is stored in the cycle-params field maxmsg-
num.

The time t o pack and unpack msgs, t o maintain the output message table,
and the time HNs must wait for the first msg t o arrive, is offset by fewer H N mes-
sages being sent and stored in the system. For a full msg packet, H N message time
is reduced by over a n order of magnitude. The user can determine empirically a n
optimal size for the msg packets. The best size may depend on the network struc-
ture, activity, and the iPSC configuration used. The default maxmsgnum setting is
for full packets.

3.3.4.2. Msg Packetization Methods
Besides setting the maximum size of msg packets, ANNE's implementation

gives the user two major options controlling the behavior of msg packaging. The
difference between these options has t o do with the relationship between the local
simulation time and the timestamps on the msgs a t the originating HN. In the first
method, synchronous packetization or SP, all msg packets are sent t o their destina-
tion H N during a single clock cycle. With SP, any remaining msg packets are
flushed from the output message table a t the end of each network cycle, regardless of
their current size. Thus, all the msgs contained in each packet carry the same
timestamp.

In contrast, asynchronous packetization or AP, is designed t o obtain maximum
utilization of msg packet space. The AP method only ships msg packets when they
have reached the maximum capacity set by the user in maxmsgnum. No packet
flushing occurs a t the end of each network cycle. Msgs with different timestamps
may be found within the same packet. AP, in general, will improve the speed of
simulations a t the cost of increased asynchrony in C N - t e C N communications. For
the feed-forward mode of most neural network models, the S P method is most
appropriate.

3.3.4.3. Sending and Receiving msg Packets
The sending of output msgs is interleaved with receiving msgs from other

HNs. Whenever a single message packet is sent, the HN's message space is probed
for packets meant for the HN's local CNs. If a packet is present, then i t is processed
before continuing to send another output packet. Thus, the system message space is
utilized partially a s ANNE's input message structure. Furthermore, by alternately
sending and receiving packets an overflow of the system message space is avoided.

I t is unfortunate tha t there is no way on the iPSC t o allow ANNE t o
efficiently perform the interleaving of C N message output and reception by the use
of separate logical processes. While i t is certainly possible t o create separate logical
processes on each HN, there are no inter-process software signal facilities other than

the iPSC message mechanism i t s e ~ f . ~ Nor do facilities exist for processes t o share
d a t a segments, which might a t least allow a crude technique for inter-process signal-
ling. Thus, send and receive interleaving has been accomplished by multiple calls t o
a C N msg receive sub-routine a t strategic places in the node level code.

During one local clock cycle a C N may receive multiple msgs along a single
link, depending on the setting of msg-window. The exception t o this exists for the
specialized "output" CNs, which send the global network output t o the host. Not
only can they not send more than a single output per local network cycle, but such
output is forbidden, and probably unnecessary, except a t a point of global synchroni-
zation.

3.3.4.4. Msg Delay
Some network models utilize the concept of delays in C N output. Delay in

ANNE is simulated by not producing msgs from t h a t C N if the CN's delay field has
a value greater than zero. The delay field is set by a user's delay function. If a
CN's delay is greater than zero, ANNE decrements the field a t the end of each local
cycle. Whether or not a C N calculates new output values while a delay is in effect is
up t o t h a t CN's output function.

The use of output delay is important, for instance, in temporally-dependent
models such as Hopfield's, where random C N output generation is employed [Hop82].
Using ANNE, a random delay could be associated with each C N locally and a com-
plete cycle of the network spread over as many simulation cycles a s the value of the
greatest delay. This technique ensures tha t all the CNs fire during each network
meta-cycle. The global synchronization points would be distanced accordingly.

3.3.5. Network 1 /0
Since the hypercube nodes have no direct 1/0 connections with the outside

world, vector input and output is handled through the host. The host provides the
network with input vectors and maintains a record of i ts output, which is done via
Xenix files. An ANNE system call (send-net-output ()) is used t o send output
vectors t o the host and then t o a file. This file output call is formatted a s a request
t o the host from the nodes. An HN sends a typed message containing a list of C N
indices and corresponding output values. The host sorts the HN output values by
C N index and writes them t o the filename passed t o Send-net-output 0 . Input
vectors are delivered t o the network automatically, provided t h a t the network con-
verged and more input vectors are available. In the user's input file, the user is
responsible for matching the number of values in each vector t o the number of CNs
belonging t o the "input" C N group. The number of elements in the output vector
need not concern the user once it has been specified in BIF.

Input and output vectors are read and written by ANNE in increasing order
of C N indices. Let I stand for an input vector and Ii stand for the set of indices
belonging t o those CNs tha t are used as a network's global input. Then, for exam-
ple, if the input CNs have indices Ii = {3,11,17,20,21,22), these CNs are assigned

2The ability t o set up handler routines based on message types on the iPSC/2 corrects this shortcoming.

input values from vector I a s follows: CN[3].in = I[O], CN[ll].in = I[l], CN[17].in =
I[2], and so on. A global output vector available t o the user's convergence procedure
is assigned from the set of output CNs in a similar fashion.

3.3.6. User Interface
ANNE'S user interface is command-driven and ANNE has three distinct

modes with three corresponding command line interpreters. The fact t h a t there are
three interpreters is "translucent" t o the user. T h a t is, even though it is t ransparent
tha t commands are being interpreted by three routines, i t is readily apparent t h a t
ANNE enters distinct "states" during a simulation run. These s ta tes are represented
by network initialization, network suspension, and the network execution.

When a simulation begins there are two commands the user can give, either
t o build the network, load and initialize, or t o quit. Once the network is built, the
network is in a suspended s ta te , a s i t is a t a checkpoint during runtime. When the
network is suspended, the user may reset runtime parameters, such as msg-window,
synch,count, or checkpoint. The user must re-specify a new checkpoint if it does not
conform t o the current synch-count. The user might also examine, modify, save the
current s t a t e of the network, or quit the simulation. In order t o s t a r t the simula-
tion, one command is used t o specify certain "global" parameters (such a s the name
of the input vector file). Another command prompts for "local" simulation parame-
ters (such a s the next checkpoint) before start ing the network. When the network is
running the user can stop the network a t the next global synchronization point
regardless of the setting of checkpoint.

The most significant synchronization parameters set a t runtime are
synch-count, msg-window, timeout, and maxmsgnum. The ability t o set these param-
eters aids the user in tuning simulations for optimum performance.

For the highest speed the user sets both synch-count and mazmsgnum high,
and timeout low (e.g., zero). T o gain more accurate results, as compared t o a strict
sequence of events, the synchronization interval and message wait time are set con-
versely. Msg-window has minor effect on the raw speed of the simulations. I ts effect,
together with the size of msg packets, is more noticeable in the convergence results
of the networks.

The upper limit on synch-count is dependent not only on how often the user
wishes t o check on network progress, but also on how quickly the network is a p t t o
converge for a particular set of inputs. Local pieces of the network may converge
separately, but global evaluation of the entire network's output is only made in the
host a t a global synchronization point. If the synchronization points are too far
apa r t the network pieces may be "spinning their wheels" in extra cycles after the
network has already converged as a whole. If the synchronization interval is too
small more time is spent by the HNs synchronizing with the host.

3.3.6.1. User Commands

buildnet
Constructs and initializes the network and auxiliary d a t a structures. Leaves the

network in a suspended s ta te . buildnet has several command line flags associ-
ated with i t for timing measurements, creating a log file, running FltSim, creating
a verbose listing of BIF files, and for debugging ANNE itself.

newrun
Begins a simulation run. The user is prompted for the names of the input vector,
the target vector, if any, and output vector file names. The user sets the size of
msg packets and the length of timeout for receiving msgs.

startnet
Activates the simulation. The user is prompted t o set synch-count, msg-window,
and the next checkpoint. The checkpoint is checked t o see t h a t it corresponds t o a
global synchronization point. A checkpoint may be set such t h a t the simulation
works in s tep mode, t h a t is, it only progresses one clock cycle before suspending.

stopnet
Suspends the network a t the next global synchronization point whether or not i t
has reached a preset checkpoint. It may be restarted with the startnet command.

savenet
Saves the current network structure (including modified weights, etc.) in a new
BIF file, which can be used later for a new simulation. The user is prompted for
the name of the save file.

show
Displays the s t a t e of the "local" simulation parameters and lists the currently
active traces (see below).

quit
Causes ANNE t o exit. Once a network is activated (by startnet) summary statis-
tics are sent from the HNs and written t o a summary file, then ANNE exits.

help
Prints a list of ANNE'S commands.

The user accesses d a t a in the nodes through a similar mechanism as used for
performing global network I/O. Though in this case the requests come from the host
level instead of the node level. The user gains access t o network d a t a via CN maps.
These are named groups of CNs. For example, one map may be of the CNs in the
hidden layer of a back-propagation network. The default C N maps, a s mentioned
above, are the CNgroup blocks. Attached t o each C N group is a list of the CNs
t h a t belong t o it. By giving the name of a C N group t o certain user operators,
either via the terminal or a t the node level through the user network code, entire
groups of CNs are addressed.

A t a suspension point in the simulation a user might print the values of some
network fields. The host formats such a command a s requests t o HNs containing the

I*. CNs listed in the C N map. Each request contains a C N map name, e.g. input", a
structure name, such a s "cn", "site", "link", an offset into the structure, and the
width of the requested field in bytes. The offset and width are retreived from a hash
table in the host t h a t is indexed by each field's name. A 'C' union is employed t o
carry network d a t a of different formats between the host and HNs. Currently, only
the retrieval and assignment of "cn" fields are fully implemented.

The C N map name is matched t o an HN's local map of C N indices. An H N
responds t o the host's d a t a request by attaching the requested field values to each
C N index in a copy of the appropriate local C N map and shipping this structure
back t o the host. At the host, the d a t a values from each H N are re-assembled
according t o the global C N map and printed to the terminal screen. In a similar
fashion, assignments t o fields in the network are made.

The following are user commands t h a t can be invoked when the network is in
a suspended s ta te . They operate on CN maps. Currently only the first four of these
commands have been fully implemented.

print <struct-name> <field-name> <CNmap-name>
Prints the current value of struct-name.field-name for each C N in the named C N
map.

assign <struct-name> <field-name> <CNmap,name>
Assigns a value t o structLname.Jield-name in each C N in the named C N map. The
user is prompted for a C N index and enters a value for each CN.

trace <struct-name> <field-name> <CNmap-name>
Acts similarly t o print except tha t the current values for each C N in the C N map
are printed a t each global synchronization point, according t o synch-count.

untrace <trace-number>
Deletes a particular trace by number. The show command lists all active traces
with a corresponding trace-number.

reset {<CNmap-name> I all}
Resets the link weights in a particular C N map or the entire network (not imple-
mented).

eucldist < CNmap-name> < CNmap,name>
Gives the Euclidean vector distance between two C N maps, for example, the ham-
ming distance (not implemented).

intersect < CNmap,name> < CNmap-name>
Gives the conjunction of two C N maps (not implemented).

union < CNmap,name> < CNmap-name>
Gives the disjunction of two C N maps (not implemented).

makernap < e x r a n g e > < CNmap-name>
Defines CNmaps other than the default C N maps built when the simulator is ini-
tialized (not implemented).

3.3.6.2. Terminal Display
The current implementation of ANNE'S display is rudimentary. There are no

bells and whistles whatsoever. Some care has been taken t o display information in a
readable manner on the terminal screen. At each synch-point the current values of
the simulation parameters are displayed along with the current s t a t e of the network:
converged, suspended, or continuing. The user is free t o add other information t o
the display screen through the convergence procedure. All output merely scrolls up
the screen as a simulation progresses.

CHAPTER 4

Performance Testing

The main goal of testing ANNE is t o determine the suitability of i ts unique
simulation strategy when executed by a distributed memory processor model. In
particular, these tests demonstrate the effectiveness of ANNE's methods of time syn-
chronization, message packetization schemes (both S P and AP), and the costs of
inter-processor communications versus network locality. Testing consisted of four
parts:

(1) Measure ANNE's raw performance a s determined by the number of connec-
tions per second (xps or "zips"). Xps is the ra te a t which CN-to-CN msgs are
processed during network operation and provides a direct measure for proces-
sor efficiency and speedup.

(2) Test the performance of the four main functional components: BIF loading,
CN-to-CN communication, inter-HN synchronization, and network computa-
tion (user time). CN-to-CN communication is further broken down into times
for generating msgs, sending msgs, receiving msgs, and delivering msgs.

(3) Determine the number of cycles per convergence (cpc) for a specific back-
propagation network. This metric illustrates how the convergence behavior
of a highly synchronous, low locality network model is affected a s i t is spread
over increasing numbers of HNs a s a result of ANNE's loosely-coupled syn-
chronization strategy.

(4) Demonstrate the effects of network locality on ANNE's performance using
special, varying locality, receptive field networks.

In each of the above categories the S P and A P methods are contrasted. Prel-
iminary results from tests on an iPSC/2 are also presented. ANNE's current iPSC/2
version is a direct porting of ANNE's iPSC code. T h a t is, only minimal re-coding of
ANNE was done t o make i t functional on the iPSC/2. No advantage was made of
the many enhancements available on Intel's newest hypercube. A more optimized
porting will surely result in significant performance improvement compared t o our
early results, but the testing accomplished thus far on the iPSC/2 illustrates several
interesting trends.

4.1. Test Networks
The d a t a model used in the first three parts of testing is a three layer back-

propagation network. For such a network the interconnection density between
layers is 100%; each C N in a layer is connected t o every C N in an adjoining layer.
For the xps and functional component testing, each layer in the network has a n
equal number of CNs. The names of these networks are prefaced with an "n" fol-
lowed by a number indicating how many CNs are in each layer. Thus the network

Figure 4.1: Back-propagation network
mapped to two HNs, having 4 CNs per layer.

depicted in figure 4.1 is referred t o as n4. For xps testing, 5 such networks were
used: n8, n16, nS2, n64, and n128, each containing links totalling 144, 544, 2,112,
8,224, and 33,024, respectively. Functional component testing used only nS2. These
networks were partitioned among HNs by vertical slicing, a s shown in figure 4.1.

A back-propagation network used for character recognition was utilized for
cpc testing. This network contains 88 CNs in its input layer, and 16 CNs each in its
hidden and output layers, for a total of 1,768 links. This network, henceforth
referred t o a s alfanet, receives 8 by 11 binary matrix representations of the first 16
letters in the alphabet a s input. Accompanying each input vector is a binary target
vector tha t has a single component turned "on", while all other components are "off'.
For example, the target vector for the letter 'D' is

" 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 "
When completely trained, a single output C N will be set high (-1) corresponding t o
the letter presented a s input.

Special networks were utilized for the fourth set of tests. Here, these recep-
tive field networks are not intended to have any meaningful computational proper-
ties. They ac t a s connectivity frameworks on which t o test the effect of network

output CNs

inp u t CNs

Figure 4.2: Receptive field network with a
field of 8 for each output CN and a shift of 2.

locality on ANNE'S raw performance. Figure 4.2 illustrates a small example of such
a network. Each network consists of two layers, an input and output layer. A vec-
tor is presented t o the input layer, some ersatz function takes place on the value
input t o each C N in this layer, and the transformed vector is propagated t o the out-
put layer for further processing.

The parameters in designing these networks are the number of input and out-
put CNs, the width of each output CN's receptive field, and the shift of each output
CN's receptive field relative t o its neighbor's field. For the tests described here the
number of output CNs was held constant a t 32, and the receptive field size was
always 8. Specifying a different shift then automatically determines the number of
input CNs. The network in figure 4.2 has a shift of two.

An increase in the shift implies an increase in these networks' locality, also.
The actual rat io of local connections t o extra-HN connections for each of these net-
works depends on the configuration of the iPSC a t runtime, but for a given number
of HNs, higher shifts mean higher locality. These networks were mapped in a similar
fashion a s the back-propagation networks. T h a t is, they were partitioned vertically
into equal or nearly equal portions.

Each network name is prefaced with the letters "rn", followed by numbers
indicating the number of inputs and the shift of the network. Thus, network rn70.2
has 70 input CNs with a n output field shift of 2. Other networks used in these tests

are rn132.4, rn194.6, and rn256.8. rn256.8, since i t has a shift value t h a t does not
allow any overlap in receptive fields is actually composed of 32 separate sub-
networks.

4.2. Xps Tests
Xps tests used 5 networks over 6 dimensions of the iPSC, while iPSC/2 testing

used 728, n16, and n32 over 3 dimensions. All the tests were run using the feed-
forward mode of the networks. In feed-forward mode, a n input vector is presented,
allowed t o propagate through the network synch-count times, and the CNs in the
output layer send their values t o the host. A synch-count of 100 was used t o minim-
ize global synchronization overhead and maximize xps performance.

The xps tests are summarized in table 4.1. Some tests were not completed for
n32, n64, and n128. For the lat ter two networks smaller dimensions of the iPSC
could not be used, since the BIF sub-files for these networks were too large. The 32
processor test for n32 using S P simply failed t o run for various combinations of simu-
lation parameters. Tests in which there would be less than 3 CNs per HN were not
at tempted.

The results of xps testing on the iPSC using S P are shown in graph 4.1. With
the exception of n128, each of the test networks show a steady, though tapering,
increase in xps, up t o a marked peak. After each peak, performance drops off
dramatically. These results highlight the effect of communication locality. As each
network is spread over more HNs, communication costs between HNs increases. This
communication overhead diminishes the increased computational power of more pro-
cessors, and accounts for a slight downward trend in performance, seen in the first
par t of the graphs for n32 and n64. More rapid decreases in performance result
from insufficient utilization of msg packets in the S P method.

Locality effects are more clearly illustrated in graph 4.2, where the results of
graph 4.1 are shown relative t o each dimension of the iPSC. Here i t is clear t h a t
performance using S P is directly related t o the number of connections t h a t must
cross HN boundaries.

Table 4.1 - Xps tests

synch-count = msg-window = 100 S = too small
maxmsgnum = 63, msg timeout = 0 L = too large

nets & cube config.

name I dimension w
n8: 8 x 8 ~ 8
n16: 16x16~16
n32: 32x32~32
n64: 64x64~64
n128: 128x128~128

CNs per HN / actual msg packet size

0

2410
48/0
9610
L
L

1

12/32
24/63
48/63
L
L

2

618
12/32
24/63
48/63
L

3

3/2
6/8
12/32
24/63
L

4

S

312
6/8
12/32
24/63

5

S
S
3/2
6/8
12/32

number of processors

Graph 4.1: iPSC xps performance: SP method

Graph 4.2: X p s vs . number of external connections per HN

Table 4.2 - msg packet sizes for n16

dim # mid + flush packets out/HN (size) # packets in/HN

1 2(63) + l(2) 3
2 0 + 3(32) 9
3 0 + 7(8) 49
4 0 + 15(2) 225

The performance of a particular test network is greatly influenced by the
number of msg packets produced during each clock cycle. With SP, packets left a t
the end of a local clock cycle are flushed, regardless of their size. Thus, some pack-
e ts may be partially empty. Table 4.2 illustrates this point for the test network n16.
With two processors each HN produces two full msg packets in the middle (labelled
#mid in the table heading) of each clock cycle, and 1 packet of two msgs a t the end
of each cycle (flush). With 4 HNs, 3 half-full msg packets are produced for each
clock cycle, and each are sent a t the end of a local network cycle. The number of
packets per clock more than doubles when n16 is mapped t o 8 HNs, and increases
five-fold for iPSC dimension 4. More importantly, the number of incoming packets a t
each HN increases dramatically. Reductions in performance for the other networks
are due t o similar sudden increases in the number of msg packets during each clock
cycle.

Using the A P method, which guarantees tha t only packets containing
maxmsgnum msgs are sent, ANNE's xps performance improves markedly. For these
tests maxmsgnum equaled 63. Graph 4.3 shows the xps results using AP. A uniform
increase in performance is seen for all the test networks, n8 through n128. With AP,
ANNE also posseses more stability, thus allowing the completion of the 32 HN xps
test for n92, which was not possible with SP.

Graph 4.4 illustrates the xps results for 3 test networks on the iPSC/2 using
SP. ANNE shows over a four-fold increase in raw performance on this machine. n 8
and n16 still show a drop in performance (n32 has just reached i ts peak in this
graph) due t o the number of msg packets being produced, but the drop-off is not
nearly a s severe as for the iPSC. The improved performance of ANNE on the
iPSC/2 is due t o the increased speed of the 386-based HNs, and improved inter-HN
message routing. The same overall increase in xps performance afforded by the A P
method on the iPSC, is seen, naturally, on the iPSC/2. Unfortunately, by the time
the tests illustrated in graph 4.5 were made only 4 HNs were available on the
iPSC/2 being used. Thus only the line for n8 shows real improvement relative t o the
S P data .

4.3. Functional Components Performance
nS2 was used for testing the performance of ANNE's functional components.

This network was simulated using cube dimensions 0 through 5 on the iPSC and cube
dimensions 0 through 2 for the iPSC/2.

XPS

1 1 I I I 1
1 . 2 4 8 16 $2

number of processors

Graph 4.9: iPSC xps performance: AP method

Graph 4.4: iPSC/& xps performance: SP method

go,ooo,

s5,ooo-

SO, 000-

25,000-

XPS

20,000-

SP

n32

n16

15,000,

lo , 000,

5,000 -

I I I
1 2 4 8

n u m b e r of processors

1 2 4
number of processors

Graph 4.5: iPSCI2 xps performance: A P method

4.3.1. Loading and Parsing Performance
Loading the BIF files for n32 on the iPSC is done in nearly constant time.

BIF loading times ranged from 7 seconds for a single HN t o 11 seconds for 16 HNs.
The overall time needed t o parse and initialize an entire network is called the net-
work scan time. Through 4 HNs there is a near linear speedup in scan time. For 8
and 16 HNs, scan time levels off t o a little over 5 seconds. No further decrease in
the scan time for these iPSC dimensions occurs, because the scanning operation is
sandwiched between two par ts of the overall loading operation. After sending the
BIF sub-files, each H N begins scanning i ts own sub-file. The first HNs loaded may be
idle after scanning these files if they finish scanning before the host has completed
loading of the remaining BIF sub-files. Only after the host has completed this phase

will i t send the HNs their copies of the CNgroups file. Thus, scan time is no longer
reduced by having more processors once scan time is less than the overall loading
time. In this case the sequential portion of network loading dominates the parallel
portion.

Together, the load and scan times can be combined into a single rough meas-
ure: links per second. Using this measure the rates for dimensions 0 through 4 are
64, 96, 146, 143, and 129 links per second, respectively. Due t o a small number of
samples, and t o the fact t h a t the iPSC/2 host was being utilized by multiple users,
i ts load/scan ra tes are less reliable. The scan rates for the iPSC/2 ranged from 235
t o 768 links per second.

4.3.2. Other Components
Communication, synchronization, and user time were measured using the n92

network. The performance of each of these components is illustrated by four sets of
histograms start ing with graph 4.6. There are two sets of tests in each graph each
with synchronization intervals of 10 and 100, and with equal msg-window settings.
The graphs represent the percentage of time taken per HN by six activities a t the
H N level, with the exception of user, which also includes some host time.

Six shorthand names label the horizontal bars in the graphs. Gen represents
the actions taken t o generate C N messages, such a s locating a links array, adding a
msg t o a msg packet, etc. Send is the ac t of handing off a msg packet t o the iPSC
messaging system, including waiting for a clear messsge channel. Recv involves prob-
ing for incoming msg packets and waiting for the iPSC t o assign these packets t o a
buffer in ANNE. Unpacking msgs and assigning their values t o the appropriate link
is the function labelled deliv. Synch measures the time used by HNs waiting for
other HNs t o complete their network cycles a t global synchronization points. All
other activity, labelled user, is the result of network computations done by the user's
network procedure in the HNs and the convergence procedure in the host.

A comparison of the two histograms of graph 4.6 shows four interesting
trends. First, the percentage of time taken by recv is relatively constant, regardless
of the synch-count. Second, gen, deliv, and user times benefit from a n increasing
number of HNs. This benefit is paid for by a third trend, a sharp rise in the percen-
tage of time taken t o send msg packets. Send time consumes about 62% of the to ta l
time for a synch-count of 100 with 16 HNs. Last, decreasing the synch-count
increases the cost of synchronization, a s should be expected.

The behavior of send in graph 4.6 is explained almost entirely by the iPSC1s
difficulty in handling the large inter-HN communication load brought on by the com-
bination of the S P method and the high interconnection density of a back-
propagation network. Channel contention becomes the limiting factor a s more and
more packets are pushed into the system. And as the iPSC dimension grows, more of
these packets are shared by multiple HNs, since the iPSC uses a store-and-forward
scheme for passing messages beyond immediate neighbors. Send performance is
slightly better for a shorter synchronization interval, because a t synchronization
points, H N message channels have time t o clear and thus, channel contention is
eased a t the s t a r t of the next network cycle.

dim

0

synch-count = 100 synch-count = 10

Graph 4.6: Functional component performance on the iPSC: SP method.

dim

1

user

user

gen
send

user

synch-count = 100 synch-count = 10

Graph 4.7: Functional component performance on the E'PSC: AP method.

The histograms in graph 4.7 give the results of tests using the A P method in
ANNE. The first two trends noted in graph 4.6 hold for graph 4.7, also. Packet
sending performance, however shows a marked improvement with the full utilization
of msg packets. With the percentage of time taken by msg sending reduced, the time
taken for HNs t o globally synchronize with the host increases. For two HNs, the
rat io of synch times between a synch-count of 100 and a synch-count of 10 is nearly
10 t o 1. For larger cube dimensions a synch-count of 100 is inadequate t o dilute the
effect of sequentializing the interaction between the host and many HNs. With 32
HNs, 53% of run time is taken by synchronization for a synch-count of 100 versus
73% of run time for a synch-count of 10.

Functional component testing of ANNE for the iPSC/2 is shown in graphs 4.8
and 4.9. The analysis of these d a t a suffers from a limited number of tests and a host

dim

synch-count = 100 synch-count = 10

I gen
send
recv
deliv

1 I synch
1 user

1 send gen

gen
send

SP

- 1

I
I

I

I

recv
deliv
synch
user

recv
deliv
synch
user

recv

:Ed
recv
deliv
synch
user

1 deliv
I synch

I user

I gen
send

I I recv
I deliv

I synch
1 user

Graph 4.8: Functional component performance on the iPSC/2: SP method.

I
I

1

I

-? I
1

I

dim

0

I gen
send

deliv
synch

recv
deliv

synch synch
user user

1 !3en
send
recv

I deliv
I synch

I user

gen
send
recv
deliv
synch
user

synch-count = 100 synch-count = 10

I ::id
recv

I deliv .
I synch . 1 user

Graph 4.9: Functional component performance on the iPSCI2: A P method.

machine in multi-user mode a t the time of testing. However, the patterns exhibited
are quite similar t o those seen in the iPSC graphs for cube dimensions 0 through 2.
As on the iPSC, synch time again corresponds directly t o the synch-count, and the
time allotted t o the user's code remains fairly constant, reaching approximately 42%
for two HNs. One notable difference between the two machines' d a t a is the smaller
allotment of synch time for 4 HNs on the iPSC/2 as compared with the iPSC. Four
HNs is insufficient t o analyze the effects on ANNE of the iPSC12's faster inter-HN
communications.

4.4. Cpc Tests
Measuring cycles per convergence used alfanet. The set of weights used were

identical a t the s t a r t of each test. The only start ing condition on the weights was
t h a t they be random and relatively small, in the range f 0.400. For the iPSC, the
results for cube dimensions 0 through 3 are presented. For the iPSCI2 dimensions 0

through 2 were used. Four parameters, maxmsgnum, msg timeout, synch,count, and
msg-window, were varied t o test their effects on convergence behavior. Except for
synch-count, however, the other three parameters are irrelevant when running
ANNE on a single HN. Cpc results are shown in the eight graphs which follow.

Preliminary testing of alfanet's convergence found t h a t a strictly uniform list
of simulation parameter settings for each cube dimension was not effective. Parame-
ters t h a t gave good results for one cube dimension might fail dismally for another
dimension, leaving little t o compare. Instead, a wide variety of parameter values
were experimented with and from these tests a representative sampling of results
were chosen. Typical values used for the four parameters listed above ranged a s fol-
lows:

maxmsgnum: 13, 26, 52, and the maximum value, 63.
msg timeout: 0, 5, 10, 20, 50, and 100.
msg-window: 0, 1, 5, 10, and 20.
synch-count: 1, 10, and 20.

Tests which failed are not presented.

Tests failed for one of two reasons: (1) The chosen parameters crashed the
machine, or (2) a test was considered non-completeable due t o the imposition of a
1000 cycles rule. In general, a s letters were presented in order (from 'A' t o 'P') it
took a n increasing number of cycles for alfanet t o converge on a particular letter.
Early testing revealed tha t if the convergence of a particular letter did not complete
within 1000 cycles, then the network would not converge on t h a t letter nor subse-
quent letters in less than several thousand cycles, if a t all. This type of behavior
nearly always occurred a t or subsequent t o the 14th letter ('N').

The test method employed here, converging on letters one a t a time, is one of
two network training methods often employed. The other method of "teaching" a
back-propagation network t o recognize characters is t o present i t with each letter,
and the corresponding target vector, for one t o several iterations of the network
before moving t o the next set of input and target vectors. Switching from one letter
t o the next is done arbitrarily, regardless of the actual convergence behavior of the
network for a given letter. However, in the test method here, each input and target
vector is clamped t o the network until the entire network converges on the input
letter within a specified error value. The error value used was 0.4. The network
converges when the appropriate CN, corresponding t o the target vector component
equalling 1, has a value 2 0.60, and the other output CNs are 5 0.40. An entire test
consisted of clamping each of the first 16 letters of the alphabet until each had con-
verged, individually, according to this method. T o help clarify the results of cpc test-
ing with 16 letters, the results from the first 8 letters in each test are presented
alongside the 16 letter d a t a . Test results were more consistent for the first 8 letters.
Tests using one H N are used as the base comparison for the multiprocessor tests.

The detailed results of cpc testing are somewhat inconclusive in terms of the
settings of individual synchronization parameters for both the iPSC and the iPSC/2.
There appears t o be a weak correlation between better convergence and longer msg
timeouts or shorter synchronization intervals. Larger settings of msg-window had, in
general, a more favorable effect when used with larger cube dimensions. With more

Graph 4.10: Cpc results on the iPSC: SP method.
Tests for each cube dimension are arranged in vertical
lines. Each dimension is represented b y a digerent symbol.
Horizontal bars mark the average value of tests for each dimension.

than two HNs, the convergence behavior of the character recognition network is, a t
best, unpredictable. I t is clear tha t beyond cube dimension 1 the convergence of
alfanet takes considerably more cycles a s more HNs are used.

SP

El
El

0 T 4 0 3

0

- 264

--lg& 19@ El

Cycles per convergence for 8 letters

I I I
0 1 2 3

3500,

3000-

2500 -

2000-

CPC

1500-

1000-

500--

Cube Dimension

1050 -

900 -

750 -

- 2028 600 -
0

450 -
O 1373 -
0

0
300 -

A + 5g4 a

500 150 -

Cycles per convergence for 16 letters

I I I
0 1 2 9

Cube Dimension

3000,

2500 -

2000 -

Secs

1500 -

1000
.--

500 -

Graph 4.11: Seconds elapsed for cpc tes ts o n the iPSC: SP method.
T e s t s for each cube d imens ion are arranged in vertical
lines. E a c h d imens ion is represented by a d i f e r e n t symbol.
Horizontal bars m a r k the average value of tes ts for each dimension.

The poor behavior of alfanet with ANNE is not totally unexpected. A back-
propagation network presents ANNE with a real challenge due t o its high intercon-
nection density, low t o moderate locality, and highly synchronous algorithm. The
convergence results presented here are remarkable considering ANNE'S design bias
toward sparsely connected, high locality network models, and its semi-synchronous

720,

600 -

480 -
1796

A - b O

- 1555
360 - --

0

a
A 0

8 7 e g z 2
240 -

0

120 -

Seconds for 16 letters

I I I

A

0

0

0
8

337
- 311 305 %- 3Y -
A
A 8 B

8

Seconds for 8 letters

I I I

nature. The results are also a credit t o the robustness of neural network models in
general.

4.4.1. C p c Results for the iPSC
Graphs 4.10 and 4.11 show the results of cpc testing for the iPSC using SP.

The tight clustering and the moderate increase in the cpc values seen for two HNs in
the first graph indicates tha t ANNE's synchronization scheme works well for this
most basic case of multiprocessing. However, the results for all 16 letters in graph
4.10 shows a n approximate doubling of the average cpc for each subsequent cube
dimension used. For 8 letters the cpc results are better, indicating t h a t perhaps
there is a second order effect of the letter presentation procedure being exhibited, or
t h a t a n "unseasoned" network is less sensitive t o ANNE's synchronization model. In
any case, graph 4.11 illustrates tha t increased processing power is not enough t o
overcome the increase in cpc for all 16 letters. This graph shows the to ta l elapsed
time, in seconds, for each of the previous iPSC cpc tests. For 8 letters, only
moderate improvement in convergence time results.

The use of the A P method helps the cpc situation not a t all (see graphs 4.12
and 4.13). The tight clustering of results for 2 HNs is is not evident in the d a t a for
16 letters. With A P the trend for both 16 and 8 letters is similar t o t h a t found with
SP, in t h a t as larger cube dimensions are utilized the cpc continues t o rise sharply.
In fact, only one of several tests using 8 HNs completed according t o the 1000 second
rule. With the exception of the time d a t a for cube dimension 2 in graph 4.13, con-
vergence time for all 16 letters continues t o increase for more HNs. The time d a t a
for 8 letters is tightly grouped, but the average times are relatively flat, despite the
number of HNs put t o the task.

4.4.2. C p c Results for the i P S C / 2

The limited number of cpc tests for the iPSC/2 show trends similar t o the
results for the iPSC, though the iPSC/2 d a t a are more encouraging. The average
number of cycles t o converge over 16 letters and 8 letters using S P (see graph 4.14)
increases with the number of HNs used, but less severely than for the iPSC.
Correspondingly, in graph 4.15, the average convergence time for 16 letters increases
more slowly a s compared t o the iPSC data , and actually decreases for 8 letters.
Convergence efficiency per HN, however, is still plainly low on the iPSCI2.

Both the cpc and elapsed time d a t a using the A P method on the iPSCI2, seen
in graphs 4.16 and 4.17, exhibit trends similar t o those on the iPSC. The results in
both graphs, for cube dimension 1, and 16 letters, a re widely scattered, implying a
great deal of non-determinancy in alfanet's behavior for such low parallelism. This is
especially surprising in light of the tight clustering of cpc values for 8 letters using 2
HNs. Remarkably, this behavior improves for four HNs.

Despite what might be expected from the AP method, considering i ts
dramatic effects on raw performance for low locality networks, it is flawed in t h a t i t
may tend t o "over-synchronize" the communications between CNs. If rnsg packets
fail t o fill during a single clock cycle then there is a lag in fresh C N output activity
following each synch-point along links t h a t cross H N boundaries. CNs repeatedly

Graph 4.12: Cpc results on the iPSC: AP method.
Tests for each cube dimension are arranged in vertical
lines. Each dimension is represented by a diflerent symbol.
Horizontal bars mark the average value of tests for each dimension.

AP

R
- 610

m
0

0

O 561
A T
A
% 278,,

-- 190

Cycles per convergence for 8 letters

I I I
0 1 2 5

3500 -

3000 -

2500 -

2000-

CPC

1500 -

1000-

50--

Cube Dimension

1050 -

900 -

750 -

600 -
1850

0

A 450 -
O 1414

A
7

- 1205
0

0
300 -

A
0

A

500 150 -

Cycles per convergence for 16 letters

I I I
0 1 2 5

Cube Dimension

Graph 4.18: Seconds elapsed for cpc tests on the iPSC: A P method.
Tests for each cube dimension are arranged in vertical
lines. Each dimension is represented by a diflerent symbol.
Horizontal bars mark the average value of tests for each dimension.

AP

0
A

A

3 3 3 354& 3 3 1 8 349
A

0

a
0

Seconds for 8 letters

I I I

3000,

2500 -

2000,

Sees

1500 -

1OOO-

500 -

720,

600 -

A 480,

d' 4 1815
0

A - 1537 360 z-
0

-E
A 0

240 - - 873 A

0

120 -

Seconds for 16 letters

I I

letters

2 1

18OQ

1500,

1200-

CPC

900

600

300

Cube Dimension

Graph 4.14: Cpc results on the iPSCI2: SP method.
Tests for each cube dimension are arranged in vertical
lines. Each dimension is represented b y a diflerent symbol.
Horizontal bars mark the average value of tests for each dimension.

0
A 2.96
A 0 - 2200
A
A -- 190

Cycles per convergence

I I
0 1 2

-

-

-

0 420,

360 -

300 -

240 -

180 -

A
0

A- 620° 120 -

-- 500
fk

60 -

Cycles per convergence for 16 letters

I I
0 1 2

600- 150 -

500- 125 -

400- 100,

0
Secs 0 - 926 A

300- 75 - -- 80 - 80

0

AA
0 7 67

- 225 o %
2m- 210 50,

100- 25,

Seconds for 16 letters Seconds for 8 fetters

I I I
0 1 2 0 1 2

Cube Dimension

Graph 4.15: Seconds elapsed for cpc tests on the iPSCI2: SP method.
Tests for each cube dimension are arranged in vertical
lines. Each dimension is represented b y a digerent symbol.
Horizontal bars mark the average value of tests for each dimension.

1500-

1200-

CPC

900,

600 -

Cycles per convergence jor 16 letters Cycles per convergence for 8

I I I I I I
0 1 2 0 1 2

Cube Dimens ion

letters

Graph 4.16: Cpc results on the iPSC/2: AP method.
Tests for each cube dimension are arranged in vertical
lines. Each dimension is represented b y a diflerent symbol.
Horizontal bars mark the average value of tests for each dimension.

150

A
A

125

- 439

A
0

rnn

I Seconds for 16 letters I Seconds for 8 letters

Cube Dimension

Graph 4.17: Seconds elapsed for cpc tes ts o n the i P S C I 2 : AP method.
T e s t s for each cube d imens ion are arranged in vertical
lines. E a c h d imens ion is represented by a dif lerent symbol.
Horizontal bars m a r k the average value of tes ts for each dimension.

use stale input d a t a from such links and produce new packets with duplicate, stale
output values before the first nasgs arrive. This characteristic of A P should be most
prevalent with alfanet for larger dimensions of the iPSC and iPSC/2, where m s g
packets are slower t o fill. But the results from graphs 4.16 and 4.17 seem to indicate
t h a t the most detrimental effects on convergence occur for two HNs.

It may be t h a t the over-synchronization of communication between CNs
brought on by AP can take better hold in the case of two HNs. For cube dimension
I , previous convergence tests using SP have already shown a high tendency t o be

more synchronized. Summary d a t a indicate t h a t the stale msg percentage (the per-
centage of msgs t h a t failed t o fall within msg-window) using 4 HNs is double t o triple
the percentage when using two. With AP, the rejection of more msgs when using
more HNs could result in a better mix of values reaching CNs along extra-HN links.
This effect would then act t o "prime" the network with an increasing variety of out-
put and weight values, which in turn would lead t o a more energetic search of the
network's solution space.

4.5. Network Locality Testing
As noted previously, in the section describing the test networks, the relative

communication locality of the receptive field networks is indicated by their suffix
number. Thus rn256.8 has a higher measure of locality than rni94.6, etc. All the
locality tests were run in a similar fashion as those for the xps measurements for
back-propagation networks. T h a t is, a large synchronization interval was chosen so
a s t o obtain near optimal xps performance. Graphs 4.18 and 4.19 show the speedup
and processor efficiency for these networks on the iPSC using SP. The results for nS2
are repeated here for contrast with a low locality network containing approximately
the same number of links. S P overloads the iPSC inter-HN communications, so
results are not shown for most of these networks using 32 HNs.

Despite increasing locality, the performance of these networks, with the not-
able exception of rn256.8, is damped by the S P method. The combination of S P and
low inter-HN connectivity leads t o inefficient utilization of msg packets. For exam-
ple, rn194.6 sends fewer inter-HN msgs, but about the same number of packets as
the other, less localized networks. Of course, for rn256.8 there is no inter-HN com-
munication overhead, so i t a t ta ins a speedup of about 25 with 32 HNs. The slight
dropoff in its speedup line is a result of the highly sequentialized operation of 32 HNs
synchronizing with the host processor relative t o the perfectly parallel operation of
the network itself. A very large synch-count would eliminate this effect.

The A P method better exhibits the effects of network locality on peak xps
performance. In general, graph 4.20 demonstrates better than a three-fold increase
in speedup for the larger dimensions of the iPSC. Furthermore, the differential in
speedups between networks of different localities is highlighted for 32 HNs. Even the
back-propagation network, n92, obtains about 50% processor efficiency for cube
dimension 5.

The limited number of locality tests tha t were accomplished on the iPSCI2
(graph 4.22) illustrate the advantage in raw performance t h a t A P offers over SP,
even here where inter-HN communication performance is less a problem than on the
iPSC. But this d a t a is inconclusive as t o the effects of network locality for larger
cube dimensions.

25,

SP

, rn256.8
/ '

/ '

20, /.
/.

/ -
/.

/ '

15,

10,

5 , rn194.6

I I I I I
1 2 4 8 16 32

number of processors

Graph 4.18: Speedup vs. locality on the iPSC: SP method.

number of processors

Graph 4.19: Processor eficiency vs. locality on the iPSC: SP method.

25, /'

AF'

20,

15,

lo ,

5 ,

I
1 2 4 8 16 32

number of processors

Graph 4.20: Speedup vs. locality on the iPSC: AP method.

number of processors

Graph 4.21: Processor eficiency us. locality on the iPSC: AP method.

1 2 4 1 2

number of processors

Graph 4.22: Speedup us. locality on the iPSCI2

CHAPTER 5

Conclusion

5.1. Summary
This thesis describes ANNE, a parallel, general-purpose neural network simu-

lator designed and implemented t o run on versions of the Intel Scientific Hypercube
computer. ANNE models neural networks internally a s connection node (CN)
objects with distributed sub-arrays of the weight matrices commonly used in neural
network representations. A unique scheme of synchronization between Hypercube
nodes (HNs) is employed, which exploits the fault-tolerance of distributed neural net-
work models.

The memory and inter-processor communication limitations of the iPSC were
discussed, which led t o three main design assumptions about ANNE. These assump-
tions concerned the maximum size of networks t o simulated, the homogeniety of
inter-processor communications, and the fault- tolerance of the neural networks for
which ANNE was t o be used. Subsequently, two existing synchronization schemes
for distributed event-driven simulations, Misra's algorithm and Time Warp, were dis-
cussed and found t o be unsuitably costly and complex for general-purpose neural net-
work simulations. An alternative message-driven synchronization technique, a s used
in ANNE, was described, including two variations in inter-CN message packaging:
synchronous and asynchronous packetization, known respectively a s S P and AP.

Following the discussion of ANNE's design considerations, the specifics of
ANNE's implementation were covered. This discussion was prefaced by a brief
description of BIF, a n intermediate structural specification of neural networks used
by several of the CAP group's simulators. The details of BIF loading and parsing in
ANNE were examined, followed by a discussion of the procedures and structures used
t o effect inter-CN and inter-HN communication and synchronization. Last was a
description of ANNE's user interface, from the level of writing neural network simu-
lation code t o ANNE's command level during simulation runtime.

The three main design assumptions presented in Chapter 2 proved t o be some-
what optimistic a s they relate t o the iPSC. The xps tests illustrated tha t , in prac-
tice, the upper size limit for neural networks in ANNE is -2,000 links per HN. The
projected limit was ~ 7 , 5 0 0 links per HN. Two miscalculations contributed t o this
shortfall. One, the amount of extra object code contained in the library routines
loaded by the iPSC along with ANNE's HN image was underestimated. Second,
empirical study revealed t h a t larger networks required more than twice the normal
allotment of iPSC message buffers a t runtime, especially when distributed over large
dimensions of the iPSC. Both of these factors subtracted from the projected amount
of memory available for network storage.

The assumptions concerning the homogeniety of inter-HN communication and
the fault-tolerance of neural networks in the face of noisy input d a t a appear t o have
been more well-founded. Both assumptions greatly eased the otherwise complex
implementation of ANNE on OGC's hypercube. Moreover, the stress tests with
back-propagation models on ANNE verify the value of the communication and syn-
chronization techniques, which depend on these assumptions. Although the test
results are poor in some respects, this is not totally unexpected given t h a t the tech-
niques employed in ANNE are covering much new ground.

Chapter 4 presented the test suite used t o explore performance characteristics
of ANNE and the results of those tests. Several variations of a back-propagation
network model were used. Both the S P and A P methods were compared. Tests on
the iPSC were complemented with preliminary testing of a direct porting of ANNE
t o the iPSC/2.

The basic results from this testing suggest t h a t S P is not particularly well-
suited, in terms of raw performance, for networks with either a high or low intercon-
nection density. ANNE's synchronization scheme in S P mode does show promise
relative t o the convergence behavior of back-propagation, especially when inter-HN
communication costs are minimized a s with the iPSC/2. For the AP method, the
converse is true. A P greatly enhances ANNE's raw performance, most notably for
larger dimensions of the iPSC. But, with AP, convergence behavior is little
improved, and in many cases it is made more erratic.

In short, the combination of back-propagation and ANNE yielded some com-
plex results t h a t are not easily explained. The information capacity of back-
propagation models relative t o their size and configuration is still being explored.
Indeed, the relationship of synchronicity, network size, and convergence behavior is
important t o many network models and often not fully understood.

I t is significant, however, tha t a poor locality, highly synchronous network
was able t o converge under ANNE's simplified, semi-synchronous, inter-CN communi-
cation model. ANNE has clearly demonstrated the robustness of neural network
models in taking on such a challenging network model for multi-processing. More-
over, research with ANNE has contributed a new direction in thinking about the
synchronization of fine-grained, massively-parallel models of computation without
the need for complex event-driven simulation techniques. Important work remains in
testing ANNE with more recent network models t h a t feature more localized connec-
tivity and asynchronous operations between network nodes. BIF models do not, a s
yet, exist for the networks being derived from research in the neurobiological sci-
ences. However, ANNE offers a unique system for internally structuring such models
in a general way.

5.2. Future Work
The most rudimentary improvements t o ANNE simply involve completing the

implementation of the runtime commands listed in Chapter 3. Of these the most
useful would be the makernap command, allowing the specification of C N maps a t
runtime. Other basic functional improvements t o ANNE include: (1) a buffer
management scheme for loading BIF sub-files larger than the pre-allocated buffer

space for each HN, (2) giving the user the ability t o create her own set of runtime
parameters t h a t can be manipulated a t the host level, and (3) a graphic representa-
tion of the d a t a in the network, especially the link weights. The lat ter feature might
be implemented through a scripting mechanism in ANNE t h a t would periodically
write weight values t o a history file t o be later "played back" through a high-
resolution terminal.

A necessary feature t o add is the ability t o re-load the network procedure a t
runtime. Currently, the user must exit ANNE, revise and compile her network code,
link this code with ANNE, and re-start the simulator. Runtime re-loading of the net-
work procedure might be accomplished by pre-allocating a buffer for the user's object
code and providing entry and return linkage t o this code. The location of ANNE's
system calls and local C N table could be passed a s parameters via a special routine
called from the user's Init-.user& routine.

A more fundamental change t o ANNE, a s mentioned in Chapter 2, involves
replicating every structure of C N global da ta , contained in each local C N table
entry, across all HNs. This change t o ANNE's d a t a model needs t o be optional,
since i ts benefits are greatest for networks with low locality. Replication of C N d a t a
would significantly reduce the number of msgs produced a t each CN, from one for
every output link t o one per CN. However, the single C N output message produced
under this scheme is broadcast to all HNs in the network. For networks exhibiting
high locality and sparse interconnect, which was our main goal, ANNE's current
communication scheme is appropriate.

In order t o use ANNE more effectively for networks with poor locality, a n
alternative t o global C N replication would be t o allow more than one network t o
share the host processor simultaneously. In particular, when using large synchroni-
zation intervals, the host processor sits idle for long periods with a single network.
Multiple networks could share the hypercube and more fully utilize the host. Each
network would be allocated t o a unique set of HNs. The s t a tus of each network could
be maintained in network control blocks, much a s a time-share operating system
maintains multiple job control blocks. Or , a simpler approach would replicate the
same network over many HNs, giving each its own set of training vectors. The
weight changes in each network could then be combined into a single trained net-
work. A relatively new technique of simulating a back-propagation network in a sys-
tolic fashion, using linear arrays of processors, has proved t o be very effective
[PGT88].

ANNE's iPSC version should be viewed a s a developmental prototype, which
has provided valuable research toward new semi-synchronous, fine-grain simulation
techniques. I ts raw performance on the iPSC, using 32 HNs, while about three-fold
t h a t of a n unadorned network program on a VAX 11/780, is 2 orders of magnitude
less than t h a t claimed by the latest SAIC machine or Hecht-Nielsen Corporation's
ANZA+. Of course, SAIC's and HNC's solution t o neural network simulation is done
with DSP hardware, and is tailored for full matrix network models whose weight
matrices can be highly vectorized. Such networks exhibit poor locality. This type of
hardware would do poorly for the sparse connectivity and highly localized cortical
models tha t are included in the long term goals of the CAP group.

Furthermore, this type of hardware does not have the system overhead con-
tained in ANNE's software. For instance, there are numerous consistency checks
still done in ANNE related t o network structure and C N communications t h a t could
be made optional or eliminated. The inter-HN communication bottleneck must be
viewed, though, a s the greatest hindrance t o ANNE's performance in this multi-
processor implementation, especially for low-locality networks. I t is unclear how new
generation, biologically-based network models will affect the difference in perfor-
mance numbers between an improved version of ANNE and the current hardware
solutions to neural network simulation.

A modified version for the iPSC/2 (and beyond) should be developed. With
optimization, ANNE's shortcomings in performance and accuracy will be less
significant. The communication-bound nature of large networks on ANNE currently
can be relieved by exploiting two major improvements in the iPSC/2: inter-processor
messages can be of unlimited length, and messages over -1,500 KB achieve the shor-
test latency period. ANNE's msg packetization techniques must be made more
sophisticated t o take advantage of larger packet sizes a s the d a t a using A P has
shown. In addition, ANNE on the iPSC/2 could handle much larger networks and
realize further performance enhancements through the use of available vector
boards, faster floating point co-processors, and a high-speed node I/O system t h a t is
under development.

References

[BHJ88] Bahr, C., Hammerstrom, D. and Jagla, K., Concurrent Neural Network
Simulation: Two Examples Within A Single, Integrated Neural Network
Hardware Development Environment, IASTED Applied Simulation and
Modelling Conference, Galveston, Texas, May 1988.

[Bah88] Bahr, C., "ANNE User Manual," Tech. Report CS/E88-029, Dept. of
Computer Science/Engineering, Oregon Graduate Center, Beaverton, OR,
1988.

[BaH88] Bailey, J. and Hammerstrom, D., Why VLSI Implementations of Associative
VLCNs Require Connection Multiplexing, IEEE International Conference on
Neural Networks, San Diego, CA, July 1988.

[Bai88] Bailey, J., "A VLSI Interconnect Structure for Neural Networks," Ph.D.
Dissertation, Dept. of Computer Science & Engineering, OGC, 1988. In
preparation.

[Bro86a] Brown, C., "Hopfield's Nerve Nets Realize Biocomputing," Computer
Engineering, April 1986.

[Bro86b] Brown, C., "Neural Circuits Will Improve Vision, Speech Systems,"
Computer Engineering, April 1986.

[Fan861 Fanty, M., A Connectionist Simulator for the BBN Butterfly Multiprocessor,
Department of Computer Science, Univ. of Rochester, NY, January 1986.

[Ham861 Hammerstrom, D., "A Connectivity Analysis of Recursive, Auto-Associative
Connection Networks," Tech. Report CS/E86-009, Dept. of Computer
Science/Engineering, Oregon Graduate Center, Beaverton, Oregon, August
1986.

[HSA84] Hinton, G. E., Sejnowski, T. J. and Ackley, D. H., "Boltzmann Machines:
Constraint Satisfaction Networks tha t Learn," Technical Report CMU-CS-
84-119, Computer Science Dept., Carnegie-Mellon University, Pittsburgh,
P A 15213, May 1984.

[Hin87] Hinton, G. E., "Connectionist Learning Procedures," Tech. Rep. CMU-CS-
87-115, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh, PA,
June 1987.

[Hop821 Hopfield, J . J., "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities," Proc. Natl. Acad. Sci. USA, vol.
79(April 1982), pp. 2554-2558.

[HOT] Hopfield, J . J. and Tank, D. W., "Computing with Neural Circuits: A
Model," Science, vol. 233.

[Int85] Intel, iPSC User's Guide, October 1985.

[Jag881 Jagla, K., "A Broadcast Hierarchy Simulator for the Intel iPSC," CSE
Technical Report, Oregon Graduate Center, Department of Computer
Science/Engineering, Beaverton, OR, March 1988. In preparation.

[JeS82] Jefferson, D. and Sowizral, H., "Fast Concurrent Simulation using the Time
Warp Mechanism, P a r t I: Local Control," Tech. Rep.-83-204, Univ. of

Southern California, Computer Science Dept., December 1982.

[Joh88a] Johnson, M. A., "NDL User's Manual," CSE Technical Report, Oregon
Graduate Center, Department of Computer ScienceIEngineering,
Beaverton, OR, July 1988. In preparation.

[Joh88b] Johnson, M. A., "NDL Reference Manual," CSE Technical Report, Oregon
Graduate Center, Department of Computer Science/Engineering,
Beaverton, OR, July 1988. In preparation.

[LaF86] Lapedes, A. and Farber, R., "Programming a Massively Parallel,
Computation Universal System: Stat ic Behavior," LA-UR-1179, Los Alamos
National Laboratory, Los Alamos, NM, April 1986.

[Lin88] Linsker, R., "Self-organization in a Perceptual Network," IEEE Computers,
vol. 21, 3 (March 1988), pp. 41-51.

[LyB86] Lynch, G. and Baudry, M., Structure-function Relationships in the
Organization of Memory, Center for the Neurobiology of Learning and
Memory, Univ. of California, Irvine, 1986.

[May88a]
May, N., "Fault Simulation of a Wafer-Scale Neural Network," Tech.
Report CS/E88-020, Dept. of Computer Science/Engineering, Oregon
Graduate Center, Beaverton, Oregon, May 1988.

[May88b]
May, N., "FltSim Detailed Description and Operation," Tech. Report
CS/E88-021, Dept. of Computer ScienceIEngineering, Oregon Graduate
Center, Beaverton, Oregon, May 1988.

[MRH86a]
McClelland, J . L., Rumelhart, D. E. and Hinton, G . E., "The Appeal of
Parallel Distributed Processing," in Parallel Distributed Processing, vol. 1, P.
R. Group (ed.), 1986.

[MRH 8 6 b]
McClelland, J. L., Rumelhart, D. E. and Hinton, G. E., "Distributed
Representations," in Parallel Distributed Processing, vol. 1, P. R. Group
(ed.), 1986.

[MeM88] Mead, C. A. and Mahowald, M. A., "A Silicon Model of Early Visual
Processing," Neural Networks, vol. 1, 1 (1988), pp. 91-97.

[Mis86] Misra, J., "Distributed Discrete-Event Simulation," Computing Surveys, vol.
18, 1 (March 1986), .

[Nug88] Nugent, S. F., The iPSC/2 Direct-Connect Communications Technology,
Intel Scientific Computers, Inc., 1988.

[Pla87] Plate, T. , "A design for the simulation of connectionist models on coarse
grained parallel computers.," MCCS-87-106, Computing Research
Laboratory, Dept. 3CRL, New Mexico S ta te Univ., November 1987.

[PGT88] Pomerleau, D. A., Gusciora, G . L., Touretzky, D. S. and Kung, H. T., Neural
Network Simulation at Warp Speed: How We Got I 6 Million Connections P e r
Second, IEEE International Conference on Neural Networks, San Diego, CA,

July 1988.

[RuG86] Rumelhart, D. E. and Group, J. L. M. P. R., in Parallel Distributed
Processing, vol. 1, 1986.

[SeR] Sejnowski, T. J. and Rosenberg, C. R., "NETtalk: A Parallel Network tha t
Learns t o Read Aloud," Tech. Rep. JHUIEECS-86/01, John Hopkins
University.

[SSB83] Small, S. L., Shastri, L., Brucks, M. L., Kaufman, S. G., Cottrell, G. W. and
Addanki, S., "ISCON: A Network Construction Aid and Simulator for
Connectionist Models," Tech. Rep. 109, Univ. of Rochester, Dept. of
Computer Science, April 1983.

[Wor88] Works, G. A., The Creation of Delta: A New Concept in ANS Processing,
1988 ICNN Proceedings, San Diego, Calif., 1988.

