
Technical Report CS/E88-029 August 1988

ANNE USER MANUAL

Casey S. Bahr
Oregon Graduate Center

Dept. of Computer Science & Engineering
Beaverton, Oregon 97006-1999

(503) 690-1151

ANNE
USER m N U A L

Version 1.0
August 4, 1988

TABLE OF CONTENTS

.. LIST OF FIGURES

SECTION
.................................. . 1 GENERAL DESCRIPTION OF USAGE

... 2 . BIF NETWORK MODELS
... 2.1 CNs. Sites. and Links

.. 2.2 BIF Files

... 3 . RUNTIME SIMULATION MODEL
... 3.1 Simulation Clocking

... 3.2 CN-teCN Communication
3.3 Message Packetization ..

... . 4 USER CODE
.. 4.1 User Procedures

4.2 ANNE System Calls ...
4.3 Network Procedure: Node Level ...

... 4.4 Convergence Procedure: Host Level
4.5 Header File for User Procedures ...

.. 4.6 User Accessible Data Structures

.. . 5 RUNTIME COMMANDS

6 . AUXILIARY UTILITIES ...

7 . FILES ...

8 . RUNTIME EXAMPLE ...

9 . BIF GRAMMAR ...
.. 9.1 BIF Syntax

2.2 BIF's BNF ...
... 9.3 BIF Field Specifications

.. REFERENCES

LIST OF FIGURES

2.1 Conceptual structure of a CN ... 2
3.2 ANNE'S simulation clocking model ... 4

3.3 Conceptual model of the time-stamp window 5

User Manual for
ANNE - Another Neural Network E r d a t o r :

A program to simulate neural networks on the iPSC

1. General Description of Usage
A N N E is one of two simulators in the CAP (Cognitive Architecture Project)

group's neural network development environment tha t run on the iPSC
[~ a ~ 8 8] [~ a ~ 8 8] [~ ~ ~ 8 8] . ~ The development of a neural network simulation with
ANNE is composed of the following general steps:
(1) A network structure must be described in a standardized network

specification format known a s BIF (for Beaverton Intermediate Format). The
easiest way t o create a BIF file is through the use of N D L , CAP'S Network
Description Language (pronounced "noodle"). NDL creates connectivity
graphs of basic network objects known a s connection nodes, or CNs, which
can then be translated into BIF a s well a s other useful formats
[Joh88b] [Joh88a].

(2) A BIF file must have i ts CNs mapped t o the physical processors of the target
machine, in this case the iPSC. The node processors of the iPSC are called
H N s (for hypercube nodes) in this manual. Mapper is a CAP program used
for mapping CNs t o HNs.

(3) A mapped BIF file (called MIF) is further processed by a utility called bifsplit
t h a t allows ANNE t o parse a network specification in parallel.

(4) User code, which describes the algorithm of the network t o be simulated,
must be linked with ANNE's image prior t o runtime. The user code consists
of host and node portions.

(5) Finally, usual iPSC procedures are followed t o load the cube nodes and s t a r t
ANNE's host code.
The details of this somewhat lengthy procedure will become clearer in later

sections of this manual. Other manuals should be referenced t h a t describe the use of
NDL, Mapper, and the iPSC. For a thorough description of ANNE's design and
implementation see [Bah88].

2. BIF Network Models
A BIF file represents the connectivity specification of a neural network. BIF

a t tempts t o give the user both generality and compactness in modelling neural net-
works with one standardized format. BIF was originally derived from d a t a struc-
tures used for a neural network simulator done a t Univ. of Rochester [SSB83][Fan86].
This file contains the "raw" structure of the user's network in terms of three basic
objects: CNs, sites, and links. Unlike Rochester's version, functions associated with
these objects are not specified in BIF. Such functions are explicitly declared in the
user code linked with ANNE. Only a cursory description of BIF is given here t o

ANNE's source code may also be compiled t o run on the iPSC/2, but this version is not optimized for t h a t
machine.

make subsequent sections of this manual more understandable in terms of the d a t a
model used in simulations. A later section on BIF grammar gives a more detailed
specification of what a BIF file actually contains.

2.1. CNs, Sites, and Links
The basic network object is the CN. Each C N may have one or more sites,

and each site has one or more links. A C N is, thus, made up of three sub-parts. The
main C N fields pertain t o the global s t a te of an entire CN. A second sub-part is the
site, which groups the links and holds intermediate values derived from the values
received on those links. Links are actually shared between C N structures. T h a t is,
the link specification attached t o a particular C N is just one terminus of a n entire
link. Each link terminus holds the "address" of its other end and identical weight
and value information. Thus, links can easily be used in a bidirectional manner.
Figure 2.1 shows a pictorial model of a CN.

Figure 2.1: Conceptual structure of a CN and its sub-components.

2.2. BIF Files
A BIF file has two parts. The first contains a listing of the CNgroups, each

of which consists of a unique group index, a string name, and two initialization
values for CNs belonging t o the group. Each C N carries a n index corresponding t o
the group t o which the C N belongs. The group name allows the user t o address
groups of CNs symbolically. Each BIF file used with ANNE must have two special
C N groups named "input" and "output". These groups designate the CNs used for
global 110 operations.

The second pa r t of a BIF file consists of individual C N records. These records
are composed of a hierarchy of CNs, sites, and links. Sites nest within CNs, and links
nest within sites. Input or output sites are not listed in any particular order. Nei-
ther sites nor links are explicitly indexed in a BIF file.

Sites happen t o be specified in BIF a s being either input or output. This
designation is ignored in ANNE, where sites are bidirectional. In a typical case for
an input site (or bidirectional site being used for input), a site's link values are
summed together and the resulting intermediate value is used in internal C N calcu-
lations. An output site may be used t o broadcast the CN's output value, if any,
along the links at tached t o the output site.

As noted previously, each link specification within a single site is the
specification of one of two ends of a single connection between two CNs. Each link
terminus contains the index of the CN, site, and link of the corresponding terminus
a t the other end of the link. All links have a weight t h a t can be used t o modify
values passing along the link.

3. Runtime Simulation Model

3.1. Simulation Clocking
Two alternative synchronization methods were considered for ANNE. Both

alternatives are designed for distributed event-driven simulations. These alterna-
tives were Misra's algorithm [Mis86] and Time Warp [JeS82]. Both are designed for
general-purpose simulations t h a t require exact timing synchronization. ANNE
relaxes the constraints imposed by these complex, communication-intensive algo-
rithms by exploiting the fault-tolerance of connectionist networks t h a t employ a dis-
tributed representation of their d a t a [MRH86].

Rather than event-driven, ANNE utilizes message-driven timing and synchron-
ization. This scheme yields minimal message overhead, faster simulations, and no
possibility of deadlock. This technique gives the user the ability t o tune the parame-
ters of synchronization t o suit the particular network model a t hand. The basic
premise t h a t makes this method possible is t h a t CNs are able t o produce outputs
even if all their inputs have not arrived or have arrived out of time-order. At all
times there are available a t each CN's input links a value, whether it be a previously
used value or a new one.

Simulations are run using n + 1 closely coupled clocks, one global clock in the
iPSC host processor, and one local clock a t each HN. At the H N level, each com-
plete sub-network cycle constitutes a single time step. At synch points all HN clocks
are set t o the value of the global clock. The distance between these global synchron-
ization points is referred t o a s the synch-count. After executing synch-count cycles,

synch-count
clock

H O ~ broa.dcasts nkzt synch-point AK?

Increment local c l o c b by 1, up to s ynchpo in t

Fig: 5.2 ANNE'S simulation clocking model

each H N synchronizes with the host processor before continuing (see figure 3.2).

3.2. CN-to-CN Communication
Messages (output values) generated by CNs are stamped with the local HN

time. These time-stamps are not used t o strictly order messages between CNs.
Rather, a message-window is defined tha t "slides" along with the local H N clock.
When a message is received by a C N its time-stamp is compared with the window t o
determine i ts acceptability (see figure 3.3). The message-window, synch-count, and
synch-point are set by the user a t runtime and used t o "tune" network performance.

The generation and reception of C N messages is interleaved in order t o avoid
a n overflow of H N message buffer space. Interleaving message generation and recep-
tion also ac ts t o balance the overall synchronization between HNs. Once message
generation begins, message reception and processing is driven by the arrival of more
messages. Continued reception of messages is controlled by the setting of a message
probe timeout. After processing messages in reception mode, timeout probes are
made for more incoming messages before resuming message generation. The timeout
value is a user-controlled parameter.

In general, a larger synch-count elicits better performance from ANNE. This
is especially true when running networks in "learning" mode where i t takes many
cycles t o achieve convergence of the network. Experience has shown t h a t it is best
t o set the message-window t o about half the synch-count, or smaller. Network per-
formance may also be sensitive t o the setting of the probe timeout. The timeout acts

nowheresville

eimulation ,.' \.
\,

time
i \

incoming mega

Fig: 3.3 Conceptual model of the time-stamp window used in ANNE

a s a thrott le on simulations, often resulting in more synchronized performance for
larger configurations of the iPSC.

3.3. Message Packetization
Messages between CNs tha t reside on different HNs are placed in packets

holding from 1 t o 63 C N messages. Larger packets utilize the iPSC communication
facilities more efficiently. The size of these packets is user-controlled and is called
maxmsgnum.

Besides setting the maximum size of message packets, ANNE provides two
major options controlling the behavior of message packaging. The difference
between these options has t o do with the relationship between the local simulation
time and the time-stamps on the messages a t the originating HN. In the first
method, synchronous packetization or SP, all message packets are sent t o their desti-
nation HN during a single clock cycle. With SP, any remaining message packets are
flushed a t the end of each network cycle, regardless of their current size. Thus, the
messages contained in each packet carry the same time-stamp.

In contrast, asynchronous packetization or AP, is designed t o obtain maximum
utilization of message packet space. The AP method only ships message packets
when they have reached the maximum capacity set by the user in maxmmsgnum. No
packet flushing occurs a t the end of each network cycle. Messages with different

time-stamps may be found within the same packet. AP, in general, will improve the
speed of simulations a t the cost of increased asynchrony in CN-to-CN communica-
tions. For the feed-forward mode of most neural network models, the S P method is
most appropriate.

4. User Code

4.1. User Procedures
Two procedures are needed t o implement a network algorithm in ANNE. The

convergence procedure checks the global output of the network against some user-
defined measure t o see if the network has converged t o a s ta te tha t requires a new
input vector. ANNE, of course, delivers the first input vector of a simulation
without checking the convergence s ta te of the network. The network procedure
resides in ANNE'S HN image and acts a s the script for an entire network cycle from
the presentation of global input by the host t o the sending of global output from the
CNs designated as "output" CNs back t o the host. The network procedure is identi-
cal for each iPSC node. Neither procedure needs t o be changed t o accomodate
different dimensions of the iPSC. Simply re-mapping a network's BIF specification is
all tha t is needed t o run networks on different iPSC dimensions.

This version of ANNE allows the user t o load two versions of each of the
above procedures before runtime. Thus, one pair of convergence and network pro-
cedures might be used t o simulate the learning phase of a network, while the second
pair is used for the network's feed-forward phase. The user can toggle between these
pairs a t runtime. Special names for these procedures must be used. The conver-
gence procedures must be named Convergence1 () and Convergence2 () . The
network procedure names are User-fxl () and User-fx2 () . The network pro-
cedures must also include initialization routines, named Init-userfxl () and
Init-userfx2 0 . These allow the user t o initialize her own parameters and d a t a
structures a t the s t a r t of each network run. Init-userfx* () is called once by
ANNE.

At runtime, ANNE will prompt for the set of procedures t o be used for a par-
ticular run, designated by a "1" or "2". Auxiliary utilities, described later, can be
used t o facilitate the loading of user procedures with ANNE. These utilities can also
load default "dummy" procedures should the user be interested in loading only a sin-
gle set of user procedures.

When writing the convergence procedure, the user has access t o the simula-
tion parameters, the input vector, output vector, and target vector, if any. Con-
vergence* () returns 1 if convergence is met, 0 otherwise. The network procedure
has access t o the simulation parameters, and all the network da ta , which are stored
in structures modelled after the BIF format. A number of ANNE system calls are
also provided t o the user's network procedure, mainly t o effect CN-to-CN communi-
cation. Although some of these system calls can be used t o on individual CNs, other
calls have been provided t o encourage the user t o write the network procedure a s
operations on groups of CNs, for instance the layers in a back-propagation model.
The details of writing these procedures is covered in more detail in the following
sub-sections.

4.2. ANNE System Calls
Here is a listing of the ANNE system calls provided for the user's

User-f x* () procedure.

send-node-output(cn-index,site-index);
Sends the output from a single CN along all the output links belonging t o the
named site.

Send-group-output(group-name,site-index):
Performs the same operation as Send-node-output () for a named group of
CNs.

Send-net-output(fi1ename):
Used specifically for global network output t o the host process. The output vector
is written by the host t o the named file.

Update~node~weights(cn~index,siteeindex):
If the user has set the link weights on a particular node and the link is used
bidirectionally the user makes this call t o transmit the new weights t o the other
end of the links. The CN and site indices in the parameter list name the group of
links t h a t transmit their weights.

Update-group-weights(group-name,site-index);
Performs the same function as Update-node-weights () for the named group
of CNs.

cnlist * Get-cnlist(group-name):
Returns a structure tha t holds both a list of the local C N indices belonging t o the
group name and the number of CNs in the list.

Following is an example of the network procedures for a straightforward
back-propagation network model. These procedures will work for any three-layer
back-propagation network up t o the limitations of ANNE'S d a t a structures. Note
tha t function calls beginning with an upper-case letter and in this font are system
calls provided by ANNE, others are written by the user. The code for the user pro-
cedures has been included.

4.3. Network Procedure: Node Level

#include "user fx. h"
#include <math.h>
#define TOP 1
#define BOTTOM 0

/ * cnlists are lists of the cn indices present on the local HN * /
static cnlist *ens-in, *ens-hid, *ens-out:
/ * user's network functions * /

void Input-site-fx () , Other-site-fx () , Assign-to-outsite () , Squash () ;
void Calculate-output-error(), Calculate-other-error();
void Init-user-fxl () ;
short Activate () ;
/ * simulation parameters accessed by the user code */
extern cycle-params cp;
/ * buffer for iPSC log messages * /
char sb [80] ;

/ * Init-user-fxl: Called once by ANNE to init user data * /
.
void Init-user-fxl ()
<

int i;

cns-in = Get-cnlist("input");
cns-hid = Get-enlist("hidden") ;
cns-out = Get-cnlist("output");
Update-group-weights("hiddenU ,TOP);
Update-group-weights("hidden" ,BOTTOM) ;
/* no fault simulation * /
faulting = OFF:

. /
/ * User-fxl: for back-prop network. * /
/ * This procedure describes the "script" modelling the * /
/ * network's behavior for a single network cycle. * /
. /
void User-fxl ()
<

int cnx, i, 1;
float ferr, upd, fout:

/ * * FORWWARD PASS * * /
/ * get an input vector from the host * /
Input-site-fx () ;
Send-group-output("input " ,TOP) ;

/ * sum weighted inputs at hidden layer, activate, and send output * /
Other-site-fx (cns-hid, BOTTOM, 1) :
Squash (cns-hid, BOTTOM) ;
Assign~to~outsite(cns~hid,TOP);
Send-group-output("hidden" ,TOP);

/ * sum weighted inputs at output layer, activate, send to host * /
Other-site-fx (cns-out , BOTTOM, 1) :
Squash (cns-out, BOTTOM) ;

/ * * BACKWARD PASS * * /
~alculate~output~error(cns~out);
for (i = 0: i < cns-out->numcns; i++) {
cnx = cns-out->ens [i] :
SITEVALUE (cnx, BOTTOM) = ERROR (cnx) :

Send-group-output("output" ,BOTTOM) ;

/ * received error from output layer * /
/ * sum weighted error signals * /
Other-si te-fx (cns-hid, TOP, 0) ;
/* calculate this layer's error and send down * /
Calculate-other-error(cns-hid):
for (i = 0: i < cns-hid->numcns: i++) {
cnx = cns-hid->ens [i] ;
SITEVALUE (cnx, BOTTOM) = ERROR (cnx) ;

1
Send-group-output("hidden" ,BOTTOM);

/ * send new weights to other end of links */
Update-group-weights(" hidden" ,TOP);

Other-site-fx (cns-in, TOP, 0) ;
Calculate-other-error(cns-in);
/ * send new weights to other end of links * /
Update-group-weights("input" ,TOP) ;

) / * end User-fxl() * /
. /
/ * Calculate-other-error * /
. /
void Calculate-other-error(cn1)
cnlist *cnl;

{
int cnx:
short i, local-error;
float ferr, fout:

for(i = 0; i < cnl->numcns: i++) {
cnx = cnl->ens [i] ;
f out = SHORT-TO-FLOAT (OUTPUT (cnx)) ;
ferr = SHORT-TO-FLOAT (SITEVALUE (cnx, TOP)) * DERIV (f out) ;
ERROR (cnx) = FLOAT-TO-SHORT (f err) :

void ~alculate~output~error(cnl)
cnlist *cnl;

C
int cnx;
short i, local-error;
float ferr, fout;

for (i = 0; i < cnl->numcns; i++) {
cnx = cnl->cns [i] ;
local-error = targetvals [cnx] - OUTPUT (cnx) ;
f out = SHORT-TO-FLOAT (OUTPUT (cnx)) ;
ferr = SHORT-TO-FLOAT (local-error) * DERIV (fout) ;
ERROR (cnx) = FLOAT-TO-SHORT (f err) ;

3
3 . /
/ * ~nput-site-fx * /
. /
void Input-site-fx ()

<
int cnx;
short i, siteval:

/ * global inputs are ready and waiting in site value * /
if(cns-in != (cnlist *)NULL) {
for (i = 0: i < cns-in->numcns: i++) {

cnx = cns-in->ens [i] ;
/* output function is identity * /
OUTPUT (cnx) = SI TEVALUE (cnx , 0) ;
i f (faulting) (void) f lt-cn (cnx, &OUTPUT (cnx)) ;

j . /
/* Other-site-fx * /
. /
void Other~site~fx(cnl,site~index,direc)
cnlist *cnl;
short site-index;
int direc;

t
int cnx, siteval, i;

if(cn1 != (cnlist *)NULL) (
for(i = 0; i < cnl->numcns; i++) {

cnx = (int) cnl ->ens [i] ;

if(direc != 1) { / * make weight change while error in inval *,
Weight-change (cnx , site-index) ;

>
/* weight and sum inputs be they error or output * /
siteval = Sum~inputs(cnx,site~index);
if (faulting) {
(void) f lt-site (cnx, site-index, (short *) &siteval) ;

1
SITEVALUE (cnx, site-index) = siteval ;

/ * Squash: applies the activation function to the * /
/ * output and assigns the result to the output site. * /
. /
void squash (cnl, site-index)
cnlist *cnl;
short site-index;

C
int cnx, i;

if(cn1 != (cnlist *)NULL) {
for(i = 0; i < cnl->numcns; i++) {

cnx = cnl->ens [i] ;
OUTPUT (cnx) = Activate (cnx, SITEVALUE (cnx, site-index)) ;
i f (faulting) (void) f lt-cn (cnx, &OUTPUT (cnx)) :

/ * Assign-to-outsite: assign output to output site * /
. /
void Assign~to~outsite(cn1,site~index)
cnlist *cnl;
short site-index:

t
int cnx;
int i;

if(cn1 != (cnlist *)NULL) (
for(i = 0; i < cnl->numcns; i++) {

cnx = cnl ->ens [i] :
SITEVALUE (cnx, site-index) = OUTPUT (cnx) ;

/ * Activate: CN activation function. * /
. /
short Activate (cnx, siteval)
int cnx;
short siteval;

double dblval;
char s [80] ;

dblval = SHORT-TO-DOUBLE(siteva1);
/ * don't blow up expo * /
if (dblval < -30) {
return (0) ;

3
if (dblval > 30) {
return (500) ;

1
dblval = l.0/ (1 .O+exp (-1 .O*dblval)) ;
return (DOUBLE-TO-SHORT (dblval)) ;

) /* end Activate () * /

4.4. Convergence Procedure: Host Level

Here is the corresponding convergence procedure tha t runs in the host:

#include "convergence. h"
FILE *fpcyc: / * print out cycle data to this file * /
/ * used to convert standard BIF vectors to floating point * /
double dbl-err [NCNS] , dbl-out [NCNS] , dbl-targ [NCNS] ;
static int total-cycles = 0;
char alf [16] = {'A', 'B' , 'C' , 'D' , 'El, 'F' , 'GI, 'H' ,

'I1, 'J', 'Kt, 'L', 'MI, 'N', 'O', 'P');
/ * alf is for use in character recognition network */
. /
/ * Convergencel: for back-prop nets. * /
/ * return 1 if converged, 0 if didn't */
. /
int Convergencel ()
<

int i , mark, ok = 1, maxind;
double ferr, maxout:

/ * detect if each node is within defined limits * /
fprintf (stderr, "\nTARGET: ") ;
for (i = 0; i < numoutputs; i++) {
dbl-targ [i] = INT-TO-DOUBLE (targetvec [i] *SCALE) ;
dbl-out [i] = INT-TO-DOUBLE (outputvec [i]) ;
dbl-err [i] = dbl-targ [i] - dbl-out [i] ;
errorvec [i] = DOUBLE-TO-INT (dbl-err [i]) ;

/ * fabs () didn't fx properly * /
ferr = dbl-err [i] ;
if (ferr < 0.0) ferr = -1 * dbl-err [i] ;
if (ferr > cp.err-factor) { /* then too much error * /

ok = 0;
1
fprintf (stderr, "X2.2 f ", dbl-targ [il) :

/* print output vector to screen at each synch point * /
fpr int f (stderr , "\nOUTPUT : ") ;
for(i = O ; i C numoutputs; i++) {
fprint f (stderr , "X2.2 f " , dbl-out [i]) ;

1
if (ok) {
maxout = dbl-out [O] ;
maxind = 0;
for (i = 1; i < numoutputs; i++) {

if (dbl-out [i] > maxout) {
maxout = dbl-out [i] :
maxind = i;

1
3
total-cycles += cp.numcycles;
fprintf (stderr, "CONVERGED on %c in %d cycles, total cycles=%d\nl',

alf[maxind],cp.numcycles,total~cyc1es);
fpcyc = fopen (''cycles" , "a") ;
fprintf (fpcyc, "CONVERGED on %c in %d cycles, total cycles=%d\nl',

a1 f [maxind] , cp.numcycles, total-cycles) ;
fclose (fpcyc) ;

J
return (ok) ;

4.5. Header File for User Procedures

/ * ANNE system calls * /
extern void Send-node-output(), send-group-output(), send-net-output();
extern void Update-node-weights(), Update-group-weights();
extern cnlist *Get-enlist();
/ * local CN table * /
extern CNentry CN [MAX-CNS] ;
/ * used for target vector, if any * /
extern short targetvals [MAX-CNS] ;

/ * structure holding user-controlled simulation parameters * /
extern cycle-params cp;
/ * faulting flag * /
extern int faulting;

/ * USER MACROS * /
/ * for simplified access to CN table fields * /
#de fine DELAY (cn) CN [cn] . C- >de 1 ay
#define HISTORY (cn) CN [cn] . C->history
#define RESTPOT (cn) CN [cn] . C->restpot
#define POT (cn) CN [cn] . C- >pot
#define STATE (cn) CN [cn] . C->state
#define OUTPUT (cn) CN [cn] . C->output
#define ERROR (cn) CN [cn] . C->error
#define SD (cn) CN [cn] . C->sd
#define SITEVALUE (cn, s) CN [cn] . sites [s] .value
#define SITENLINKS (cn, s) CN [cn] . sites [s] . nlinks
#define LINKPTR (cn, s, 1) &CN [cn] . sites [s] . links [1]
#define LINKVEC (cn, s, 1) CN [cn] .sites [s] . links [l] . lnkvec
#define LINKHISTORY (cn, s, 1) CN [cn] .sites [s] . links [l] .history
#define LINKWEIGHT(cn,s,l) CN[cn] .sites[s] .links[l] .weight
#define LINKINVAL (cn, s, 1) CN [cn] .sites [s] . links [l] . inval
#define SETWTUP (cn, s, 1) CN [cn] .sites [s] . links [l] . lnkvec 1 =LV-WTUP

/* used to convert int fields to float and vice versa * /
#define SHORT-TO-FLOAT (s) ((((float) s) / (float) SCALE))
#define FLOAT-TO-SHORT (f) ((short) (f * (float) SCALE))
#define SHORT-TO-DOUBLE (s) ((((double) s) / (double) SCALE))
#define DOUBLE-TO-SHORT (d) ((short) (d * (double) SCALE))
#define DERIV(f) (f * (1 - f))

4.6. User Accessible Data Structures
In writing the network procedure the user has access t o local d a t a structures,

including those holding the CNs. These structures are modelled closely after the BIF
format. The following d a t a structures can be accessed by the user:

/ * entry in local cube node CN table */
typedef struct {
unsigned char hn: / * hypercube node index where CN lives * /
SFWL *sites; / * array of sites belonging to this CN * /
CFWN *C; / * pointer to a CN structure * /

)CNentry;

CNentry CN [MAX-CNS] ; /* table of local CNs * /

/ * a link * /
typedef struct {
unsigned char lnkvec; / * bit vector for this link * /

char history;
BYT4 cn;
short site:
short link;
float weight;
short inval;

) LEWI;

/ * recent history of link * /
/ * CN this link goes to * /
/* site this link goes to */
/ * link this link goes to * /
/ * weight value for link * /
/ * input value to this link * /

/ * a site * /
typedef struct {
short value; / * result of site function * /
unsigned char sitevec: / * bit vector for this site * /
short nlinks: /* number of links attached * /
LEWI *links; / * pointer to links array * /

)SFWL;

/ * a CN * /
typedef struct {
char group; / *
BYT4 index; / *
short procid: / *
short delay; / *
unsigned char bitvec; / *
char history; / *
short restpot; / *
short pot; / *
char state: / *
short output; / *
short error; / *
short sd: / *
short nsites; / *

)CEWN;

group this CN belongs to
unique CN index
cube processor for CN
delay of output message
bit vector for this CN
recent history of CN
resting potential
potential
current state of CN
current output value
error value
statistical deviation
number of sites on CN

/ * struct passed to user from Get-cnlist(groupname) * /
/ * recommended that a cnlist be allocated statically * /
typedef struct {
int numcns; / * number of CNs in list * /
BYT4 *cns: / * list of CN indices * /

)enlist:

/ * simulator's synchronization parameters * /
/ * shared by both the host and nodes * /
/ * recommended that these not be assigned * /
typedef struct {
short global-clock, / * global simulation clock (host) * /

local-clock, / * local simulation clock (nodes) * /
msg-window, / * window for valid cn<->cn msgs * /
synch-count, / * # of local clock cycles to run * /

synch-po int , /* global-clock + synch-count - 1 * /
checkpoint; / * synch-point to break at (host) */

) cycle-params;

cycle-params cp;

/ * node vectors only available in the host * /
int *targetvec, / * target vector length=numoutputs * /

* outputvec, / * output vector length=numoutputs * /
"errorvec, / * error vector length=numoutputs * /
*inputvec; / * input vector length=numinputs * /

int numoutputs,
numinputs;

/ * number of output CNs * /
/ * number of input CNs * /

5. Runtime Commands
buildnet 1-tvlfdll 1 2 1 3 1 xj]

Constructs and initializes the network and auxiliary d a t a structures and leaves
the network in a suspended state. The flags have the following meanings:

t - Turn on timing information, such as measuring the number of
connections per second.

v - Turn on "verbose" mode. Allows a dump of the BIF file with
all fields labelled.

1 - Turn on logging. Although this option is not extensively
implemented in ANNE's code, i t can allow logging t o a default file of
the actions taken by ANNE during a simulation.

f - Turn on fault calls. Used in conjunction with FltSim for
simulating faulted networks.

d - Turn on various debug options for debugging ANNE itself.
Additional qualifiers may be used individually or combined t o effect
the following results:

1 - turns on debug statements in ANNE's host level code.

2 - turns on debug statements in ANNE's node level code.

3 - turns on "verbose" mode in each HN, similar t o v
above. The individual BIF sub-files sent t o each HN are labelled
and recorded in the iPSC log file.

x - turns on debug statements associated with running ANNE
in faulted mode, i.e. with FltSim.

Without additional qualifiers d turns on all debug options,
except x.

newrun
Begins a simulation run. The user is prompted for the names of the input vector,
the target vector (if any), and output vector file names. The user sets the size of
message packets and the length of timeout for receiving messages.

startnet
Activates the simulation. The user is prompted t o set synch-count,
message-window, and the next checkpoint. The checkpoint is checked t o see t h a t i t
corresponds t o a global synchronization point. A checkpoint may be set such tha t
the simulation works in step mode, tha t is, i t only progresses one clock cycle before
suspending.

stopnet
Causes the network t o suspend a t the next global synchronization point whether
or not i t has reached a preset checkpoint. I t may be restarted with the startnet
command.

savenet
Saves the current network structure (including modified weights, etc.) in a new
BIF file, which can be used later for a new simulation. The user is prompted for
the name of the save file.

show
Checks the s t a te of the "local" simulation parameters and lists the currently
active traces (see below).

quit
Causes ANNE t o exit. Once a network is activated (by startnet) summary statis-
tics are sent from the HNs and written t o a summary file, then ANNE exits.

help
Prints a list of ANNE'S commands.

The user gains access t o network d a t a via C N maps. These are named groups
of CNs. The default C N maps are the CNgroup blocks found in a BIF file.
Attached t o each C N group is a list of the CNs tha t belong t o it. By giving the
name of a C N group t o certain user operators, either via the terminal or a t the node
level through the user network code, entire groups of CNs are addressed. Currently,
only the retrieval and assignment of "cn" fields is fully implemented.

The following are user commands tha t can be invoked when the network is in
a suspended state. They operate on CN maps.

print <struct-name> <field-name> <CNmap-name>
Prints the current value of struct-name.field-name for each C N in the named CN
map.

assign <struct-name> <field-name> <CNmap,name>
Assigns a value t o struct-name.field-name in each C N in the named C N map. The
user is prompted for a C N index and enters a value for each CN.

trace <struct-name> <field-name> <CNmap-name>
This command acts similarly t o print except tha t the current values for each C N
in the CN map are printed a t each global synchronization point, according t o
synch-count.

untrace < trace,nurnber>
The show command lists all active traces with a corresponding trace-number.
These numbers can be passed t o untrace t o delete a particular trace.

reset {<CNmap-name> (all}
Resets the link weights in a particular C N map or the entire network (implemen-
tation incomplete).

eucldist < CNmap-name> < CNm ap,name>
Gives the Euclidean vector distance between two C N maps, for example, the ham-
ming distance (implementation incomplete).

intersect < CNmap,name> <CNmap,name>
Gives the conjunction of two C N maps (implementation incomplete).

union < CNmap-name> < CNmap-name>
Gives the disjunction of two C N maps (implementation incomplete).

makemap < CN-range> < CNmap-name>
Allows the user t o define CNmaps other than the default C N maps built when the
simulator is initialized (implement a t ion incomplete).

6 . Auxiliary Utilities
loadconv convfxl .c convfx2.c
loaduf userfx1.c userfx2.c

These utilities ease the job of compiling and linking the convergence procedure
and the network procedure with ANNE's host and node images, respectively.
ANNE can be loaded with two versions of each type of network procedure.
Thus, each utility expects two file names as arguments. If only one file name is
given, a default (empty) procedure will be loaded. The named 'C' files will
automatically be compiled and linked in with ANNE, according t o the makefile
supplied with ANNE's code. At runtime the user can switch between the sets
of user functions with the newrun command.

ndl may be used t o create back-propagation networks. This version of ndl only
creates one this type of network. Type "ndl" t o see its usage.

mapdim is an alternative mapping utility t o Mapper. Mapdim takes a raw BIF
file, created by NDL (or ndl) and adds the appropriate processor ids t o the C N
specifications according t o a simple algorithm. In effect, mapdim slices the net-
work vertically into equal partitions. The user may supply her own CN-to-HN
map and feed this t o mapdim using the -m flag. Type "mapdim" t o see its
usage.

bijsplit splits a mapped BIF file into a s many sub-files as their are HNs, plus one
groups file containing the C N groups and the CN-to-HN map. These files are
labelled with the same prefix as the original mapped BIF file and suffixed with
the number of the HN they belong to, or with "groups" in the case of the C N
groups file. When specifying the BIF file t o load a t runtime, using bui ldnet ,
only the file prefix is specified.

loadnl takes two arguments corresponding t o the cube dimension t o be used and
the number of HN message buffers. I t automatically specifies a stack size of
8000, necessary for ANNE's HN code.

7. Files
Several files are important t o ANNE's operation. The executable modules for

the host and node portions of ANNE are called "anne" and "nl" respectively. Input
vectors must be supplied in a file of any name with the number of input vectors a t
the top of the file. If supervised learning is t o take place, a target vector file of any
name must be supplied. I t does not specify how many vectors i t contains. The
input, output, and target file names are prompted for a t runtime.

Summary statistics are written t o llNET.SUMM" a t the end of each session
with ANNE. This file is overwritten a t the s t a r t of each session.

If logging was turned on using the "-1" flag for buildnet, then log messages will
be written t o "ANNE.LOG".

8. Runtime Example
Following is a script containing the steps necessary t o simulate a three layer

back-propagation network containing 32 CNs in each layer.

S c r i p t s t a r t e d on Mon J u l 18 16:55:40 1988

Oregon Graduate Center I n t e l iPSC System 310-40
XENIX 286 R3.4 iSC Release 3.1 (05/87)

Hypercube Manager
LAN Name: hyper

cube [I] ndl
Usage: NDL <#inputs> <#hidden> <#outputs> <name of output f i l e > [r l f]

cube [2] ndl32 32 32 n32 f

32 i npu t s
32 hidden
32 outputs
filename: n32
done

cube [3] mapdim
usage :
mapdim <b i f f i l e > <mapfile> <cubedim> [-m <cnhnmap>] 1 1-1 <b l> < m l > < t l >]
cube [4] mapdim n32 n32.d2 2 -1 32 32 32
Calcu la t ing p i d s fo r n e t with:

32 cns i n t h e bottom layer
32 cns i n t h e middle l ayer
32 cns i n t h e top l ayer

End of b i f f i l e found

cube [5] bifsplit
Not enough arguments
usage: bifsplit [-r] <biffile> <cubedim>
cube [6] bifsplit n32.d2 2
End of bif file found

cube[7] loadconv bp.conv.c ff.conv.c
*make anne ItCFC1=bp. conv. c" "CFOl=bp. conv. o" "CFC2=ff. conv. c" 11CF02=f f . con1

cc -Alfu -K -W 2 -c f f. conv. c
ff.conv.c
/usr/include/stdio.h(89) : warning 67: unexpected characters following '#er

cc -Alfu -K -W 2 -0 anne hscan.0 ann1ib.o c1i.o hash.0 hnet.0 printbl
anne completed
cube [8] loaduf bp.uf.c ff.uf.c
/bin/rm nl
* make nl "UFCl=bp.uf .c" "UFOl=bp.uf. o" "UFC2=f f .uf .c" "UF02=f f .uf. o" *

Id -M1 -0 nl -m nlmap nl .o nscan.0 nnet .o bp.uf .o f f .uf. o noflt .o /li:
nl completed

cube [9] loadnl2 150
load -c 2 - S 8000 -b 150
Number of system buffers: 150, available memory: 250854 bytes
Load succeeded

cube [lo] anne
* * ANNE * * V0.7

Happy neural networking . . .
ANNE : buildnet -t
Set timing flag ON
Name of bif file ? -> nets/n32.d2

Building network *
Loading BIF sub- files * * * *
Read groups file
Sent group tables * *
BIF loading took 8 secs

* * Network suspended * * (type 'help' for commands)

ANNE: newrun
Which set of user functions to use [l or 23 ? -> 2
Supervised Learning? [y/n] (y) -> n
Name of input file ? -> in
Name of output file ? -> out
Size of cn message packets (default 63) ->
Timeout for cn message probes (default 0) ->

ANNE : startnet

* * AT SYNCH POINT * *
* * Run: 0 Clock: 1 Checkpoint: -1
* * Synch-count: 1 Msg-window: 0 Msgpak size: 63
* * Msg timeout: 0 Error: 0.00 Supervised : OFF
Are current synchronization parameters ok? [y/n/q] (y) n

Enter synch-count (now 1) -> 10

Enter msg-window (now 0) -> 5

synch-count = 10 msg-window = 5 ok? [y/n/q] (y)

Is the current checkpoint ok? (now -1) [y/n/q] (y)
Checkpoint (-1) expired, set new checkpoint -> 11

* * New network cycle * * Vector #1 * *

OUTPUT: 0.64 0.65 0.80 0.28 0.67 0.64 0.61 0.50 0.61 0.54 0.49 0.70 0.72 0.
* * AT SYNCH POINT * *

* * Run: 1 Clock: 1 Checkpoint: 11
* * Synch-count: 10 Msg-window: 5 Msgpak size: 63
* * Msg timeout: 0 Error: 0.00 Supervised: OFF
* * Reached checkpoint * *
* * Network CONVERGED * *
Printing output vector to out

* * Network suspended * * (type 'help' for commands)

ANNE : help
/ * * * current command syntax Jan. 18, 1988 * * * /

/ * * * ' # I in front of command signifies it is unimplemented ***I

/ * * global simulation commands * * /
bui ldnet [-tv]
newrun
show
startnet
stopnet
savenet
quit

/ * * CN map commands * * /
print <struct-name> <field-name, <CNmap-name,
assign <struct-name> <field-name> <CNmap-name>
trace <struct-name> <field-name> <CNmap-name>
#reset [<CNmap-name> 1 all]

ANNE: quit
MPS = 5175.72 WPS = 469.19 XPS = 4564.95 total msgs = 22592
HXPS = 1107.00 Percentage of msgs delivered = 97.26%

Leaving ANNE
cube [ll]
script done on Mon Jul 18 17:07:28 1988

9. B F G r a m m a r
BIF's (pseudo) grammar and structure is presented in three par ts in order t o

clarify i ts structure. First, there are some notes on BIF syntax. This section is fol-
lowed by BIF's BNF description, which reduces t o the level of field-terminals. These
terminals correspond t o the field names in BIF's current specification. Last, there is a
field-by-field BIF specification, showing how CNs, sites, and links are layed out, along
with definitions of the named fields. This description also includes the C N types
fields.

9.1. BE' S y n t a x
Six reserved words plus four bit flags are used t o facilitate BIF parsing. There

is one bit vector per CN, site, and link. Three reserved words a re used t o delimit the
beginning and end of the C N groups block and each group within this block. s g b k ,
e g b k , and egrp mean "start C N group block", "end C N group block", and "end C N
group", respectively. In a similar manner, the other three reserved words mark the
s t a r t and end of the C N record section (scbk for "start C N block", and e c b k for
"end C N block") with a word t o end each C N record (endc) In each site and link
specification there is a bit t h a t tells the parser when it is reading the last site or link
in the current sub-block. Two additional bits indicate which of certain optional
fields are present in C N and link records.

Special conditions and limitations for this BIF t h a t should be noted:
C N group names are a maximum of 8 characters in length.
"Optional" fields are, for the time being, non-optional. Current BIF parsers
ignore the bits flagging optional fields. Thus, all optional fields exist in every
BIF file.
"User model" fields are those fields necessary for the user when manipulating
the network d a t a in the simulators, but not necessary t o the input BIF file used
by our simulators. Thus, they are left out of the BIF files t o reduce the file
length.
Reserved words which end a sub-block (egrp,endc) must precede the reserved
word for ending the block.

9.2. BIF's BNF

The different fonts used in the grammar have these meanings:

non-terminal, field-terminal, reserved word, real terminal, constant.

Items on the right side of a production rule are disjoint if they are on
separate lines, except where they must extend over more than one line. In
that case an '@' symbol is used to denote continuation.

bif-file:
gblock cblock

gblock:
sgbk grouplist egbk

grouplist:
grouplist
groupfields egrp

groupfields:
index name initpot initstate

cblock:
scbk cnlist ecbk

cnlkt:
cnlist
cn endc

cn:
cnfields sites

cnfields:
group index procid delay bitvec cn-options en-data

cn-options: (assume all are present for now, see cover note)
history restpot pot state output error sd

en-data: (not included in bif file, but included in user's data model)
nsites

sites: (up to last bit set in iotype)
sites
sitefields links

sitefields:
value sitevec site-data

site-data: (not in bif file, but in user's data model)
nlinks

links: (up to last bit set in lnkvec)
links
linkfields

linkfields:
lnkvec link-options cn site link weight link-data

link-options:
history

link-data: (not in bqfile, but in user's data model)
inval

2 6

9.3. BIF Field Specifications

nn-byte: 8 bits unsigned (non-negative value)
short: 16 bits signed
nn-short: 16 bits unsigned
nn-int: 32 bits unsigned
ids: 8 byte character string (9 bytes including '\o')

Field-Terminals Definitions

bitvec

field name I def
bitvec nn-byte
cn nn-int
delay nn-short
error short
history(CN) nn-byte
hist or y(1ink) nn-byte
group nn-byte
index(CN) nn-int
index(type) nn-byte
initpot short
initstate nn-byte
inval short
link nn-short
lnkvec nn-byte

7 6 5 4 3 2 1 0

1 4 bits 1 bit I 1 bit I 1 bit I 1 bit I

field name I de f

n- (type) id8
nlinks nn-short
nsites nn-short
output short
pot short
procid nn-short
restpot short
sd short
site nn-short
sitevec nn-byte
state nn-byte
value short
weight short

no. of udf'8 not used history state error

restpot output sd
pot

sitevec
7 6 5 4 3 2 1 0

1 bit 1 bit 1 bit I 6 bits I
i/ o fas t P ~ ~ I P ~ P no. udf'8

lnkvec
7 6 5 4 3 2 1 0

I 1 bit 1 l b i t I 1 bit I 1 bit I 4 bits I
history last active wt up not used

bitvec (4 low-order bita)

decimal octal optional fields present
0 00 no optional fields present
1 01 error, ad
2 02 state, output
3 03 state, output, error, ad

4 04 history, restpot, pot
5 0 5 history, restpot, pot, error, ad
6 06 history, restpot, pot, state, output
7 07 all optional fields preaent

sitevec (4 high-order bita significant)

decimal octal meaning
0 0000 output site, not last site, ptp

32 0040 output site, not last site, pbh
64 01 00 output site, last site, ptp
96 014 0 output site, last site, pbh

128 0200 input site, not last site, ptp
160 0,240 input site, not last site, pbh
192 0300 input site, last site, ptp
224 034 0 input site, last site, pbh

lnkvec (3 high-order bits)
decimal octal meaning

0 0000 history off, not last link, inactive link, no weight update
16 0020 history off, not last link, inactive link, weight update
32 004 0 history off, not last link, active link, no weight update
4 8 0060 history off, not last link, active link, weight update
64 01 00 history o f , last link, inactive link, no weight update
80 01 20 history o f i last link, inactive link, weight update
96 0140 history off, last link, active link, no weight update

112 01 60 history off, last link, active link, weight update
128 0200 history on, not last link, inactive link, no weight update

144 0220 history on, not last link, inactive link, weight update
160 02.40 history on, not last link, active link, no weight update
176 0260 history on, not last link, active link, weight update
192 0300 history on, last link, inactive link, no weight update
208 0320 history on, last link, inactive link, weight update
z q 034 0 history on, last link, active link, no weight update
24 0 0360 history on, last link, active link, weight update

Field definitions (w/o user-defined fields)
CN (* marks optional fields, t marks user's fields) # of bytes -
group pointer to a CN group 1
index unique # in network 4
procid physical processor id 2
delay delay to add to output 2
bitvec optional field flags 1
history* avg. of recent change 1
restpot* resting potential 2
pot potential 2
state* resting, firing, ... 1
output* output of CN 2
error * error in output 2
sd* statistical deviation 2
nsitest number of sites 2

total 12-24
sitelist sites repeat within a CN
value value passed to CN 2
sitevec input/output, last flag 1
nlinkst number of links 2

total 5
linktis t links repeat within a site
lnkvec history flag, last flag, 1

active flag, weight up-
date flag

history* avg. of recent change 1
cn CN this connects to 4
site site this connects to 2
link link this connects to 2
weight current weight 2
invalt input on this link 2

total 13-14

Field definitions (cont.)
CNgroup # of bytes
index unique index for this group 1
name name shared by CN's 8
initpot initial potential 2
initstate initial state 2

References

[Bah88] Bahr, C., "ANNE: Another Neural Network Simulator," Tech. Report
CS/E88-028, Dept. of Computer Science/Engineering, Oregon Graduate
Center, Beaverton, OR, August 1988.

[BHJ88] Bahr, C., Hammerstrom, D. and Jagla, K., Concurrent Neural Network
Simulation: Two Examples Within A Single, Integrated Neural Network
Hardware Development Environment, IASTED Applied Simulation and
Modelling Conference, Galveston, Texas, May 1988.

[Fan861 Fanty, M., A Connectionist Simulator for the BBN Butterfly Multiprocessor,
Department of Computer Science, Univ. of Rochester, NY, January 1986.

[Jag881 Jagla, K., "A Broadcast Hierarchy Simulator for the Intel iPSC," CSE
Technical Report, Oregon Graduate Center, Department of Computer
Science/Engineering, Beaverton, OR, March 1988. In preparation.

[JeS82] Jefferson, D. and Sowizral, H., "Fast Concurrent Simulation using the Time
Warp Mechanism, P a r t I: Local Control," Tech. Rep.-83-204, Univ. of
Southern California, Computer Science Dept., December 1982.

[Joh88a] Johnson, M. A., "NDL User's Manual," CSE Technical Report, Oregon
Graduate Center, Department of Computer Science/Engineering,
Beaverton, OR, July 1988. In preparation.

[Joh88b] Johnson, M. A., "NDL Reference Manual," CSE Technical Report, Oregon
Graduate Center, Department of Computer Science/Engineering,
Beaverton, OR, July 1988. In preparation.

[May881 May, N., "Fault Simulation of a Wafer-Scale Neural Network," Tech.
Report CS/E88-020, Dept. of Computer Science/Engineering, Oregon
Graduate Center, Beaverton, Oregon, May 1988.

[MRH86]McClelland, J . L., Rumelhart, D. E. and Hinton, G. E., "Distributed
Representations," in Parallel Distributed Processing, vol. 1, P . R. Group
(ed.), 1986.

[Mis86] Misra, J., "Distributed Discrete-Event Simulation," Computing Surveys, vol.
18, 1 (March 1986), .

[SSB83] Small, S. L., Shastri, L., Brucks, M. L., Kaufman, S. G., Cottrell, G. W. and
Addanki, S., "ISCON: A Network Construction Aid and Simulator for
Connectionist Models," Tech. Rep. 109, Univ. of Rochester, Dept. of
Computer Science, April 1983.

