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Static Multiprocessor Scheduling 

Abstract 

The Precedence Constrained Scheduling Problem has long been known to  be intractible [9]. 

We extend the basic problem t o  account for "practical" considerations, such a s  non-uniformly 

weighted tasks and the architectural environment. We then present a fast algorithm which 

provides a near-optimal solution t o  the extended problem. Our algorithm is based on the well 

known Program Evaluation and Review Technique [5]. It  is adaptable t o  many different types 

of architectures, ranging from shared memory systems with homogeneous processing elements t o  

message passing systems with irregular communication nefworks and non-homogeneous 

processing elements. Our algorithm is able to account for both communication latency and 

channel capacity, as  well as  irregular resource usage on processing elements. It is also 

reasonably quick, having time complexity of O(n2) t o  O(n3), depending on the nature of the 

application graph. 

1. Introduction 

Many multi-processor scheduling problems are, in general, NP-complete. Here we 

examine a form of scheduling of which the Precedence Conetrained Scheduling problem [4,9] is a 

special case. Precedence constrained scheduling is: 

Let T be a set of tasks, each having length e(t) = 1 for each CET.  Let m€Z+ be a 

number of processors, 4 be a partial order on T ,  and DEZ+ be a deadline. Is there an  

m-processor schedule a for T that  completes before the deadline D and obeys the 

precedence constraints, i.e., such that  t 4 t' implies u(t)+e(t)<u(t')? 

The problem is more useful t o  us if we reword i t  as: 

What is a n  m-processor schedule u for T tha t  minimizes running time and obeys the 

precedence constraints, i.e., such that  t .i t' implies a(t)+t(t)<a(tf)? 

Ullman [9] proved this problem to be NP-complete. Intractible though i t  is, few 

applications or architectures are so uniform tha t  this would be considered a good description of 
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multiprocessor scheduling on real systems. We extend the problem further to  consider a more 

realistic model of task scheduling on multiprocessor systems, and present a heuristic to solve the 

extended problem. The heuristic we present has, a t  worst, complexity of O(n3), where n = I TI. 

If certain reasonable restrictions are placed on the graph, the complexity may be reduced to 

O(n2). 

We extend precedence scheduling in three ways. 

We allow non-homogeneous task lengths, i.e. t ( t ) ~ Z + .  We also allow each task to  require 

more than a single resource. 

The partial order is induced by a communication pattern, which we represent by 

M G T x T .  M might be considered as a set of messages, where ( ~ , c ) E M  implies tha t  task 

p is a parent task to  c,  and that  p must communicate with c before c may begin. The 

size of the message may also vary for different elements of M. The partial order 4 would 

then be defined as: 

(Vt1,t2€T) t,+t, iff (t1,t2)€M or ( 3 t ~ T )  s.t. (tl , t)€M and t 4 t 2  

The architecture which executes the set of tasks (refered to a s  a job, or application graph) 

need not be uniform. Each processor may have a different set of resources which it  is able 

to  use with differing efficiencies. Communication between two processors may require 

different resources and have different efficiencies depending upon the set of processors 

involved in the information transfer. This may include, but is not limited to, the usage of 

CPU resources and communication co-processors. 

Although we have included many things in our model, there are a number of restrictions 

which remain. Most notably, 

Task preemption is not allowed - tasks, once started, must run to  completion. There is 

no technical reason why our heuristic could not permit task preemption, but we do not 

pursue tha t  question here. 
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M defines a partial order; the graph it represents is acyclic. Loops, recursion, and 

conditional execution are not allowed. 

The graph is statically defined, that  is, all necessary information about task execution 

lengths and communication requirements is known in advance. 

We emphasize that  the solution we present is a heuristic. In many cases a complete 

solution is not needed if a good approximation is available, especially if the complete solution 

may only be obtained a t  great cost. It is not our purpose here to completely solve our extended 

scheduling problem, but only to  explore a fast algorithm which yields near-optimal schedules for 

it. 

2. Application Graph Scheduling 

Throughout this paper we assume that  the scheduling occurs in reverse order of execution, 

although for the most part is could just as easily have proceeded forward. The general 

algorithm we propose is: 

thread the application graph 
while ( some task remains unscheduled ) 

analyze the application graph 
select a task for scheduling ( t )  
find the "best" processor (p )  for t 
schedule t on p 

end while 

2.1. Application Graph Threading 

Graph threading connects each node in the application graph with bidirectional links to  

its successor and predecessor in a topological ordering. The ordering guarantees that  a 

traversal of the graph will proceed in a topological order, i.e., in such a way that  no node is 

visited until all its predecessors [successors] have been visited. This decreases the time required 

for the graph analysis, which must traverse the graph in a topological order. Efficient 

topological sorts are well known (see [6]). 
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2.2. Application Graph Analysis 

We base our application graph analysis on the well known Program Evaluation and 

Review Technique (PERT) analysis method [5]. PERT analysis is a simple two-pass analysis 

which finds for each task in the graph a)  the earliest starting time (EST), b) the latest starting 

time (LST), and c) the slack, or leeway one has in scheduling the task. Slack is simply the 

difference between LST and EST. Tasks whose slack is zero (i.e. LST = EST) are said to  be on 

the critical path. The EST and LST are both calculated assuming the best possible schedule, so 

as long as every task is started a t  some time between its EST and its LST, the job will be 

completed as quickly as possible. Clearly, within a given graph there may be more than one 

critical path. It is also relatively simple to  show that  all critical paths within a graph must 

have the same length. 

PERT analysis ignores a number of factors for which we must compensate. The first is 

tha t  each task is representable by a single value which is referred to  as its weight, or length. 

Weight is often thought of as an estimate of the total time required to  complete the task. If 

each task only requires a single type of service, this is not an unreasonable assumption. If tasks 

require multiple services (e.g. integer and floating point operations), the meaning of a single 

weight value becomes less clear, especially when the relative speeds of the different servers (e.g. 

integer ALU or floating point co-processor) vary from processor to processor. 

PERT analysis ignores all available information about the environment in which the task 

is performed. It assumes tha t  a task may begin the instant all of its immediate predecessors 

have completed. If there is any delay between tasks, it must somehow be accounted for in one 

or more of the task weights. PERT offers no facility to  account for weights which vary from 

server to  server - either because of varying distances in communication or non-homogeneous 

servers. 

In order to  satisfy PERT'S need for a single task weight, all the different resources 

required by a task must be combined to  form a single "aggregate" weight, or execution time. 
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This is the one area which permits "tuning". For example, if communication time varies as  a 

function of the distance between sender and receiver, some weighting function must be chosen t o  

reflect the cost of communication between tasks which have not yet been assigned t o  any 

processor. If the weighting function assigns weights which are too heavy relative to  the 

computation, the perceived cost of communication will be heavier than in reality, and tasks will 

tend to  be packed serially on processors when greater speed could have been attained through 

greater distribution. On the other hand, assigning weights which are too light would cause the 

tasks t o  be distributed excessively, and the communication system would become the limiting 

factor in the computation. The correct weighting function would balance the communication 

and computation systems in such a way that ,  on the average, both were equally utilized. Note 

tha t  the correct weighting would not wholly depend upon the architecture characteristics, but 

also upon the locality obtained by the scheduling algorithm. 

2.3. Task Selection for Scheduling 

T o  understand the intuition behind this heuristic, i t  is important t o  look a t  the objectives 

which motivate processor scheduling, and examine the information PERT analysis provides in 

tha t  light. Our algorithm attempts t o  find schedules for which the total time from star t  t o  

finish is a t  or near a minimum. As mentioned earlier, the algorithm star ts  from the bottom of 

the graph and schedules tasks in reverse order of execution. We compare tasks to  determine 

which has the highest priority of those tha t  remain unscheduled. 

The EST, LST, and slack each give a different view of a task's priority. The EST 

measures the earliest time tha t  a task may begin without increasing the job running time. If a 

task is started before the EST, each of its parent tasks must be started earlier also. Because 

some of the parent tasks are on the critical path, the job execution time will be increased. The 

LST measures the latest time a t  which a task may begin without affecting job running time. 

Starting a task after its LST increases the computation length in the same way tha t  starting a 

task before its EST does. Slack measures the freedom available in scheduling a task - greater 
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slack means greater flexibility. 

In the process of scheduling an  application graph, we iteratively fix the starting time and 

processor mapping of each task in the graph. By scheduling in reverse order of execution, we fix 

the termination time of the computation and seek the latest s tar t  time possible. Because the 

scheduling takes place in reverse order, the EST is the critical value, since delaying the 

scheduling of a task will push its s tar t  time backwards. If the s tar t  time is pushed backwards 

beyond its EST, the job execution time will take longer than if i t  is not. The task with the 

largest EST is selected a s  the next task to be scheduled, since it has the least flexibility in when 

i t  can be scheduled without delaying the job execution time. Of all unscheduled tasks, delaying 

the task with the largest EST (by scheduling another task first) will cause the greatest known 

impact on the job execution time. 

We recognize tha t  this may not always yield the best results possible. Delaying one task 

which would otherwise be selected could leave holes in the schedule for other tasks later on 

which would fit better in the schedule. This could in turn provide an  overall reduction in the 

total job execution time. However, finding an  algorithm which would always compute the 

optimal schedule in polynomial time is not possible unless P = N P ,  which a t  the time of this 

writing is still a n  open problem [4]. 

2.4. Processor Selection 

Processor selection for a given task is performed by the function s e l e c t P E .  Se lec tYE 

estimates the task's s tar t  time for each processor PEP, and selects the processor with the best 

time. The estimated star t  time is the latest possible s tar t  time which the task could assume 

without altering the schedule which has been previously determined. Because the schedule is 

determined in reverse order, the "best" s tar t  time is the latest (largest) s tar t  time. 

Page 7 



Static Multiprocessor Scheduling 

select_PE(task) = 
select processor s.t. (Vp E P )  
maz-start-time(task,p) 5 marstart- t ime(task,processor) 

return processor 

2.4.1. Task Starting Time 

Max-start-time finds the latest possible s tar t  time for task t on processor p. It does so by 

finding the latest possible finish time ( f )  for t ,  then finding a slot in the schedule which allows t 

t o  finish on p no later than f .  

mazstartLtinte(task,processor) = 
finish tmin-latest-finish (task ,processor) 
start betart-time(task,processor ,finish) 

return start 

Once the latest possible finish time is found for t on p ,  the schedule for p ,  up, is searched 

for the latest available slot in which the completion time for t does not exceed the latest 

completion time. This is done by the function start-time. We assume the slot must be large 

enough to  run task t t o  completion without preemption, but nothing about the algorithm 

requires this t o  be so. Preemption could conceivably improve the schedule further but we do not 

pursue tha t  possibility here. The latest s tar t  time for t on p is determined when the slot is 

found. The implementation for start-time depends heavily on the representation used for a, and 

on the architecture of the network N. A simple approach to  representing the schedule is t o  use 

a list; searching for an  empty slot would simply be a list traversal. 

A general representation for N, however, is not quite so easy. There is so much variation 

between system architectures t ha t  a discussion of N's representation would be tantamount t o  a 

discussion of all of the different architectures. However it is represented, a function must be 

available t o  start-time which compares a task with a slot and returns a) whether the task will 

fit within the slot, and b) what its starting time would be if it were scheduled within the slot. 

The function must account for all the resources within each processor if i t  is t o  provide an  
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accurate schedule. It  may even need to  allow for separate schedules for each resource if the 

resources are sufficiently independent. The function is defined as: 

start-time(task,proceesor,finish) = 
for each resource r used by task 

find the duration of r's usage on processor 
search a, for the latest slot which would 

allow task to complete before time finish 

return the earliest start time of all slots used by task 

Two examples of resources which are independent on some machines are floating point 

arithmetic co-processors and vector units. 

2.4.2. Task Completion Time 

Min-latest-finish finds what the latest completion time would be, including 

communication, for task t if it  were scheduled on processor p .  It  assumes a set of children 

C, = {c : ( t , c ) ~ M } ,  a schedule a, and a processor assignment map ?r. Precedence constraints on 

the program require tha t  t finish before any of its children begin execution. Additionally, each 

child must receive its data from t before it  begins. Thus t's completion time must occur before 

any child's s tart  time ( ~ ( c ) ) ,  including enough time for t to send its message to  c .  The function 

is defined as: 

min-latest-finish(task,processor) = 
finish t min latest-finish(task,processor,child) 

childECt 

return finish 

Latest-finish finds the latest completion time allowed for a task t on processor p ,  

considering only the fact tha t  child c has been assigned to  processor r(c). It finds the start 

time a(c)  of the child and computes the latest time that  t may finish so t's message to  o will be 

available before c begins execution. This depends upon the overhead and delay involved in 

sending the message from t to  c,  and the schedules for each of the resources used in the 
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transfer. 

latest-finish (task,processor ,child) = 
message tsize(task,child) 

finishtmesg-start(message ,processor ,s(child),a(child)) 

return finish 

Mesg-start is another function which, like start-time, is architecture dependent. 

Start-time models the computational resources and mesg-start models the communication 

subsystem. It figures the time a t  which the message mesg must be sent from processor source to  

processor destination, so the message is received on destination before time finish. We present 

an  example function for mesg-start. This example function models a completely connected 

network where some CPU time is required on each processor t o  read and write the message, and 

messages are not pipelined - tha t  is, only one message a t  a time may be sent between the two 

processors. Figure 1 illustrates a message transfer on this architecture. 

return s, 

Because even the message passing operations are scheduled, messages will arrive a t  or 

before the time they are expected. The scheduling algorithm does not overcommit or otherwise 

ignore the communication resources. Overcommitting or ignoring communication resources 

appears t o  be a problem shared by most, if not all, other static scheduling algorithms. DSH, 

which was intended to  consider the problem of communication in scheduling [7,8], does not 

consider the effect of overscheduling the communication system. As a result, DSH works as if 

communication channels between processing elements may simultaneously pass more than one 

message (for example see [8] figure 4). If such messages were serialized, the performance of the 
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schedule would be substantially reduced. In effect, the architectural model for DSH is 

unrealistic in at least one important area, since i t  considers the latency induced by 

communication, but not the capacity of the communication system. Even so, DSH assumes that  

the latency is independent of the message source and destination, which is rarely the case in real 

systems [3]. 

2.4.3. Communication Costs 

Communication costs can be modeled in many different ways, depending on the 

architecture involved. Perhaps the most commonly sited characteristics of communication are 

latency and contention. Latency is easily modeled, usually being some linear function of the 

message size and distance the message must travel. Contention is not so easily modeled, often 

because the interactions which cause contention are very complex and not well understood. We 

choose here to  avoid contention rather than model it. 

Contention may occur wherever communication resources may be shared. This includes 

the bus in bus-based systems like the Sequent BalanceB, multistage switches like the butterfly 

switch in the BBN Butterflym, or communication channels in multi-hop networks like the Intel 

iPSCm. Contention is difficult to  avoid in the first two types of systems. I t  can be avoided for 

multi-hop networks by maintaining schedules for each of the communication channels. Where 

resources may service a limited number of users a t  any given moment, they should be explicitly 

scheduled. 

Consider a s  an  example a 16-node binary n-cube, or hypercube. Several machines of this 

type are manufactured, by Intel, N-Cube, and Floating Point Systems [3]. A 16-node hypercube 

is illustrated in Figure 2. In each of these machines communication may occur in parallel over 

different edges, but only one transmission may occur a t  a time on any given edge. Therefore 

each edge must be treated as a resource, the same as each node. In addition, communication 

may require more than one edge, requiring that  a message be scheduled on more than one 

channel. Dynamic programming [5] could be used to  search for the fastest route between source 
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and destination nodes since the particulars of local traffic patterns are known a t  the time the 

message is scheduled. 

Explicitly scheduling the communication allows optimal message routing without fear of 

deadlock, or incurring the expense of deadlock prevention. It also enjoys greater throughput 

and flexibility than static routing methods. In addition, higher performance network topologies 

for which deadlock-free static routing methods are not yet known, such as the star-graph [1,2], 

could be used. 

Our previous example (Figure 1) also illustrates additional elements which may come into 

play. When a message is sent on an Intel or N-Cube machine, the node CPU first copies the 

message into a second buffer, then hands the message over to  a co-processor which handles the 

transmission. The important part to  note here is that  the CPU must first do some work before 

transmission may take place. Depending on the magnitude of the work compared to  the 

program tasks, tha t  work must be scheduled on the CPU. A similar effect occurs when the 

message is copied on the receiving node from system buffers into program memory. 

2.6. Individual Task Scheduling 

Task scheduling inserts into the appropriate sub-schedules all the work which must be 

done to  complete the task on the selected processor. Task scheduling is completely a matter of 

bookkeeping, especially since all the required information was generated while selecting the 

processor. It is only a matter of updating data structures with information previously obtained. 

3. Algorithm Complexity 

In this section we consider the complexity of our algorithm. We refer once again to  the 

algorithm presented in an earlier section. 
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thread the application graph 
while ( some task remains unscheduled ) 

analyze the application graph 
select a task for scheduling ( t )  
find the "best" processor ( p )  for t 
schedule t on p  

end while 

The complexity of this algorithm is relatively simple to  derive. A topological sort of a 

DAG is a t  best O(m+n), where n = I T I  is the total number of tasks, or nodes in a n  application 

graph, and rn = !Id is the number of messages, or edges which connect them. Since rn may be 

proportional t o  n2 even in a DAG, the complexity a t  worst is O(n2). Threading simply connects 

nodes in a topological order, so its worst case complexity is also O(n2). However, application 

functions and operators typically have a small, fixed arity (number of arguments), so for the 

average case m oc n and the complexity is O(n) rather than O(n2). 

The while loop selects exactly one task for scheduling with each iteration, so each 

component within the loop is multiplied by n .  (Testing for unscheduled tasks is an  O(1) 

operation.) The graph analysis phase is a simple two-pass PERT analysis [5] ,  also with 

complexity O(m+n). Task selection requires a t  most a single scan through the graph so i t  is 

also O(n). Processor selection depends on the number of processors in the system, since i t  tries 

the selected task on each processor - but i t  also depends on the number of children a task has. 

The communication time between the task and its children is evaluated each time a task is 

considered on a different processor, in order t o  determine the latest time the task may finish. 

The schedule is also examined to  find the best slot after the finish time is determined, but the 

latest task finish time provides an  upper bound on the depth d of the schedule search. 

Unfortunately, the only information we have about d is l<d<_n .  Thus the complexity for this 

step is O(dpc), where p  = ( P I ,  the number of processors in the system, and c is bounded above 

Task scheduling is much simpler, requiring only constant time to  insert a task into the 

schedule, or if minimal bookkeeping is done, no greater effort than to  select a processor. 
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Collecting terms, the complexity is O(n+m+n(n+m+n+dpc+l)),  or simply 0(n2+dpm). For 

constant p and m oc n ,  the algorithm complexity reduces to  O(n2). A t  worst m cc n2 and 

d cc n ,  and the algorithm has complexity 0(n3). 

4. Conclusions 

We have presented an  algorithm which computes near-optimal schedules for the extended 

Precedence Constrained Scheduling Problem. The algorithm computes the schedules in low- 

order polynomial time, and may be adapted for virtually any MIMD architecture. It  is able t o  

account for communication capacity and multiple resources. Also, i t  is adaptable t o  irregular 

networks and non-homogeneous processing elements. The algorithm has been implemented in 

"C", and preliminary tests have been run. With small graphs (10 to 20 nodes) for which an  

optimal schedule is known, the algorithm was always able t o  select schedules which differed 

little from optimal. 
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Figure 1. Communication Between Neighboring Nodes 
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Figure 2. 16-Node Hypercube 
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