
A Fast Algorithm for Near-Optimal
Static Scheduling of Acyclic Graphs

to Multiprocessor Systems

Douglas M. Pase

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-030

July, 1988

Static Multiprocessor Scheduling

A Fast Algorithm for Near-Optimal

Static Scheduling of Acyclic Graphs

to Multiprocessor Systems

Douglas M. Pase

Oregon Graduate Center

Department of Computer Science and Engineering

19600 NW Von Neumann Drive

Beaverton, Oregon 97006

Page 1

Static Multiprocessor Scheduling

Abstract

The Precedence Constrained Scheduling Problem has long been known to be intractible [9].

We extend the basic problem t o account for "practical" considerations, such a s non-uniformly

weighted tasks and the architectural environment. We then present a fast algorithm which

provides a near-optimal solution t o the extended problem. Our algorithm is based on the well

known Program Evaluation and Review Technique [5]. It is adaptable t o many different types

of architectures, ranging from shared memory systems with homogeneous processing elements t o

message passing systems with irregular communication nefworks and non-homogeneous

processing elements. Our algorithm is able to account for both communication latency and

channel capacity, as well as irregular resource usage on processing elements. It is also

reasonably quick, having time complexity of O(n2) t o O(n3), depending on the nature of the

application graph.

1. Introduction

Many multi-processor scheduling problems are, in general, NP-complete. Here we

examine a form of scheduling of which the Precedence Conetrained Scheduling problem [4,9] is a

special case. Precedence constrained scheduling is:

Let T be a set of tasks, each having length e(t) = 1 for each CET. Let m€Z+ be a

number of processors, 4 be a partial order on T , and DEZ+ be a deadline. Is there an

m-processor schedule a for T that completes before the deadline D and obeys the

precedence constraints, i.e., such that t 4 t' implies u(t)+e(t)<u(t')?

The problem is more useful t o us if we reword i t as:

What is a n m-processor schedule u for T tha t minimizes running time and obeys the

precedence constraints, i.e., such that t .i t' implies a(t)+t(t)<a(tf)?

Ullman [9] proved this problem to be NP-complete. Intractible though i t is, few

applications or architectures are so uniform tha t this would be considered a good description of

P a g e 2

Static Multiprocessor Scheduling

multiprocessor scheduling on real systems. We extend the problem further to consider a more

realistic model of task scheduling on multiprocessor systems, and present a heuristic to solve the

extended problem. The heuristic we present has, a t worst, complexity of O(n3), where n = I TI.

If certain reasonable restrictions are placed on the graph, the complexity may be reduced to

O(n2).

We extend precedence scheduling in three ways.

We allow non-homogeneous task lengths, i.e. t (t) ~ Z + . We also allow each task to require

more than a single resource.

The partial order is induced by a communication pattern, which we represent by

M G T x T . M might be considered as a set of messages, where (~ , c) E M implies tha t task

p is a parent task to c, and that p must communicate with c before c may begin. The

size of the message may also vary for different elements of M. The partial order 4 would

then be defined as:

(Vt1,t2€T) t,+t, iff (t1,t2)€M or (3 t ~ T) s.t. (tl , t)€M and t 4 t 2

The architecture which executes the set of tasks (refered to a s a job, or application graph)

need not be uniform. Each processor may have a different set of resources which it is able

to use with differing efficiencies. Communication between two processors may require

different resources and have different efficiencies depending upon the set of processors

involved in the information transfer. This may include, but is not limited to, the usage of

CPU resources and communication co-processors.

Although we have included many things in our model, there are a number of restrictions

which remain. Most notably,

Task preemption is not allowed - tasks, once started, must run to completion. There is

no technical reason why our heuristic could not permit task preemption, but we do not

pursue tha t question here.

Page 3

Static Multiprocessor Scheduling

M defines a partial order; the graph it represents is acyclic. Loops, recursion, and

conditional execution are not allowed.

The graph is statically defined, that is, all necessary information about task execution

lengths and communication requirements is known in advance.

We emphasize that the solution we present is a heuristic. In many cases a complete

solution is not needed if a good approximation is available, especially if the complete solution

may only be obtained a t great cost. It is not our purpose here to completely solve our extended

scheduling problem, but only to explore a fast algorithm which yields near-optimal schedules for

it.

2. Application Graph Scheduling

Throughout this paper we assume that the scheduling occurs in reverse order of execution,

although for the most part is could just as easily have proceeded forward. The general

algorithm we propose is:

thread the application graph
while (some task remains unscheduled)

analyze the application graph
select a task for scheduling (t)
find the "best" processor (p) for t
schedule t on p

end while

2.1. Application Graph Threading

Graph threading connects each node in the application graph with bidirectional links to

its successor and predecessor in a topological ordering. The ordering guarantees that a

traversal of the graph will proceed in a topological order, i.e., in such a way that no node is

visited until all its predecessors [successors] have been visited. This decreases the time required

for the graph analysis, which must traverse the graph in a topological order. Efficient

topological sorts are well known (see [6]).

Page 4

Static Multiprocessor Scheduling

2.2. Application Graph Analysis

We base our application graph analysis on the well known Program Evaluation and

Review Technique (PERT) analysis method [5]. PERT analysis is a simple two-pass analysis

which finds for each task in the graph a) the earliest starting time (EST), b) the latest starting

time (LST), and c) the slack, or leeway one has in scheduling the task. Slack is simply the

difference between LST and EST. Tasks whose slack is zero (i.e. LST = EST) are said to be on

the critical path. The EST and LST are both calculated assuming the best possible schedule, so

as long as every task is started a t some time between its EST and its LST, the job will be

completed as quickly as possible. Clearly, within a given graph there may be more than one

critical path. It is also relatively simple to show that all critical paths within a graph must

have the same length.

PERT analysis ignores a number of factors for which we must compensate. The first is

tha t each task is representable by a single value which is referred to as its weight, or length.

Weight is often thought of as an estimate of the total time required to complete the task. If

each task only requires a single type of service, this is not an unreasonable assumption. If tasks

require multiple services (e.g. integer and floating point operations), the meaning of a single

weight value becomes less clear, especially when the relative speeds of the different servers (e.g.

integer ALU or floating point co-processor) vary from processor to processor.

PERT analysis ignores all available information about the environment in which the task

is performed. It assumes tha t a task may begin the instant all of its immediate predecessors

have completed. If there is any delay between tasks, it must somehow be accounted for in one

or more of the task weights. PERT offers no facility to account for weights which vary from

server to server - either because of varying distances in communication or non-homogeneous

servers.

In order to satisfy PERT'S need for a single task weight, all the different resources

required by a task must be combined to form a single "aggregate" weight, or execution time.

Page 5

Static Multiprocessor Scheduling

This is the one area which permits "tuning". For example, if communication time varies as a

function of the distance between sender and receiver, some weighting function must be chosen t o

reflect the cost of communication between tasks which have not yet been assigned t o any

processor. If the weighting function assigns weights which are too heavy relative to the

computation, the perceived cost of communication will be heavier than in reality, and tasks will

tend to be packed serially on processors when greater speed could have been attained through

greater distribution. On the other hand, assigning weights which are too light would cause the

tasks t o be distributed excessively, and the communication system would become the limiting

factor in the computation. The correct weighting function would balance the communication

and computation systems in such a way that , on the average, both were equally utilized. Note

tha t the correct weighting would not wholly depend upon the architecture characteristics, but

also upon the locality obtained by the scheduling algorithm.

2.3. Task Selection for Scheduling

T o understand the intuition behind this heuristic, i t is important t o look a t the objectives

which motivate processor scheduling, and examine the information PERT analysis provides in

tha t light. Our algorithm attempts t o find schedules for which the total time from star t t o

finish is a t or near a minimum. As mentioned earlier, the algorithm star ts from the bottom of

the graph and schedules tasks in reverse order of execution. We compare tasks to determine

which has the highest priority of those tha t remain unscheduled.

The EST, LST, and slack each give a different view of a task's priority. The EST

measures the earliest time tha t a task may begin without increasing the job running time. If a

task is started before the EST, each of its parent tasks must be started earlier also. Because

some of the parent tasks are on the critical path, the job execution time will be increased. The

LST measures the latest time a t which a task may begin without affecting job running time.

Starting a task after its LST increases the computation length in the same way tha t starting a

task before its EST does. Slack measures the freedom available in scheduling a task - greater

Page 6

Static Multiprocessor Scheduling

slack means greater flexibility.

In the process of scheduling an application graph, we iteratively fix the starting time and

processor mapping of each task in the graph. By scheduling in reverse order of execution, we fix

the termination time of the computation and seek the latest s tar t time possible. Because the

scheduling takes place in reverse order, the EST is the critical value, since delaying the

scheduling of a task will push its s tar t time backwards. If the s tar t time is pushed backwards

beyond its EST, the job execution time will take longer than if i t is not. The task with the

largest EST is selected a s the next task to be scheduled, since it has the least flexibility in when

i t can be scheduled without delaying the job execution time. Of all unscheduled tasks, delaying

the task with the largest EST (by scheduling another task first) will cause the greatest known

impact on the job execution time.

We recognize tha t this may not always yield the best results possible. Delaying one task

which would otherwise be selected could leave holes in the schedule for other tasks later on

which would fit better in the schedule. This could in turn provide an overall reduction in the

total job execution time. However, finding an algorithm which would always compute the

optimal schedule in polynomial time is not possible unless P = N P , which a t the time of this

writing is still a n open problem [4].

2.4. Processor Selection

Processor selection for a given task is performed by the function s e l e c t P E . Se lec tYE

estimates the task's s tar t time for each processor PEP, and selects the processor with the best

time. The estimated star t time is the latest possible s tar t time which the task could assume

without altering the schedule which has been previously determined. Because the schedule is

determined in reverse order, the "best" s tar t time is the latest (largest) s tar t time.

Page 7

Static Multiprocessor Scheduling

select_PE(task) =
select processor s.t. (Vp E P)
maz-start-time(task,p) 5 marstart- t ime(task,processor)

return processor

2.4.1. Task Starting Time

Max-start-time finds the latest possible s tar t time for task t on processor p. It does so by

finding the latest possible finish time (f) for t , then finding a slot in the schedule which allows t

t o finish on p no later than f .

mazstartLtinte(task,processor) =
finish tmin-latest-finish (task ,processor)
start betart-time(task,processor ,finish)

return start

Once the latest possible finish time is found for t on p , the schedule for p , up, is searched

for the latest available slot in which the completion time for t does not exceed the latest

completion time. This is done by the function start-time. We assume the slot must be large

enough to run task t t o completion without preemption, but nothing about the algorithm

requires this t o be so. Preemption could conceivably improve the schedule further but we do not

pursue tha t possibility here. The latest s tar t time for t on p is determined when the slot is

found. The implementation for start-time depends heavily on the representation used for a, and

on the architecture of the network N. A simple approach to representing the schedule is t o use

a list; searching for an empty slot would simply be a list traversal.

A general representation for N, however, is not quite so easy. There is so much variation

between system architectures t ha t a discussion of N's representation would be tantamount t o a

discussion of all of the different architectures. However it is represented, a function must be

available t o start-time which compares a task with a slot and returns a) whether the task will

fit within the slot, and b) what its starting time would be if it were scheduled within the slot.

The function must account for all the resources within each processor if i t is t o provide an

Page 8

Static Multiprocessor Scheduling

accurate schedule. It may even need to allow for separate schedules for each resource if the

resources are sufficiently independent. The function is defined as:

start-time(task,proceesor,finish) =
for each resource r used by task

find the duration of r's usage on processor
search a, for the latest slot which would

allow task to complete before time finish

return the earliest start time of all slots used by task

Two examples of resources which are independent on some machines are floating point

arithmetic co-processors and vector units.

2.4.2. Task Completion Time

Min-latest-finish finds what the latest completion time would be, including

communication, for task t if it were scheduled on processor p . It assumes a set of children

C, = {c : (t , c) ~ M } , a schedule a, and a processor assignment map ?r. Precedence constraints on

the program require tha t t finish before any of its children begin execution. Additionally, each

child must receive its data from t before it begins. Thus t's completion time must occur before

any child's s tart time (~ (c)) , including enough time for t to send its message to c . The function

is defined as:

min-latest-finish(task,processor) =
finish t min latest-finish(task,processor,child)

childECt

return finish

Latest-finish finds the latest completion time allowed for a task t on processor p ,

considering only the fact tha t child c has been assigned to processor r(c). It finds the start

time a(c) of the child and computes the latest time that t may finish so t's message to o will be

available before c begins execution. This depends upon the overhead and delay involved in

sending the message from t to c, and the schedules for each of the resources used in the

Page 9

Static Multiprocessor Scheduling

transfer.

latest-finish (task,processor ,child) =
message tsize(task,child)

finishtmesg-start(message ,processor ,s(child),a(child))

return finish

Mesg-start is another function which, like start-time, is architecture dependent.

Start-time models the computational resources and mesg-start models the communication

subsystem. It figures the time a t which the message mesg must be sent from processor source to

processor destination, so the message is received on destination before time finish. We present

an example function for mesg-start. This example function models a completely connected

network where some CPU time is required on each processor t o read and write the message, and

messages are not pipelined - tha t is, only one message a t a time may be sent between the two

processors. Figure 1 illustrates a message transfer on this architecture.

return s,

Because even the message passing operations are scheduled, messages will arrive a t or

before the time they are expected. The scheduling algorithm does not overcommit or otherwise

ignore the communication resources. Overcommitting or ignoring communication resources

appears t o be a problem shared by most, if not all, other static scheduling algorithms. DSH,

which was intended to consider the problem of communication in scheduling [7,8], does not

consider the effect of overscheduling the communication system. As a result, DSH works as if

communication channels between processing elements may simultaneously pass more than one

message (for example see [8] figure 4). If such messages were serialized, the performance of the

Page 10

Static Multiprocessor Scheduling

schedule would be substantially reduced. In effect, the architectural model for DSH is

unrealistic in at least one important area, since i t considers the latency induced by

communication, but not the capacity of the communication system. Even so, DSH assumes that

the latency is independent of the message source and destination, which is rarely the case in real

systems [3].

2.4.3. Communication Costs

Communication costs can be modeled in many different ways, depending on the

architecture involved. Perhaps the most commonly sited characteristics of communication are

latency and contention. Latency is easily modeled, usually being some linear function of the

message size and distance the message must travel. Contention is not so easily modeled, often

because the interactions which cause contention are very complex and not well understood. We

choose here to avoid contention rather than model it.

Contention may occur wherever communication resources may be shared. This includes

the bus in bus-based systems like the Sequent BalanceB, multistage switches like the butterfly

switch in the BBN Butterflym, or communication channels in multi-hop networks like the Intel

iPSCm. Contention is difficult to avoid in the first two types of systems. I t can be avoided for

multi-hop networks by maintaining schedules for each of the communication channels. Where

resources may service a limited number of users a t any given moment, they should be explicitly

scheduled.

Consider a s an example a 16-node binary n-cube, or hypercube. Several machines of this

type are manufactured, by Intel, N-Cube, and Floating Point Systems [3]. A 16-node hypercube

is illustrated in Figure 2. In each of these machines communication may occur in parallel over

different edges, but only one transmission may occur a t a time on any given edge. Therefore

each edge must be treated as a resource, the same as each node. In addition, communication

may require more than one edge, requiring that a message be scheduled on more than one

channel. Dynamic programming [5] could be used to search for the fastest route between source

Page 11

Static Multiprocessor Scheduling

and destination nodes since the particulars of local traffic patterns are known a t the time the

message is scheduled.

Explicitly scheduling the communication allows optimal message routing without fear of

deadlock, or incurring the expense of deadlock prevention. It also enjoys greater throughput

and flexibility than static routing methods. In addition, higher performance network topologies

for which deadlock-free static routing methods are not yet known, such as the star-graph [1,2],

could be used.

Our previous example (Figure 1) also illustrates additional elements which may come into

play. When a message is sent on an Intel or N-Cube machine, the node CPU first copies the

message into a second buffer, then hands the message over to a co-processor which handles the

transmission. The important part to note here is that the CPU must first do some work before

transmission may take place. Depending on the magnitude of the work compared to the

program tasks, tha t work must be scheduled on the CPU. A similar effect occurs when the

message is copied on the receiving node from system buffers into program memory.

2.6. Individual Task Scheduling

Task scheduling inserts into the appropriate sub-schedules all the work which must be

done to complete the task on the selected processor. Task scheduling is completely a matter of

bookkeeping, especially since all the required information was generated while selecting the

processor. It is only a matter of updating data structures with information previously obtained.

3. Algorithm Complexity

In this section we consider the complexity of our algorithm. We refer once again to the

algorithm presented in an earlier section.

Page 12

Static Multiprocessor Scheduling

thread the application graph
while (some task remains unscheduled)

analyze the application graph
select a task for scheduling (t)
find the "best" processor (p) for t
schedule t on p

end while

The complexity of this algorithm is relatively simple to derive. A topological sort of a

DAG is a t best O(m+n), where n = I T I is the total number of tasks, or nodes in a n application

graph, and rn = !Id is the number of messages, or edges which connect them. Since rn may be

proportional t o n2 even in a DAG, the complexity a t worst is O(n2). Threading simply connects

nodes in a topological order, so its worst case complexity is also O(n2). However, application

functions and operators typically have a small, fixed arity (number of arguments), so for the

average case m oc n and the complexity is O(n) rather than O(n2).

The while loop selects exactly one task for scheduling with each iteration, so each

component within the loop is multiplied by n . (Testing for unscheduled tasks is an O(1)

operation.) The graph analysis phase is a simple two-pass PERT analysis [5] , also with

complexity O(m+n). Task selection requires a t most a single scan through the graph so i t is

also O(n). Processor selection depends on the number of processors in the system, since i t tries

the selected task on each processor - but i t also depends on the number of children a task has.

The communication time between the task and its children is evaluated each time a task is

considered on a different processor, in order t o determine the latest time the task may finish.

The schedule is also examined to find the best slot after the finish time is determined, but the

latest task finish time provides an upper bound on the depth d of the schedule search.

Unfortunately, the only information we have about d is l<d<_n . Thus the complexity for this

step is O(dpc), where p = (P I , the number of processors in the system, and c is bounded above

Task scheduling is much simpler, requiring only constant time to insert a task into the

schedule, or if minimal bookkeeping is done, no greater effort than to select a processor.

Page 13

Static Multiprocessor Scheduling

Collecting terms, the complexity is O(n+m+n(n+m+n+dpc+l)), or simply 0(n2+dpm). For

constant p and m oc n , the algorithm complexity reduces to O(n2). A t worst m cc n2 and

d cc n , and the algorithm has complexity 0(n3).

4. Conclusions

We have presented an algorithm which computes near-optimal schedules for the extended

Precedence Constrained Scheduling Problem. The algorithm computes the schedules in low-

order polynomial time, and may be adapted for virtually any MIMD architecture. It is able t o

account for communication capacity and multiple resources. Also, i t is adaptable t o irregular

networks and non-homogeneous processing elements. The algorithm has been implemented in

"C", and preliminary tests have been run. With small graphs (10 to 20 nodes) for which an

optimal schedule is known, the algorithm was always able t o select schedules which differed

little from optimal.

References

1. Akers, S. B. and Krishnamutrhy, B. Group graphs as interconnection networks, 14th

International Conference on Fault Tolerant Computing, Kissimmee, Florida, 1984.

2. Akers, S. B. and Icrishnamurthy, B. A group theoretic model for symmetric

interconnection networks, Proceedings of the 1986 International Conjerence on

Parallel Processing, 1986.

R. G. Babb 11, ed., Programming Parallel Processors, Addison-Wesley, 1987.

Garey, M. R. and Johnson, D. S. Computers and Intractability - A Guide to the

Theory of NP-Completeness, Freeman, 1979.

Hillier, F. S. and Lieberman, G. J. Operations Research, Holden-Day, San Francicso,

1974.

Page 14

Static Multiprocessor Scheduling

6. Horowitz, E. and Sahni, S. Fundamentals of Data Structures, Computer Science

Press, 1976.

7. Kruatrachue, B. and Lewis, T. Duplication scheduling heuristic (DSH), a new

precedence task scheduler for parallel systems, Technical Report 87-60-3, Oregon

State University, Corvallis, 1987.

Kruatrachue, B. and Lewis, T. Grain-size determination for parallel processing,

IEEE Sojtware 5, 1 (January 1988), pp. 23-33.

Ullman, J. D. NP-complete scheduling problems, Journal of Computer and System

Sciences 10, 3 (June 1975), pp. 384-393.

Page 15

Static Multiprocessor Scheduling

source destination
-

+ a(c) = finish

Figure 1. Communication Between Neighboring Nodes

Page 16

Static Multiprocessor Scheduling

1100

Figure 2. 16-Node Hypercube

Page 17

Static Multiprocessor Scheduling

CDAB DCAB ADBC BDAC

DBAC

ABDC

BCAD

1 CBAD

DBCA CBDA BACD ABCD

Figure 3. 24Node Star-Graph

Page 18

