
CAPsim Tutorial 

Tom Baker 

Technical Report CS/E88-032 
20 September 1988 

Oregon Graduate Center 
19600 S.W. von Neumann Drive 
Beaverton, Oregon 97006-1999 



CAPsim Tutorial 

T o m  Baker  
Dept .  of Compu te r  Science & Engineering 

Oregon G r a d u a t e  Cen te r  
Beaverton,  Oregon 

1. Introduction 

CAPsim is a n  artificial neural network (ANN) simulator library. Its main purpose is t o  
study the effects of hardware implementation on neural network algorithms. It can also be used 
t o  create and simulate ANN applications. The CAPsim library consists of many useful building 
blocks for neural network simulation. CAPsim is not a single network simulator, nor is i t  a pro- 
gram t h a t  allows one t o  dynamically create networks and topologies. 

This tutorial is written t o  describe CAPsim and t o  help users create and simulate their 
own ANN's. Many of the necessary network 'building blocks' have already been implemented. 
These 'building blocks' make construction of ANN applications much easier. Without a descrip- 
tion of the design and functionality of the library much of the usefulness would be wasted. 

Section 2 discusses some of the considerations in designing the CAPsim library. Section 3 
describes some of the 'building blocks' t ha t  are available for building ANN's. Section 4 has a 
description of the user interface library of functions and how they can be used t o  define menu's 
and custom simulator functionality. Section's 5 and 6 show the user how t o  construct a custom 
simulator. Section 7 is a directory of the CAPsim library. 

2. CAPsim Design Philosophy 

The two strongest considerations in the design of CAPsim are code modularity and execu- 
tion speed. The simulators t ha t  are  implemented with the CAPsim library need t o  be easily con- 
structed, so many simple modules t ha t  interface in a clean and flexible way should be used. 
Networks can be constructed with a few simple definition statements. The ANN simulators 
must also execute as  fast a s  possible. ANN simulations on conventional hardware are  typically 
slow and compute intensive. Most of the execution time for the simulators is spent in a few 
small computation loops. Although most of the CAPsim library is programmed for readability, 
the  computation loops are  programmed for speed. 

The C++ programming language was chosen as  a n  implementation language because of 
the combination of object oriented language features and efficient target code. The C++ com- 
piler is a preprocessor t ha t  produces a C program. One basic da t a  object of the C++ language 
is the class. A class is a d a t a  structure tha t  has a s ta te  (variables) and a n  interface definition 
(member functions). The member functions define the operations t h a t  may be performed on the 
s tate  variables. 

T h i s  research supported by SRC grant  8610-097. 



Oregon Graduate Center - Preliminary August 3,1988 

The object oriented feature of inheritance makes the task of programming modular code 
much easier. Inheritance lets a class use the variables and member functions of another class. 
A class can be written t ha t  will define the interface between two software modules. All classes 
t ha t  are defined t o  inherit the member functions can use the same code t o  communicate. The 
communication code can be written once, so tha t  the interface functions do not have t o  be 
rewritten for each new function tha t  is programmed. The class tha t  defines the code t o  be 
inherited is referred t o  as  the superclass, and the class t ha t  inherits the code is known a s  the 
subclass. 

The key t o  modularity in the CAPsim library is the common superclass vector. A vector 
represents one layer in a n  ANN network. The vector class is implemented a s  a one-dimensional 
array. Higher dimensional layers can be implemented easily with the vector interface. All ANN 
application classes inherit the vector class member functions. The values in the vector represent 
the activation values of the nodes in the network. Each application class reads the values of 
the layers t h a t  i t  is connected to. 

A feature of C++ tha t  helps produce fast programs is t ha t  of inline functions. During the 
compilation of a program, the code tha t  would normally be executed in a procedure is inserted 
directly into the code. Most of the execution time for the simulators occurs in calculations in a 
few loops. Inline functions are  used t o  keep function calls within these loops t o  a minimum. 
The use of inline functions helps make the code within the calculation loops readable, modular 
and fast. 

The execution time for many of the simulations is about several hours, so the user inter- 
face has been designed for both interactive execution and batch processing. The emphasis for 
the user interface is t o  provide methods for setting key simulation variables and tracing inter- 
mediate values. The simulation variables are used t o  define the algorithm modifications tha t  
are  t o  be simulated without having t o  recompile the code. While the simulation executes, trace 
values are  printed periodically t o  show the performance of the ANN algorithm. The CAPsim 
library makes custom menus and user input functions easy t o  program so t ha t  the user interface 
can be tailored t o  the ANN application. 

3. Network Building Blocks 

3.1. vector, floatvector and integervector 

The class vector is a superclass t o  all simulation objects t ha t  implement ANN algorithms. 
Vector defines the interface t o  the values of the nodes in each layer of the network. The values 
are represented internally as  a one dimensional array. All values t ha t  are sent between layers 
of a n  ANN application use the member functions t ha t  are defined in vector. The vector class is 
really only a n  interface specification. The only da t a  tha t  is contained in this class is vector 
size. The only member functions used in the vector class are for printing vector values. 

The actual values of the vector are contained in either floatvector or integervector. 
These classes contain the arrays of values for the vector. The class floatvector defines a n  array 
of type float. Floatvector is used for most general ANN applications. The class integervector 
defines a n  array of type int. Integervector is used for the simulating a hardware architecture 
t ha t  uses only integer arithmetic. The values contained in integervector are  really integer 
representations of floating point values. The values carry eight bits of precision, all the bits are 
t o  the right of the decimal point. When a new class is created i t  should be defined as  a subclass 



Oregon Graduafe Center - Preliminary August 3, 1088 

of floatvector or  integervector, instead of being a subclass of vector. 

The following member functions are the main interface for the classes floatvector and 
integervector: 

float GetValue(int) - Getvalue() returns the float value of the element referenced by the 
passed parameter. This function is used in both floatvector and integervector. In the class 
integervector the value is converted t o  the floating point representation. 

int IntegerValue(int) - Integervalue() is only a member function of the class integervector. 
This function returns the integer value referenced by the passed parameter. 

void PutVaiue(int,float) - Putvalue() stores the floating point value passed as the second 
parameter into the array element referenced in the first parameter. This function is used in 
both floatvector and integervector. In the class integervector, the value is converted into 
integer representation before i t  is stored in the array. 

void PutValue(int,int) - This version of Putvalue() is used only in the class integervector. 
The second parameter is stored directly into the array without type conversion. 

void WriteVector(F1LE) - The function Writevector0 prints the values of the vector onto the 
stream passed a s  the parameter. The length of the vector is printed first, then the values. This 
function is defined in the class vector. All array elements are written a s  floating point values. 

void WriteShortVector(F1LE) - Writeshortvector() writes a n  abbreviated version of the vec- 
tor  onto the stream passed a s  the parameter. The base ten digit t o  the right of the decimal 
point is printed (tenths). This function is used when long vectors are displayed and precision is 
not desired. This function is defined in the class vector. 

3.2. Constants, lib 
The files 'constants.h', 'lib.h', and '1ib.c' contain global variables and functions t h a t  are 

used throughout the CAPsim library. Many variables and functions are  not specific t o  any 
class, so they are placed in these library files. The file 'c0nstants.h' has global variables and 
type definitions. The system 1 / 0  definition file 'stdi0.h' is also included in 'c0nstants.h'. The 
files '1ib.h' and '1ib.c' defines global functions tha t  are  used in the CAPsim library. Most of the 
functions are  defined a s  inline functions t o  generate fast executable code. 

3.3. Model Classes 
A Model Class is a class t ha t  specifies the functionality and topology of a network. Each 

model class contains the da t a  and member functions needed t o  interface with a specific ANN 
application. All user interaction of the network is conducted through the model class. 

Among da t a  items defined by the model class are  pointers t o  all the layers of the network. 
In the class constructor, the network layers are allocated and linked together. Each layer class 
t ha t  reads values from another layer must have a member function t ha t  receives a pointer t o  a 
vector as a parameter. These member functions are  the way tha t  the layers of a network are 
connected together. 



Oregon Graduate Center - Preliminary August 3,1988 

Another feature of the model class is a member function t ha t  executes one pass through 
the network. This member function is called Run(). There may be options tha t  specify exactly 
what is executed by the function Run(). For example, a back-propagation may just run the feed 
forward operations or  i t  may run feed forward and error propagation. One advantage t o  hav- 
ing a model class is tha t  the user interface has t o  communicate with only one class t o  modify - 
global network parameters. 

3.4. 1/0 classes 

1/0 classes are  for communication between the network and the hypothetical external 
environment. These classes are  subclasses of the class vector. An 110 class presents input vec- 
tors t o  the network. 

3.4.1. inclass 

The inclass class reads a vector from a file and puts the values into its value array. 
Inclass keeps a n  input buffer for the input vectors. There are  parameters t ha t  define the buffer 
size and the number of times t o  repeat the buffer before reading new da ta .  

3.4.2. outclass 

The outclass class writes the values of the input vector t o  a file. The outclass is connected 
to another vector class t ha t  i t  reads from. Outclass is for logging vector values t o  a file. 

8.4.3. vectorgen 

The class vectorgen is a n  abstract superclass tha t  generates input and target vector pairs. 
Vectorgen is a subclass of floatvector and its values are  the target vectors for the network. 
There is also a member variable of vectorgen tha t  is a pointer t o  a floatvector. This member 
variable is called inputs. There is a member function t ha t  returns the pointer inputs so tha t  
another vector class can use the values tha t  inputs points to.  Vectorgen is used when the target 
and input values are calculated rather than read from a file. 

3.6. Back-propagation Layers 

There are  several network layers t ha t  have been designed specifically for the back- 
propagation algorithm. These layers are subclasses of vector and can be linked with any of the 
previously mentioned classes t o  form a network. A typical back-propagation network is made 
up two forward class instances, a n  error class instance and a backward class instance. The for- 
ward class instances calculate the hidden layer and the output layer for the network. The error 
class calculates the delta value for the output layer, and the backward class calculates the 
delta values for the hidden layer. Additional hidden layers can be added by inserting more for- 
ward and backward instances. The inputs and targets t o  the network can be provided by two 
instances of inclass, or  one instance of vectorgen. Figure X shows how a typical back- 
propagation network is connected. Network execution contains two phases. The first phase cal- 
culates the hidden and output values of the network. The second phase calculates the error 
values of the output and hidden layers, and computes the weight changes. 



Oregon Graduate Center - Preliminary August 3,1888 

3.5.1. forward 

The forward vector participates in both phases of execution. During the forward phase 
the activttion values of the nodes in the layer are calculated. The value (oi) for each node is 

oi = f ( ~ o j w i j  ) , where n is the number of input nodes, oj is the value of input j ,  and wij is 

i-0 
the connection weight between input j and node i .  The non-linear 'squishing' function is 

1 

l ( z )  = where 6 is a learned threshold value. During the backward error phase, the 
I r e  -Z +e 

forward-;kctor computes the modifications to  the weights. The weight changes are 
Awij = r]6,0. + a A w .  , where r] is the learning rate, 6 is the error gradient (see error and back- 

!' 
ward classes), and a is the momentum rate. 

3.6.2. error 

The error class computes the error gradient for the output vector of the back-propagation 

network. The error gradient for each output node (oi) is bi = [ti - oi)oi (1 - 0,) , where ti is 

the desired value for the node. 

3.6.3. backward 

The backward class computes the error gradient for a hidden vector of themback- 

propagation network. The error gradient for the output of the node oi is Si = 1-0, Cbjwij  1 
, where Sj is the error gradient the node that  is connected by the weight wij . 

4. User Interface 

The user interface classes allow the programmer to  build custom interfaces. The classes 
described here handle the 1/0 details of a menu driven interface. Special menus and menu 
selections are easily defined and implemented. 

The class menuItem represents one selection of an entry in a menu. There are four param- 
eters given t o  the constructor of a menultem: command, keyword, description, and menuAction. 
The first three parameters are pointers t o  strings, the fourth parameter is a pointer t o  a func- 
tion. The command parameter is the input string tha t  is used to select the menuItem. The key- 
word parameter is a short string tha t  is used to  identify the menuItem. This parameter is 
intended for use in pop-up menus. The description parameter is a long string tha t  defines the 
use of the menuItem. The menuAction parameter points t o  the function to  be called when the 
menu selection is made. 

There are two important member functions that  are defined by menuItem. They are action 
and help. The action() function is called when the menultem has been selected. This function 
simply calls the function that  the pointer menuAction references. The help() function prints out 
a string tha t  defines the instance of menuItem. The first three parameter strings are printed, 
separated by tabs. 



Oregon Graduate Center - Preliminary August 3, 1988 

4.2. menu 

The menu class manages a collection of menuItems. This class is implemented by using an  
array of pointers t o  menuItems. The only parameter tha t  is passed t o  the constructor is the 
size of the array (the number of menuItems tha t  can be referenced). The member functions for 
the menu class provide for adding new menultems, selecting a particular menuItem in the list, 
performing the action of a selected menultem and calling the help member function of each 
menuItem in the list. 

4.3. keymenu 

The class keymenu is used for receiving command strings from the standard input and per- 
forming the appropriate action. There is a pointer t o  a function t ha t  prints the prompt string 
for the user input. The prompt function is user defined and can be used t o  print the current 
s ta te  of the simulation (clocks, cycles, etc.). Keymenu contains a pointer t o  a menu tha t  is used 
t o  execute the command strings tha t  are input. The member function batch() reads in a string, 
parses the first word from the string and calls the menu action() function. The keymenu class 
can also read and execute Macro da t a  structures. 

4.4. window 

The class window provides an  object oriented interface with the Curses window library. 
The Curses library is a standardized terminal interface tha t  provides the capability t o  create 
windows, and output da t a  in user defined locations of a terminal screen. The da t a  contained in 
the window class includes a window pointer, the size of the window and the origin of the win- 
dow. Many of the functions of the Curses library are implemented in the window class. 

5. Creating a Layer Class 

There are  several points tha t  should be taken into consideration when creating an  ANN 
layer class for CAPsim. An important decision is what superclass t o  use. All layer classes must 
use the vector class as  a definition of inter-layer communication. The class floatvector is the 
most common superclass for initial versions of a layer class. Normally i t  is easier t o  program 
and debug a n  algorithm with floating point representations than  integers. Once the ANN calcu- 
lations have been tested, a n  equivalent layer can be written with the integervector superclass if 
integer calculations are  desired. 

Next, the connections with other layers should be defined. The class should have a func- 
tion t h a t  connects i t  with all other layers from which i t  is receiving data .  The connection can 
be implemented by assigning a pointer t o  a layer t ha t  is a subclass of the vector class. Once a 
variable is assigned t o  point t o  another layer, the values of the layer can be read by indirectly 
calling the Getvalue(), and Integervalue() member functions. The member function t h a t  con- 
nects a n  input layer should check tha t  the size of the layer is correct. The simulator will run 
much faster if bounds checking is done a t  the time tha t  the network is connected, rather than 
when the network is performing its calculation functions. 

The activation functions can be programmed after the layer connections have been 
defined. Often there is a single function t ha t  performs the calculations for a layer. Member 
functions t h a t  set options and modify computation variables may be useful, also. 



Oregon Graduate Center - Preliminary August 3, 1988 

example - feed forward class 

/* feedforward 

This class performs a simple feed forward calculation. It  is 
a subclass of floatvector. 

class feedforward : public floatvector 
{ 

floatvector* inputs; // pointer t o  input layer 
float* weights; // connection strengths 
int inputsize; // expected size of input vector 

public: 

feedforward::feedforward(int ,int); 
void ConnectInput(floatVector*); // connect input layer 
void CalculateVector(); // compute activation values 

feedforward::feedforward(int insz, int sz) : (sz) 
{ 

int i; 

inputsize = insz; 
weights = new float[inputSize * Getsize()]; // allocate weight array 
for (i = 0; i < inputsize * Getsize(); i++) 

weights[i] = 1.0; 
1 

void feedforward::ConnectInput(floatVector* inputpointer) 

{ 

if (inputsize != inputpointer -> Getsize()) 
{ 
printf(stderr,"feedforward::ConnectInput: input size mismatcho); 
exit(0); 

1 

inputs = inputpointer; 

1 

void CalculateVector() 
{ 

int i,j; 
float temp; 
float* base = weights; 

for (i = 0; i < GetSize; i++) 
{ 

// for each value 



Oregon Graduate Center - Preliminary August 3, 1988 

for ( j  = 0; j < inputsize; j++) // for each input 
{ 

temp = inputs -> GetValue(j) * *base++; // calculate value 
1 

// store value into vector 

6. Creating a Program 

Making a n  ANN simulation is a n  easy process once the layer classes have been pro- 
grammed. All t ha t  is involved is t o  assemble the standard classes and the application specific 
code into a program unit. There are three parts of code t ha t  are needed for the program: the 
model class, the user interface, and the main program block. The model class allocates and exe- 
cutes the application specific classes. The user interface receives user input and calls functions 
t o  do the desired operations. The main program block allocates the da t a  structures of the simu- 
lator and s ta r t  the execution of the program. 

6.1. Model 

The model class contains the da t a  structures for the ANN application. The da t a  con- 
tained by the model class includes pointers t o  instances of the layer classes. The constructor for 
the model class creates new instances of the layer classes and links them together. One impor- 
t an t  member function of the model class is one t ha t  will execute a single pass of the network. 
The model class must also define member functions t ha t  will be used as  a n  interface for the 
layer classes. Any member functions t ha t  a layer class has t ha t  will allow the user t o  change 
parameters must be accessible through the model class. 

6.2. User Interface 

The classes supplied with CAPsim tha t  support the user interface are  designed for the pro- 
grammer t o  have flexibility in the functionality of the simulation. The programmer can provide 
a s  much or as  little freedom as  possible. The user interface will issue the run commands of the 
model class, and will also allow the user t o  modify parameters of the simulation. 

All menu options are  created by defining instances of the class menuItem. The parameters 
of the menuItem definition include the string t ha t  the user will enter t o  invoke the operation, 
and a pointer t o  the function tha t  will be executed when the menuItem is selected. It is up t o  
the programmer t o  supply the functions t ha t  are called by the instances of menuItem. There 
should also be a definition of one or more instances of the class menuItem. The instances of 
menuItem will be assigned t o  instances of menu in the main program block. An instance of 
keyMenu is the only other par t  of the user interfaces t ha t  is required. An instance of menu will 
be assigned t o  the keyMenu instance in the main program block. 

8.3. Main 

The main program block is mainly used for da t a  structure definition and allocation. One 
important global da t a  structure is a character array instring, which is used by the  user inter- 
face for the input command string. The main program block should not contain much program 
code, most of the critical functions should be defined elsewhere. The only operations t ha t  the 
main block should do is t o  initialize the network and user interface, and t o  invoke a keyMenu 



Oregon Graduate Center - Preliminary 

instance member function for execution of the simulator. 

August 3, 1888 



Oregon Graduate Center - Preliminary 

Example Model Class 

class model 
{ 

int bottomsize, middelsize, topsize; 
inclass* bottom; 
feedforward* middle; 
feedforward* top; 

public: 

model(int ,int ,int); 
void cycle(); 
void BindStream(FILE* fp) { inclass -> BindStream(fp); ) 

1 

model::model(int b, int m, int t )  
{ 

// allocate layers 

bottom = new inclass(bottomSize,l); 
middle = new feedforward(bottomSize,middleSize); 
topsize = new feedforward(middleSize,topSize); 

// link network 

middle -> ConnectInput(bottom); 
top -> ConnectInput(midd1e); 

1 

model::Cycle() 
// run one forward pass through network 
{ 

bottom -> Getvector(); 
middle -> Calculatevector(); 
top -> CalculateVector(); 

August 3,1988 



Oregon Graduate Center - Preliminary 

User Interface Example 

// 
// User interface functions 
// 

void Run() 
// run feedforward network one cycle 
{ 

void OpenInputFile() 
// get file name from input, open file and call model 
{ 

FILE* fd; 
char fileName[256] ,dummy [256]; 

sscanf("%s %s",dummy,fileName); 
if ((fd = fopen(fileName,"rW)) <= 0) 

printf(stderr," Error occurred opening file <%s>O,fileName); 
else 

m.BindStream(fd); 

// define menu selection items 

August 3,1888 

menuItem r("r","run","Run network one feed forward passW,Run); 
menuItem f("f","file","Read input da t a  from fileW,OpenInputFile); 



Oregon Graduate Center - Preliminary 

Main block example 

// Define user interface data structures 

keyMenu keyMenuInstance0; 
menu menuInstance(5); 

// Define network 
int size1 = 5; 
int size2 = 3; 
int size3 = 2; 

model modelInstance(sizel,size2,size3); 

main() 
{ 
// initialize classes 

// run network 

August 3, 1988 



Oregon Graduate Center - Preliminary 

Appendix: CAPsim Library Class Directory 

August 3, 1988 



Oregon Graduate Center - Preliminary August 3,1988 

class alphabet : superclass vectorgen 

alphabet(int,int,int) 
void ReadFile() 
int Getvector() 
void WriteShortVector(FILE*) 
void WriteInputVector(FILE*) 
void asShortText(char*) 

class backprop 

void 
void 
int 
int 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 

class backward : superclass floatvector 

backward(int,int) 
void ConnectError(floatVector*) 
void ConnectOutput(floatVector*) 
void ConnectWeights(forward*) 
int Updatevalue() 

class classify : superclass integervector 

classify(int,int) 
void ConnectInput(prototype*) 
void ConnectTarget(integerVector*) 



Oregon Graduate Center - Preliminary 

void Updatevalue() 
int prototypeNumber(int) 

class error : superclass floatVector 

void 
void 
void 
void 
void 
void 
int 
float 
float 
float 

class floatvector : superclasa vector 

floatVector(in t)  
float GetValue(int) 
void PutValue(int,float) 

class fonts : superclass intvectorgen 

fonts(int,int,int) 
void ReadFile() 
void Getvector() 
void WriteShortVector(FILE*) 
void WriteInputVector(FILE*) 
void asShortText(char*) 

class forward : super class floatvector 

forward(int,int) 
void ConnectInput(floatVector*) 
void ConnectOutput(forward*) 
void ConnectError(floatVector*) 
floatvector* GetDelta() 
float* WeightPointer0 
int GetInsize() 
int Updatevalue() 
int Updateweightso 
void ReadWeights(FILE*) 
void ReadHiOrder(FILE*) 
void WriteWeights(FILE*) 
void WriteHiOrder(FILE*) 
void initializeWeights() 

class inclass : superclass floatvector 

August 3, 1988 

inclass(int ,int) 
void BindStream(FILE*) 



Oregon Graduate Center - Preliminary August 8,1888 

void RepeatCount(int) 
int IsBound() 
void RepeatBuffer(int) 
void Getvector() 
void Readvector() 

class intAlphabet : superclass intvectorgen 

intAlphabet(int ,int,int) 
void ReadFile() 
int Getvector() 
void WriteShortVector(FILE*) 
void WriteInputVector(FILE*) 
void GetAccumulatedInput() 
void GetAverageInputO 

class intBackprop 

void 
void 
int 
int 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
int 
void 
void 
void 



Oregon Graduate Center - Preliminary August 3, 1988 

void useAnnealWeights() 

class intBackward : superclass integervector 

intBackward(int,int) 
void ConnectError(integerVector*) 
void ConnectOutput(integerVector*) 
void ConnectWeights(intForward*) 
int Updatevalue() 

class integervector : superclass vector 

integerVector(int) 
float GetValue(int) 
int IntegerValue(int) 
void PutValue(int,int) 
void PutValue(int,float) 
int SumValue(int) 

class intError : superclass integervector 

void 
void 
void 
void 
void 
void 
void 
int 
float 
float 
float 
void 

class intForward : euperclass integervector 

intForward(int,int) 
void ConnectInput(integerVector*) 
void ConnectOutput(intForward*) 
void ConnectError(integerVector*) 
vector* GetDelta() 
int* WeightPointer() 
int GetInsizeO 
void useAnnealWeights() 
void useActualWeights() 
void useSignWeights() 
void useThresholdWeighs() 
void dontPropagate() 
void setweightstepsize() 
void setAnnealBits() 
void setEta() 
void setAlpha() 



Oregon Graduate Center - Preliminary 

void 
int 
int 
int 
int 
int 
int 
int 
int 
void 
void 
void 
void 
void 
void 
void 

class intOutclass : superclass integervector 

intOutclass(int) 
void ConnectInput(integerVector*) 
void BindStream(FILE*) 
void UnBindStream(FILE*) 
int IsBound() 
void Updatevalue() 
void Putvector() 

class intvectorgen : superclass integervector 

intVectorgen(int,int,int) 
void RepeatCount(int) 
integervector* inputvector() 
void RepeatBuffer(int) 

class keyMenu 

keyMenu() 
keyMenu(menu*) 

void setMenu(menu*) 
void batch() 
void setEcho() 
void setPrompt(void (*p)()) 
void inputstring() 
void readMacro(macro*) 
void executeMacro(macro*) 

class macro 

August 3, 1988 

macro(char*) 
int Getsize() 
macro* nextMacro() 
void link(macro*) 
char* inputString(int) 



Oregon Graduate Center - Preliminary 

char* GetName() 
void addCommand(char*) 
void readFile() 
void writeFile() 

class menu 

void 
int 
void 
void 
void 
void 
void 
void 
void 

class menuItem 

menuItem(char*,char*,char*,void (*p)()) 
char* key() 
char* cmd() 
void action() 
void help() 
void helpText() 

class nestor 

nestor(int ,int,int) 
void targetTrace(FILE*) 
void outTrace(FILE*) 
void inTrace(FILE*) 
int prototypes() 
void Run() 
int prototypeNumber(int) 

class normal : superclass integervector 

normal(int) 
void ConnectInput(integerVector*) 
void Getvector() 

class outclass : superclass floatvector 

outclass(int) 
void ConnectInput(integerVector*) 
void BindStream(FILE*) 
void UnBindStream(FILE*) 
int IsBound() 
void Updatevalue() 
void Putvector() 

August 3, 1988 



Oregon Graduate Center - Preliminary August 3,1988 

class prototype : superclass integervector 

prototype(int,int,float) 
void ConnectInput(integerVector*) 
void Updatevalue() 
int newPrototype(int) 
void confusion(int) 
int numberPrototypes() 
int max() 

class vector 

vector(int) 
int Getsize() 
float Getvalue() 
void WriteVector(FILE*) 
void WriteShortVector(FILE*) 
char* asText() 
void asShortText(char*) 

class vectorgen : superclass floatvector 

vectorgen(int ,int,int) 
void RepeatCount(int) 
floatvector* inputvector() 
void RepeatBuffer(int) 

class window 

window(int ,int,int,int) 
-window() 

WINDOW* windowPtr() 
void show() 
void addch(char) 
void addstr(char*) 
void box(char,char) 
void clear() 
void erase() 
char getch() 
void getstr(char*) 
void getxy(int*,int*) 
void move(int,int) 
void overwrite(window*) 
void refresh() 
void standend() 
void standout() 
WINDOW* subwin(int,int,int,int) 

class windowMenu : superclass keyMenu 

windowMenu() 
windowMenu(menu*) 

void wind(window*) 


