
Modifications to Artificial Neural Networks Models
for Digital Hardware Implementation

Tom Baker and Dan Hammerstrom

Department of Computer Science and Engineering

Oregon Graduate Center

Technical Report No. CS/E 88-035

December, 1988

Modifications to Artificial Neural Networks Models
for Digital Hardware Implementation

Tom Baker and Dan ~ammers t rom '

Dept. of Computer Science and Engineering, Oregon Graduate Center

Abstract-Before artificial neural network applications become common there
must be specialized hardware that will allow large networks to be run in real t ime
inexpensively. It is uncertain how large networks will do when constrained to
implementations o n architectures of current technology. Some tradeofls must be
made when the network models are implemented eficiently. One popular
artificial neural network model is the back propagation algorithm [I] . The back
propagation model promises to be a powerful and flexible learning model. This
paper discusses the eflects on performance when the model is modified for
eg'icient hardware implementation. The modifications to the back propagation
model includes limited precision computation, limited communication between
layers, accumulation of weight changes, and the introduction of noise into the
weight modijcat ion process.

1. Introduction

Recent research has shown that artificial neural networks (ANNs) are a
promising solution t o many applications tha t are difficult for conventional com-
puters. The parallel distributed processing models are a radical departure from
previous artificial intelligence solutions. Instead of processing symbolic data ,
many ANN algorithms use massively parallel neuron-like elements t o provide
problem solutions. Because the ANN models are based on biologically inspired
models, they promise t o do tasks that are natural for humans but difficult for
more traditional computers.

Although the ANN models are biologically inspired, they are not accurate
simulations of real neural processes. Simulating the bio-electrical responses of
neurons takes a prohibitive amount of CPU time. Instead of reverse engineering
the brain, the ANN models try t o achieve similar results with current computer
technology.

'This work was supported under SRC grant 86-10-097.

The ANN research community needs architectures that implement the
ANN models faster than what is currently available. Simulating ANN'S on
existing architectures is slow because of the large number of computations
required by the models. Research is bounded by the time limits that current
architectures place on ANN simulations. Researchers currently cannot simulate
more than a few thousand neurons because the execution time of larger net-
works is too long. Many believe that the models will not be useful in real

4 applications until large networks are implemented (> 10 neurons). Therefor,
specialized hardware must be created that will execute ANN models in real
time before many useful applications can be developed.

One common ANN model is the back propagation algorithm made popular
by Rumelhart, Hinton and Williams [I]. This paper discusses the effects of the
back-propagation model when implemented with current technology. There are
many tradeoffs that must be made when an algorithm is mapped to a hardware
architecture. We describe what important concessions must be made and what
the performance effects are. ,

!

2. Model Architecture

The goal of the Cognitive Architecture Project (CAP) a t the Oregon Gra-
duate Center is t o create wafer scale neurocomputers. There are many archi-
tectural issues that must be resolved before our goal can be realized. This
paper will discuss how an ANN model performs when implemented on a VLSI
architecture.

It is not the purpose of the research reported here t o design a computer
architecture that will run ANN models. However, there must be a general tar-
get architecture t o simulate. Although we only present the results of one type
of ANN model, we assume a more general architecture. The target architecture
is not specifically for back-propagation algorithms, but for executing ANN
models in general. The model architecture must be general enough t o emulate
different types of ANN algorithms.

To have fast execution of the ANN models, the algorithms must be mapped
to a more efficient implementation. Current technology cannot emulate fully
connected communication and high precision computation in low cost and a t
the speeds required for real time execution. Simpler processors can be made
smaller, and more processors can be implemented with a limited amount of
resources.

For this paper, we assume that the target architecture consists of many
simple parallel processors. The ANN network will be mapped onto the target
architecture with one artificial neuron per processor node (PN). We have simu-
lated a digital computer, but the same results would apply to an analog proces-
sor as well. Each P N must have its own local memory to store weight data.
Sharing a common memory bus between PNs would not provide the perfor-
mance that is required. Each of the PNs will be a simple processor that

executes its functions in a pipelined fashion with one result per clock cycle. We
realize that this performance is may not be realizable in real hardware, but it
does give us a theoretical basis for comparison. Analysing the actual method of
communication is outside the scope of this paper, knowing the exact type of
inter-processor communication un-necessary for this research. Other research
within the CAP group has found workable solutions t o the problems of com-
munication between processors in a massively parallel architecture [Z] [3].

3. The Back Propagation Algorithm
The back propagation model is a feed forward network with N layers

(N > 3). The first layer is the input layer, and layer N is the output layer.
The layers between the input and output layers are called the hidden layers.
Each node in layer n (1 < n _< N) is connected to every node in layer n-1.
The activation value (oi) for each node in layer n is calculated as

where n is the number of input nodes, oj is the value of node j in layer n-1,
and wij is the connection weight between the input node j and node i.

The back-propagation model is a supervised learning algorithm that
requires that the desired output is known. Learning occurs by using the weight
update equation

where q is the learning rate, 6 is the error gradient, a is the momentum rate,
and Awij(t-1) is the previous weight change. The error gradient for each out-
put node (oi) in layer N is

where ti is the desired value for the node. The error gradient for each hidden
node in layer n is

where 6 is the error gradient of the node in layer n + l that is connected by the
weight wik .

The network was trained on a character recognition application. The
training set was a set of characters from eleven different alphabetical fonts
taken from the Apple Macintosh font set, there were 286 total training pairs.
The inputs were a twelve by twelve array that was a pixel representation of a
single character. The position of the character was justified to the top left.
There were twenty-six outputs, one output for each character in the alphabet.
The network was expected to match the bit map input t o the correct output
category. There was one hidden layer with thirty hidden nodes. This

application is a non-trivial problem that tests the networks' learning capacity
and generalization abilities. We feel that it is a good problem to test the per-
formance of the modifications that will be made to the algorithm. We have
simulated other applications with similar results.

4. Modifications
The back propagation model was not designed for efficient hardware imple-

mentation. The current mathematical model is not concerned with physical
realization. Many simulations use double precision calculations that are expen-
sive to implement inexpensively in a massively parallel architecture. Architec-
tures that use limited precision calculations can be made smaller and faster,
and they can be made using analog computation elements. The algorithm also
is not concerned about the problem of how many processors would communicate
asynchronously with each other. Too much communication between processors
causes a bottleneck in the performance of any parallel architecture.

The research that this paper describes answers the question of what the
effect that certain modifications have to the performance of the back propaga-
tion algorithm. These modifications are inspired by our desire for inexpensive
silicon implementations. We discuss some of the areas that prevent the model
from being implemented in hardware. We have also presented some possible
solutions t o the problems that limit fast execution. For each possible solution, a
simulation has been made t,o determine the effects on the performance and
effectiveness of the resulting #ANN. From the simulation results, decisions can
be made whether the solutions are effective or not.

There are many tradeoffs that must be made when deviating from the
theoretical basis of the ANN models. The important concept is what the effect
is on network performance when modifications are made. The learning algo-
rithm sometimes ceases t o work effectively, and understanding the reasons for
failure can be important when designing hardware. The results of our
modifications t o the back propagation algorithm are not always completely suc-
cessful, but there is often an improvement in one aspect of the execution of the
algorithm.

4.1. Limited Precision
Floating point processing units are too expensive and require more silicon

area than is feasible for a highly parallel architecture. For a cost effective solu-
tion, the PNs should have an integer multiplier and adder. As we mentioned
before, the PNs could also be an analog processor. The important issue is how
much information the back propagation algorithm requires for the activation
values and weights.

Fixed point computation can be used for limited precision architectures.
The activation value of equation 1 can be computed by summing the products
of the inputs oj and the weights wij, and using a table lookup for the squishing

function. By using a table lookup, the binary point of the results can be
automatically justified. Because the activation value of each node is always
positive and less than one, the binary point will always be to the right of the
significant bits. Our simulations have shown that eight bits of precision are
enough for the activation values of the outputs.

The weights however, commonly grow larger than one and can have both
positive and negative values. So the binary point for the weights must be
placed within the significant bits, and there must be one bit to represent the
sign of the value. We use three bits to the left of the binary point, which limits
the weight values to less than eight. The weights of floating point simulations
sometimes grow larger than eight, but weights greater than eight are not
required. The simulation results of limited precision calculations are shown in
Table 1. Each number in Table 1 is the average number of input presentations
for the application to converge for five identical networks with different initial
weights. A floating point simulation is given for comparison.

The limited precision simulation results show that sixteen total bits of pre-
cision (one sign bit, three bits to the left of the binary point and twelve bits to
the right) are adequate. The network can learn with less precision, but the
learning algorithm does not work as effectively. Our simulations have shown
that there is a limit of twelve bits of weight precision required by the algorithm.
The twelve bit limit is because the individual weight updates in equation 2 are
small quantities. The algorithm requires weight updates in the bit range
greater than eight bits to the right of the binary point (i A w i j ! < 0.004), and
elimination of these bits would inhibit learning. A floating point representation
may be able to learn successfully with fewer than twelve bits in the mantissa,
but floating point units are too expensive for massively parallel architectures.

The limited precision network required fewer input presentations to learn
the training set. We feel that the improvement is caused by the fact that the
weights are limited to a maximum value (1 wij 5 8). Large weight values can
cause the network to learn mbre slowly, because a single large weight may have

Floating Point vs. Integer

Algorithm Input
Modification Presentations

Floating Point 36,490
16 Bit Integer 21,340

Table 1

too much influence over the result of the activation value of the node. It is
unclear what the optimal upper bound for weight values should be for all appli-
cations. We have found that three bits t o the left of the binary point is ade-
quate for this application. We feel that the limited precision results are appli-
cation dependent, and will not always learn with fewer input presentations.

4.2. Sign/Threshold Propagation
The interprocessor com~liunication required to execute equation 4 is a seri-

ous problem. The information that must be sent between processors in all the
other equations can be broadcast (O (n) communication) from the originating
node to all of the other nodes. The hidden nodes, however, must receive a
unique weight value from each of the output nodes requiring point t o point com-
munication (0 (n 2) communication). Anderson [4] discovered that the network
learning performance increased when the sign of the weight was used in equa-
tion 4 instead of the actual weight value. Using Anderson's results leads t o a
useful modification of the basic algorithm. If the sign of the weights for the
connections between the hidden nodes and the output nodes are kept in the
local memory of the hidden nodes, as well as the output nodes, then the value
only has t o be propagated when the sign of the weight changes. The output
nodes can then broadcast their S values, and send a point t o point message
when the sign of a weight changes. The communication overhead reduces
dramatically when this modification is used. Table 2 shows that there is a per-
formance increase when the propagation of weights is reduced. We have made
an estimate of the total clock cycles that the target architecture requires to
learn the application. Even though the network takes more input presentations
t o learn the data, there is less execution time.

As the simulation results in table 2 suggest, the network does not always
learn with fewer input presentations with Anderson's modification. The algo-
rithm seems to require more weight resolution than simply using the sign of the
weight. If we use the entire value of the weight and propagate the weight only
when it changes by a certain limit, then we can use greater weight precision

L

Propagation of Sign of the Weights

Algorithm Input Execution
Modification Presentations Cycles

Integer Standard 21,340 60.82M
Use Sign of Weight 27,510 56.26M

Table 2

and also use reduced communication. Table 3 shows the results of simulations
that propagate the weights only when the weight differed by a certain threshold
from the weight that is stored in the hidden nodes' local memory. A threshold
of 0.1 has a significant increase in performance, while using a threshold of 0.3
has reduced performance. The performance increase of using reduced weight
propagation is application specific, and may not be beneficial in all cir-
cumstances. The additional cost of requiring more local memory for the hidden
nodes must also be considered. The OGC CAP group is doing further research
to reduce the communication for propagation of error values.

4.3. Sum Weight Changes

Accumulating the weight changes of equation 2 before updating the
weights can have a positive effect on the number of input presentations that are
required for the network to learn. Adjusting the weights for every input presen-
tation can create a discontinuous path through the error surface. When the
weight changes are accumulated, the path of the gradient descent algorithm
tends to be smoother. The weight change accumulation is similar to the data
partitioning method used by' Pomerleau, et. al. [5] when they optimized the
back propagation algorithm for execution on the Warp system. Weight change
accumulation can also improve the execution time of the algorithm. The only
value that needs t o be accumulated from equation 2 is the 6ioj term. Multiply-
ing the learning constant (q) and adding the momentum (a A w i j) can be delayed
until the weights are actually updated. The communication of error back pro-
pagation will also be reduced because the 6,. values in equation 4 are not sent
on every input presentation. The simulation results in Table 4 suggest that the
number of input presentations needed to learn the training set are not always
reduced when accumulating the weight changes, but there is a consistent
improvement in execution time.

>

Propagation of Weight After Threshold Change

Algorithm Input Execution
Modification Present a t ions Cycles

Integer Standard 21,340 60.82M
Threshold 0.1 21,050 43.06M
Threshold 0.3 38,780 79.31M

Table 3

Accumulated Weight Change

Algorithm Input Execution
Modification Presentations Cycles

Integer Standard 21,340 60.82M
Accumulate 2 Inputs 22,650 39.26M
Accumulate 3 Inputs 18,480 25.14M
Accumulate 4 Inputs 20,190 23.71M
Accumulate 5 Inputs 25,340 26.93M
Accumulate 6 Inputs 18,670 18.54M
Accumulate 7 Inputs 21,790 20.38M
Accumulate 8 Inputs 21,790 19.51M
Accumulate 9 Inputs 24,250 20.96M
Accumulate 10 Inputs 24,540 20.75M

Table 4

4.4. Noise
An effect of using integer computation is that the weight space is quan-

tized. The weights can only be adjusted in discrete increments. It is possible
for a weight t o get stuck on one value if the weight changes are not big enough
to bypass local minima. Adding random noise to the weights can help smooth
the weight space. We addednoise t o the weight space by randomly setting the
lower n bits of each weight. #It is counter-intuitive to think that any computa-
tion can be improved by noise, but the simulation results in Table 5 suggest
that the number of input presentations can be reduced with the addition of
noise. The extra computation of adding the noise does increase the execution
time of the algorithm, even though the network converges in fewer input presen-
tations. It is possible, however, t o design hardware that would introduce noise
into the weight space with no cost of execution time.

5. Conclusions

The results in this paper should be considered cautiously. The perfor-
mance improvement (or degradation) is somewhat dependent on the training
set, and the algorithm modifications may not have the same results over all
applications. The target architecture may also have been over-simplified, and
the estimate of the execution time of the algorithm may not be accurate. There
are many trade-offs that must be considered when the back-propagation algo-
rithm is modified. The results in this paper should help a computer architect
realize the effects of the algorithm modifications when designing hardware for

Effect of Noise on Learning.

Algorithm Input Execution
Modification Present ations Cycles

Integer Standard 21,340 60.82M
1 Random Bit 18,250 66.72M
2 Random Bits 17,330 63.38M
3 Random Bits 18,880 69.02M
4 Random Bits 25,800 94.34M

Table 5

ANN applications.

We have had similar results with other applications, such as a network
that learned the coordinate transformation for a two axis robot arm. The
desired position was input, and the axis positions were expected as an output.
As mentioned in the previousiparagraph the results are application specific, but
the effects of the algorithm modifications were consistent. More research must
be done to determine the effects of the algorithm modifications when large net-
works are used.

Our results show that:

Reduced precision computation can be used
successfully for the back-propagation algorithm.
The communication between processors can be
reduced when propagating the weights.
Accumulating the weight changes can improve
execution time of the algorithm.
Noise can have a positive effect on the
learning algorithm.

6. References

[I] Rumelhart, Hinton, Williams (1986). Learning Internal Representa-
tions by Error Propagation. In D.E. Rumelhart & J.L. McClelland's
(Eds.), Parallel Distributed Processing: Explorutons in the Micros-
tructure of Cognition (Vol. 1) (pp. 318-362). Cambridge, Mass.:
MIT Press.

[2] Bailey, Hammerstrom (1988). Why VLSI Implementations of Asso-
ciative VLCNs Require Connection Multiplexing. International
Conference on Neural Networks. San Diego, CA.

[3] Bahr, Bailey, Baker, Hammerstrom, Jagla, Johnson, Mates, May,
McCartor, Means, Rudnick (1988). The OGC Cognitive Architec-
ture Project: Silicon Implementation of Connectionist/Neural Net-
works. NorthCon 88. Seattle, WA.

[4] CA Anderson, Ph.D. Dissertation, Learning and Problem Solving
with Multilayer Connectionist Systems, Arnherst, MA, Sept. 1986.

[5] Pomerleau, Gusciora, Touretsky and Kung (1988). Neural Net-
work Simulation a t Warp Speed: How We Got 17 Million Connec-
tions Per Second. International Conference o n Neural Networks.
San Diego, CA.

