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Abstract-Before artificial neural network applications become common there 
must be specialized hardware that will allow large networks to be run in real t ime 
inexpensively. It is uncertain how large networks will do when constrained to 
implementations o n  architectures of current technology. Some tradeofls must be 
made when the network models are implemented eficiently. One popular 
artificial neural network model is the back propagation algorithm [ I ] .  The  back 
propagation model promises to be a powerful and flexible learning model. This 
paper discusses the eflects on  performance when the model is modified for 
eg'icient hardware implementation. The modifications to the back propagation 
model includes limited precision computation, limited communication between 
layers, accumulation of weight changes, and the introduction of noise into the 
weight modijcat ion process. 

1. Introduction 

Recent research has shown that  artificial neural networks (ANNs) are a 
promising solution t o  many applications tha t  are difficult for conventional com- 
puters. The parallel distributed processing models are a radical departure from 
previous artificial intelligence solutions. Instead of processing symbolic data ,  
many ANN algorithms use massively parallel neuron-like elements t o  provide 
problem solutions. Because the ANN models are based on biologically inspired 
models, they promise t o  do tasks that  are natural for humans but difficult for 
more traditional computers. 

Although the ANN models are biologically inspired, they are not accurate 
simulations of real neural processes. Simulating the bio-electrical responses of 
neurons takes a prohibitive amount of CPU time. Instead of reverse engineering 
the brain, the ANN models try t o  achieve similar results with current computer 
technology. 
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The ANN research community needs architectures that  implement the 
ANN models faster than what is currently available. Simulating ANN'S on 
existing architectures is slow because of the large number of computations 
required by the models. Research is bounded by the time limits that  current 
architectures place on ANN simulations. Researchers currently cannot simulate 
more than a few thousand neurons because the execution time of larger net- 
works is too long. Many believe that  the models will not be useful in real 

4 applications until large networks are implemented ( > 10 neurons). Therefor, 
specialized hardware must be created that  will execute ANN models in real 
time before many useful applications can be developed. 

One common ANN model is the back propagation algorithm made popular 
by Rumelhart, Hinton and Williams [I]. This paper discusses the effects of the 
back-propagation model when implemented with current technology. There are 
many tradeoffs that  must be made when an algorithm is mapped to  a hardware 
architecture. We describe what important concessions must be made and what 
the performance effects are. , 
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2. Model Architecture 

The goal of the Cognitive Architecture Project (CAP) a t  the Oregon Gra- 
duate Center is t o  create wafer scale neurocomputers. There are many archi- 
tectural issues that  must be resolved before our goal can be realized. This 
paper will discuss how an ANN model performs when implemented on a VLSI 
architecture. 

It is not the purpose of the research reported here t o  design a computer 
architecture that  will run ANN models. However, there must be a general tar- 
get architecture t o  simulate. Although we only present the results of one type 
of ANN model, we assume a more general architecture. The target architecture 
is not specifically for back-propagation algorithms, but for executing ANN 
models in general. The model architecture must be general enough t o  emulate 
different types of ANN algorithms. 

To have fast execution of the ANN models, the algorithms must be mapped 
to  a more efficient implementation. Current technology cannot emulate fully 
connected communication and high precision computation in low cost and a t  
the speeds required for real time execution. Simpler processors can be made 
smaller, and more processors can be implemented with a limited amount of 
resources. 

For this paper, we assume that  the target architecture consists of many 
simple parallel processors. The ANN network will be mapped onto the target 
architecture with one artificial neuron per processor node (PN). We have simu- 
lated a digital computer, but the same results would apply to  an analog proces- 
sor as well. Each P N  must have its own local memory to  store weight data. 
Sharing a common memory bus between PNs would not provide the perfor- 
mance that  is required. Each of the PNs will be a simple processor that  



executes its functions in a pipelined fashion with one result per clock cycle. We 
realize that  this performance is may not be realizable in real hardware, but it 
does give us a theoretical basis for comparison. Analysing the actual method of 
communication is outside the scope of this paper, knowing the exact type of 
inter-processor communication un-necessary for this research. Other research 
within the CAP group has found workable solutions t o  the problems of com- 
munication between processors in a massively parallel architecture [Z] [3]. 

3. The Back Propagation Algorithm 
The back propagation model is a feed forward network with N  layers 

( N  > 3).  The first layer is the input layer, and layer N is the output layer. 
The layers between the input and output layers are called the hidden layers. 
Each node in layer n (1 < n _< N )  is connected to  every node in layer n-1. 
The activation value (oi) for each node in layer n is calculated as 

where n is the number of input nodes, oj is the value of node j in layer n-1, 
and wij is the connection weight between the input node j and node i. 

The back-propagation model is a supervised learning algorithm that  
requires that  the desired output is known. Learning occurs by using the weight 
update equation 

where q is the learning rate, 6 is the error gradient, a is the momentum rate, 
and Awij(t-1) is the previous weight change. The error gradient for each out- 
put node (oi) in layer N  is 

where ti is the desired value for the node. The error gradient for each hidden 
node in layer n is 

where 6 is the error gradient of the node in layer n + l  that  is connected by the 
weight wik . 

The network was trained on a character recognition application. The 
training set was a set of characters from eleven different alphabetical fonts 
taken from the Apple Macintosh font set, there were 286 total training pairs. 
The inputs were a twelve by twelve array that  was a pixel representation of a 
single character. The position of the character was justified to  the top left. 
There were twenty-six outputs, one output for each character in the alphabet. 
The network was expected to  match the bit map input t o  the correct output 
category. There was one hidden layer with thirty hidden nodes. This 



application is a non-trivial problem that tests the networks' learning capacity 
and generalization abilities. We feel that  it is a good problem to  test the per- 
formance of the modifications that  will be made to  the algorithm. We have 
simulated other applications with similar results. 

4. Modifications 
The back propagation model was not designed for efficient hardware imple- 

mentation. The current mathematical model is not concerned with physical 
realization. Many simulations use double precision calculations that  are expen- 
sive to  implement inexpensively in a massively parallel architecture. Architec- 
tures that  use limited precision calculations can be made smaller and faster, 
and they can be made using analog computation elements. The algorithm also 
is not concerned about the problem of how many processors would communicate 
asynchronously with each other. Too much communication between processors 
causes a bottleneck in the performance of any parallel architecture. 

The research that  this paper describes answers the question of what the 
effect that  certain modifications have to  the performance of the back propaga- 
tion algorithm. These modifications are inspired by our desire for inexpensive 
silicon implementations. We discuss some of the areas that  prevent the model 
from being implemented in hardware. We have also presented some possible 
solutions t o  the problems that  limit fast execution. For each possible solution, a 
simulation has been made t,o determine the effects on the performance and 
effectiveness of the resulting #ANN. From the simulation results, decisions can 
be made whether the solutions are effective or not. 

There are many tradeoffs that  must be made when deviating from the 
theoretical basis of the ANN models. The important concept is what the effect 
is on network performance when modifications are made. The learning algo- 
rithm sometimes ceases t o  work effectively, and understanding the reasons for 
failure can be important when designing hardware. The results of our 
modifications t o  the back propagation algorithm are not always completely suc- 
cessful, but there is often an improvement in one aspect of the execution of the 
algorithm. 

4.1. Limited Precision 
Floating point processing units are too expensive and require more silicon 

area than is feasible for a highly parallel architecture. For a cost effective solu- 
tion, the PNs should have an integer multiplier and adder. As we mentioned 
before, the PNs could also be an analog processor. The important issue is how 
much information the back propagation algorithm requires for the activation 
values and weights. 

Fixed point computation can be used for limited precision architectures. 
The activation value of equation 1 can be computed by summing the products 
of the inputs oj  and the weights wij, and using a table lookup for the squishing 



function. By using a table lookup, the binary point of the results can be 
automatically justified. Because the activation value of each node is always 
positive and less than one, the binary point will always be to  the right of the 
significant bits. Our simulations have shown that  eight bits of precision are 
enough for the activation values of the outputs. 

The weights however, commonly grow larger than one and can have both 
positive and negative values. So the binary point for the weights must be 
placed within the significant bits, and there must be one bit to  represent the 
sign of the value. We use three bits to  the left of the binary point, which limits 
the weight values to  less than eight. The weights of floating point simulations 
sometimes grow larger than eight, but weights greater than eight are not 
required. The simulation results of limited precision calculations are shown in 
Table 1. Each number in Table 1 is the average number of input presentations 
for the application to  converge for five identical networks with different initial 
weights. A floating point simulation is given for comparison. 

The limited precision simulation results show that  sixteen total bits of pre- 
cision (one sign bit, three bits to the left of the binary point and twelve bits to  
the right) are adequate. The network can learn with less precision, but the 
learning algorithm does not work as effectively. Our simulations have shown 
that there is a limit of twelve bits of weight precision required by the algorithm. 
The twelve bit limit is because the individual weight updates in equation 2 are 
small quantities. The algorithm requires weight updates in the bit range 
greater than eight bits to  the right of the binary point ( i A w i j !  < 0.004), and 
elimination of these bits would inhibit learning. A floating point representation 
may be able to  learn successfully with fewer than twelve bits in the mantissa, 
but floating point units are too expensive for massively parallel architectures. 

The limited precision network required fewer input presentations to  learn 
the training set. We feel that  the improvement is caused by the fact that  the 
weights are limited to a maximum value ( 1  wij 5 8). Large weight values can 
cause the network to learn mbre slowly, because a single large weight may have 

Floating Point vs. Integer 

Algorithm Input 
Modification Presentations 

Floating Point 36,490 
16 Bit Integer 21,340 

Table 1 



too much influence over the result of the activation value of the node. It is 
unclear what the optimal upper bound for weight values should be for all appli- 
cations. We have found that  three bits t o  the left of the binary point is ade- 
quate for this application. We feel that  the limited precision results are appli- 
cation dependent, and will not always learn with fewer input presentations. 

4.2. Sign/Threshold Propagation 
The interprocessor com~liunication required to  execute equation 4 is a seri- 

ous problem. The information that  must be sent between processors in all the 
other equations can be broadcast ( O ( n )  communication) from the originating 
node to  all of the other nodes. The hidden nodes, however, must receive a 
unique weight value from each of the output nodes requiring point t o  point com- 
munication ( 0 ( n 2 )  communication). Anderson [4] discovered that  the network 
learning performance increased when the sign of the weight was used in equa- 
tion 4 instead of the actual weight value. Using Anderson's results leads t o  a 
useful modification of the basic algorithm. If the sign of the weights for the 
connections between the hidden nodes and the output nodes are kept in the 
local memory of the hidden nodes, as well as the output nodes, then the value 
only has t o  be propagated when the sign of the weight changes. The output 
nodes can then broadcast their S values, and send a point t o  point message 
when the sign of a weight changes. The communication overhead reduces 
dramatically when this modification is used. Table 2 shows that  there is a per- 
formance increase when the propagation of weights is reduced. We have made 
an estimate of the total clock cycles that  the target architecture requires to 
learn the application. Even though the network takes more input presentations 
t o  learn the data, there is less execution time. 

As the simulation results in table 2 suggest, the network does not always 
learn with fewer input presentations with Anderson's modification. The algo- 
rithm seems to  require more weight resolution than simply using the sign of the 
weight. If we use the entire value of the weight and propagate the weight only 
when it changes by a certain limit, then we can use greater weight precision 
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Propagation of Sign of the Weights 

Algorithm Input Execution 
Modification Presentations Cycles 

Integer Standard 21,340 60.82M 
Use Sign of Weight 27,510 56.26M 

Table 2 



and also use reduced communication. Table 3 shows the results of simulations 
that  propagate the weights only when the weight differed by a certain threshold 
from the weight that  is stored in the hidden nodes' local memory. A threshold 
of 0.1 has a significant increase in performance, while using a threshold of 0.3 
has reduced performance. The performance increase of using reduced weight 
propagation is application specific, and may not be beneficial in all cir- 
cumstances. The additional cost of requiring more local memory for the hidden 
nodes must also be considered. The OGC CAP group is doing further research 
to  reduce the communication for propagation of error values. 

4.3. Sum Weight Changes 

Accumulating the weight changes of equation 2 before updating the 
weights can have a positive effect on the number of input presentations that  are 
required for the network to  learn. Adjusting the weights for every input presen- 
tation can create a discontinuous path through the error surface. When the 
weight changes are accumulated, the path of the gradient descent algorithm 
tends to  be smoother. The weight change accumulation is similar to  the data 
partitioning method used by' Pomerleau, et. al. [5] when they optimized the 
back propagation algorithm for execution on the Warp system. Weight change 
accumulation can also improve the execution time of the algorithm. The only 
value that  needs t o  be accumulated from equation 2 is the 6ioj term. Multiply- 
ing the learning constant (q )  and adding the momentum ( a A w i j )  can be delayed 
until the weights are actually updated. The communication of error back pro- 
pagation will also be reduced because the 6,. values in equation 4 are not sent 
on every input presentation. The simulation results in Table 4 suggest that  the 
number of input presentations needed to  learn the training set are not always 
reduced when accumulating the weight changes, but there is a consistent 
improvement in execution time. 
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Propagation of Weight After Threshold Change 

Algorithm Input Execution 
Modification Present a t  ions Cycles 

Integer Standard 21,340 60.82M 
Threshold 0.1 21,050 43.06M 
Threshold 0.3 38,780 79.31M 

Table 3 



Accumulated Weight Change 

Algorithm Input Execution 
Modification Presentations Cycles 

Integer Standard 21,340 60.82M 
Accumulate 2 Inputs 22,650 39.26M 
Accumulate 3 Inputs 18,480 25.14M 
Accumulate 4 Inputs 20,190 23.71M 
Accumulate 5 Inputs 25,340 26.93M 
Accumulate 6 Inputs 18,670 18.54M 
Accumulate 7 Inputs 21,790 20.38M 
Accumulate 8 Inputs 21,790 19.51M 
Accumulate 9 Inputs 24,250 20.96M 
Accumulate 10 Inputs 24,540 20.75M 

Table 4 

4.4. Noise 
An effect of using integer computation is that  the weight space is quan- 

tized. The weights can only be adjusted in discrete increments. It is possible 
for a weight t o  get stuck on one value if the weight changes are not big enough 
to  bypass local minima. Adding random noise to  the weights can help smooth 
the weight space. We addednoise t o  the weight space by randomly setting the 
lower n bits of each weight. #It is counter-intuitive to  think that  any computa- 
tion can be improved by noise, but the simulation results in Table 5 suggest 
that  the number of input presentations can be reduced with the addition of 
noise. The extra computation of adding the noise does increase the execution 
time of the algorithm, even though the network converges in fewer input presen- 
tations. It is possible, however, t o  design hardware that  would introduce noise 
into the weight space with no cost of execution time. 

5. Conclusions 

The results in this paper should be considered cautiously. The perfor- 
mance improvement (or degradation) is somewhat dependent on the training 
set, and the algorithm modifications may not have the same results over all 
applications. The target architecture may also have been over-simplified, and 
the estimate of the execution time of the algorithm may not be accurate. There 
are many trade-offs that  must be considered when the back-propagation algo- 
rithm is modified. The results in this paper should help a computer architect 
realize the effects of the algorithm modifications when designing hardware for 



Effect of Noise on Learning. 

Algorithm Input Execution 
Modification Present ations Cycles 

Integer Standard 21,340 60.82M 
1 Random Bit 18,250 66.72M 
2 Random Bits 17,330 63.38M 
3 Random Bits 18,880 69.02M 
4 Random Bits 25,800 94.34M 

Table 5 

ANN applications. 

We have had similar results with other applications, such as a network 
that learned the coordinate transformation for a two axis robot arm. The 
desired position was input, and the axis positions were expected as an output. 
As mentioned in the previousiparagraph the results are application specific, but 
the effects of the algorithm modifications were consistent. More research must 
be done to  determine the effects of the algorithm modifications when large net- 
works are used. 

Our results show that: 

Reduced precision computation can be used 
successfully for the back-propagation algorithm. 
The communication between processors can be 
reduced when propagating the weights. 
Accumulating the weight changes can improve 
execution time of the algorithm. 
Noise can have a positive effect on the 
learning algorithm. 
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