
Representing CSG SoIids Using a
Logic-Based Object Data Model

T. Lougenia Anderson Hitomi Okhawa
Jack Gjovaag David Maier Sheryl Shulman

Tektronix Laboratories

Oregon Graduate Center

Servio Logic Development Corporation

Technical Report No. CS/E 88-039
November 1988

Computer Science and Engineering
Oregon Graduate Center

19600 S.W. von Neumann Drive
Beaverton, Oregon 97006-1999

Proceedings of the IFIP Working Conference on Visual Database Systems, Tokyo, Japan,
April 1989.

Representing CSG Solids Using a Logic-Based Object Data Model

T. Lougenia ~ n d e r s o n * * * Hitomi ~hkawa* '
Jack G'jovaag* David ~ a i e r * * t Sheryl ~hv.lman*p**

* ~ e k t r o n i x Laboratories

**
Oregon Graduate Center

Servio Logic Development Corp.

A B S T R A C T : Constructive Solid Geometry (CSG) is a widely-used
method of describing three-dimensional solids. Th is paper reports o n
our experiences i n applying TEDM, a n object-oriented logic-based data
ntodel, to the problem of nzodeliizg CSG solids. In addition, we report
o n a new representation for the spatial relationships between CSG prim-
itives based o n constraints. These constraints are nzodeled as first-class
objects in TEDM, and hence are available explicitly to programs for rea-
soning about properties o j the resulting C S G representation. Further,
the constraint mechanism supports information hiding, provides support
for capturing tolercncing injormation jor a CSG solid, allows partially-
specified solids, and appears appropriate for the design system user
interface.

KEYWORDS: Constructive Solid Geometry, object-oriented d a t a
models, logic-based da ta models, constraints, inferencing techniques

1. INTRODUCTION

There is a growing perception in the CAD community t h a t Object-Oriented
Database Management Systems (00-DBMSs) provide the best modeling para-
digm for handling the complex, interrelated da ta structures found in CAD
applications. In a joint research project between Tektronix, Inc. and the Ore-
gon Graduate Center we have developed the Tektronix Engineering Da ta Model
(TEDM), a logic-based object model for such a n 00-DBMS [8,2]. This paper
reports on our experiences in applying TEDM t o the problem of modeling

t D. Maier's work was partially supported by a contract from Tektronix Computer Restarch Laboratory and
NSF grant IST 83 51730, co-sponsored by Tektronix Foundation, Intel, Digital Equipment, Servio Logic, Mentor
Graphics and Xerox.

Constructive Solid Geometry (CSG) solids, and on a new representation for the
spatial relationships between CSG primitives t h a t exhibits some distinct advan-
tages over the commonly used transformational matrix approach.

The joint work on TEDM grew out of a requirements analysis which indi-
cated t h a t traditional database systems are no longer sufficient for engineering
design applications [lo]. TEDM shares with other object-oriented d a t a models
the capability of constructing complex d a t a objects t h a t accommodate hierarch-
ical structures with shared subparts or even cyclic da ta , a major departure from
the relational d a t a model. In addition to handling complex objects, TEDM also
supports object identity, a type hierarchy, deductive elements for virtual da ta
definition, and a rule-like da ta language.

One of the most important requirements for our CSG d a t a model is t h a t i t
be possible t o t reat constraints a s objects. The ultimate goal is t o be able t o
reason about various characteristics of a particular CSG solid, such as part rigi-
dity, manufacturability, or whether the par t is over- or underconstrained. The
reasoning process requires examining and manipulating constraints on the rela-
tionships between CSG primitives a s data. Since everything is a n object in a n
object-oriented da ta model, such constraints are no different from the more con-
ventional da ta objects stored in the database and can be manipulated in a simi-
lar fashion.

Primitive shapes, such as spheres, cones, and cylinders, form the basis for a
CSG representation of a three dimensional solid. Each complex solid is defined
by specifying a Boolean combination of such primitive shapes and other sirni-
larly defined complex shapes, where constraints may be placed on the relative
position of the two shapes being combined. This Boolean combination process is
continued recursively until the desired solid is completely specified. Note t h a t
such a recursive definition is easily translated into a binary-tree form where the
interior nodes correspond t o operations such as binary Boolean ~ p e r a t ~ i o n s
(union, int.ersection or difference), and the leaf nodes correspond t o primitive
shapes such as sphere, cylinder, or plane. The specification of rigid
translation/rotation is usually accomplished by adding additional interior node
types. Also, the translation/rot,ation specification may be pushed down t o the
leaves of the tree and thus can occur only in the leaf nodes.

Pas t CSG models have used a Transformation-matrix (T-matrix) approach
t o specify rigid motion/relative position between the two shapes being combined
in a CSG representation [6,7,16]. In our work we have developed a second
approach t o specifying relative position based on reference features. Each of the
primitive shapes has a set of attached reference features (basically some set of
points and lines). For example, a n infinite cylinder can be defined in t e r ~ n s of a
cer~tral axis and a radius. Correspondingly, a complex shape has as its reference
features some subset of the reference features of its components. Relative posi-
tion of two shapes is specified in terms of the corresponding reference features.
W h a t is novel about our approach is t h a t we have examined a number of the

possible relationships between various pairs of reference features and have
defined equivalence classes based on relative spatial topology (i.e., all pairs of
reference features in a particular equivalence class are obtainable from each
other by some combination of translations and rotations). W e then use these
equivalence classes for reference features pairs a s the basis for modeling rigid
motion in the TEDM da ta model for CSG.

The reference feature approach seems t o have several advantages over the
conventional T-matrix approach t o specifying rigid motion/relative position.
First, i t has more promise in being able t o capture tolerancing information than
does the T-matrix. Second, it seems more appropriate a s the model for rigid
motion t h a t should be used in the user interface (it appears t h a t few CSG
modelers actually think in terms of T-matrices, for example). Third, i t appears
t o be good abstraction mechanism which supports information hiding, since i t is
possible to use a subset of the reference features of the components of a com-
plex object a s the reference features for the complex object. Finally, the refer-
ence features approach offers more versatility in specifying degrees of freedom in
the rigid motion/relative position between two shapes than does the T-matrix
approach. For example, one might want t o specify only t h a t two spheres are a
certain distance apar t rather than totally specifying their relative position and
rotation with respect t o some coordinate system. This partial specification of
relative position is not a s easy using the T-matrix approach, since the only
option is t o leave elements of the matrix undefined. Problems arise when such a
partially specified T-matrix is combined with another matrix (e.g., what is the
meaning of matrix multiplication when some of the elements of one or both of
the operands are undefined).

The remainder of the paper is organized as follows. Section 2 covers previ-
ous work in CSG d a t a modeling. Section 3 discusses the salient features of the
TEDhl d a t a model and Section 4 outlines CSG modeling for those not familiar
with the technique. In Section 5 we present the TEDM d a t a model for CSG,
including reference features, and then use the d a t a model in a simple example
in Section 6 . Section 7 critiques the CSG model presented with respect t o apply-
ing inferencing techniques t o answer questions about a particular CSG solid,
and discusses future work in Section 8.

2. PREVIOUS WORK
Lee and F u use a design methodology based on a semantic d a t a model to

derive a relational schema for CSG [6]. The paper defines a grammar structure
for representing CSG trees in which the primitive solids are bounded shapes
rather t h a n the more general half-spaces we use. Relative spatial relationships
between the CSG solids (whether primitives shapes or conlplex structures) are
defined using the T-matrix approach. The resulting relational schema is based
on the assumption tha t the first primitive shape in the CSG tree defines a world
coordinate system a.nd tha t all other rotations and translations are given with
respect t o this world coordinate system. (This approach raises problems when

one at tempts t o combine two complex CSG solids, both of which have different
coordinate schemes.)

Finally, the paper defines three extensions t o the SEQUEL language t o sup-
port the CSG schema. First, a d a t a definition statement is added tha t will
automatically define the underlying base relations necessary t o support the
aggregation and generalization abstractions in the semantic d a t a model. The
second extension is a set of integrity assertions t h a t maintain the required
referential constraints between relations representing the CSG tree. In the last
extension the aiithors use the SEQUEL trigger facility t o define a procedure for
updating all the base relations t o represent the addition of one level in a CSG
tree.

The work by Spooner, e t al. is similar t o our work in t h a t i t takes a n
object-oriented approach t o defining the CSG model [16]. It , however, does not
rigoroursly define an underlying DBMS d a t a model but rather draws on ele-
ments from the programming language SmallTalk, and further shows t h a t the
generalization and aggregration abstractions from semantic da ta models have
direct correlates in the language. This approach is in harmony with the main
point of the paper, which is t o show t h a t the object-oriented approach provides
a flexible and responsive da ta model t h a t will accommodate the diverse types of
da.ta present in mechanical CAD.

The paper includes the outline of a d a t a model for both boundary represen-
tations and CSG representations for three-dimensional solids. In their model it
is possible t o combine objects specified using either representation in a Boolean
tree. This flexibility is a good demonstration of the power of the abstractions in
an object-oriented approach, which enable different d a t a structures t o be
integrated and treated in a uniform fashion. However, the combining operators,
with the exception of the T-matrix, are not discussed in the paper. (NB: Com-
hining operators appear a s interior nodes in the BooIean tree.) The da ta model
interpretation of the T-matrix is also rather sketchy (e.g., with respect t o what
coordinate system is the translation given?).

The important aspects of the Spooner paper is t h a t i t is the first att,empt
a t modeling CSG using a n object-oriented approach, and t h a t i t demonstrates
the feasibility of integrating the different da ta representations found in CAD
applications.

3. TEDM OVERVIEW

Databases under TEDM are collections of objects, the basic building blocks
provided by the model. Objects in TEDM are either simple or complex. Simple
objects are non-decomposa.ble atomic values and are taken from a fixed set of
base types, which for our examples will be S t r ing, Integer and B o o l e a n .
(String literals appear in single quotes; integers are prefixed with #.) Complex
objects are collections of fields, each of which has the form

f i e l d n a m e -> value

where the value is a simple object or another complex object (thus arbitrary
nested d a t a objects can be constructed). These complex objects are similar t o
the +terms of Ait-Kaci [I]. The following object describes a department.

(deptName -> 'Research',
budget -> #1253500,
manager ->

(name -> (f i r s t -> 'William',
l a s t -> ' P o r t e r ')) ,

bui ld ing -> 'C51t,
bui ld ing -> 'C52').

Note t h a t we may have multiple occurrences of a fieldname in a n object.

Each object has a unique identity tha t is represented by a n internal object
ide?zti&er (OBID). The OBID of an object is unique with respect t o the entire
database, and it will not change during the lifetime of the object. The OBID of
an object and the state of the object are orthogonal - while the s ta te may
change as the database evolves, the OBID always stays the same. With this
notion of object identity, each object is distinguishable and therefore the system
car! discriminate any two objects without depending on their states. Also, two
or more fields can have the same object as their value.

T o capture multiple references t o the same object in a linear syntax,
TEDM uses object tags prefixing objects. For example, if we want the depart-
ment manager t o reference the department in which he works, we can use a tag
D :

:D (deptName -> 'Research ' ,
buaget -> #1253500,
manager ->

(name -> (f i r s t -> 'William',
l a s t -> ' P o r t e r ') ,

worksIn -> :D),
bui ld ing -> 'C51t,
bui ld ing -> 'C52') .

TEDM supports types for objects. A type definition looks much like an
object description, but with type names for values.

PersonName = (f i r s t -> St r ing : ,
l a s t -> St r ing :) .

Person = (name -> PersonName:) .

Department = (deptName -> St r ing : ,
manager -> Person:,
bui ld ing => St r ing :) .

The type t h a t is the value of a field in a type definition is called the range type

of the field. For example, Person is the range type of the manager field.
The double arrow indicates a field tha t may have multiple occurrences. We will
usually write object descriptions with type names inserted, except for simple
values.

Department :D
(deptName -> 'Research' ,
budget -> #1253500,
manager ->
Person: (name ->

PersonName:
(first -> 'William',
last -> 'Porter'),

worksIn -> Department:D),
building -> 'C511,
building -> ' C 5 2 ') .

TEDM support several syntactic conventions tha t facilitate readability. In a
type definition if two or more fields have the same range type, this is indicated
by listing the fields separated by commas on the left-hand side as in

namel, name2 -> String:.

,41so, if a field has multiple range types, these may be listed on the right-hand
side separated by 1's a s in

value - > PosNum: (NegNum:.

Each type has a corresponding type set of objects t h a t conform t o the type
description. An object may belong t o several type sets, and need not belong t o
every typeset t o which i t conforms. Furthermore, types in TEDM are prescrip-
tive, not proscriptive: a n object may have more fields than required by a type.
In the example above, there is a budget field t h a t is not required by the
Department type. Types are organized into a hierarchy, where a subtype
inherits all the fields and restrictions of the supertype, but can add other fields
and restrictions. Thus, we could define

Employee = (name - r PersonName:,
age -> Integer:,
salary -> Integer:) .

Person > Employee:.

a s a subtype of Person. The top of the hierarchy is the type All, whose
typeset contains all objects known t o the system.

TEDM also supports two special kinds of fields, abstract fields and virtual
fields. Abstract fields are prefixed with @ as in QlistElement. Types with
abstract fields cannot be directly instantiated. Rather , they serve t o define type
structure and generic field specifications shared by subclasses. When a n

abstract field is inherited by a subtype, i t is always specialized (as in
name@list~lement). Once specialized in a type definition, a field may be
referred t o by i ts specialized name without the @ suffix. If, for example, a spe-
cialized abstract field such as name@listElement is used in a rule following a
type definition or is inherited by a subtype, i t may be referred t o a s name.

Virtual fields contain computed or derived values and are indicated by the
* prefix a s in *distance. Their derivation is given by a rule tha t follows the
type definition. If a virtual field is defined for a type, then it is inherited by all
subtypes of the type. Also, a non-virtual field of a type may be redefined as a
virtual field in a subtype.

The da ta language for TEDM is influenced by logic languages, and consists
of commands, which handle update and I/O, and rules, which define virtual
fields and objects. Both constructs have the basic form

<head> <arrow> <pattern>

where <arrow> is <= for a command and <- for a rule. The <pattern> is a
sequence of terms, which are templates for matching objects in the database,
and look like partial object descriptions. However, what were tags before are
now object variables. The <head> for a command is a term indicating an
update operation, such as changing a field value, adding a n object t o a type set,
or creating a n object. The head for a rule looks like the term for a n update
operation, but denotes demand, rather than immediate, evaluation.

Variables are shared between the <head> and <pattern> parts. The
semantics of a command is tha t for every binding of the variables t o database
objects tha t fulfills the <pattern>, perform the update (or other operation)
given in the <head>.

Examples: Add a salary field t o the person named William Porter.

:P(salary -> #63000) <=
Person :P

(name -> PersonName:
(first -> 'William',
last -> 'Porter')).

Add t h a t person to the Employee typeset.

Employee : P <=
Person : P

(name -> PersonName:
(first -> 'William',
last -> 'Porter')).

Change t h a t person's name.

:P (name ->
Persomame:*

(first -> ' O ' ,

last -> 'Henry')) <=
Person :P

(name ->
PersonName:(first -> 'William',

last -> 'Porter')).

The * in the head term indicates the creation of a new object. Rules look
much the same as commands. The rule

:M (manages -> :D) <-
Department:D(manager -> Person:M) .

defines a virtual field manages for persons who manage departments.

Few joins are necessary in TEDM queries, as they are not needed t o over-
come the decomposition of objects forced by normalization in the relational
model. Most semantic connections can be made by following paths. \ 'hen a
join is necessary, it can be on object identity, rather than just on simple values.

SameManager:*
(deptl -> :Dl, dept2 -> :D2) <=

Department :Dl (manager -> Person :M) ,
Department :D2 (manager -> :M) .

A more detailed description of this da ta model is given in [8]. Its formal
logic is presented in 191, where 0-Logic is developed t o provide formal semantics
for the d a t a model. The TEDM command language has been prototyped in
Prolog using a storage structure based on binary and ternary relations [17].
Finally, (21 reports on applying TEDM t o the problem of modeling the DBMS
user interface, and [19] reports on adding features t o the model to provide a
uniform framework for making the query language entities persistent.

4. CSG OVERVIEW

Solids are represented in conventional CSG systems as Boolean combina-
tions of solid components, where a solid component is either a primitive shape
defining a half-space, (such a s a plane, sphere, cylinder, etc.) or another conlpo-
site CSG solid. The combining operators are set operators such a s union, inter-
section, and difference. As shown in (61, and [12], the following grammar
describes the tree structures tha t result from using the Boolean combining
operators recursively.

<CSG tree> ::== <primitive leaf> (
<CSG tree> <set operator> <CSG tree>
<CSG tree> <motion operator> <motion arguments>

Note tha t this is not the only possible grammar for a CSG representation. For
example there are a variety of grammar forms in use in commercial systems
1131. An example of a typical CSG tree structure and corresponding rigid solid

' 9 are shown in Figure 1 (the solid, our two-tooth comb" example, is shown in
orthographic projection). The CSG tree for the comb example assumes the

existence of two box composite solids, Box B1 and Box B2. Box B1 has dimen-
sions of 1 x 3 x 1 (along the x, y, and 2 axes) and Box B2 has dimensions of 3 x
1 x 1, as shown in Figure 1. Note t h a t boxes are not primitives in our system,
but are constructed from planar half-spaces. A complete TEDM description of
the generic box solid will be given in Section 6.

Our grammar for the CSG trees is similar t o the grammar defined above.
However, we have eliminated the last term, involving the <motion operator>,
from the right hand side of the <CSG tree> production rule. Instead, con-
s traints between pairs of nodes in the CSG tree are used t o specify relative
position.

Each node in the CSG tree has a set of associated reference features. Refer-
ence features are usually points and lines, but may be arbitrarily complex
shapes. A constraint between a pair of nodes places conditions on the reference
features of the two nodes t h a t must be met. Reference features will be defined
more formally in the next section, but a brief explanation is included here.
Each primitive shape has default reference features. For example, the default
reference features for a plane are a pair of directed infinite lines, where the first
line is perpendicular t o the plane and points in the direction of the positive
half-space for the plane and the second line intersects the first and lies in the

*0g*3 1 Orthographic projection
of resulting composite
solid.

1

Flgure 1. CSG Tree Example

plane. Each composite shape (formed by constructing a CSG tree) has a set of
reference features t h a t is either a subset of the features of i ts components or is
derived from those features. Note t h a t a n arbitrary number of reference
features may be added t o both &imitive shapes and composite shapes a t the
designer's discretion. For example, the two boxes used in the comb example in
Figure 1 are both instances of a generic box composite shape. The generic box,
shown in Figure 2, is formed by taking the intersection of six planar half-spaces.
The reference features of the generic box composite are defined, a s will be
shown formally in Section 6, to be three orthogonal planes from the six used t o
construct the box. In order to instantiate a specific box composite solid, the
three edge dimensions should be specified. Thus t o instantiate Box B1 and Box
B2 used in the comb example above, the following TEDM statements would be
necessary.

Box : (name - > ' B1' ,
edgel -> l.,
edge2 -> 3.,
edge3 -> 1.)

Box: (name -> 'BZ',
edgel -> 3. ,
edge2 -> l.,
edge3 -> 1.)

Constraints relate pairs of reference features from nodes in the CSG tree,
and a.re of the form:

H
edgel

Flgure 2. Tho Gonerlc Box Solid

<reference feature> <constraint specification> <reference feature>

For example, Figure 3 shows the CSG tree for the comb example using con-
s traints t o specify relative positions in three-space (constraint arcs between
pairs of nodes are shown as dashed lines). The example assumes t h a t the refer-
ence features for Box B1 are the planes pIB', pZB1, and and tha t the

reference features for Box B2 are the planes pIB2, pZB2, and pSB2. Thus the

constraints between Box ' B1 and Box B2 are t h a t the planes pIB1 and pIB2

are coincident, and t h a t the planes P,~ ' and P," are coincident, as shown on
the dashed arc connecting the two nodes.

Box B1 and Box B2 are composed t o form two composite solids, rooted a t
the two nodes with names of C1 and C2 respectively. C1 and C2 are each a
*I tooth" in the comb example as shown in the orthographic project of the entire
solid in Figure 3. The reference fea t l~res for Cl are the planes P,", P,", and

Orthographic projection
of resulting composite
solid.

Flgurr 3. CSO Tree Example With Constraints

p3'', and for C2 are the planes plC2, pIC2, and p3'I. Note t h a t constraints
are also used t o specify the relationship between reference features for C1 and
C2 and their components, a s shown by the dashed arcs between the nodes
corresponding t o these two composite solids and the node labeled Box B1.

The model includes a set of predefined primitive reference feature types
and a corresponding set of primitive constraint types. Primitive reference
feature types include points, infinite lines, directed lines, and crossed directed
lines. Primitive constraints specify such things a s distance between two points,
distance between a point and a line, and relative positions of two lines in three
space. More complex reference feature types (such a s planes) and constraint
types (such as coincidence) may be defined in terms of the corresponding primi-
tives.

5. A DESCRIPTION OF CSG IN TEDM
This section discusses the elements of our CSG model in detail, gives their

definition in TEDM, and develops the corresponding type hierarchies. Section
5.1 defines the basic reference features in the model, points and infinite lines,
and the predefined constraints types for these basic primitives. Section 5.2
defines the more complex reference features, directed lines and pairs of directed
lines, in terms of the basic reference features and gives the predefined con-
straint types for them. In Section 5.3 we use these reference features t o define
the basic shapes, such as planes, spheres, etc., t h a t appear a s terminals in a
CSG tree. Finally, Section 5.4 gives the type hierarchies for all of these refer-
ence features, shapes, and constraint types.

5.1. The Basic Reference Features

The most basic units of da ta in the model are points and infinite lines,
since they are a t the right level t o be considered as components of the basic
shapes, and also t o be perceived as conceptual units in their own right. The
TEDM type specifications of points and infinite lines have no internal structure
(as shown below) since their geometric properties are identical for all instances
(no parameterization is necessary in order t o specify a n individual point or line
uniquely). We will use the term line t o refer t o infinite line in future discussion,
unless some ambiguity would result.

InfLine .
P o i n t .

The identity o r uniqueness of a particular point or line object (i.e., a n instance
of the type InfLine or po in t) is of interest only with respect t o the con-
s traints t h a t are placed on its spatial relationship t o other objects.

Now we turn t o the specific constraint types for these primitives. As men-
tioned in Section 4, each constraint type involves a pair of reference features.
Thus in the remainder of this section, we will define constraint types for pairs of
points, a point and a line, and a pair of lines. All constraint types are subtypes

of Structconst, which has two abstract fields, @comp and @rel. Thus all
constraint types specialize these abstract fields a s in lineacomp and
distance@rel.

In considering all possible spatial relationships between points and lines, an
equivalence class is formed for all topologies t h a t are obtainable from each
other by an arbitrary combination of translations and rotations. Such
equivalence classes determine a constraint type, and the parameters for the con-
s traint type are those t h a t uniquely determine the relative spatial relationship
between any pair of reference feature instances t o which the constraint type
applies.

An interesting question is whether a particular relative spatial relationship
between a pair of reference features also uniquely determines the parameters for
a constraint. If this is the case, then there exists a two-way mapping between a
ra.nge of parameter values for a particular constraint type and a set of all possi-
ble relative spatial relationships between the pair of reference features. In
order t o show tha t a certain mapping is one-to-one, it is sufficient t o show tha t
the mapping and its inverse both yield a unique result.

(A) Pairs of Points

The constraint type for two points is the simplest of all cases. Distance
between two point instances uniquely determines relative position, and a unique
distance can be obtained from any pair of points. It is easy to see tha t such a
mapping is onto in both directions, since the range of distance values is non-
negative. The constraint type Distance-PP below represents this relative
~ p a t i a l relationship between any two point objects.

Distance-PP = Structconst:
(ptl@comp, pt2@comp -> Point:,
distance@rel -> NonNegFloat:) .

The two fields, ptl and pt2, contain the two reference feature objects (in this
case, instances of the Point object type for which the constraint is specified).
The distance@rel field contains the obvious distance parameter. The @re1
suffix indicates tha t the field is a specialization of the abstract field defined by
superclass Structconst. As such, it contains a constraint t o be satisfied by
the components.

The Distance-PP constraint type can be specialized if the two point
objects are coincident. In the CoincP constraint type given below, the dis-
tance field (a specialization of the distanceare1 field inherited from
~istance,~~) is defined t o be a virtual field (as indicated by the * prefix)
whose value is given by the rule t h a t follows the constraint type definition.
This rule is read "If cp is a CoincP object, then the distance field contains
the value #O .o."

CoincP = Distance-PP: ("distance -> NonNegFloat:) .

:CP (distance -> #0.0) <- Coinc? :CP.

(B) A Point and a Line

The constraint types between a point and a n infinite line are also relatively
simple. Distance between a point object and a line object is defined t o be the
length of a line segment perpendicular t o the line. Specifying such a dista.nce
also uniquely determines the relative spatial relationship between a point and a
line. Thus the constraint type is defined as follows.

Distance-PL = StructConst:
(pt@comp -> Point : ,
line@com? -> InfLine: ,
distanceare1 -> NonNegFloat:) .

Again, the Distance-PL constraint can be refined if the point is on the line.
The On constraint type is specified in a fashion similar t o the CoincP con-
s traint type.

On = Distance-PL: (*distance -> NonNegFloat:) .

(C) Pairs of Lines

Constraints between two infinite lines are divided into three separate cases.
First, if two lines intersect each other then an angle between them is adequate
t o uniquely specify the relative spatial relationship if the angle is restricted t o
being between zero and ninety degrees. The 2D-Angle constraint type cap-
tures the relative spatial relationship between two intersecting line objects.

2D-Angle = StructConst: (linel@comp, line2@comp
-> InfLine:,

intPt@comp -> Point:,
angle@rel -> NonNegFloat:,
*onl@rel, *on2@rel -> On:) .

The syntax On [: IP, :L1] is a shorthand for specifying a n instance of type On
in which the order of the field specifications is the same as in the On type
definition. The intPt@comp field in the 2D-Angle constraint type definition
contains the intersection point of the two lines. Note t h a t onl@rel and
on2@rel are virtual fields whose rule definition requires t h a t the intersection
point be on both lines.

The constraint type RightAngle-LL refines the 2D-Angle type by
defining a value for the angle@rel field of ninety degrees (using TEDM rules

as was done in this section for the CoincP and On constraint types). The com-
plete definition is given in the appendix, and will not be further elaborated here.

When two lines do not intersect, they are either parallel or skewed. For
the skewed case, the two lines lie on two planes t h a t are themselves parallel t o
each other. Further, there exists a line perpendicular t o the two lines, which
defines a common normal t o the two parallel planes on which the two lines lie
(see Figure 4.1). We define the distance between the two skewed lines t o be the
dista.nce between the two parallel planes along the common normal.

For two skewed lines, four things are necessary t o specify the relative spa-
tial relationship: (1) a n angle between one line and a projection of the other
line on the plane containing the first line, (2) how the angle is measured, (3) the
distance between the two lines along the common normal, and (4) the direction
of view in order t o differentiate mirror images. The example shown in Figure 4
illustrates the requirement for direction of view. Suppose one views the relative
topology from the direction of view shown in Figure 4.1. It is easy t o see tha t
the relative spatial relationship of the two lines is specified by giving a n angle cr
and distance d, where the angle is measured from linel t o line2. However, i t is
also possible to construct a mirror image of the original topology with the same
angle a and distance d by reversing the direction of view, a s shown in Figure
4.2. In order for the mirror image t o yield the same angle, the direction of view
must be opposite. These two mirror images cannot be obtained from each other
by rotations and/or translations.

projection
Direction I linc
of View /

linel '+
common common
normal normal

Flgurr 4. drlglnal Topology and Mlrror Imago

The 3D-Angle constraint type captures the four necessary pieces of infor-
mation t o represcnt relative spatial relationships for skewed infinite lines. The
angle is given by the a n g l e - m e a s u r e a r e 1 field. We assume the convention
t h a t the angle is measured counterclockwise. The angle is measured starting a t
the line given in the a n g l e , f r o m @ r e l field and ending a t the line given in the
angle-to@rel. The distance@rel field gives the distance between the two
lines, measured along the common normal given by the i n t l i n e a c o m p field,
which intersects the two skewed lines a t the points c l o s e s t p t - l f @ c o m p and
c l o s e s t P t , l b @ c o m p . The direction of view is given by the order of the lines,
where the line,front@comp and l ine -back@comp fields contain the line
in front and the line in back, respectively. Note t h a t all information is neces-
sary t o distinguish mirror images. For example, with l i n e - f r o n t @ c o m p and
l ine,back@comp only, mirror images may result from the same da ta , depend-
ing on whether the angle is measured from the line in front or in back. The
convention of allowing only acute angles would not solve this problem. The +
notation on the d i s t P t @ r e l field indicates t h a t the constraint depends on a
user-supplied value, in this case the distanceare1 field. This is called a
parameterized constraint.

Note also tha t i t follows from the semantics of the fields t h a t either

(line-f r o n t @ c o m p = angle-f rom@comp
and

l i ne -back@comp = ang le - to@comp)

(l i n e - f r o n t @ c o m p = angle, to@comp
and

line-back@comp = angle-from@comp) .
Such alternative constraints are represented in TEDM by having multiple type
definitions for each alternative. The following type definition represents the case
where l i n e - f r o n t is equal t o a n g l e - f r o m and line-back is equal t o
a n g l e - t o (see the rule following the type definition where object tags are used
t o constrain the identities). The type definition for the second case would be
identical except for the definition of the rule in which the object tags would be
rearranged t o constrain the second set of identities.

3D-Angle = S t r u c t C o n s t :
(l i n e , f r o n t @ c o m p , l ine ,back@comp,
angle,from@comp, ang le - to@comp

-> I n f L i n e : ,
c l o s e s t P t - l f @ c o m p , c l o s e s t P t ~ l b @ c o m p

-> P o i n t : ,
i n t L i n e @ c o m p -> I n f L i n e : ,

:A (rightAg1 ->
RightAngle,LL[:Ll, :L3, :PI],
rightAg2 ->
RightAngle-LL [:L2, :L3, :P2],
distPt ->
Distance-PP[:Pl, :P2, :Dl)

<- 3D>gle:A(line,front -> :L1,
line-back -> :L2,
angle-from -> :L1,
angle-to -> :L2,
closestPt-lf -> :PI,
closestPt-lb -> :P2,
intLine -> :L3,
distance -> :D) .

Two parallel lines occupy three space, where the angle between one line
and a projection of the other is zero degrees (or one hundred and eighty
degrees). In this case, however, both lines lie on the same plane (i.e., the system
becomes two dimensional) and it is not necessary t o differentiate mirror images.
Therefore, specifying distance alone is sufficient for the definition of the relative
spatial relationship of two parallel lines. The ParaL constraint type given in
the appendix requires tha t the common normal be perpendicular t o both lines.
The constraint type CoincL refines ParaL simply by requiring t h a t the dis-
tance between the two parallel lines be zero.

5.2. Directed Reference Features

Directed reference features are of two types, directed lines and crossed
directed lines. As will be seen in Section 5.3, a directed line is used for indicat-
ing the positive half-space for a plane, and crossed directed lines are used for
indicating rotation and translation for the symmetrical half-spaces such as
spheres and cones, or for any composite shape.

A directed line is build from a n infinite line and two reference points on the
line, a s shown in Figure 5.1. It is assumed t h a t the direction of the line is
always from the originOcomp to posRefPt@comp . Therefore, those two
points must be distinct. The TEDM type definition for a directed line is given

below, where the onl@rel and the o n 2 @ r e l are virtual fields whose rule
definition require t h a t the two points lie on the line given by the
r e f L i n e @ c o m p field. The p o s R e f P t @ c o m p and o r i g i n @ c o m p have distinct
objects, P 1 and P2 , as values. In' TEDM type definitions objects with different
names are distinct, though they may be specified t o be identical in a rule.

R e f D i r L i n e = D i r e c t e d F s :
(r e f L i n e @ c o m p -> I n f L i n e : ,
p o s R e f P t @ c o m p -> P o i n t : ,
o r i g i n @ c o m p -> P o i n t : ,
* o n l @ r e l , * o n 2 @ r e l -> On:) .

:RDL(onl -> O n [: P l , :L],
o n 2 -> On[:P2, :L])
<- RefDi rL ine :RDL[:L , :PI, : P 2] .

Figure 5.2 shows the salient features of crossed directed lines. The TEDM type
R e f C r o s s D i r L n s for this reference feature includes fields t h a t contain the two
lines as well a s their intersection point (see the appendix for a complete
specification). The constraints specified for the type are t h a t the two lines be
a t right angles and t h a t the intersection point be the origin of both lines. Mre
say t h a t the r e f L i n e l @ c o m p field is the primary axis of the crossed directed
lines, and t h a t the r e f L i n e 2 @ c o m p field is the secondary axis.

(A) Pairs of Directed Lines

Constraint types for pairs of directed reference lines are similar t o those for
pairs of lines. The differences are due to dealing with the directionality of the
lines involved, and to dealing with the interaction between origin points for the
lines. For example, each topology for two undirected lines yields two separate
topologies when the lines are given direction, as shown in Figure 6. The two
separate topologies for directed lines have identical specifications except for the

,,4Rem origin

F l ~ u r r I. A Dlrected Llne 8nd Dlrected Llne Palr

angle values for all three kinds of line interactions (intersecting lines, skewed
lines, and parallel lines). The angles describing the two topologies are, of
course, complementary as shown in the figure. In particular, two parallel
directed lines can have either the same o r the opposite direction as shown in
Figure 6(c). T o accommodate the two cases, we have adopted the convention
t h a t the angle is always measured between the two positive ends of the directed
lines, and can take on a value between zero and one hundred eighty degrees.

The 2D-Angle-RefDirLns constraint type is a refinement of tha t for
undirected lines, as shown below in the TEDM specification. The additional
fields dist-intPt-originl@rel and dist_intPt_origin2@rel contain

Direction
of View

Flgurr 6. Adding Direction to Llnrs

the distance from the origins of the directed lines line1 and line2, respec-
tively, t o the intersection point of the two lines given by the intPt@comp
field. Note tha t the distance from the origin of a line may be negative if the
intersection point is on the negative side of the origin.

2D-Angle-RefDirLns = 2DJngle :
(linel, line2 -> RefDirLine:
dist-intPt-originl@rel,
dist,intPt,origin2@rel

-> Float:).

The RightAngle-RefDirLns constraint type is a refinement of the
2D-Angle-RefDirLns type with the added requirement t h a t the measured
angle be 90 degrees.

The ParaRefDirLns constraint refines the ParaL constraint for
undirected lines. The additional fields required for the constraint type are
same-dirarel, indicating whether or not two lines have the same direction,
and dist,twoOrigins@rel, which specifies the distance between the origin
for line1 and a projection of the origin of line2 onto line1 . The Coin-
cRefDirLns constraint type is also a refinement of ParaRefDirLns with the
added requirement t h a t the distance between the two parallel directed lines be
zero. (See appendix).

The 3D-Angle-RefDirLns constraint type refines the 3D-Angle type
for undirected lines in a manner similar t o the 2D-Angle-RefDirLns.

(B) Pairs of Crossed Directed Lines

The constraint type Pair-RefCrossDirLns defines the relative spatial
relationships for two RefCrossDirLns reference features. (It may help the
reader t o imagine two crosses fioating in three space, with the requirement tha t
one would like t o give some (possibly partial) specification of their relative loca-
tions with respect t o one another. The two crosses correspond t o the values
contained in the crossl@comp and the cross2@comp fields of the constraint
type.)

Pair-RefCrossDirLns = StructConst:
(crossl@comp, cross2@comp

-> RefCrossDirLns : ,
primaryTransform@rel

-> 2D-AngleJefDirLns : I
3D-AngleJefDirLns : I
Para-RefDirLns : ,

rotatearel -> NonNegFloat:) .
In order to specify the relative spatial relationship between cross1 and cross2,
first the two primary axes of each crossed line must be compared. This com-
parison is given by constraining their relative spatial relationship using either
2D_AngleJZefDirLns, 3DJngleJefDirLns, or Para-RefDirLns

depending on whether the two lines intersect, are skewed, or are parallel. The
primaryTransform@rel field contains this relative spatial relationship
between the two primary axes. (Note tha t the I notation indicates a union
type - the value of the field may be either of type 2D_AngleJefDirLns, of
type 3D_AngleJefDirLns, or of type para-~ef~ir~ns.) Assuming tha t
the primary axis of the first cross has been projected onto the primary axis of
the second cross, the remaining item of information is the relative relationship
between the two secondary axes, or angle of rotation required t o move one into
the other; this is contained in the rotatearel field of the constraint type.

5.3. The Primitive Shapes
Our CSG model relies on five primitive shapes: plane, sphere, cylinder,

double-cone, and torus. Each of these shapes divides three space into two
parts, what we intuitively think of a s an inside and a n outside. (For a plane,
the inside and outside must be designated explicitly. We will use a normal t o
accomplish this, a s will be seen shortly.) Each of the primitive shapes has a
mathematical description in the form of a polynomial equation of low degree.
However, there are abstractions c~mmonly used t o describe these primitive
shapes t h a t are more intuitive than the equation descriptions. These abstrac-
tions appear as parameters in the TEDM type definitions for the shapes, as
shown in Figure 7 and outlined below. A TEDM type definition for each shape
is also given.

(1) Plane: normal.

(2) Sphere: center point and a radius.

(3) Cylinder: center axis and radius.

(4) Double-cone: center point, center axis and angle.

(5) Torus: center point, center axis and two radii, one for the size of a ring
and the other for its thickness.

Plane = BasicShape: (normal@comp -> RefDirLine:,
inSide@rel -> Boolean:,
*on@rel -> On-PtP1:).

:PL(on -> On,PtPl[:O, :PL])
C - Plane:PL(normal -> (origin -> :O)).

Sphere = BasicShape: (center@comp -> Point:,
rad@rel -> NonNegFloat:,
inSide@rel -> Boolean:).

Cylinder = BasicShape : (centerAxis@comp -> Inf line : ,
rad@rel -> NonNegFloat:,
inSide@rel -> Boolean:).

ConicShape = BasicShape: (centerPt@comp -> Point:,
centerAxis@comp -> InfLine : ,
angle@rel -> NonNegFloat:,
insidearel -> Boolean:,
*on@rel -> On:).

Torus = BasicShape: (centerPt@comp -> Point:,
centerAxis@comp -> InfLine:,
radl@rel -> NonNegFloat:,
rad2@rel -> NonNegFloat : ,
inSide@rel -> Boolean:,
*on@rel - > On:).

:T(on -> On[:CP, :CAI)
<- Torus:T(centerPt -> :CP,

centerhis -> : CA) .
Note t h a t for the ConicShape type the center point is required t o be on the
infinite line tha t defines its axis. There is a similar requirement for the Torus
type. Half spaces are designated by boolean fields. For the Plane type, i t is
assumed t h a t the positive side of the normal designates a halfspace on the
inside and the negative side designates a halfspace on the outside.

Each of the primitive shape types also has a subtype defined t h a t specifies
a default reference feature for it. For all five shapes, the default reference
feature is a crossed directed line (i.e., a n instance of type ~ef~ross~ir~ns).
By comparing this default reference feature t o reference features of other basic
primitive instances or t o other composite object instances, its relative spatial
relationship may be determined. Figure 8 shows two of the basic shapes, a
plane and a cylinder, with their added default reference features (the remaining
three are similar t o the cylinder example). For the plane, the primary reference
line of the RefCrossDirLns type is coincident t o its normal. For the other
four basic shapes, which are all rotationaily symmetric about some axis, the pri-
mary reference line of the RefCrossDirLns type coincides with this sym-
metric axis. Furthermore, the intersection point of the RefCrossDirLns type
is assumed t o be the center point for the sphere, torus, and double cone. The
following is the TEDM definition for the CylinderWithRefF type. The rule
t h a t follows the type definition gives the coincidence requirement for the pri-
mary reference line. The other type definitions are similar and are given in the
appendix.

CylinderWithRefF = Cylinder : (refF@comp ->

center
, axis

fadiu

center

center
1 axis

center gngIe
(c)

center

Flgure 7. The Prlmltlve Shapes

RefCrossDirLns:,
*coinc@rel -> CoincL:) .

6.4. The Type Hierarchy for CSG Solids and Constraint Types

The last three sections have developed and defined the primitive shapes,
reference features, and constraint types used in our CSG model. There are
three type hierarchies defined that relate subsets of these types via generaliza-
tion. This section describes each of these type hierarchies briefly.

primary
reference line

primary
reference line

Figure 8. Prlmltlve Shapes wlth Default Reference Features

Figure 9 shows the type hierarchy for reference features. There are two
types, BasicFt and DirectedFs, tha t have yet t o be defined. The
BasicFt type is a generalization of the basic feature types InfLine and
Point, and hence has no internal structure. The DirectedFs type is a gen-
eralization of RefDirLine and RefCrossDirLns, and defines the abstract
@comp field containing objects of type BasicFt and the @re1 field containing
objects of type Structconst (the root type for all constraint types, to be
defined in the third type hierarchy). Note also tha t the RefDirLine type is a
subt.ype of InfLine as well as a subtype of DirectedFs. Thus it inherits
the field definitions and constraints of both types. The TEDM type definitions
for BasicFt and DirectedFs are as follows.

BasicFt

DirectedFs = (@comp => BasicFt:,
@re1 => StructConst:).

The type hierarchies are specified co~npletely in the appendix.

The root of the second hierarchy is the Region type. This type hierarchy
describes the CSG solids, which include both the primitive and composite
shapes as shown in Figure 10. The Basicshape type is the generalization of
all the primitive shapes defined in the last section. The Compositeshape
type includes all non-primitive shapes that are described by CSG tree struc-
tures. We will examine in detail the type definition of the CompositeShape
type, since this is where the tree structure appears. The other types may be
found in the appendix.

BasicFt Direct edRfFs

Flgure @. The Reference Feeture Type Hlerarchy

CompositeShape = Region:(name -> String:).

Region = (@comp =>
BasicFt: (Region: I
DirectedFs:,

@re1 =>
Boolean: I Float: I
PairComp: I Structconst:) .

Each CompositeShape has a name, a s seen in t he TED11 type definition
above. This name field can be thought of a s a basic pointing device (similar in
function t o a mouse for a graphics display). The underlying unique identifier
for each TEDM object obviates the need for using name t o uniquely identify a
CSG object t o the system, but there is still a need for the user t o be able t o

I I point and say, T h a t one." For the purposes of our discussion, the name field
serves this function. Fo r each subtype of CompositeShape the abstract
@comp field may be specialized t o contain objects of type BasicFt, Region,
o r DirectedFs. (Examples of this will be seen in Section 6 where the generic
box is defined as a composite shape.) The abstract @re1 field may be special-
ized t o contain objects of type Boolean, Float, PairComp, or
Structconst. The Paircomp range type of t he @re1 field is of interest, a s
this is where the conventional CSG tree s t ructure is specified, a s shown below.

PairComp = Structconst: (cl@comp -> Region:,
c2@comp -> Region:,
mode@rel -> CompMode:) .

CompMode = (intersection, union, difference).

The CompMode type is a n etzunterated type, since all of i t s instances a re
specified in the type definiltion. The cl@comp and c2@comp fields contain the
left and right subtree combonents for the CSG tree.

T h e third hierarchy relates all the constraint types covered
in Sections 5.1 and 5.2, as shown in Figure 11. The root of t he hierarchy is the
Structconst type (short for s t ructured constraint). T h e TEDM definition for
the root type specifies thrat @comp fields of t he type may contain objects of

Region

Compositeshape t"' = t\\
Plane Sphere TONS Cylinder Conicshape

f
Plane

f
Sphere

f
Torus

f
Cylinder

f
ConicShape

WRhRefF WtthRefF WithRefF WihRefF WRhRefF

FIuure10. The Shape Type Hierarchy

type B a s i c F t , R e g i o n , or D i r e c t e d F s . For example, the
3 D J n g l e - R e f D i r L n s constraint type has a @comp field of type R e f D i r -
L i n e (a subtype of ~ i r e c t e d ~ s) and a @comp field of type P o i n t (a sub-
type of ~ a s i c ~ t) . Further, the @re1 fields of the root type are permitted t o
range over the types F l o a t and S t r u c t C o n s t . Thus a constraint type may
use other constraints in its definition (see the 2D-Angle type definition, which
uses the On constraint).

8. THE GENERIC BOX EXAMPLE

In Section 4 we used a generic box composite shape t o construct the t w e
tooth-comb example. In this section, we will give a complete TEDM description
of the generic box by combining primitive shapes in a CSG tree and then inter-
relating the nodes with constraints.

The generic box is constructed from six planar half-spaces, where each
plane has as its default reference feature a crossed directed line. The pair-wise
intersection of the six planes forms the box. The box is generic since i t is
underconstrained - no specific dimensions are given. Rather, the dimensions of
the box are left as parameters to be specified for each instance of its use.
These parameters are passed on t o the underlying constraints used t o define the
box. We call these parameterized constmints, since their complete definition
depends on parameters given at the time of instantiation.

Since planes play a n important role in defining the box, we will also define
some complex constraint types t h a t relate pairs of planes in terms of the con-
s traints defined in Section 5. It also seems obvious t h a t these constraints
between pairs of planes are interesting in their own right, since planar surfaces
play a n important role in the design process a s well as in manufacturing. In
any case, this exercise serves t o illustrate complex constraint definition for pairs
of basic shapes.

The first constraint for a pair of planes is the RightAnglePlPl, which
defines two planes perpendicular to each other by specifying the relationship of
their normals as shown below.

RightAngle-PlPl = StructConst:
(pll@comp, pl2@comp -> Plane:,
*normall-normal2-ra@rel

-> 3DBightAngle-RefDirLns :) .

:RAPP (normall,normal2,ra ->
3D-RightAngle-RefDirLns : (line-front -> :N1,

line-back -> :N2))
<- RightAngle-PlPl:RAPP(pll ->

(normal -> :N1) ,
p12 ->

(normal -> :N2)) .

3D-RightAngle-RefDirLns = 3D-Angle-RefDirLns:
(*angle-measure ->

NonNegFloat :) .

The second constraint type for pairs of planes is Para-PlP1, which
requires that two planes be parallel to each other. Its TEDM definition is con-
structed using two parallel normals.

Para-PlPl = StructConst: (pll@comp, pl2@comp -> Plane:,
distance@rel -> NonNegFloat:,
*normall-normal2-para@rel

-> ParaRefDirLns :) .

:PLPP(normall-normal2,para ->
ParaRefDirLns: (line1 -> :N1,

line2 -> :N2,
dist-twoorigins -> :D))

<- Para-PlPl:PLPP(pll ->
(normal -> :N1) ,

p12 ->
(normal -> :N2),

distance -> :D).

Note that the Coinc-PIP1 used to construct the two tooth comb example in
Section 4 can be defined as a refinement of Para-PlP1.

The Box type has nine component fields, six fields (sidel@comp through
side6acomp) t o contain six planar half spaces, PL1 through PL6. There are
also three fields t o contain the default reference features for the box
(re f~l@comp through re f~3@comp). The three reference features are three
orthogonal planes from the six specified by the sidel@comp through
side6@comp fields. In addition there are three constraint parameter fields,
edgel@rel through edge3@rel, t h a t specify the dimensions of the box in the
x. y, and z directions. The CSG tree structure is created recursively by the five
fields, compl@rel through compS@rel, where each field constructs one node
in the tree and relies on the node constructed by the previous field. The result-
ing tree structure is shown in Figure 12.

There are two sets of constraints on the nodes in the tree structure. The
first set , contained in fields paral@rel through para3@rel, requires t h a t the
following pairs of planes be parallel: PL1 and PL4, PL2 and PL5, PL3 and
PL6. The second set of constraints, contained in fields rightAgl@rel
through rightAg3@rel, requires t h a t the following pairs of planes be a t right
angles: PL1 and PL2, PL2 and PL3, PL1 and PL3. All of these constraints
are shown as dashed lines connecting node pairs in Figure 12. The following is
the complete TEDM specification for this tree structure and its attached con-
straints.

Box = (name -> String:,
sidel@comp, side2@comp, side3@comp,
side4@comp, side5@comp, side6@comp

-> PlaneWithRefF: ,
*refFl@comp, *refFZ@comp, *refF3@comp

-> PlaneWithRefF: ,
edgelarel, edge20re1, edge3@rel

-> NonNegFloat:,
*rightAgl@rel, *rigthAg2@re18 *rightAg3@rel

-> RightAngle-PIP1 : ,
+*paral@rel, +*para2@rel, +*para3@rel

-> Para-PIP1 :,
*compl@rel, *comp2@rel, *comp3@rel,
*comp4@rel, *compS@rel

-> PairComp:).

para2 ->
Para-P1P1 [:PL2, :PL5, : E2] ,

para3 ->
Para-PIP1 [:PL3, :PL6, ' :E3],

compl ->
PairComp: IS1 [:PL1, :PL2, intersection],

comp2 ->
PairCornp: IS2 [: IS1, :PL3, intersection],

comp3 ->
PairComp: IS3 [: IS2, :PL4, intersection] ,

comp4 ->
PairComp : IS4 [: IS3, :PL5, intersection] ,

comp5 ->
PairComp: [: IS4, :PL6, intersection])
C- Box:B (side1 -> :PLl (inside -> true) ,

side2 -> :PL2 (inside -> true) ,
side3 -> :PL3 (inside -> true) ,
side4 -> :PL4 (inside -> true) ,
side5 -> :PL5 (inside -> true) ,
side6 -> :PL6(inSide -> true),
refFl -> :PLl,
refF2 -> :PL2,
refF3 -> :PL3,
edge1 -> :El,
edge2 -> :E2,
edge3 -> :E3).

Note t h a t there are other ways t o construct a box. One may, for example, s tar t
by defining a slab composite shape t o be the intersection of two parallel
planes (the normals of each plane would point in opposite directions). The box
type collld then be defined as the intersection of three slabs (with appropriate
constraints between them). The uee of the slab shape t o define the box is
preferable only if the slab shape is generic and can be used in other situations.

7. CONCLUSIONS AND FUTURE WORK
The preceding sections detail our experience using an object-oriented CSG

model t o describe shapes. However, what we really want t o do is t o describe
and then reason about the properties of different shapes and relationships
among different shapes. This section discusses what things we want t o reason
about and discusses some of the ways tha t our particular model affects the way
we do inferencing.

Up t o this point, our discussion has covered a description d a t a model in
tha t the purpose of the model is t o facilitate description of complex objects. A
related goal worth considering is how t o facilitate the design of a complex
object. This second goal requires different features and has different tradeoffs of

efficiency and expressivity. This section will cover the inferencing issues of both
da ta model goals. As such, it represents an alternative view of the CSG d a t a
modeling exercise.

7.1. Inferencing With Respect to a Complete Description

There may be many characteristics by which one may want t o judge a
CSG description. Among those we have identified are:

(1) Ease of manufacturability.

(2) Stability of a n object.

(3) Rigidity of the solid.

(4) If a description is over-constrained.

(5) If a description is under-constrained.

(6) If two or more CSG descriptions refer t o the same object.

(7) Determining the best set of reference features.
Currently, none of these are characteristics t h a t may be simply evaluated

and stored in the database. In general, these judgements are extrinsic t o the
database and the database objects.' In this section we will discuss additional
lliodeling requirements necessary t o support these judgements.

(I) Manufacturability

A CSG description could be viewed as a sequence of manufacturing steps.
Some sequences are reasonable, others not. For example, if a n interior object
0, needs t o have a hole bored through it , t ha t hole must be drilled prior t o the
conlposition of 0, with surrounding objects 0, and 0,. Alternatively a n inter-
mediate object may not be stable. Some manufacturing sequences may be rea-
sonable on certain materials, while not on others. Currently we don't know how
t o map a CSG description of a shape into a manufacturing plan. Determining
this manufacturing sequence will be dependent on the characteristics of the
description mentioned above as well a s on the manufacturing technology avail-
able.

The primitive shapes defined in the example database are all manufactur-
able (machinable) by definition. (Actually, in some cases it is the complement
of the shape t h a t is manufacturable.) However the manufa.cturability criteria
may not be preserved under composition of basic and (ultimately) complex
objects. The composition modes (intersection,union, diflerence) do not have
their semantics defined within the CSG schema. If two basic manufacturable
shapes 0, and 0, are combined via a union, what are the necessary parameters
t o fully define the union. Further, what are the constraints on these

lWith more flexible virtual fields (higher order functions) some of these judgements could however be moved t o
the database .

parameters t o preserve manufacturability? Once the semantics have been
defined for the primitive shapes, how can this information be used in defining
the compositio~l modes for complex shapes?

As mentioned before, the shapes in the example database have
been chosen because they are manufacturable. Some of the theoretical defining
informat.ion has been left out (such as defining all four angles in a square face)
because such information would make the description over-constrained in the
manufacturing domain. This process is known as compiling out certain kinds of
knowledge. [5,4]. In this case, the information t h a t is compiled out is the
knowledge of the limits of manufacturing precision: there must be a t least one
degree of freedom in defining a closed object. This restriction becomes a limita-
tion when composing objects and attempting to define when a complex object
becomes un-manufacturable. In our model, constraints are represented as
objects, allowing manufacturing constraints t o be represented explicitly.

The manufacturing judgement will also encompass some heuristics and
pragmatic approaches. Some descriptions are easier t o manufacture t o than
others. A description tha t conforms t o these manufacturing pragmatics is in
some ways more natural. As an example, it is more natural t o manufacture
relative t o a p!anar surface than t o a pair of directed lines, even though they
may describe the same shape.

This d a t a model has been geared towards manufacturability analysis; how-
ever t h a t is not the only analysis tha t could be made. For example, there are
graphical rendering systems, stress analysis, cost analysis, etc. Furthermore,
some applications may simply transform CSG solids into other representations,
such as edge lists for display. The values for the following characteristics may
be used independently o r they may be components of the manufacturability
judgement.

(2) Stability

During a manufacturing sequence, intermediate shapes may be manufac-
tured, which will then be manipulated. The intermediate shapes must be stable
shapes, along the dimensions of stress within the tolerance range.

(3) Rigidity

Rigidity refers t o the rigidity of a complex object, o r group of objects.

(4) Over-constraint

Currently the CSG type hierarchy contains basic shapes, which by
definition are neither under- or over-constrained. Under composition, however,
this situation can change. An over-constrained object may not be manufactur-
able because i t specifies too much, and does not leave enough degrees of free-
dom for the manufacturing process.

The question here is what information (in the description) is necessary t o
determine over-constraint and what inferences can be made given this

information. A description is over-constrained if a component becomes deriv-
able in more than one way, such as from both internal defining constraints, and
external constraints introduced via composition. In general, for manufacturing
purposes, a n object should be co'nstructible in only one way. A description
which contains redundant (but consistent) constraints is a special case of over-
constraint. In this case, the description is consistent but can be manufactured
from only a subset of the specifications. Which subset is chosen may depend on
the context in which the shape is manufactured.

A related judgement t h a t can be msde is, given a n over-constrained
description, which feature should be eliminated, and what information is neces-
sary t o deterinine this?

A CSG shape is under-constrained if it does not contain enough informa-
tion t o denote a unique 3-D solid. Again, a basic shape cannot be under-
constrained, but a n arbitrary composition of shapes might be. For instance,
composing two thin slices/fat planes a t right angles requires t h a t the common
edge be coincident. But while this information is necessary, i t is not sufficient.
Two shapes may be constrained by requiring tha t they share a common face.
However, there may be more than one way t o share the face with the resulting
shapes being rigid but not identical. The rigidity of the resulting structure is
not sufficient t o form a unique shape.

(6) Multiple descriptions for the same object

There are three approaches, if a particular CSG description fails t o be
manufacturable for any of the reasons above:

(a) Use a different mapping of CSG description t o manufacturing steps.

(b) Use a different CSG description for the same solid.

(c) The solid may be non-manufacturable - s t a r t again.
The first two solutiolls are inverses of each other. Given a large base of

manufacturing "macros" (methods for manufacturing relatively complex
objects), the first solution might be viewed as a pat tern matching problem: find
another manufacturing sequence t h a t constructs the same (sub-)parts. How-
ever, the second solution appears more direct: alter the description t o match the
manufacturing reality. This alteration requires t h a t the manufacturing primi-
tives and constraints be explicit and tha t some notion of equality-preserving
transformations exists, with the fa.ilure points of manufacturability used t o
direct the transformations. So if a description fails because of a problem in the
order of steps, such as those mentioned above, t h a t fault can be directly
corrected by changing the order.

(7) Determining the best set of reference features

Different reference features for a particu1a.r shape may be more amenable
for describing compositions with different shapes.

7.2. Design of Complex Objects

As mentioned before, TEDM was developed t o support engineering design [
101. In the preceding portions of the paper, we have emphasized the nature of
the target domain: i.e. the characteristics of geometric solids and the facets of
the CSG da.ta model tha t facilitate descriptions and reasoning about existing
objects. However, the domain of the design of geometric solids has somewhat
different criteria. Design may refer t o either of two activities:

(1) Design of a CSG description for a previously conceptualized
geometric solid.

(2) Design of a geometric solid and from t h a t a CSG description.
The first problem is obviously the simpler of the two and is actually a generali-
zation of the domain discussed in the previous section. The difference is tha t in
this section the focus is on support for creating CSG descriptions.

(1) Design of a CSG description for an object

A solid can be described in a variety of ways and each description may
have different characterist,ics of rigidity, ease of manufacturability, and so on.
Support for designing a particular description for a solid t h a t conforms t o some
specification entails:

(a) Shape preserving transformations and the ability t o determine solid
equality.

(b) Ability t o determine when a CSG description (or the resulting solid)
meets the specification goals (such as size, weight bearing needs,
etc.).

(c) Generalizing over a class of solids.

Given a set of CSG descriptions, all describing a particular solid Soli
i t may be desirable t o generalize t o a new type. This new type can
then be used for reasoning about the entire class.

(d) A manufacturing type hierarchy, incorporated the manufacturing
primitives, procedural information, composition semantics, etc.

(e) Support in going from one type hierarchy t o another perhaps via vir-
tual fields and higher order functions (e.g. from a n object description
t o relevant portions of the manufacturing type hierarchy).

(f) A bet ter than ordering on manufacturing sequences.

(g) Support for partial objects whose s ta tus can be directly queried. (Is
Oi manufacturable under the correct manufacturing assun~ptions,
the correct specification goals, and any correct object designs tha t
affect on o,?)

One of the goals here might be, given a base of initial CSG objects, t o use
the results of the above inferencing stage t o direct the transformation of one
description into another with the required characteristics.

(2) Designing a solid and CSG description

Designing a complex solid may involve the construction of new types and
constraints. For instance, if the ultimate goal is t o construct a ladder some of
the initial constraints (goals) might be width: n<w<m, height: j < h < k , and
weight-bearing: g < w b < i . These constraints differ from object defining constraints
in t h a t they specify what the object must conform t o rather than what the
object is. The process of designing the target solid may involve refining the
constraints (such a s selecting what the width will be) in a top-down manner and
constructing partial objects or types t h a t reflect these design decisions.

This contrasts t o the process of describing a solid, which takes existing
basic objects and composes them in a bottom up construction. The top down
refinement commits t o design decisions tha t may be incorrect. Because i t is
advantageous t o identify non-optimal decisions a s early a s possible, the partial
objects must be first class values: one should be able t o query their attributes,
how they relate t o the constraints, and t o other (potentially partial) objects.
Figure 13 shows the multiple possible paths from partial object description t o
the final goal of a fully instantiated database t h a t result from refining the
object descriptions, constraints, and manufacturing technology.

The process of designing a solid requires everything t h a t is present in
designing a CSG description plus some added generalizations.

(1) Parameterization t o allow a class of constraints t o be constructed
uniformly.

(2) Incremental analysis on partial objects t o allow them t o be queried
and analyzed, and t o keep this partial information as a design aid
for future design decisions.

(3) Higher order functions allowing more flexible virtual fields (thus
allowing values which are not fully ground terms).

In general, support for design requires t h a t we reason about many different
aspects of a design and thus all information, including constraints, must be
explicit [3].

7.3. Conclusions

Our experiences in the CSG modeling exercise reported in this paper have
provided us with insights in two areas. First, there are aspects of the TEDM
d a t a model t h a t need t o be improved in order t o fully support tlle inferencing
requirements outlined in the last section. For example, there is a need t o sup-
port partially instantiated objects (objects with unknown or partially known
d a t a values). Also, there is a need t o support more flexible virtual fields and
higher order functions in the da ta model. W h a t kind of support can be pro-
vided for inheriting properties under composition modes? Finally, some of the
constraints one might want t o support are expressible in TEDM but would be
prohibitive for performance reasons. For example, requiring t h a t the reference

choices in either
0, C, or M

0: Primitive building blocks of the CSG description
C: Initial constrainw~oals
M: Manufacturing technology
(Di, Ci, Mi): Refinement into more specific pariial objects, constraints.

and manufacturing technology
G: A fully instantiated database for a collection of objects, which

fulfills the ~ o a l constraints and the manufacturing technology

Figure 13. Roflnlng Partial Descriptions to Satlsfy Oorls

features of a composite object be a subset of those for its components is expres-
sible in TEDM, but is s tated here only implicitly due t o performance considera-
tions.

The second insight gained in the modeling exercise was the power of con-
straints and the underlying reference feature mechanism in expressing spatial
relationships between CSG objects. We need t o explore their use further t o
determine t o what extent changes will be required t o support tolerancing infor-
mation. Further, we would like t o investigate their impact on the design of the
user interface for a CSG application. Finally, using the constraint objects in
one of the complex inferencing tasks outlined in the last section is a challenging
problem for future research.

References

1. H. Ait-Kaci and R. Nasr, LOGIN: A Logic Programming Language With
Built-In Inheritance, MCC Technical Report, AT-068-85, Austin, Texas
(1985).

2. T.L. Anderson, E.F. Ecklund, and D. Maier, "PROTEUS: Objectifying the
DBMS User Interface," in Proceedings of the International Workshop on
Object-Oriented Database Systems, , Pacific Grove, California (September
1986).

3. G.F. Bruns and S.L. Gerhart, Theories of Design: An Introduction to the
Literature, MCC Technical Report, STP-068-86, Austin, Texas (March 20,
1986).

4. R. Davis and B.G. Buchanan, "Meta-Level Knowledge: Overview and
Applications," in Fifth Inter~zational Joint Conference on Artificial Intelli-
gence, (1977).

5. R. Davis, B.G. Buchanan, and E.H. Shortliffe, "Production Rules as a
Representation for a Knowledge-Based Consultation System," in Artificial
Intelligence, (1977).

6. K.S. Fu and Y.C. Lee, "A CSG Based DBMS for CAD/CAM and its Sup-
porting Query Language," in Proceedings of the ACM SIGMOD Internation
Conference on the Management of Data - Database Week, , San Jose, Cali-
fornia (May 1983).

7. Alfons Kemper and Mechtild Wallrath, "An Analysis of Geometric Model-
ling in Database Systems," ACM Computing Surveys lQ(l)(March 1987).

8. D. Maier, The TEDM Data Model, Working Paper, Oregon Graduate
Center, Beaverton, Oregon (1985).

9. D. Maier, "A Logic for Objects," in OGC Technical Report CS/E-86-012, ,
Oregon Graduate Center, Beaverton, Oregon (November 1986).

10. D. Maier and D. Price, "Data Model Requirements for Engineering Applica-
tions," in IEEE First International Workshop on Expert Database Systems, ,
Kiawah Island, South Carolina (October 1984).

11. H. Ohkawa, Mapping an Engineering Data Model to a Distributed Storage
System, Ph.D. Research Proficiency Paper, Oregon Graduate Center (May
1987).

12. A.A.G. Requicha, "Representation for Rigid Solids: Theory, Methods, and
Systems," ACM Computing Surveys 12(4)(December 1980).

13. A.A.G. Requicha and H.B. Voelcker, "Solid Modeling: A Historical Sum-
mary and Contemporary Assesment," IEEE Computer Graphics and Appli-
cations 2(2)(March 1982).

14. A.A.G. Requicha and H.B. Voelcker, "Solid Modeling: Current Status and
Research Directions," IEEE Computer Graphics and Applications
3(7)(0ctober 1983).

15. D.L. Spooner, "Towards an Object-Oriented Data Model for a Mechanical
CAD Database System," in Proceedings of the International Workshop on
Object-Oriented Database Systems, , Pacific Grove, California (September
1986).

16. D.L. Spooner, M.A. Milicia, and D.B. Faatz, "Modeling Mechanical CAD
Data With Data Abstractions and Object-Oriented Techniques," in
Proceedings of the Second International Conference on Data Engineering, ,
Los Angeles, California (February 1986).

17. J. Zhu, Prototype Implementation and Storage Design for An Engineering
Data Model, Ph.D. Research Proficiency Paper, Oregon Graduate Center,
Beaverton, Oregon (May 1986).

18. J. Zhu, The Notion of Abstract Object i92 an Engineering Data Model, Ph.D.
Thesis Proposal, Oregon Graduate Center, Beaverton, Oregon (January
1987).

19. J. Zhu and D. Maier, "Abstract Objects in An Object-Oriented Data
Model," in Proceedings o j the Second International Conference on Expert
Database Systems, , Tysons Corner, Virginia (April 1988).

40

APPENDIX

Basic Types

Boolean

Float
NonNegFloat < Float:

/* NonNegFloat is a type whose element has a nonnegative,
floating-point value. */

CompMode = (intersection, union, difference).

BasicFt
InfLine c BasicFt:
Point < BasicFt:

Defined Types

StructConst = (@comp =>
BasicFt: I Region: I DirectedFs:

@re1 =>
Float: I CompMode: I StructConst:).

/* comp, re1 are abstract fields. Each instantiation
has more specialized field names such as pt@comp, distance@-el. */

Region = (@comp =>
BasicFt: I Region: I DirectedFs:,

@re1 =>
Boolean: I Float: 1
PairComp: I StructConst:) .

Basicshape = Region :
(@comp =>

BasicFt: I DirectedFs:,
@re1 =>

Boolean: I NonNegFloat: I
StructConst :) .

/* Basicshape is defined as a direct subtype of Region.
Inherited fields are more specialized. */

Compositeshape = Region:(name -> String:).

DirectedFs = (@comp => BasicFt:,
@re1 => StructConst:).

RefDirLine = DirectedFs:
(refLine@comp -> InfLine: ,
posRefPt@comp - > Point:,
origin@comp - > Point:,
*onl@rel, *on2@rel -> On:) .

RefDirLine < InfLine:

/* KefDirLine is a type for directed lines. The direction
is specified from origin t o posRefPt. Therefore, those
two points are distinct and represented by two
distinct objects, P1 and P2. In TEDM type definitions,
objects with different names are distinct and represent
distinct real-world entities.*/

RefCrossDirLns = DirectFs:
(refLinel@comp, refLine2@comp

-> RefDirLine:,
intPt@comp - > Point : ,
*rightAg@rel ->
RightAngle-RefDirLns :) .

: RCDL (r i ghtAg - >
RightAngle-RefDirLns
[:L1, :L2, :IP, #O.O, #O.O])

<- RefCrossDirLns :RCDL (refLinel -> : L1,
refLine2 -> :L2,
intPt -> :IP).

Distance-PP = StructConst:

(ptl@comp, pt2@comp -> Point:,
distance@rel -> NonNegFloat:) .

CoincP = Distance-PP: (*distance -> NonNegFloat:) .

: CP (distance - > #O. 0)
<- CoincP:CP.

/* d i s t a n c e a e l (indicated by a specialized name
distance here) is a virtual field whose value
is determined by an accompanying rule. */

Distance-PL = StructConst:
@t@comp -> Point : ,
line@comp -> InfLine:,
distance@rel -> NonNegFloat:) .

On = Distance-PL:(*distance -> NonNegFloat:).

ZD-Angle = StructConst:
(linel@comp, line2@comp -> InfLine : ,
intPt@comp -> Point : ,
angle@rel -> NonNegFloat:,
*onl@rel, *on2@rel - > On:) .

RightAngleLL = 2 D A g l e : (*angle -> NonNegFloat :) .

:RAL (angle -> #90 .O)
<- RightAngle-LL:RAL.

3D-Angle = StructConst:
(1 ine-f ront@comp, 1 ine-back@comp,
angle-f rom@comp , angle-to@comp

-> InfLine:,
closestPt,lf@comp, closestPt~lb@comp

-> Point : ,
intLine@comp - > InfLine : ,
distance@rel, angle-measureare1

-> NonNegFloat : ,
*rightAgl@rel, *rightAg2@rel

-> RightAngle-LL:,
+*distPt@rel -> Distance-PP:) .

:A (rightAg1 -> RightAngle-LL [:L1, :L3, :PI],
rightAg2 -> RightAngle,LL[:L2, :L3, :P2],
distPt -> Distance-PP [:PI, :P2, :Dl)

<- 3D_Angle:A(line,front -> :L1,
line-back -> :L2,
angle-from -> :L1,
angle-to -> :L2,
closestPt-lf -> :PI,
closestPt-lb -> :P2,
intLine -> :L3,
distance -> :D) .

/* distPt is a parameterized constraint which depends
on the user-supplied value of distance field. */

3D_Angle = StructConst:
(1 ine-f ront@comp, 1 ine-backacomp,
angle-from@comp, angle-to@comp

-> InfLine:,
closestPt,lf@comp, closestPt~lb@comp

-> Point:,
intLine@comp -> InfLine : ,
distancearel, angle-measure@rel

-> NonNegFloat:,

:A (rightAg1 - > RightAngle-LL [:L1, :L3, :PI],
rightAg2 - > RightAngle-LL [:L2, :L3, :P2],
distPt -> Distance-PP [:PI, :P2, :Dl)

<- 3D-hgle:A(line,front -> :L1,
line-back -> :L2,
angle-from -> :L2,
angle-to -> :L1,
closestPt-lf -> :PI,
closestPt-lb -> :P2,
intLine -> :L3,
distance -> :D) .

/* The first definition represents a case where angle
is measured from linef ront t o line-back, the second
in reverse. */

ParaL = StructConst:
(linel@comp, line2@comp -> InfLine:,
distance@rel -> NonNegFloat:,
*rightAgl@rel, *rightAg2@rel

-> RightAngle-LL:,
+*distPt@rel -> Distance-PP:) .

:PL(rightAgl -> Righthgle-LL[:Ll, :L3, :PI],
rightAg2 -> RightAngle-LL [:L2, :L3, :P2],
distPt -> Distance-PP [:PI, :P2, :Dl)

c - ParaL:PL(linel -> :L1,
line2 -> :L2,
distance -> :D).

CoincL = ParaL: (*distance -> NonNegFloat:) .

2DJhgleJiefDirLns = 2DJmgle:
(linel, line2 - > RefDirLine: ,
dist-intPt,originl@rel,
dist_intPt,origin2@rel

-> Float:).

/* Angle between two directed lines is measured between
positive ends. */

RightAngleJiefDirLns = 2D-Angle-RefDirLns:
(*angle -> NonNegFloat:) .

:RADL (angle -> #90 .O)
<- RightAngle,RefDirLns:RADL.

3D-Angle-Re fDirLns = 3D-Angle :
(line-front, line-back,
angle-from, angle-to

-> RefDirLine: ,
dist-clstPtLf-origin-,
dist-clstPtLb,origin@rel

-> Float:).

ParaRefDirLns = ParaL:
(linel, line2 -> RefDirLine: ,
same-dir@rel -> Boolean:,
dist-twoOrigins@rel

-> NonNegFloat:) .
/* same-d i rae l indicates whether the directions of two

lines are the same (true) or not (false). */

CoincRefDirLns = ParaRefDirLns:

(*distance -> NonNegFloat:) .

PairJiefCrossDirLns = StructConst:
(crossl@comp, cross2@comp

-> RefCrossDirLns : ,
primaryTransform@rel ->
2DJmgle-RefDirLns : I
3D-Angle-RefDirLns : I
ParaRefDirLns : ,
rotate@rel -> NonNegFloat:).

Five Basic Half Spaces and Associated Defined Types

BasicShape

Plane = BasicShape: (normal@comp -> RefDirLine : ,
insidearel -> Boolean:,
*on@rel -> On-PtP1:) .

:PL(on -> On-PtPl[:O, :PL])
<- Plane:PL(normal -> (origin -> :0)).

On-PtPl = StructConst: (pt@comp -> Point:,
plane@comp -> Plane:).

PlaneWithRefF = Plane: (refF@comp -> RefCrossDirLns:,
*coincarel -> CoincRefDirLns :) .

:PWRF (coinc -> CoincRefDirLns : (line1 -> :N,
line2 -> :RL,
dist-twoorigins

-> #O.O))
<- PlaneWithRefF:PWRF(normal -> :N,

refE ->

Sphere = BasicShape: (centeracomp -> Point:,
radarel -> NonNegFloat:,
insidearel -> Boolean:) .

SphereWithRefF = Sphere : (refF@comp -> RefCrossDi~ Lns : ,
*coincarel -> CoincP:) .

:SWRF(coinc -> CoincP[:IP, :C])
<- SphereWithRefF : SWRF (center -> : C,

refF ->
(intPt - > : IP)) .

Cylinder = BasicShape:(centerAxis@comp -> InfLine:,
rad@rel -> NonNegFloat:,
insidearel -> Boolean:).

CylinderWithRefF = Cylinder:
(refF@comp -> RefCrossDirLns: ,
*coincarel -> CoincL:) .

:CLWRF(coinc -> CoincL[:C, :RL])
<- CylinderWithRefF:CLWRF(centerAxis - > :C,

refF ->
(refLinel -> :RL)) .

Conicshape = BasicShape: (centerPt@comp - > Point:,
centerAxis@comp -> InfLine : ,
angleare1 -> NonNegFloat:,
insidearel -> Boolean:,
*on@rel -> On:).

:CS(on -> On[:CP, :CAI)
c - ConicShape:CS(centerPt -> :CP,

centerAxis -> : CA) .

ConicShapeWithRefF = Conicshape:
(refF@comp -> RefCrossDirLns: ,
*coincl@rel -> CoincP:,
*coinc2@rel -> CoincL:) .

:CSRF (coincl -> CoincP [:CP, : IP] ,
coinc2 -> CoincL [:CA, :RL])

<- ConicShapeWithRefF:CSRF(centerPt -> :CP,
centerAxis - > : CA,
refF ->
(refLinel -> :RL,
intPt -> :IP)).

Torus = BasicShape:(centerPt@comp -> Point:,
centerAxis@comp -> InfLine : ,
radlarel, rad2@rel - > NonNegFloat:,
insidearel -> Boolean:,
*on@rel -> On:).

:T(on -> On[:CP, :CAI)
<- Torus:T(centerPt -> :CP,

centerhis -> :CA) .

TorusWithRefF = Torus : (refF@comp -> RefCrossDirLns : ,
*coincl@rel - > CoincP : ,
*coinc2@rel -> CoincL:) .

:TRF(coincl -> CoincP[:CP, :IP],
coinc2 -> CoincL [:CA, :RL])
<- TorusWithRefF:TRF(centerPt -> :CP,

centerhis -> :CA,
refF ->
(refLinel -> :RL,
intPt -> : IP)) .

Complex Constraints

PairComp = StructConst: (cl@comp, c2@comp -> Region:,
modearel -> CompMode:) .

3D-RightAngle-RefDirLns = 3DJingleJiefDirLns:
(*angle-measure

-> NonNegFloat:) .

RightAngle-PlPl = StructConst:
(pll@comp, pl2@comp -> Plane:,
*normall~normal2~ra@rel
- > 3DJiightAngle-RefDirLns :) .

:RAPP(normall-normal2,ra ->
3D-RightAngle-RefDirLns:
(line-front -> :N1,
line-back -> :N2))
<- RightAngle-P1Pl:RAPP

(pll ->
(normal -> :N1) ,

p12 ->
(normal -> :N2)) .

Para-P1P1 = StructConst:(pll@comp, pl2@comp -> Plane:,
distanceare1 -> NonNegFloat:,
*normall,normal2-para@rel ->
ParaRefDirLns:) .

:PLPP(normal l -normal2~ara ->
ParaRefDirLns : (line1 -> :N1,

line2 -> :N2,
dist-twoorigins -> :D))

<- Para-PlPl:PLPP(pll ->
(normal -> :N1) ,

p12 ->
(normal -> :N2),

distance -> :D).

Type Hierarchy

Not all transive closures are presented.

NonNegFloat < Float:
InfLine < BasicFt:
RefDirLine < InfLine:
Point < BasicFt:

BasicShape < Region:
Compositeshape < Region:

Plane < BasicShape:
PlaneWithRefF < Plane:
Sphere < BasicShape:
SphereWithRefF < Sphere:
Cylinder < BasicShape:
CylinderWithRefF < Cylinder:
ConicShape < BasicShape:
ConicShapeWithRefF < ConicShape :
Torus < BasicShape:
TorusWithRefF < Torus :

RefDirLine < DirectedFs:
RefCrossDirLns < DirectedFs:

Distance-PP < StructConst:
CoincP < Distance-PP:

Distance-PL < StructConst:
On < Distance-PL:

2D-Angle < StructConst:
RightAngle-LL < 2D-Angle:
2D-Angle-RefDirLns < 2D-Angle:
RightAnglsBefDirLns < 2D-Angle-RefDirLns:
RightAngle-RefDirLns < RightAngle-LL:

3D-Angle < StructConst:
3D-AngleJZefDirLns < 3D-Angle:

ParaL < StructConst:
CoincL < ParaL:
ParaRefDirLns < ParaL:
CoincRefDirLns < ParaRefDirLns :
CoincRefDirLns < CoincL:

Pair-RefCrossDirLns < StructConst:

On-PtP1 < StructConst:
PairComp < StructConst:
Righthgle-P.lP1 < StructConst :
Para-PlPl <'StructConst:

