
Representing CSG SoIids Using a 
Logic-Based Object Data Model 

T. Lougenia Anderson Hitomi Okhawa 
Jack Gjovaag David Maier Sheryl Shulman 

Tektronix Laboratories 

Oregon Graduate Center 

Servio Logic Development Corporation 

Technical Report No. CS/E 88-039 
November 1988 

Computer Science and Engineering 
Oregon Graduate Center 

19600 S.W. von Neumann Drive 
Beaverton, Oregon 97006-1999 

Proceedings of the IFIP Working Conference on Visual Database Systems, Tokyo, Japan, 
April 1989. 



Representing CSG Solids Using a Logic-Based Object Data Model 

T. Lougenia ~ n d e r s o n * * *  Hitomi ~hkawa* '  
Jack G'jovaag* David ~ a i e r * * t  Sheryl ~hv.lman*p** 

* ~ e k t r o n i x  Laboratories 

** 
Oregon Graduate Center 

*** 
Servio Logic Development Corp. 

A B S T R A C T :  Constructive Solid Geometry (CSG) is a widely-used 
method of  describing three-dimensional solids. Th is  paper reports o n  
our experiences i n  applying TEDM,  a n  object-oriented logic-based data 
ntodel, to  the problem of nzodeliizg CSG solids. In  addition, we report 
o n  a new representation for the spatial relationships between CSG prim- 
itives based o n  constraints. These constraints are nzodeled as  first-class 
objects in TEDM,  and hence are available explicitly to programs for rea- 
soning about properties o j  the resulting C S G  representation. Further, 
the constraint mechanism supports information hiding, provides support 
for capturing tolercncing injormation jor a CSG solid, allows partially- 
specified solids, and appears appropriate for the design system user 
interface. 

KEYWORDS: Constructive Solid Geometry, object-oriented d a t a  
models, logic-based da ta  models, constraints, inferencing techniques 

1. INTRODUCTION 

There is a growing perception in the CAD community t h a t  Object-Oriented 
Database Management Systems (00-DBMSs) provide the best modeling para- 
digm for handling the complex, interrelated da ta  structures found in CAD 
applications. In a joint research project between Tektronix, Inc. and the Ore- 
gon Graduate Center we have developed the Tektronix Engineering Da ta  Model 
(TEDM), a logic-based object model for such a n  00-DBMS [8,2]. This paper 
reports on our experiences in applying TEDM t o  the  problem of modeling 

t D. Maier's work was partially supported by a contract from Tektronix Computer Restarch Laboratory and 
NSF grant IST 83 51730, co-sponsored by Tektronix Foundation, Intel, Digital Equipment, Servio Logic, Mentor 
Graphics and Xerox. 



Constructive Solid Geometry (CSG) solids, and on a new representation for the 
spatial relationships between CSG primitives t h a t  exhibits some distinct advan- 
tages over the commonly used transformational matrix approach. 

The joint work on TEDM grew out of a requirements analysis which indi- 
cated t h a t  traditional database systems are no longer sufficient for engineering 
design applications [lo]. TEDM shares with other object-oriented d a t a  models 
the  capability of constructing complex d a t a  objects t h a t  accommodate hierarch- 
ical structures with shared subparts or  even cyclic da ta ,  a major departure from 
the  relational d a t a  model. In addition to handling complex objects, TEDM also 
supports object identity, a type hierarchy, deductive elements for virtual da ta  
definition, and  a rule-like da ta  language. 

One of the most important requirements for our CSG d a t a  model is t h a t  i t  
be possible t o  t reat  constraints a s  objects. The ultimate goal is t o  be able t o  
reason about various characteristics of a particular CSG solid, such as part  rigi- 
dity, manufacturability, or whether the  par t  is over- or  underconstrained. The 
reasoning process requires examining and manipulating constraints on the rela- 
tionships between CSG primitives a s  data.  Since everything is a n  object in a n  
object-oriented da ta  model, such constraints are no different from the more con- 
ventional da ta  objects stored in the database and can be manipulated in a simi- 
lar  fashion. 

Primitive shapes, such as  spheres, cones, and cylinders, form the basis for a 
CSG representation of a three dimensional solid. Each complex solid is defined 
by specifying a Boolean combination of such primitive shapes and other sirni- 
larly defined complex shapes, where constraints may be placed on the relative 
position of the  two shapes being combined. This Boolean combination process is 
continued recursively until the desired solid is completely specified. Note t h a t  
such a recursive definition is easily translated into a binary-tree form where the 
interior nodes correspond t o  operations such as  binary Boolean ~ p e r a t ~ i o n s  
(union, int.ersection or  difference), and the leaf nodes correspond t o  primitive 
shapes such as sphere, cylinder, or plane. The specification of rigid 
translation/rotation is usually accomplished by adding additional interior node 
types. Also, the  translation/rot,ation specification may be pushed down t o  the 
leaves of the  tree and thus can occur only in the leaf nodes. 

Pas t  CSG models have used a Transformation-matrix (T-matrix) approach 
t o  specify rigid motion/relative position between the two shapes being combined 
in a CSG representation [6,7,16]. In our work we have developed a second 
approach t o  specifying relative position based on reference features. Each of the 
primitive shapes has a set of attached reference features (basically some set of 
points and lines). For example, a n  infinite cylinder can be defined in t e r ~ n s  of a 
cer~tral  axis and a radius. Correspondingly, a complex shape has as its reference 
features some subset of the reference features of its components. Relative posi- 
tion of two shapes is specified in terms of the  corresponding reference features. 
W h a t  is novel about our approach is t h a t  we have examined a number of the 



possible relationships between various pairs of reference features and have 
defined equivalence classes based on relative spatial topology (i.e., all pairs of 
reference features in a particular equivalence class are obtainable from each 
other by some combination of translations and rotations). W e  then use these 
equivalence classes for reference features pairs a s  the  basis for modeling rigid 
motion in the  TEDM da ta  model for CSG. 

The reference feature approach seems t o  have several advantages over the  
conventional T-matrix approach t o  specifying rigid motion/relative position. 
First, i t  has more promise in being able t o  capture tolerancing information than 
does the  T-matrix. Second, it  seems more appropriate a s  the model for rigid 
motion t h a t  should be used in the user interface (it appears t h a t  few CSG 
modelers actually think in terms of T-matrices, for example). Third, i t  appears 
t o  be good abstraction mechanism which supports information hiding, since i t  is 
possible to use a subset of the  reference features of the  components of a com- 
plex object a s  the  reference features for the complex object. Finally, the  refer- 
ence features approach offers more versatility in specifying degrees of freedom in 
the  rigid motion/relative position between two shapes than does the T-matrix 
approach. For example, one might want t o  specify only t h a t  two spheres are a 
certain distance apar t  rather than totally specifying their relative position and 
rotation with respect t o  some coordinate system. This partial specification of 
relative position is not a s  easy using the T-matrix approach, since the only 
option is t o  leave elements of the matrix undefined. Problems arise when such a 
partially specified T-matrix is combined with another matrix (e.g., what  is the 
meaning of matrix multiplication when some of the elements of one or both of 
the operands are undefined). 

The remainder of the paper is organized as  follows. Section 2 covers previ- 
ous work in CSG d a t a  modeling. Section 3 discusses the  salient features of the 
TEDhl d a t a  model and Section 4 outlines CSG modeling for those not familiar 
with the technique. In Section 5 we present the  TEDM d a t a  model for CSG, 
including reference features, and then use the d a t a  model in a simple example 
in Section 6 .  Section 7 critiques the CSG model presented with respect t o  apply- 
ing inferencing techniques t o  answer questions about a particular CSG solid, 
and discusses future work in Section 8. 

2. PREVIOUS WORK 
Lee and F u  use a design methodology based on a semantic d a t a  model to 

derive a relational schema for CSG [6]. The paper defines a grammar structure 
for representing CSG trees in which the primitive solids are bounded shapes 
rather t h a n  the more general half-spaces we use. Relative spatial relationships 
between the  CSG solids (whether primitives shapes or conlplex structures) are 
defined using the  T-matrix approach. The resulting relational schema is based 
on the  assumption tha t  the first primitive shape in the  CSG tree defines a world 
coordinate system a.nd tha t  all other rotations and translations are given with 
respect t o  this world coordinate system. (This approach raises problems when 



one at tempts t o  combine two complex CSG solids, both of which have different 
coordinate schemes.) 

Finally, the  paper defines three extensions t o  the  SEQUEL language t o  sup- 
port the CSG schema. First, a d a t a  definition statement is added tha t  will 
automatically define the  underlying base relations necessary t o  support the  
aggregation and generalization abstractions in the semantic d a t a  model. The 
second extension is a set of integrity assertions t h a t  maintain the  required 
referential constraints between relations representing the  CSG tree. In the last 
extension the aiithors use the  SEQUEL trigger facility t o  define a procedure for 
updating all the base relations t o  represent the  addition of one level in a CSG 
tree. 

The work by Spooner, e t  al. is similar t o  our work in t h a t  i t  takes a n  
object-oriented approach t o  defining the CSG model [16]. It ,  however, does not 
rigoroursly define an  underlying DBMS d a t a  model but  rather draws on ele- 
ments from the programming language SmallTalk, and further shows t h a t  the  
generalization and aggregration abstractions from semantic da ta  models have 
direct correlates in the  language. This approach is in harmony with the main 
point of the paper, which is t o  show t h a t  the  object-oriented approach provides 
a flexible and responsive da ta  model t h a t  will accommodate the  diverse types of 
da.ta present in mechanical CAD. 

The paper includes the  outline of a d a t a  model for both boundary represen- 
tations and CSG representations for three-dimensional solids. In their model it  
is possible t o  combine objects specified using either representation in a Boolean 
tree. This flexibility is a good demonstration of the power of the abstractions in 
an object-oriented approach, which enable different d a t a  structures t o  be 
integrated and treated in a uniform fashion. However, the combining operators, 
with the exception of the  T-matrix, are not discussed in the paper. (NB: Com- 
hining operators appear a s  interior nodes in the  BooIean tree.) The da ta  model 
interpretation of the T-matrix is also rather sketchy (e.g., with respect t o  what 
coordinate system is the translation given?). 

The important aspects of the Spooner paper is t h a t  i t  is the first att,empt 
a t  modeling CSG using a n  object-oriented approach, and t h a t  i t  demonstrates 
the feasibility of integrating the  different da ta  representations found in CAD 
applications. 

3. TEDM OVERVIEW 

Databases under TEDM are collections of objects, the  basic building blocks 
provided by the  model. Objects in TEDM are either simple or complex. Simple 
objects are non-decomposa.ble atomic values and are taken from a fixed set of 
base types, which for our examples will be S t r ing,  Integer and  B o o l e a n .  
(String literals appear in single quotes; integers are prefixed with #.) Complex 
objects are collections of fields, each of which has the  form 

f i e l d n a m e  -> value 



where the  value is a simple object or  another complex object (thus arbitrary 
nested d a t a  objects can be constructed). These complex objects are similar t o  
the +terms of Ait-Kaci [I]. The following object describes a department. 

(deptName ->  'Research', 
budget ->  #1253500, 
manager -> 

(name -> ( f i r s t  -> 'William', 
l a s t  -> ' P o r t e r ' ) ) ,  

bui ld ing -> 'C51t,  
bui ld ing ->  'C52').  

Note t h a t  we may have multiple occurrences of a fieldname in a n  object. 

Each object has a unique identity tha t  is represented by a n  internal object 
ide?zti&er (OBID). The OBID of an  object is unique with respect t o  the  entire 
database, and it  will not change during the lifetime of the  object. The OBID of 
an  object and the state  of the object are orthogonal - while the  s ta te  may 
change as  the database evolves, the OBID always stays the  same. With this 
notion of object identity, each object is distinguishable and therefore the system 
car! discriminate any two objects without depending on their states. Also, two 
or more fields can have the same object as  their value. 

T o  capture multiple references t o  the  same object in a linear syntax, 
TEDM uses object  tags prefixing objects. For example, if we want  the  depart- 
ment manager t o  reference the department in which he works, we can use a tag  
D : 

:D (deptName -> 'Research ' , 
buaget ->  #1253500, 
manager -> 

(name ->  ( f i r s t  ->  'William', 
l a s t  ->  ' P o r t e r ' ) ,  

worksIn -> :D), 
bui ld ing ->  'C51t, 
bui ld ing ->  'C52') .  

TEDM supports types for objects. A type definition looks much like an  
object description, but  with type names for values. 

PersonName = ( f i r s t  -> St r ing : ,  
l a s t  ->  St r ing : )  . 

Person = (name -> PersonName:) . 

Department = (deptName -> St r ing : ,  
manager -> Person:, 
bui ld ing => St r ing : )  . 

The type t h a t  is the  value of a field in a type definition is called the  range type 



of the field. For example, Person is the range type of the  manager field. 
The double arrow indicates a field tha t  may have multiple occurrences. We will 
usually write object descriptions with type names inserted, except for simple 
values. 

Department :D 
(deptName -> 'Research' , 
budget -> #1253500, 
manager -> 
Person: (name -> 

PersonName: 
(first -> 'William', 
last ->  'Porter'), 

worksIn ->  Department:D), 
building ->  'C511, 
building -> ' C 5 2 ' ) .  

TEDM support several syntactic conventions tha t  facilitate readability. In a 
type definition if two or  more fields have the same range type, this is indicated 
by listing the  fields separated by commas on the  left-hand side as  in 

namel, name2 ->  String:. 

,41so, if a field has multiple range types, these may be listed on the right-hand 
side separated by 1's a s  in 

value - >  PosNum: ( NegNum:. 

Each type has a corresponding type set of objects t h a t  conform t o  the  type 
description. An object may belong t o  several type sets, and need not belong t o  
every typeset t o  which i t  conforms. Furthermore, types in TEDM are prescrip- 
tive, not proscriptive: a n  object may have more fields than  required by a type. 
In the  example above, there is a budget field t h a t  is not required by the 
Department type. Types are organized into a hierarchy, where a subtype 
inherits all the fields and restrictions of the supertype, but  can add other fields 
and  restrictions. Thus, we could define 

Employee = (name - r  PersonName:, 
age ->  Integer:, 
salary -> Integer:) . 

Person > Employee:. 

a s  a subtype of Person. The top of the hierarchy is the  type All, whose 
typeset contains all objects known t o  the  system. 

TEDM also supports two special kinds of fields, abstract fields and virtual 
fields. Abstract fields are prefixed with @ as  in QlistElement. Types with 
abstract  fields cannot be directly instantiated. Rather ,  they serve t o  define type 
structure and generic field specifications shared by subclasses. When a n  



abstract field is inherited by a subtype, i t  is always specialized (as in 
name@list~lement). Once specialized in a type definition, a field may be 
referred t o  by i ts  specialized name without the @ suffix. If, for example, a spe- 
cialized abstract field such as  name@listElement is used in a rule following a 
type definition or  is inherited by a subtype, i t  may be referred t o  a s  name. 

Virtual fields contain computed or  derived values and are indicated by the  
* prefix a s  in *distance. Their derivation is given by a rule tha t  follows the 
type definition. If a virtual field is defined for a type, then it  is inherited by all 
subtypes of the type. Also, a non-virtual field of a type may be redefined as  a 
virtual field in a subtype. 

The da ta  language for TEDM is influenced by logic languages, and consists 
of commands, which handle update and I/O, and rules, which define virtual 
fields and objects. Both constructs have the basic form 

<head> <arrow> <pattern> 

where <arrow> is <= for a command and <- for a rule. The <pattern> is a 
sequence of terms, which are templates for matching objects in the database, 
and look like partial object descriptions. However, what  were tags before are 
now object variables. The <head> for a command is a term indicating an  
update operation, such as  changing a field value, adding a n  object t o  a type set,  
or  creating a n  object. The head for a rule looks like the  term for a n  update 
operation, but denotes demand, rather than immediate, evaluation. 

Variables are shared between the  <head> and <pattern> parts. The 
semantics of a command is tha t  for every binding of the  variables t o  database 
objects tha t  fulfills the <pattern>, perform the update (or other operation) 
given in the  <head>. 

Examples: Add a salary field t o  the  person named William Porter.  

:P(salary -> #63000) <= 
Person :P 

(name ->  PersonName: 
(first ->  'William', 
last -> 'Porter')). 

Add t h a t  person to the  Employee typeset. 

Employee : P <= 
Person : P 

(name ->  PersonName: 
(first ->  'William', 
last -> 'Porter')). 

Change t h a t  person's name. 

:P (name -> 
Persomame:* 

(first -> ' O ' ,  



last -> 'Henry')) <= 
Person :P 

(name -> 
PersonName:(first -> 'William', 

last -> 'Porter')). 

The * in the head term indicates the creation of a new object. Rules look 
much the  same as commands. The rule 

:M (manages -> :D) <- 
Department:D(manager -> Person:M) . 

defines a virtual field manages for persons who manage departments. 

Few joins are necessary in TEDM queries, as  they are not needed t o  over- 
come the decomposition of objects forced by normalization in the relational 
model. Most semantic connections can be made by following paths. \ 'hen a 
join is necessary, it can be on object identity, rather than just on simple values. 

SameManager:* 
(deptl -> :Dl, dept2 -> :D2) <= 

Department :Dl (manager -> Person :M) , 
Department :D2 (manager -> :M) . 

A more detailed description of this da ta  model is given in [8]. Its formal 
logic is presented in 191, where 0-Logic is developed t o  provide formal semantics 
for the d a t a  model. The TEDM command language has been prototyped in 
Prolog using a storage structure based on binary and ternary relations [17]. 
Finally, (21 reports on applying TEDM t o  the problem of modeling the DBMS 
user interface, and [19] reports on adding features t o  the model to  provide a 
uniform framework for making the query language entities persistent. 

4. CSG OVERVIEW 

Solids are represented in conventional CSG systems as  Boolean combina- 
tions of solid components, where a solid component is either a primitive shape 
defining a half-space, (such a s  a plane, sphere, cylinder, etc.) or another conlpo- 
site CSG solid. The combining operators are set operators such a s  union, inter- 
section, and difference. As shown in (61, and [12], the following grammar 
describes the tree structures tha t  result from using the Boolean combining 
operators recursively. 

<CSG tree> ::== <primitive leaf> ( 
<CSG tree> <set operator> <CSG tree> 
<CSG tree> <motion operator> <motion arguments> 

Note tha t  this is not the only possible grammar for a CSG representation. For 
example there are a variety of grammar forms in use in commercial systems 
1131. An example of a typical CSG tree structure and corresponding rigid solid 

' 9  are shown in Figure 1 (the solid, our two-tooth comb" example, is shown in 
orthographic projection). The CSG tree for the  comb example assumes the 



existence of two box composite solids, Box B1 and Box B2. Box B1 has dimen- 
sions of 1 x 3 x 1 (along the  x, y, and 2 axes) and Box B2 has dimensions of 3 x 
1 x 1, as  shown in Figure 1. Note t h a t  boxes are not primitives in our system, 
but are constructed from planar half-spaces. A complete TEDM description of 
the  generic box solid will be given in Section 6. 

Our  grammar for the  CSG trees is similar t o  the  grammar defined above. 
However, we have eliminated the last term, involving the <motion operator>, 
from the  right hand side of the <CSG tree> production rule. Instead, con- 
s traints  between pairs of nodes in the CSG tree are used t o  specify relative 
position. 

Each node in the CSG tree has a set of associated reference features. Refer- 
ence features are usually points and lines, but  may be arbitrarily complex 
shapes. A constraint between a pair of nodes places conditions on the reference 
features of the  two nodes t h a t  must be met. Reference features will be defined 
more formally in the next section, but a brief explanation is included here. 
Each primitive shape has default reference features. For example, the default 
reference features for a plane are a pair of directed infinite lines, where the first 
line is perpendicular t o  the plane and points in the  direction of the  positive 
half-space for the  plane and the second line intersects the first and lies in the 

*0g*3 1 Orthographic projection 
of resulting composite 
solid. 

1 

Flgure 1. CSG Tree Example 



plane. Each composite shape (formed by constructing a CSG tree) has a set of 
reference features t h a t  is either a subset of the  features of i ts  components or  is 
derived from those features. Note t h a t  a n  arbitrary number of reference 
features may be added t o  both &imitive shapes and composite shapes a t  the 
designer's discretion. For example, the  two boxes used in the  comb example in 
Figure 1 are  both instances of a generic box composite shape. The generic box, 
shown in Figure 2, is formed by taking the intersection of six planar half-spaces. 
The reference features of the  generic box composite are defined, a s  will be 
shown formally in Section 6, to be three orthogonal planes from the  six used t o  
construct the  box. In order to instantiate a specific box composite solid, the 
three edge dimensions should be specified. Thus  t o  instantiate Box B1 and Box 
B2 used in the comb example above, the following TEDM statements would be 
necessary. 

Box : (name - > ' B1' , 
edgel ->  l., 
edge2 ->  3., 
edge3 -> 1.) 

Box: (name -> 'BZ', 
edgel ->  3. , 
edge2 ->  l., 
edge3 -> 1.) 

Constraints relate pairs of reference features from nodes in the  CSG tree, 
and a.re of the  form: 

H 
edgel 

Flgure 2. Tho Gonerlc Box Solid 



<reference feature> <constraint specification> <reference feature> 

For example, Figure 3 shows the CSG tree for the comb example using con- 
s traints  t o  specify relative positions in three-space (constraint arcs between 
pairs of nodes are shown as dashed lines). The example assumes t h a t  the  refer- 
ence features for Box B1 are the  planes pIB', pZB1, and and tha t  the 

reference features for Box B2 are the  planes pIB2, pZB2, and pSB2. Thus the 

constraints between Box ' B1 and Box B2 are t h a t  the  planes pIB1 and pIB2 

are  coincident, and t h a t  the  planes P,~ '  and P," are coincident, as shown on 
the  dashed arc connecting the two nodes. 

Box B1 and Box B2 are composed t o  form two composite solids, rooted a t  
the two nodes with names of C1 and C2 respectively. C1 and C2 are each a 
*I tooth" in the  comb example as  shown in the orthographic project of the  entire 
solid in Figure 3. The reference fea t l~res  for Cl are the  planes P,", P,", and 

Orthographic projection 
of resulting composite 
solid. 

Flgurr 3. CSO Tree Example With Constraints 



p3'', and for C2 are the  planes plC2, pIC2,  and p3'I. Note t h a t  constraints 
are also used t o  specify the  relationship between reference features for C1 and 
C2 and their components, a s  shown by the dashed arcs between the nodes 
corresponding t o  these two composite solids and the node labeled Box B1. 

The model includes a set of predefined primitive reference feature types 
and a corresponding set of primitive constraint types. Primitive reference 
feature types include points, infinite lines, directed lines, and crossed directed 
lines. Primitive constraints specify such things a s  distance between two points, 
distance between a point and a line, and relative positions of two lines in three 
space. More complex reference feature types (such a s  planes) and constraint 
types (such as  coincidence) may be defined in terms of the  corresponding primi- 
tives. 

5. A DESCRIPTION OF CSG IN TEDM 
This section discusses the  elements of our CSG model in detail, gives their 

definition in TEDM, and develops the corresponding type hierarchies. Section 
5.1 defines the basic reference features in the model, points and infinite lines, 
and the  predefined constraints types for these basic primitives. Section 5.2 
defines the  more complex reference features, directed lines and pairs of directed 
lines, in terms of the basic reference features and gives the  predefined con- 
straint types for them. In Section 5.3 we use these reference features t o  define 
the  basic shapes, such as planes, spheres, etc., t h a t  appear a s  terminals in a 
CSG tree. Finally, Section 5.4 gives the type hierarchies for all of these refer- 
ence features, shapes, and constraint types. 

5.1. The Basic Reference Features 

The most basic units of da ta  in the model are points and infinite lines, 
since they are a t  the  right level t o  be considered as components of the basic 
shapes, and also t o  be perceived as  conceptual units in their own right. The 
TEDM type specifications of points and infinite lines have no internal structure 
(as shown below) since their geometric properties are identical for all instances 
(no parameterization is necessary in order t o  specify a n  individual point or  line 
uniquely). We will use the term line t o  refer t o  infinite line in future discussion, 
unless some ambiguity would result. 

InfLine . 
P o i n t .  

The identity o r  uniqueness of a particular point or  line object (i.e., a n  instance 
of the  type InfLine or  po in t )  is of interest only with respect t o  the con- 
s traints  t h a t  are placed on its spatial relationship t o  other objects. 

Now we turn t o  the  specific constraint types for these primitives. As men- 
tioned in Section 4, each constraint type involves a pair of reference features. 
Thus in the  remainder of this section, we will define constraint types for pairs of 
points, a point and a line, and a pair of lines. All constraint types are subtypes 



of Structconst, which has two abstract fields, @comp and @rel. Thus all 
constraint types specialize these abstract fields a s  in lineacomp and 
distance@rel. 

In considering all possible spatial relationships between points and lines, an  
equivalence class is formed for all topologies t h a t  are obtainable from each 
other by an  arbitrary combination of translations and rotations. Such 
equivalence classes determine a constraint type, and the parameters for the  con- 
s traint  type are those t h a t  uniquely determine the relative spatial relationship 
between any pair of reference feature instances t o  which the constraint type 
applies. 

An interesting question is whether a particular relative spatial relationship 
between a pair of reference features also uniquely determines the parameters for 
a constraint. If this is the case, then there exists a two-way mapping between a 
ra.nge of parameter values for a particular constraint type and a set of all possi- 
ble relative spatial relationships between the pair of reference features. In 
order t o  show tha t  a certain mapping is one-to-one, it  is sufficient t o  show tha t  
the mapping and its inverse both yield a unique result. 

(A) Pairs  of Points 

The constraint type for two points is the  simplest of all cases. Distance 
between two point instances uniquely determines relative position, and a unique 
distance can be obtained from any pair of points. It  is easy to  see tha t  such a 
mapping is onto in both directions, since the range of distance values is non- 
negative. The constraint type Distance-PP below represents this relative 
~ p a t i a l  relationship between any two point objects. 

Distance-PP = Structconst: 
(ptl@comp, pt2@comp ->  Point:, 
distance@rel -> NonNegFloat:) . 

The two fields, ptl and pt2, contain the two reference feature objects (in this 
case, instances of the  Point object type for which the constraint is specified). 
The distance@rel field contains the  obvious distance parameter. The @re1 
suffix indicates tha t  the field is a specialization of the  abstract field defined by 
superclass Structconst. As such, it  contains a constraint t o  be satisfied by 
the  components. 

The Distance-PP constraint type can be specialized if the  two point 
objects are coincident. In the  CoincP constraint type given below, the  dis- 
tance field (a  specialization of the distanceare1 field inherited from 
~istance,~~) is defined t o  be a virtual field (as indicated by the  * prefix) 
whose value is given by the rule t h a t  follows the  constraint type definition. 
This rule is read "If cp is a CoincP object, then the  distance field contains 
the value #O .o." 

CoincP = Distance-PP: ("distance ->  NonNegFloat:) . 



:CP (distance -> #0.0) <- Coinc? :CP. 

(B) A Point and a Line 

The constraint types between a point and a n  infinite line are also relatively 
simple. Distance between a point object and a line object is defined t o  be the 
length of a line segment perpendicular t o  the line. Specifying such a dista.nce 
also uniquely determines the relative spatial relationship between a point and a 
line. Thus the constraint type is defined as  follows. 

Distance-PL = StructConst: 
(pt@comp -> Point : , 
line@com? -> InfLine: , 
distanceare1 -> NonNegFloat:) . 

Again, the Distance-PL constraint can be refined if the point is on the line. 
The On constraint type is specified in a fashion similar t o  the CoincP con- 
s traint  type. 

On = Distance-PL: (*distance -> NonNegFloat:) . 

(C) Pairs  of Lines 

Constraints between two infinite lines are divided into three separate cases. 
First, if two lines intersect each other then an  angle between them is adequate 
t o  uniquely specify the  relative spatial relationship if the  angle is restricted t o  
being between zero and ninety degrees. The 2D-Angle constraint type cap- 
tures the relative spatial relationship between two intersecting line objects. 

2D-Angle = StructConst: (linel@comp, line2@comp 
->  InfLine:, 

intPt@comp ->  Point:, 
angle@rel -> NonNegFloat:, 
*onl@rel, *on2@rel ->  On:) . 

The syntax On [ :  IP, :L1] is a shorthand for specifying a n  instance of type On 
in which the  order of the field specifications is the same as in the  On type 
definition. The intPt@comp field in the  2D-Angle constraint type definition 
contains the  intersection point of the two lines. Note t h a t  onl@rel and 
on2@rel are virtual fields whose rule definition requires t h a t  the  intersection 
point be on both lines. 

The constraint type RightAngle-LL refines the  2D-Angle type by 
defining a value for the  angle@rel field of ninety degrees (using TEDM rules 



as  was done in this section for the  CoincP and On constraint types). The com- 
plete definition is given in the  appendix, and will not be further elaborated here. 

When two lines do  not intersect, they are either parallel or skewed. For 
the  skewed case, the  two lines lie on two planes t h a t  are themselves parallel t o  
each other. Further,  there exists a line perpendicular t o  the  two lines, which 
defines a common normal t o  the two parallel planes on which the  two lines lie 
(see Figure 4.1). We define the  distance between the  two skewed lines t o  be the 
dista.nce between the two parallel planes along the common normal. 

For  two skewed lines, four things are necessary t o  specify the  relative spa- 
tial relationship: (1) a n  angle between one line and a projection of the  other 
line on the  plane containing the  first line, (2) how the  angle is measured, (3) the  
distance between the two lines along the common normal, and (4) the  direction 
of view in order t o  differentiate mirror images. The example shown in Figure 4 
illustrates the  requirement for direction of view. Suppose one views the  relative 
topology from the direction of view shown in Figure 4.1. It is easy t o  see tha t  
the relative spatial relationship of the  two lines is specified by giving a n  angle cr 
and distance d, where the angle is measured from linel t o  line2. However, i t  is 
also possible to construct a mirror image of the original topology with the same 
angle a and distance d by reversing the  direction of view, a s  shown in Figure 
4.2. In order for the mirror image t o  yield the same angle, the  direction of view 
must be opposite. These two mirror images cannot be obtained from each other 
by rotations and/or translations. 

projection 
Direction I linc 
of View / 

linel '+ 
common common 
normal normal 

Flgurr 4. drlglnal Topology and Mlrror Imago 



The 3D-Angle  constraint type captures the four necessary pieces of infor- 
mation t o  represcnt relative spatial relationships for skewed infinite lines. The 
angle is given by the  a n g l e - m e a s u r e a r e 1  field. We assume the convention 
t h a t  the  angle is measured counterclockwise. The angle is measured starting a t  
the  line given in the a n g l e , f r o m @ r e l  field and ending a t  the  line given in the 
angle-to@rel. The distance@rel field gives the distance between the two 
lines, measured along the common normal given by the  i n t l i n e a c o m p  field, 
which intersects the two skewed lines a t  the points c l o s e s t p t - l f @ c o m p  and 
c l o s e s t P t , l b @ c o m p .  The direction of view is given by the order of the lines, 
where the  line,front@comp and l ine -back@comp fields contain the  line 
in front and the line in back, respectively. Note t h a t  all information is neces- 
sary t o  distinguish mirror images. For example, with l i n e - f r o n t @ c o m p  and 
l ine,back@comp only, mirror images may result from the  same da ta ,  depend- 
ing on whether the angle is measured from the  line in front or  in back. The 
convention of allowing only acute angles would not solve this problem. The + 
notation on the d i s t P t @ r e l  field indicates t h a t  the constraint depends on a 
user-supplied value, in this case the distanceare1 field. This is called a 
parameterized constraint. 

Note also tha t  i t  follows from the semantics of the  fields t h a t  either 

( line-f r o n t @ c o m p  = angle-f rom@comp 
and 

l i ne -back@comp = ang le - to@comp ) 

( l i n e - f r o n t @ c o m p  = angle, to@comp 
and 

line-back@comp = angle-from@comp ) . 
Such alternative constraints are represented in TEDM by having multiple type 
definitions for each alternative. The following type definition represents the case 
where l i n e - f r o n t  is equal t o  a n g l e - f r o m  and line-back is equal t o  
a n g l e - t o  (see the  rule following the type definition where object tags are used 
t o  constrain the  identities). The type definition for the second case would be 
identical except for the  definition of the rule in which the object tags would be 
rearranged t o  constrain the second set of identities. 

3D-Angle = S t r u c t C o n s t :  
( l i n e , f r o n t @ c o m p ,  l ine ,back@comp,  
angle,from@comp, ang le - to@comp 

-> I n f L i n e : ,  
c l o s e s t P t - l f @ c o m p ,  c l o s e s t P t ~ l b @ c o m p  

->  P o i n t : ,  
i n t L i n e @ c o m p  -> I n f L i n e :  , 



:A (rightAg1 ->  
RightAngle,LL[:Ll, :L3, :PI], 
rightAg2 -> 
RightAngle-LL [:L2, :L3, :P2], 
distPt ->  
Distance-PP[:Pl, :P2, :Dl) 

<- 3D>gle:A(line,front ->  :L1, 
line-back ->  :L2, 
angle-from -> :L1, 
angle-to ->  :L2, 
closestPt-lf ->  :PI, 
closestPt-lb -> :P2, 
intLine -> :L3, 
distance -> :D) . 

Two parallel lines occupy three space, where the  angle between one line 
and a projection of the other is zero degrees (or one hundred and eighty 
degrees). In this case, however, both lines lie on the same plane (i.e., the system 
becomes two dimensional) and it  is not necessary t o  differentiate mirror images. 
Therefore, specifying distance alone is sufficient for the definition of the relative 
spatial relationship of two parallel lines. The ParaL constraint type given in 
the appendix requires tha t  the common normal be perpendicular t o  both lines. 
The constraint type CoincL refines ParaL simply by requiring t h a t  the  dis- 
tance between the two parallel lines be zero. 

5.2. Directed Reference Features 

Directed reference features are of two types, directed lines and crossed 
directed lines. As will be seen in Section 5.3, a directed line is used for indicat- 
ing the  positive half-space for a plane, and crossed directed lines are used for 
indicating rotation and translation for the symmetrical half-spaces such as  
spheres and cones, or  for any composite shape. 

A directed line is build from a n  infinite line and two reference points on the 
line, a s  shown in Figure 5.1. It is assumed t h a t  the  direction of the line is 
always from the  originOcomp to posRefPt@comp . Therefore, those two 
points must be distinct. The TEDM type definition for a directed line is given 



below, where the  onl@rel  and the o n 2 @ r e l  are virtual fields whose rule 
definition require t h a t  the two points lie on the line given by the 
r e f L i n e @ c o m p  field. The p o s R e f P t @ c o m p  and o r i g i n @ c o m p  have distinct 
objects, P 1  and P2 ,  as values. In' TEDM type definitions objects with different 
names are distinct, though they may be specified t o  be identical in a rule. 

R e f D i r L i n e  = D i r e c t e d F s :  
( r e f L i n e @ c o m p  ->  I n f L i n e :  , 
p o s R e f P t @ c o m p  -> P o i n t : ,  
o r i g i n @ c o m p  -> P o i n t : ,  
* o n l @ r e l ,  * o n 2 @ r e l  -> On:)  . 

:RDL(onl  -> O n [ : P l ,  :L],  
o n 2  -> On[:P2,  :L])  
<- RefDi rL ine :RDL[ :L ,  :PI,  : P 2 ] .  

Figure 5.2 shows the salient features of crossed directed lines. The TEDM type 
R e f C r o s s D i r L n s  for this reference feature includes fields t h a t  contain the two 
lines as well a s  their intersection point (see the  appendix for a complete 
specification). The constraints specified for the  type are t h a t  the two lines be 
a t  right angles and t h a t  the intersection point be the origin of both lines. Mre 
say t h a t  the  r e f L i n e l @ c o m p  field is the primary axis of the  crossed directed 
lines, and t h a t  the  r e f L i n e 2 @ c o m p  field is the  secondary axis. 

(A) Pairs  of Directed Lines 

Constraint types for pairs of directed reference lines are similar t o  those for 
pairs of lines. The differences are due to dealing with the directionality of the  
lines involved, and to dealing with the  interaction between origin points for the 
lines. For  example, each topology for two undirected lines yields two separate 
topologies when the  lines are given direction, as shown in Figure 6. The two 
separate topologies for directed lines have identical specifications except for the 
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angle values for all three kinds of line interactions (intersecting lines, skewed 
lines, and parallel lines). The angles describing the  two topologies are, of 
course, complementary as  shown in the figure. In particular, two parallel 
directed lines can have either the  same o r  the opposite direction as shown in 
Figure 6(c). T o  accommodate the two cases, we have adopted the  convention 
t h a t  the  angle is always measured between the  two positive ends of the  directed 
lines, and can take  on a value between zero and one hundred eighty degrees. 

The 2D-Angle-RefDirLns constraint type is a refinement of tha t  for 
undirected lines, as shown below in the  TEDM specification. The additional 
fields dist-intPt-originl@rel and dist_intPt_origin2@rel contain 

Direction 
of View 
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the distance from the origins of the directed lines line1 and line2, respec- 
tively, t o  the  intersection point of the  two lines given by the  intPt@comp 
field. Note tha t  the  distance from the origin of a line may be negative if the 
intersection point is on the  negative side of the origin. 

2D-Angle-RefDirLns = 2DJngle : 
(linel, line2 -> RefDirLine: 
dist-intPt-originl@rel, 
dist,intPt,origin2@rel 

->  Float:). 

The RightAngle-RefDirLns constraint type is a refinement of the 
2D-Angle-RefDirLns type with the added requirement t h a t  the  measured 
angle be 90 degrees. 

The ParaRefDirLns constraint refines the ParaL constraint for 
undirected lines. The additional fields required for the  constraint type are 
same-dirarel, indicating whether or  not two lines have the  same direction, 
and dist,twoOrigins@rel, which specifies the  distance between the  origin 
for line1 and a projection of the origin of line2 onto  line1 . The Coin- 
cRefDirLns constraint type is also a refinement of ParaRefDirLns with the 
added requirement t h a t  the distance between the  two parallel directed lines be 
zero. (See appendix). 

The 3D-Angle-RefDirLns constraint type refines the 3D-Angle type 
for undirected lines in a manner similar t o  the 2D-Angle-RefDirLns. 

(B) Pairs  of Crossed Directed Lines 

The constraint type Pair-RefCrossDirLns defines the  relative spatial 
relationships for two RefCrossDirLns reference features. (It may help the 
reader t o  imagine two crosses fioating in three space, with the requirement tha t  
one would like t o  give some (possibly partial) specification of their relative loca- 
tions with respect t o  one another. The two crosses correspond t o  the values 
contained in the crossl@comp and the cross2@comp fields of the  constraint 
type.) 

Pair-RefCrossDirLns = StructConst: 
(crossl@comp, cross2@comp 

-> RefCrossDirLns : , 
primaryTransform@rel 

-> 2D-AngleJefDirLns : I 
3D-AngleJefDirLns : I 
Para-RefDirLns : , 

rotatearel -> NonNegFloat:) . 
In order to specify the relative spatial relationship between cross1 and cross2, 
first the  two primary axes of each crossed line must be compared. This com- 
parison is given by constraining their relative spatial relationship using either 
2D_AngleJZefDirLns, 3DJngleJefDirLns, or Para-RefDirLns 



depending on whether the two lines intersect, are skewed, or are parallel. The 
primaryTransform@rel field contains this relative spatial relationship 
between the  two primary axes. (Note tha t  the I notation indicates a union 
type - the value of the field may be either of type 2D_AngleJefDirLns, of 
type 3D_AngleJefDirLns, or of type para-~ef~ir~ns.) Assuming tha t  
the primary axis of the first cross has been projected onto the  primary axis of 
the  second cross, the remaining item of information is the relative relationship 
between the two secondary axes, or angle of rotation required t o  move one into 
the other; this is contained in the rotatearel field of the constraint type. 

5.3. The Primitive Shapes 
Our CSG model relies on five primitive shapes: plane, sphere, cylinder, 

double-cone, and torus. Each of these shapes divides three space into two 
parts,  what  we intuitively think of a s  an  inside and a n  outside. (For a plane, 
the inside and outside must be designated explicitly. We will use a normal t o  
accomplish this, a s  will be seen shortly.) Each of the primitive shapes has a 
mathematical description in the form of a polynomial equation of low degree. 
However, there are abstractions c~mmonly  used t o  describe these primitive 
shapes t h a t  are more intuitive than the equation descriptions. These abstrac- 
tions appear as parameters in the TEDM type definitions for the shapes, as  
shown in Figure 7 and outlined below. A TEDM type definition for each shape 
is also given. 

(1) Plane: normal. 

(2) Sphere: center point and a radius. 

(3) Cylinder: center axis and radius. 

(4) Double-cone: center point, center axis and angle. 

(5) Torus: center point, center axis and two radii, one for the  size of a ring 
and the other for its thickness. 

Plane = BasicShape: (normal@comp ->  RefDirLine:, 
inSide@rel ->  Boolean:, 
*on@rel ->  On-PtP1:). 

:PL(on ->  On,PtPl[:O, :PL]) 
C -  Plane:PL(normal ->  (origin -> :O)). 

Sphere = BasicShape: (center@comp ->  Point:, 
rad@rel -> NonNegFloat:, 
inSide@rel -> Boolean:). 

Cylinder = BasicShape : (centerAxis@comp ->  Inf line : , 
rad@rel -> NonNegFloat:, 
inSide@rel -> Boolean:). 



ConicShape = BasicShape: (centerPt@comp -> Point:, 
centerAxis@comp ->  InfLine : , 
angle@rel -> NonNegFloat:, 
insidearel ->  Boolean:, 
*on@rel -> On:). 

Torus = BasicShape: (centerPt@comp ->  Point:, 
centerAxis@comp -> InfLine:, 
radl@rel ->  NonNegFloat:, 
rad2@rel -> NonNegFloat : , 
inSide@rel ->  Boolean:, 
*on@rel - >  On:). 

:T(on -> On[:CP, :CAI) 
<- Torus:T(centerPt ->  :CP, 

centerhis -> : CA) . 
Note t h a t  for the ConicShape type the center point is required t o  be on the 
infinite line tha t  defines its axis. There is a similar requirement for the Torus 
type. Half spaces are designated by boolean fields. For the  Plane type, i t  is 
assumed t h a t  the positive side of the normal designates a halfspace on the 
inside and the negative side designates a halfspace on the  outside. 

Each of the  primitive shape types also has a subtype defined t h a t  specifies 
a default reference feature for it. For all five shapes, the default reference 
feature is a crossed directed line (i.e., a n  instance of type ~ef~ross~ir~ns). 
By comparing this default reference feature t o  reference features of other basic 
primitive instances or  t o  other composite object instances, its relative spatial 
relationship may be determined. Figure 8 shows two of the  basic shapes, a 
plane and a cylinder, with their added default reference features (the remaining 
three are similar t o  the cylinder example). For the  plane, the  primary reference 
line of the  RefCrossDirLns type is coincident t o  its normal. For the other 
four basic shapes, which are all rotationaily symmetric about  some axis, the pri- 
mary reference line of the RefCrossDirLns type coincides with this sym- 
metric axis. Furthermore, the intersection point of the RefCrossDirLns type 
is assumed t o  be the center point for the sphere, torus, and double cone. The 
following is the  TEDM definition for the CylinderWithRefF type. The rule 
t h a t  follows the type definition gives the coincidence requirement for the pri- 
mary reference line. The other type definitions are  similar and are given in the 
appendix. 

CylinderWithRefF = Cylinder : (refF@comp -> 
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RefCrossDirLns:, 
*coinc@rel -> CoincL:) . 

6.4. The Type Hierarchy for CSG Solids and Constraint Types 

The last three sections have developed and defined the primitive shapes, 
reference features, and constraint types used in our CSG model. There are 
three type hierarchies defined that relate subsets of these types via generaliza- 
tion. This section describes each of these type hierarchies briefly. 
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Figure 9 shows the type hierarchy for reference features. There are two 
types, BasicFt and DirectedFs, tha t  have yet t o  be defined. The 
BasicFt type is a generalization of the basic feature types InfLine and 
Point, and hence has no internal structure. The DirectedFs type is a gen- 
eralization of RefDirLine and RefCrossDirLns, and defines the abstract 
@comp field containing objects of type BasicFt and the @re1 field containing 
objects of type Structconst (the root type for all constraint types, to  be 
defined in the third type hierarchy). Note also tha t  the RefDirLine type is a 
subt.ype of InfLine as well as a subtype of DirectedFs. Thus it inherits 
the field definitions and constraints of both types. The TEDM type definitions 
for BasicFt and DirectedFs are as follows. 

BasicFt 

DirectedFs = (@comp => BasicFt:, 
@re1 => StructConst:). 

The type hierarchies are specified co~npletely in the appendix. 

The root of the second hierarchy is the Region type. This type hierarchy 
describes the CSG solids, which include both the primitive and composite 
shapes as shown in Figure 10. The Basicshape type is the generalization of 
all the primitive shapes defined in the last section. The Compositeshape 
type includes all non-primitive shapes that  are described by CSG tree struc- 
tures. We will examine in detail the type definition of the CompositeShape 
type, since this is where the tree structure appears. The other types may be 
found in the appendix. 
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CompositeShape = Region:(name -> String:). 

Region = (@comp => 
BasicFt: ( Region: I 
DirectedFs:, 

@re1 => 
Boolean: I Float: I 
PairComp: I Structconst:) . 

Each CompositeShape has a name, a s  seen in t he  TED11 type definition 
above. This  name field can be thought of a s  a basic pointing device (similar in 
function t o  a mouse for a graphics display). The  underlying unique identifier 
for each TEDM object obviates the need for using name t o  uniquely identify a 
CSG object t o  the system, but  there is still a need for the user t o  be able t o  

I I point and  say,  T h a t  one." For  the purposes of our  discussion, the name field 
serves this function. Fo r  each subtype of CompositeShape the abstract  
@comp field may be specialized t o  contain objects of type BasicFt, Region, 
o r  DirectedFs. (Examples of this will be seen in Section 6 where the  generic 
box is defined as a composite shape.) The  abstract  @re1 field may be special- 
ized t o  contain objects of type Boolean, Float, PairComp, or 
Structconst. The  Paircomp range type of t he  @re1 field is of interest, a s  
this  is where the conventional CSG tree s t ructure is specified, a s  shown below. 

PairComp = Structconst: (cl@comp ->  Region:, 
c2@comp ->  Region:, 
mode@rel ->  CompMode:) . 

CompMode = (intersection, union, difference). 

The CompMode type is a n  etzunterated type, since all of i t s  instances a re  
specified in the  type definiltion. The  cl@comp and c2@comp fields contain the 
left and  right subtree combonents for the  CSG tree. 

T h e  third hierarchy relates all the  constraint types covered 
in Sections 5.1 and  5.2, as shown in Figure 11. The  root of t he  hierarchy is the 
Structconst type (short for s t ructured constraint). T h e  TEDM definition for 
the  root type specifies thrat @comp fields of t he  type may  contain objects of 
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type B a s i c F t ,  R e g i o n ,  or  D i r e c t e d F s .  For example, the 
3 D J n g l e - R e f D i r L n s  constraint type has a @comp field of type R e f D i r -  
L i n e  (a subtype of ~ i r e c t e d ~ s )  and a @comp field of type P o i n t  (a sub- 
type of ~ a s i c ~ t ) .  Further,  the @re1 fields of the  root type are permitted t o  
range over the types F l o a t  and S t r u c t C o n s t .  Thus  a constraint type may 
use other constraints in its definition (see the  2D-Angle type definition, which 
uses the  On constraint). 

8. THE GENERIC BOX EXAMPLE 

In Section 4 we used a generic box composite shape t o  construct the t w e  
tooth-comb example. In this section, we will give a complete TEDM description 
of the generic box by combining primitive shapes in a CSG tree and then inter- 
relating the nodes with constraints. 

The generic box is constructed from six planar half-spaces, where each 
plane has as its default reference feature a crossed directed line. The pair-wise 
intersection of the  six planes forms the  box. The box is generic since i t  is 
underconstrained - no specific dimensions are given. Rather, the  dimensions of 
the box are left as parameters to be specified for each instance of its use. 
These parameters are passed on t o  the underlying constraints used t o  define the  
box. We call these parameterized constmints, since their complete definition 
depends on parameters given at the  time of instantiation. 

Since planes play a n  important role in defining the  box, we will also define 
some complex constraint types t h a t  relate pairs of planes in terms of the  con- 
s traints  defined in Section 5. It also seems obvious t h a t  these constraints 
between pairs of planes are interesting in their own right, since planar surfaces 
play a n  important role in the  design process a s  well as in manufacturing. In 
any case, this exercise serves t o  illustrate complex constraint definition for pairs 
of basic shapes. 





The first constraint for a pair of planes is the RightAnglePlPl, which 
defines two planes perpendicular to each other by specifying the relationship of 
their normals as shown below. 

RightAngle-PlPl = StructConst: 
(pll@comp, pl2@comp -> Plane:, 
*normall-normal2-ra@rel 

->  3DBightAngle-RefDirLns : ) . 

:RAPP (normall,normal2,ra -> 
3D-RightAngle-RefDirLns : (line-front -> :N1, 

line-back -> :N2) ) 
<-  RightAngle-PlPl:RAPP(pll -> 

(normal -> :N1) , 
p12 ->  

(normal -> :N2) ) . 

3D-RightAngle-RefDirLns = 3D-Angle-RefDirLns: 
(*angle-measure ->  

NonNegFloat : ) . 

The second constraint type for pairs of planes is Para-PlP1, which 
requires that two planes be parallel to each other. Its TEDM definition is con- 
structed using two parallel normals. 

Para-PlPl = StructConst: (pll@comp, pl2@comp ->  Plane:, 
distance@rel ->  NonNegFloat:, 
*normall-normal2-para@rel 

-> ParaRefDirLns :) . 

:PLPP(normall-normal2,para -> 
ParaRefDirLns: (line1 -> :N1, 

line2 -> :N2, 
dist-twoorigins -> :D)) 

<-  Para-PlPl:PLPP(pll -> 
(normal ->  :N1) , 

p12 ->  
(normal -> :N2), 

distance -> :D). 

Note that the Coinc-PIP1 used to construct the two tooth comb example in 
Section 4 can be defined as a refinement of Para-PlP1. 



The Box type has nine component fields, six fields (sidel@comp through 
side6acomp) t o  contain six planar half spaces, PL1 through PL6. There are 
also three fields t o  contain the  default reference features for the box 
(re f~l@comp through re f~3@comp). The three reference features are three 
orthogonal planes from the six specified by the sidel@comp through 
side6@comp fields. In addition there are three constraint parameter fields, 
edgel@rel through edge3@rel, t h a t  specify the dimensions of the  box in the 
x. y, and z directions. The CSG tree structure is created recursively by the five 
fields, compl@rel through compS@rel, where each field constructs one node 
in the tree and relies on the node constructed by the previous field. The result- 
ing tree structure is shown in Figure 12. 

There are two sets of constraints on the nodes in the  tree structure. The 
first set ,  contained in fields paral@rel through para3@rel, requires t h a t  the 
following pairs of planes be parallel: PL1 and PL4, PL2 and PL5, PL3 and 
PL6. The second set of constraints, contained in fields rightAgl@rel 
through rightAg3@rel, requires t h a t  the following pairs of planes be a t  right 
angles: PL1 and PL2, PL2 and PL3, PL1 and PL3. All of these constraints 
are shown as  dashed lines connecting node pairs in Figure 12. The following is 
the  complete TEDM specification for this tree structure and its attached con- 
straints. 

Box = (name ->  String:, 
sidel@comp, side2@comp, side3@comp, 
side4@comp, side5@comp, side6@comp 

-> PlaneWithRefF: , 
*refFl@comp, *refFZ@comp, *refF3@comp 

-> PlaneWithRefF: , 
edgelarel, edge20re1, edge3@rel 

-> NonNegFloat:, 
*rightAgl@rel, *rigthAg2@re18 *rightAg3@rel 

-> RightAngle-PIP1 : , 
+*paral@rel, +*para2@rel, +*para3@rel 

->  Para-PIP1 :, 
*compl@rel, *comp2@rel, *comp3@rel, 
*comp4@rel, *compS@rel 

-> PairComp:). 





para2 ->  
Para-P1P1 [:PL2, :PL5, : E2] , 

para3 -> 
Para-PIP1 [:PL3, :PL6, ' :E3], 

compl -> 
PairComp: IS1 [ :PL1, :PL2, intersection], 

comp2 -> 
PairCornp: IS2 [: IS1, :PL3, intersection], 

comp3 -> 
PairComp: IS3 [ : IS2, :PL4, intersection] , 

comp4 ->  
PairComp : IS4 [ : IS3, :PL5, intersection] , 

comp5 -> 
PairComp: [ :  IS4, :PL6, intersection] ) 
C- Box:B (side1 ->  :PLl (inside -> true) , 

side2 -> :PL2 (inside ->  true) , 
side3 -> :PL3 (inside -> true) , 
side4 ->  :PL4 (inside -> true) , 
side5 -> :PL5 (inside ->  true) , 
side6 ->  :PL6(inSide ->  true), 
refFl -> :PLl, 
refF2 -> :PL2, 
refF3 -> :PL3, 
edge1 -> :El, 
edge2 ->  :E2, 
edge3 ->  :E3). 

Note t h a t  there are other ways t o  construct a box. One may, for example, s tar t  
by defining a slab composite shape t o  be the  intersection of two parallel 
planes (the normals of each plane would point in opposite directions). The box 
type collld then be defined as the intersection of three slabs (with appropriate 
constraints between them). The uee of the  slab shape t o  define the box is 
preferable only if the  slab shape is generic and can be used in other situations. 

7. CONCLUSIONS AND FUTURE WORK 
The preceding sections detail our experience using an  object-oriented CSG 

model t o  describe shapes. However, what we really want  t o  do is t o  describe 
and then reason about the properties of different shapes and relationships 
among different shapes. This section discusses what  things we want  t o  reason 
about and discusses some of the ways tha t  our particular model affects the way 
we do inferencing. 

Up t o  this point, our discussion has covered a description d a t a  model in 
tha t  the  purpose of the model is t o  facilitate description of complex objects. A 
related goal worth considering is how t o  facilitate the  design of a complex 
object. This second goal requires different features and has different tradeoffs of 



efficiency and expressivity. This section will cover the  inferencing issues of both 
da ta  model goals. As such, it  represents an  alternative view of the CSG d a t a  
modeling exercise. 

7.1. Inferencing With Respect to a Complete Description 

There may be many characteristics by which one may want  t o  judge a 
CSG description. Among those we have identified are: 

(1) Ease of manufacturability. 

(2) Stability of a n  object. 

(3) Rigidity of the  solid. 

(4) If a description is over-constrained. 

(5) If a description is under-constrained. 

(6) If two or more CSG descriptions refer t o  the same object. 

(7) Determining the  best set of reference features. 
Currently, none of these are characteristics t h a t  may be simply evaluated 

and stored in the database. In general, these judgements are extrinsic t o  the 
database and the database objects.' In this section we will discuss additional 
lliodeling requirements necessary t o  support these judgements. 

( I  ) Manufacturability 

A CSG description could be viewed as a sequence of manufacturing steps. 
Some sequences are reasonable, others not. For example, if a n  interior object 
0,  needs t o  have a hole bored through it ,  t ha t  hole must be drilled prior t o  the  
conlposition of 0, with surrounding objects 0, and 0,. Alternatively a n  inter- 
mediate object may not be stable. Some manufacturing sequences may be rea- 
sonable on certain materials, while not on others. Currently we don't know how 
t o  map a CSG description of a shape into a manufacturing plan. Determining 
this manufacturing sequence will be dependent on the characteristics of the  
description mentioned above as  well a s  on the  manufacturing technology avail- 
able. 

The primitive shapes defined in the example database are all manufactur- 
able (machinable) by definition. (Actually, in some cases it  is the  complement 
of the shape t h a t  is manufacturable.) However the manufa.cturability criteria 
may not be preserved under composition of basic and (ultimately) complex 
objects. The  composition modes (intersection,union, diflerence) do  not have 
their semantics defined within the  CSG schema. If two basic manufacturable 
shapes 0, and 0, are combined via a union, what  are the  necessary parameters 
t o  fully define the  union. Further,  what are the  constraints on these 

lWith more flexible virtual fields (higher order functions) some of  these judgements could however be moved t o  
the  database .  



parameters t o  preserve manufacturability? Once the  semantics have been 
defined for the  primitive shapes, how can this information be used in defining 
the compositio~l modes for complex shapes? 

As mentioned before, the  shapes in the  example database have 
been chosen because they are manufacturable. Some of the  theoretical defining 
informat.ion has been left out (such as  defining all four angles in a square face) 
because such information would make the description over-constrained in the 
manufacturing domain. This process is known as  compiling out certain kinds of 
knowledge. [5,4]. In this case, the information t h a t  is compiled out  is the 
knowledge of the  limits of manufacturing precision: there must be a t  least one 
degree of freedom in defining a closed object. This restriction becomes a limita- 
tion when composing objects and attempting to  define when a complex object 
becomes un-manufacturable. In our model, constraints are represented as  
objects, allowing manufacturing constraints t o  be represented explicitly. 

The manufacturing judgement will also encompass some heuristics and 
pragmatic approaches. Some descriptions are easier t o  manufacture t o  than 
others. A description tha t  conforms t o  these manufacturing pragmatics is in 
some ways more natural. As an  example, it is more natural t o  manufacture 
relative t o  a p!anar surface than t o  a pair of directed lines, even though they 
may describe the  same shape. 

This d a t a  model has been geared towards manufacturability analysis; how- 
ever t h a t  is not the only analysis tha t  could be made. For example, there are 
graphical rendering systems, stress analysis, cost analysis, etc. Furthermore, 
some applications may simply transform CSG solids into other representations, 
such as  edge lists for display. The values for the following characteristics may 
be used independently o r  they may be components of the  manufacturability 
judgement. 

(2) Stability 

During a manufacturing sequence, intermediate shapes may be manufac- 
tured, which will then be manipulated. The intermediate shapes must be stable 
shapes, along the  dimensions of stress within the tolerance range. 

(3) Rigidity 

Rigidity refers t o  the rigidity of a complex object, o r  group of objects. 

(4) Over-constraint 

Currently the  CSG type hierarchy contains basic shapes, which by 
definition are neither under- or  over-constrained. Under composition, however, 
this situation can change. An over-constrained object may not be manufactur- 
able because i t  specifies too much, and does not leave enough degrees of free- 
dom for the  manufacturing process. 

The question here is what  information (in the  description) is necessary t o  
determine over-constraint and what  inferences can be made given this 



information. A description is over-constrained if a component becomes deriv- 
able in more than  one way, such as from both internal defining constraints, and 
external constraints introduced via composition. In general, for manufacturing 
purposes, a n  object should be co'nstructible in only one way. A description 
which contains redundant (but consistent) constraints is a special case of over- 
constraint. In this case, the  description is consistent but  can be manufactured 
from only a subset of the specifications. Which subset is chosen may depend on 
the  context in which the  shape is manufactured. 

A related judgement t h a t  can be msde is, given a n  over-constrained 
description, which feature should be eliminated, and what  information is neces- 
sary t o  deterinine this? 

A CSG shape is under-constrained if it does not contain enough informa- 
tion t o  denote a unique 3-D solid. Again, a basic shape cannot be under- 
constrained, but  a n  arbitrary composition of shapes might be. For instance, 
composing two thin slices/fat planes a t  right angles requires t h a t  the  common 
edge be coincident. But  while this information is necessary, i t  is not sufficient. 
Two shapes may be constrained by requiring tha t  they share a common face. 
However, there may be more than one way t o  share the  face with the  resulting 
shapes being rigid but  not identical. The rigidity of the  resulting structure is 
not sufficient t o  form a unique shape. 

(6) Multiple descriptions for the same object 

There are three approaches, if a particular CSG description fails t o  be 
manufacturable for any  of the reasons above: 

(a)  Use a different mapping of CSG description t o  manufacturing steps. 

(b) Use a different CSG description for the  same solid. 

(c) The solid may be non-manufacturable - s t a r t  again. 
The first two solutiolls are inverses of each other. Given a large base of 

manufacturing "macros" (methods for manufacturing relatively complex 
objects), the first solution might be viewed as  a pat tern matching problem: find 
another manufacturing sequence t h a t  constructs the  same (sub-)parts. How- 
ever, the second solution appears more direct: alter the  description t o  match the 
manufacturing reality. This alteration requires t h a t  the  manufacturing primi- 
tives and constraints be explicit and tha t  some notion of equality-preserving 
transformations exists, with the fa.ilure points of manufacturability used t o  
direct the transformations. So if a description fails because of a problem in the  
order of steps, such as those mentioned above, t h a t  fault can be directly 
corrected by changing the  order. 

(7) Determining the  best set of reference features 

Different reference features for a particu1a.r shape may be more amenable 
for describing compositions with different shapes. 



7.2. Design of Complex Objects 

As mentioned before, TEDM was developed t o  support engineering design [ 
101. In the preceding portions of the paper, we have emphasized the nature of 
the  target domain: i.e. the characteristics of geometric solids and the facets of 
the CSG da.ta model tha t  facilitate descriptions and reasoning about existing 
objects. However, the  domain of the design of geometric solids has somewhat 
different criteria. Design may refer t o  either of two activities: 

(1) Design of a CSG description for a previously conceptualized 
geometric solid. 

(2) Design of a geometric solid and from t h a t  a CSG description. 
The first problem is obviously the simpler of the  two and is actually a generali- 
zation of the domain discussed in the previous section. The difference is tha t  in 
this section the  focus is on support for creating CSG descriptions. 

(1) Design of a CSG description for an  object 

A solid can be described in a variety of ways and each description may 
have different characterist,ics of rigidity, ease of manufacturability, and so on. 
Support for designing a particular description for a solid t h a t  conforms t o  some 
specification entails: 

(a)  Shape preserving transformations and the  ability t o  determine solid 
equality. 

(b) Ability t o  determine when a CSG description (or the  resulting solid) 
meets the  specification goals (such as size, weight bearing needs, 
etc.). 

(c) Generalizing over a class of solids. 

Given a set of CSG descriptions, all describing a particular solid Soli 
i t  may be desirable t o  generalize t o  a new type. This new type can 
then be used for reasoning about the entire class. 

(d) A manufacturing type hierarchy, incorporated the  manufacturing 
primitives, procedural information, composition semantics, etc. 

(e) Support in going from one type hierarchy t o  another perhaps via vir- 
tual fields and higher order functions (e.g. from a n  object description 
t o  relevant portions of the  manufacturing type hierarchy). 

(f) A bet ter  than ordering on manufacturing sequences. 

(g) Support for partial objects whose s ta tus  can be directly queried. (Is 
Oi manufacturable under the  correct manufacturing assun~ptions, 
the  correct specification goals, and any correct object designs tha t  
affect on o,?) 

One of the goals here might be, given a base of initial CSG objects, t o  use 
the results of the above inferencing stage t o  direct the transformation of one 
description into another with the required characteristics. 



(2) Designing a solid and CSG description 

Designing a complex solid may involve the  construction of new types and 
constraints. For instance, if the ultimate goal is t o  construct a ladder some of 
the  initial constraints (goals) might be width: n<w<m, height: j < h < k ,  and 
weight-bearing: g < w b < i .  These constraints differ from object defining constraints 
in t h a t  they specify what  the object must conform t o  rather  than what the  
object is. The process of designing the target solid may involve refining the 
constraints (such a s  selecting what the width will be) in a top-down manner and 
constructing partial objects or types t h a t  reflect these design decisions. 

This contrasts t o  the  process of describing a solid, which takes existing 
basic objects and composes them in a bottom up construction. The top down 
refinement commits t o  design decisions tha t  may be incorrect. Because i t  is 
advantageous t o  identify non-optimal decisions a s  early a s  possible, the  partial 
objects must be first class values: one should be able t o  query their attributes, 
how they relate t o  the constraints, and t o  other (potentially partial) objects. 
Figure 13 shows the multiple possible paths from partial object description t o  
the  final goal of a fully instantiated database t h a t  result from refining the 
object descriptions, constraints, and manufacturing technology. 

The process of designing a solid requires everything t h a t  is present in 
designing a CSG description plus some added generalizations. 

(1) Parameterization t o  allow a class of constraints t o  be constructed 
uniformly. 

(2) Incremental analysis on partial objects t o  allow them t o  be queried 
and analyzed, and t o  keep this partial information as  a design aid 
for future design decisions. 

(3) Higher order functions allowing more flexible virtual fields (thus 
allowing values which are not fully ground terms). 

In general, support for design requires t h a t  we reason about many different 
aspects of a design and thus all information, including constraints, must be 
explicit [3]. 

7.3. Conclusions 

Our experiences in the  CSG modeling exercise reported in this paper have 
provided us with insights in two areas. First, there are aspects of the  TEDM 
d a t a  model t h a t  need t o  be improved in order t o  fully support tlle inferencing 
requirements outlined in the last section. For example, there is a need t o  sup- 
port partially instantiated objects (objects with unknown or partially known 
d a t a  values). Also, there is a need t o  support more flexible virtual fields and 
higher order functions in the da ta  model. W h a t  kind of support can be pro- 
vided for inheriting properties under composition modes? Finally, some of the 
constraints one might want  t o  support are expressible in TEDM but would be 
prohibitive for performance reasons. For example, requiring t h a t  the  reference 



choices in either 
0, C, or M 

0: Primitive building blocks of the CSG description 
C: Initial constrainw~oals 
M: Manufacturing technology 
(Di, Ci, Mi): Refinement into more specific pariial objects, constraints. 

and manufacturing technology 
G: A fully instantiated database for a collection of objects, which 

fulfills the ~ o a l  constraints and the manufacturing technology 

Figure 13. Roflnlng Partial Descriptions to Satlsfy Oorls 

features of a composite object be a subset of those for its components is expres- 
sible in TEDM, but is s tated here only implicitly due t o  performance considera- 
tions. 

The second insight gained in the modeling exercise was the power of con- 
straints and the underlying reference feature mechanism in expressing spatial 
relationships between CSG objects. We need t o  explore their use further t o  
determine t o  what extent changes will be required t o  support tolerancing infor- 
mation. Further, we would like t o  investigate their impact on the design of the 
user interface for a CSG application. Finally, using the constraint objects in 
one of the complex inferencing tasks outlined in the last section is a challenging 
problem for future research. 
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APPENDIX 

Basic Types 

Boolean 

Float 
NonNegFloat < Float: 

/* NonNegFloat is a type whose element has a nonnegative, 
floating-point value. */ 

CompMode = (intersection, union, difference). 

BasicFt 
InfLine c BasicFt: 
Point < BasicFt: 

Defined Types 

StructConst = (@comp => 
BasicFt: I Region: I DirectedFs: 

@re1 => 
Float: I CompMode: I StructConst:). 

/* comp, re1 are abstract fields. Each instantiation 
has more specialized field names such as  pt@comp, distance@-el. */ 

Region = (@comp => 
BasicFt: I Region: I DirectedFs:, 

@re1 => 
Boolean: I Float: 1 
PairComp: I StructConst:) . 

Basicshape = Region : 
(@comp => 

BasicFt: I DirectedFs:, 
@re1 => 

Boolean: I NonNegFloat: I 
StructConst : ) . 



/* Basicshape is defined as  a direct subtype of Region. 
Inherited fields are more specialized. */ 

Compositeshape = Region:(name ->  String:). 

DirectedFs = (@comp => BasicFt:, 
@re1 => StructConst:). 

RefDirLine = DirectedFs: 
(refLine@comp -> InfLine: , 
posRefPt@comp - >  Point:, 
origin@comp - >  Point:, 
*onl@rel, *on2@rel ->  On:) . 

RefDirLine < InfLine: 

/* KefDirLine is a type for directed lines. The direction 
is specified from origin t o  posRefPt. Therefore, those 
two points are distinct and represented by two 
distinct objects, P1 and P2. In TEDM type definitions, 
objects with different names are distinct and represent 
distinct real-world entities.*/ 

RefCrossDirLns = DirectFs: 
(refLinel@comp, refLine2@comp 

-> RefDirLine:, 
intPt@comp - > Point : , 
*rightAg@rel ->  
RightAngle-RefDirLns : ) . 

: RCDL (r i ghtAg - > 
RightAngle-RefDirLns 
[:L1, :L2, :IP, #O.O, #O.O]) 

<- RefCrossDirLns :RCDL (refLinel -> : L1, 
refLine2 -> :L2, 
intPt -> :IP). 

Distance-PP = StructConst: 



(ptl@comp, pt2@comp ->  Point:, 
distance@rel -> NonNegFloat:) . 

CoincP = Distance-PP: (*distance ->  NonNegFloat:) . 

: CP (distance - > #O. 0) 
<-  CoincP:CP. 

/* d i s t a n c e a e l  (indicated by a specialized name 
distance here) is a virtual field whose value 
is determined by an  accompanying rule. */ 

Distance-PL = StructConst: 
@t@comp ->  Point : , 
line@comp -> InfLine:, 
distance@rel ->  NonNegFloat:) . 

On = Distance-PL:(*distance -> NonNegFloat:). 

ZD-Angle = StructConst: 
(linel@comp, line2@comp -> InfLine : , 
intPt@comp -> Point : , 
angle@rel -> NonNegFloat:, 
*onl@rel, *on2@rel - >  On:) . 

RightAngleLL = 2 D A g l e  : (*angle ->  NonNegFloat :) . 



:RAL (angle -> #90 .O) 
<- RightAngle-LL:RAL. 

3D-Angle = StructConst: 
(1 ine-f ront@comp, 1 ine-back@comp, 
angle-f rom@comp , angle-to@comp 

-> InfLine:, 
closestPt,lf@comp, closestPt~lb@comp 

-> Point : , 
intLine@comp - > InfLine : , 
distance@rel, angle-measureare1 

-> NonNegFloat : , 
*rightAgl@rel, *rightAg2@rel 

->  RightAngle-LL:, 
+*distPt@rel ->  Distance-PP:) . 

:A (rightAg1 -> RightAngle-LL [:L1, :L3, :PI], 
rightAg2 ->  RightAngle,LL[:L2, :L3, :P2], 
distPt ->  Distance-PP [:PI, :P2, :Dl ) 

<-  3D_Angle:A(line,front -> :L1, 
line-back ->  :L2, 
angle-from ->  :L1, 
angle-to ->  :L2, 
closestPt-lf ->  :PI, 
closestPt-lb ->  :P2, 
intLine ->  :L3, 
distance ->  :D) . 

/* distPt is a parameterized constraint which depends 
on the user-supplied value of distance field. */ 

3D_Angle = StructConst: 
(1 ine-f ront@comp, 1 ine-backacomp, 
angle-from@comp, angle-to@comp 

->  InfLine:, 
closestPt,lf@comp, closestPt~lb@comp 

-> Point:, 
intLine@comp -> InfLine : , 
distancearel, angle-measure@rel 

-> NonNegFloat:, 



:A (rightAg1 - >  RightAngle-LL [:L1, :L3, :PI], 
rightAg2 - >  RightAngle-LL [:L2, :L3, :P2], 
distPt -> Distance-PP [:PI, :P2, :Dl) 

<- 3D-hgle:A(line,front ->  :L1, 
line-back ->  :L2, 
angle-from -> :L2, 
angle-to -> :L1, 
closestPt-lf -> :PI, 
closestPt-lb -> :P2, 
intLine -> :L3, 
distance ->  :D) . 

/* The first definition represents a case where angle 
is measured from linef ront t o  line-back, the second 
in reverse. */ 

ParaL = StructConst: 
(linel@comp, line2@comp ->  InfLine:, 
distance@rel -> NonNegFloat:, 
*rightAgl@rel, *rightAg2@rel 

-> RightAngle-LL:, 
+*distPt@rel -> Distance-PP:) . 

:PL(rightAgl -> Righthgle-LL[:Ll, :L3, :PI], 
rightAg2 -> RightAngle-LL [:L2, :L3, :P2], 
distPt ->  Distance-PP [:PI, :P2, :Dl ) 

c -  ParaL:PL(linel -> :L1, 
line2 ->  :L2, 
distance ->  :D). 

CoincL = ParaL: (*distance -> NonNegFloat:) . 



2DJhgleJiefDirLns = 2DJmgle: 
(linel, line2 - >  RefDirLine: , 
dist-intPt,originl@rel, 
dist_intPt,origin2@rel 

-> Float:). 

/* Angle between two directed lines is measured between 
positive ends. */ 

RightAngleJiefDirLns = 2D-Angle-RefDirLns: 
(*angle -> NonNegFloat:) . 

:RADL (angle -> #90 .O) 
<- RightAngle,RefDirLns:RADL. 

3D-Angle-Re fDirLns = 3D-Angle : 
(line-front, line-back, 
angle-from, angle-to 

->  RefDirLine: , 
dist-clstPtLf-origin-, 
dist-clstPtLb,origin@rel 

->  Float:). 

ParaRefDirLns = ParaL: 
(linel, line2 ->  RefDirLine: , 
same-dir@rel -> Boolean:, 
dist-twoOrigins@rel 

-> NonNegFloat: ) . 
/* same-d i rae l  indicates whether the  directions of two 

lines are the same (true) or not (false). */ 

CoincRefDirLns = ParaRefDirLns: 



(*distance ->  NonNegFloat:) . 

PairJiefCrossDirLns = StructConst: 
(crossl@comp, cross2@comp 

-> RefCrossDirLns : , 
primaryTransform@rel ->  
2DJmgle-RefDirLns : I 
3D-Angle-RefDirLns : I 
ParaRefDirLns : , 
rotate@rel -> NonNegFloat:). 

Five Basic Half Spaces and Associated Defined Types 

BasicShape 

Plane = BasicShape: (normal@comp ->  RefDirLine : , 
insidearel -> Boolean:, 
*on@rel -> On-PtP1:) . 

:PL(on ->  On-PtPl[:O, :PL]) 
<- Plane:PL(normal ->  (origin ->  :0)). 

On-PtPl = StructConst: (pt@comp ->  Point:, 
plane@comp ->  Plane:). 

PlaneWithRefF = Plane: (refF@comp ->  RefCrossDirLns:, 
*coincarel -> CoincRefDirLns : ) . 

:PWRF (coinc ->  CoincRefDirLns : (line1 -> :N, 
line2 -> :RL, 
dist-twoorigins 

-> #O.O)) 
<-  PlaneWithRefF:PWRF(normal ->  :N, 

refE -> 



Sphere = BasicShape: (centeracomp ->  Point:, 
radarel ->  NonNegFloat:, 
insidearel ->  Boolean:) . 

SphereWithRefF = Sphere : (refF@comp -> RefCrossDi~ Lns : , 
*coincarel ->  CoincP:) . 

:SWRF(coinc ->  CoincP[:IP, :C]) 
<-  SphereWithRefF : SWRF (center -> : C, 

refF -> 
(intPt - >  : IP) ) . 

Cylinder = BasicShape:(centerAxis@comp ->  InfLine:, 
rad@rel ->  NonNegFloat:, 
insidearel -> Boolean:). 

CylinderWithRefF = Cylinder: 
(refF@comp ->  RefCrossDirLns: , 
*coincarel -> CoincL:) . 

:CLWRF(coinc ->  CoincL[:C, :RL]) 
<- CylinderWithRefF:CLWRF(centerAxis - >  :C, 

refF ->  
(refLinel ->  :RL)) . 

Conicshape = BasicShape: (centerPt@comp - >  Point:, 
centerAxis@comp -> InfLine : , 
angleare1 ->  NonNegFloat:, 
insidearel -> Boolean:, 
*on@rel -> On:). 

:CS(on -> On[:CP, :CAI) 
c -  ConicShape:CS(centerPt ->  :CP, 

centerAxis -> : CA) . 



ConicShapeWithRefF = Conicshape: 
(refF@comp -> RefCrossDirLns: , 
*coincl@rel -> CoincP:, 
*coinc2@rel -> CoincL:) . 

:CSRF (coincl ->  CoincP [:CP, : IP] , 
coinc2 ->  CoincL [:CA, :RL] ) 

<-  ConicShapeWithRefF:CSRF(centerPt -> :CP, 
centerAxis - > : CA, 
refF ->  
(refLinel -> :RL, 
intPt -> :IP)). 

Torus = BasicShape:(centerPt@comp ->  Point:, 
centerAxis@comp -> InfLine : , 
radlarel, rad2@rel - >  NonNegFloat:, 
insidearel ->  Boolean:, 
*on@rel -> On:). 

:T(on ->  On[:CP, :CAI) 
<- Torus:T(centerPt -> :CP, 

centerhis -> :CA) . 

TorusWithRefF = Torus : (refF@comp -> RefCrossDirLns : , 
*coincl@rel - > CoincP : , 
*coinc2@rel ->  CoincL:) . 

:TRF(coincl ->  CoincP[:CP, :IP], 
coinc2 ->  CoincL [:CA, :RL]) 
<- TorusWithRefF:TRF(centerPt -> :CP, 

centerhis ->  :CA, 
refF -> 
(refLinel -> :RL, 
intPt ->  : IP) ) . 

Complex Constraints 

PairComp = StructConst: (cl@comp, c2@comp ->  Region:, 
modearel ->  CompMode:) . 



3D-RightAngle-RefDirLns = 3DJingleJiefDirLns: 
( *angle-measure 

-> NonNegFloat:) . 

RightAngle-PlPl = StructConst: 
(pll@comp, pl2@comp ->  Plane:, 
*normall~normal2~ra@rel 
- > 3DJiightAngle-RefDirLns : ) . 

:RAPP(normall-normal2,ra -> 
3D-RightAngle-RefDirLns: 
(line-front -> :N1, 
line-back -> :N2)) 
<- RightAngle-P1Pl:RAPP 

(pll -> 
(normal ->  :N1) , 

p12 ->  
(normal -> :N2) ) . 

Para-P1P1 = StructConst:(pll@comp, pl2@comp ->  Plane:, 
distanceare1 -> NonNegFloat:, 
*normall,normal2-para@rel ->  
ParaRefDirLns: ) . 

:PLPP(normal l -normal2~ara  ->  
ParaRefDirLns : (line1 -> :N1, 

line2 ->  :N2, 
dist-twoorigins ->  :D)) 

<- Para-PlPl:PLPP(pll ->  
(normal ->  :N1) , 

p12 -> 
(normal ->  :N2), 

distance -> :D). 

Type Hierarchy 

Not all transive closures are presented. 



NonNegFloat < Float: 
InfLine < BasicFt: 
RefDirLine < InfLine: 
Point < BasicFt: 

BasicShape < Region: 
Compositeshape < Region: 

Plane < BasicShape: 
PlaneWithRefF < Plane: 
Sphere < BasicShape: 
SphereWithRefF < Sphere: 
Cylinder < BasicShape: 
CylinderWithRefF < Cylinder: 
ConicShape < BasicShape: 
ConicShapeWithRefF < ConicShape : 
Torus < BasicShape: 
TorusWithRefF < Torus : 

RefDirLine < DirectedFs: 
RefCrossDirLns < DirectedFs: 

Distance-PP < StructConst: 
CoincP < Distance-PP: 

Distance-PL < StructConst: 
On < Distance-PL: 

2D-Angle < StructConst: 
RightAngle-LL < 2D-Angle: 
2D-Angle-RefDirLns < 2D-Angle: 
RightAnglsBefDirLns < 2D-Angle-RefDirLns: 
RightAngle-RefDirLns < RightAngle-LL: 

3D-Angle < StructConst: 
3D-AngleJZefDirLns < 3D-Angle: 

ParaL < StructConst: 
CoincL < ParaL: 
ParaRefDirLns < ParaL: 
CoincRefDirLns < ParaRefDirLns : 
CoincRefDirLns < CoincL: 

Pair-RefCrossDirLns < StructConst: 



On-PtP1 < StructConst: 
PairComp < StructConst: 
Righthgle-P.lP1 < StructConst : 
Para-PlPl <'StructConst: 


