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Why Isn't There an Object-Oriented Data Model? 

David Maier 

Abstract 

The appellation "object-oriented" is affixed t o  a wide range of recent database system 
prototypes and products, with no agreement on i ts  exact meaning. This paper offers a 
definition for an  object-oriented database sys tem,  explains why a standard for "the" 
object-oriented data model  will be hard t o  come by, and examines the differences in the 
models of current object-oriented databases. I t  concludes with predictions on the effect 
of object-oriented databases on the commercial marketplace. 
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1. INTRODUCTION 

Object-oriented database systems (OODBS's) have come from the idea stage to  
second-generation prototypes and commercial products in the past five years. 
Several international workshops have been devoted to  OODBS's [OODB86, 
00DB881 and related topics [Appin, DBPL, POS87, POS89]. Yet, in spite of all 
the activity, no standard data model for OODBS's has emerged. Why isn't 
there a n  Object-Oriented Data Model, in the spirit of the relational, hierarchi- 
cal or network data models, or the more semantic entity-relationship model? 

I wish I could answer the question simply by proposing such a data model, but I 
believe that  there are fundamental reasons why such a model cannot be formu- 
lated, a t  least along the lines of current data and semantic models. In this 
paper I discuss those reasons, which include extensible type systems, the great 
variety of modeling features in OODBS's and even the problem of determining 
what "data model" means in the context of an  OODBS. I do believe there can 
be consensus on the requirements that  a database system wanting to  call itself 
"object-oriented" should satisfy, and I summarize such a list that  has been pro- 
posed elsewhere. At the end of the paper I speculate on the future for 
OODBS's in the commercial marketplace. 

2. WHAT IS AN OBJECT-ORIENTED DATABASE? 

Before defining an object-oriented database system, a few words on why 
OODBS's are appearing. One reason is that  there are application areas not 
well served by conventional systems. Applications such as computer-aided 
design, knowledge bases and office information systems have representation 
demands that  do not mesh well with the capabilities of conventional database 
systems. Such applications are characterized by the complexity of the data,  the 
need for new data types, such as bit-maps and large blocks of text, and the 
need to capture complex semantics of interpreting and updating the data. 
OODBS7s attempt to  meet these needs. A second problem I have termed the 
impedance mismatch problem [BM]. Most database applications involve two 
languages, the data manipulation language of the database system, and a gen- 
eral purpose programming language. These languages are almost always 
mismatched in their type systems and their programming style. OODBS's 
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provide more powerful data  languages, so that  more, or even all, of an  applica- 
tion can be coded in one language, avoiding crossings of the boundary between 
two dissimilar languages. 

There is no wide agreement on what constitutes an object-oriented database 
system. As  my preamble suggests, defining an  object-oriented database system 
as one that  implements the object-oriented data  model begs the question. For 
this paper, I will adopt a definition of an OODBS put forth in a recent position 
paper [ABD+]. In capsule, an OODBS supports objects, which are chunks of 
private state with a public interface of operations. The objects are grouped 
into t y p e s  or classes on the basis of shared interfaces or implementation. (I will 
mostly avoid the term class in the remainder of the paper, as it has so many 
meanings in the object-oriented literature.) 

In discussing these features, I will use a running example. I want to  represent 
information about roads, and relate it t o  coordinates on a particular street 
map. The main entities will be roads, road segments and intersections. Inter- 
sections divide a road into a sequence of road segments. Each road segment has 
a beginning and ending intersection. Each intersection represents the conver- 
gence of two or more road segments. Each road is described as an alternating 
sequence of road segments and intersections. Each road segment knows which 
road it belongs to. (There are other ways to  capture the same information; I 
make no claim my scheme is optimal.) Intersections have an associated position 
given in map coordinates. Road segments have a shape, for display purposes, 
which may either be a straight line or a curved arc. Each also has an address 
range, a side for odd-numbered addresses and a direction (two-way or one-way). 
Each road has a name and a road type (street, avenue, ...). This information is 
summarized in the description below, in no particular schema language. 

Road 
name: String 
roadType: road, avenue, boulevard, lane ... 
segmentlist: sequence of RoadSegment or Intersection 

RoadSegment 
inRoad: Road 
segmentshape: Arc or Line 
start: Intersection 
end: Intersection 
direction: one-way-SE, one-way-ES, two-way 
addressRange: (StreetNumber, StreetNumber) 
oddside: left, right 

Intersection 
incomingRoads: set of RoadSegment 
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position: C o o r d i n a t e  

Here C o o r d i n a t e ,  S t r e e t N u m b e r ,  Arc and L i n e  are types assumed 
defined elsewhere. 

The list of requirements for a n  OODBS follows. 

1. Support for Complex Objects. In representing the internal s ta te  of an  
object, we can freely compose data  structures. The internal s ta te  of a n  
object can have fields (often called instance variables) t ha t  hold records, 
sets, arrays or  other objects. In our example, the position field of a n  
Intersection object is a C o o r d i n a t e  object, and the s e g m e n t L i s t  
field of a Road  object is a heterogeneous sequence of RoadSegment  and 
Intersection objects. 

2. Object identity. Every object has a system-supplied identity t ha t  is dis- 
tinct from its internal state. The identity is maintained over changes in 
the internal s tate,  and two distinct objects can have the same internal 
state. Our example would allow two RoadSegment  objects between the 
same pair of Intersection objects. An object identity must be 
sufficient by itself t o  identify a n  object within the database system. Hence, 
a key in a relation does not qualify as  a n  object identity, because it must 
be used in conjunction with the relation name t o  identify a tuple. 

3. Encapsulation of Behavior. The database designer can define opera- 
tions on objects. The code for the operation, called a method, and the 
internal s t a te  of the object are packaged together. The s ta te  of the object 
is no longer directly manipulable, but only be accessed or modified by 
invoking one of its operations. (Such a n  invocation is sometimes called a 
message.) The set of operations t ha t  a n  object accepts is called the protocol 
for the object. Thus, the semantics of access and update are captured in 
the operations. Encapsulation is similar t o  abstract da t a  types, except 
t ha t  ADTs are usually discussed in a functional language setting, whereas 
methods may modify object state. In our example, we might encapsulate 
the structure of a Road  object with operations t o  add and remove a 
RoadSegment  or Intersection, to  return a count of RoadSegments,  
t o  return the name of the road, and so on. 

4. Types. Rather than  each object carrying around its own protocol, objects 
with the same behavior can be grouped together and share this informa- 
tion. This grouping is called a type or class, usually. (The term class usu- 
ally implies implementation information is associated with the grouping, 
whereas type can mean only the specification of the interface t o  a n  object, 
with multiple implementations possible.) Objects are then instances of a 
type, and each derives its behavior from its type. There can be variation 
on whether a type is a purely intensional construct-just specifying 
behavior of instances--or also extensional-serving t o  keep a collection of 
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all extant instances. The former variant is like a programming language 
type, the latter resembles more a relation declaration. 

5. Hierarchies. The main point here is t o  take advantage of similarities 
among categories of objects, for modeling, implementation, integrity or 
querying. I describe below three varieties of hierarchies an OODBS might 
support. In each description, assume category A i  is above category Bi in 
the hierarchy. 

Specification Hierarchy: If A1 and B1 are in a specification hierar- 
chy, it means that  an instance of B l  can be used where a n  instance of 
A1 is expected. Thus, E l  supports a t  least the protocol of A?. An 
instance of A1 might be expected are as the value of a field in a 
record, in a temporary variable, or as an argument t o  a method. When 
A1 and B1 stand in this relationship, it is common to  say that  B1 is a 
subtype of A l .  Consider a category ControlledIntersection, 
below Intersection in a specification hierarchy, where an  instance 
of ControlledIntersection represents an intersection with a 
traffic signal. A ControlledIntersection object might support 
additional messages to  get information about the signal. With this 
example, the start field of a Roadsegment object could actually 
hold a ControlledIntersection instance, even though RoadSeg- 
ment is declared as an  Intersection, since such an  object will 
understand all the messages that  might be sent t o  a Intersection 
object. 

Implementation Hierarchy: Here we have categories A2 and B2 
where objects from B2 use the methods and internal representation of 
A2, possibly with additions or modifications. Such reuse of implemen- 
tation is often termed inheritance of behavior. For example, we might 
want a category Route whose objects have much the same structure 
and methods as Road objects, but where Route is not a subtype of 
Road. (Perhaps Route masks the roadType information or gives 
different names to  the methods of ~oad.) 

Extent Hierarchy: Here A3 and B3 are interpreted as collections of 
instances, and the relationship is that  B3 is a subset of A3. For 
example, we could have a collection Portlandsegments of all road 
segments in the Portland city limits, and a subset PtlndRepairSegs 
that  contains Portland road segments that  are currently under repair. 

This list is not exhaustive. Other hierarchies exist, such as subpart 
hierarchies and constraint hierarchies, although explicit support is not as 
common. An OODBS should provide a t  least specification and implemen- 
tation hierarchies, and support extents (although not necessarily in a 
hierarchy). One problem is that  many object-oriented systems use one 
mechanism to  support two or more of these hierarchies. In particular, 
combining the specification and implementation hierarchies is common, 
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and often called a class hierarchy. 

6. Late Binding. The declared type of a variable in a method might differ 
from the "immediate type" of the the variable: the type of the object 
actually occupying the variable a t  runtime. This situation can occur 
with a specification hierarchy, when the immediate type is a subtype of 
the declared type. The implementation of a given operation can be 
different for the declared type and the immediate type. For example, the 
plot message t o  an  Intersection object might return a bit-map icon 
depicting the intersection. ControlledIntersection can reimple- 
ment this message. At the time a piece of code is compiled, it may be 
impossible to  determine what the immediate type of a particular variable 
will be a t  runtime. (Indeed, the immediate type of a variable may 
change from one moment t o  the next. Consider a variable that  is being 
set t o  successive Intersections in a Road in turn. Some of the inter- 
sections will be controlled intersections, while others will not. 

7. Computational Completeness. The language for writing methods is 
Turing-complete, so that  any computable sort of behavior can be cap- 
tured in a method. 

8. Extensibility of the Type System. The set of types that  the system 
supports can be extended (this is implicit in earlier points). Moreover, 
user-defined types are manipulated with the same syntax as system- 
supplied types, in the data language. 

9. The last requirement of an OODBS is that  it is truly a database system. 
It must provide 

Persistence: Any object can live past the life of the process that  
creates it. In most programming language, only files are persistent. 

Secondary Storage Management: The database system handles the 
movement of data  between main memory and disk. 

Concurrency: Multiple users can access the database simultaneously. 

Recovery: Protection is provided against process, processor and media 
failures. 

Ad Hoc Query Support: There is a facility for quickly formulating 
queries against the database. Such a facility need not look like a rela- 
tional query language. It should be (i) high-level (emphasizing what is 
wanted over how to  derive it), (ii) reasonably efficient (some effort is 
made to  avoid the worst strategies for evaluating a query), and (iii) 
generic (queries can be posed against instances of a type as soon as the 
type is added to  the database). Thus, some graphical browsing tools 
will fit the bill for ad hoc query support. 

A number of systems fit this list of requirements, or come close t o  it. Examples 
of commercial systems are Gemstone [MSOP], Vbase [AH] and VISION [CS]. 
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Some research prototypes are Alltalk [RMS], Cactis [HK], Encore/~bserver 
[WZ], Extrabxcess  [CDV], IRIS [Fi+], ODM [KB], ORION [BC+], 0 2  [BBB+], 
Probe [MD], PS-Algol [ABC+] and TEDM [ZM]. (See also [DBE].) 

Many of these systems have a two-layer architecture, which is also common in 
relational systems. The bottom layer is a storage manager. It usually has a 
purely structural type system, and handles concurrency, recovery, associative 
access, authorization and resource allocation. On top of the storage manager is 
the execution layer, which implements a more sophisticated type system, 
enforces encapsulation and executes methods, making storage manager calls as 
needed. There is typically one instance of the storage manager in the database, 
but an  instance of the execution layer for each active session. In early systems, 
both layers had to  run on the same processor. More recently, some OODBS's 
are able t o  distribute the layers, with the storage manager running on a central 
server, and the execution layers running on individual workstations. If the exe- 
cution layer does sufficient buffering, such local distribution can be an enormous 
performance boost [RKC]. 

3. WHAT IS A DATA MODEL? 
The term data model covers two broad concepts in the database world. It can 
mean a particular schema or description for the information used in a data- 
intensive application. (In this sense the term is also used as a verb: "data 
modeling" means designing the schema for a particular application.) The other 
meaning is the system or language in which schemata or descriptions are 
expressed. I intend the latter meaning of "data model" here. 

Even this meaning is has multiple senses. It can be construed concretely as the 
data definition facility of a single database system, or more broadly, as the 
common core shared by a group of similar database systems: the data definition 
language of ORACLE in particular versus the relational model in general. It 
can be interpreted shallowly as a particular data definition language, or more 
deeply as a mathematical algebra or logic underlying such a language. I believe 
it is the broad, deep connotation that  people intend when asking for an  object- 
oriented data model. Certainly, if we look a t  a particular OODBS, such as 
Vbase, we see a particular data description language (in that  case TDL). How- 
ever, if we look across different OODBS's, no common mathematical structure 
emerges that  underlies their data definition or manipulation languages, unlike 
relational database systems. 

What constitutes a data model, in the sense of the relational data model or the 
network data model? A data model is a collection of data structures, opera- 
tions over those structures, and constraints on states of those structures [LT, 
MER]. Typically a data model includes some scalar types, record structures, 
and set structures (relational), tree structures (hierarchical) or headed-list struc- 
tures (network). The data structures are parameterized: we can define records 
over different fields, or tree structures with different records, or lists with 
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different header and member types. Perhaps a more accurate view of the data 
structures is as type constructors, except they do not compose freely. For 
example, a record of records is usually forbidden. 

Is it accurate t o  characterize the data model as just the type system for the 
data manipulation language? A data model is not exactly like the type system 
of a programming language. One confusing property of traditional data models 
is that  the data structures determine the data types. That is, once we have 
defined the data structures for a particular database scheme, the operations on 
those structures come automatically, and cannot be extended within the data 
language. For example, in defining a record structure, we get an operation for 
creating a new record with that  structure, and operations t o  set and get fields 
in that  type of record. With the trees in the hierarchical model come opera- 
tions such as "get first" and "get next within parent". There is seldom any 
means in the data language to  define a new operation on the structure, or if the 
means exists, it is limited-a virtual field, or a logical link. The operations are 
derived from the data structure, so the data type (structure plus associated 
operations) is fixed by the structure. Bloom and Zdonik [BZ] examine this and 
other cultural differences between the database world and the programming 
language world. 

Existing data models are not true type systems. They are definitely not 
abstract data type systems. A more accurate description is that  a data model 
is a fixed set of parameterized data types. During database schema definition, 
these parameterized data types are specialized, by giving the fields in a record, 
the levels in a hierarchical tree, and so forth. Then the database is populated 
with instances of these concrete types. An interesting point is that  sometimes 
only one instance of a type is created. In the hierarchical model, there is one 
tree per tree type. In the relational model, there is one instance of each rela- 
tion type (but many instances of the tuple types). In the data definition 
languages for most systems, one often defines a type and declares a unique vari- 
able of the type in the same statement. Relation R(A, B, C )  defines a 
tuple type, a relation type and declares R to  be a relation of the relation type. 
In programming language type systems, type definition and variable declaration 
are independent and orthogonal. We can declare any number of variables of 
any type. Contrast this to  the situation in current database systems, where 
there is only one variable of a type, and some types cannot support (persistent) 
variables. I know of no relational database system that  supports variables 
declared of tuple types (except range variables in queries, which are temporary). 

4. WHY IT IS HARD TO DEFINE THE DATA MODEL OF AN 
OODBS 

A data model in the current sense is a fixed collection of data types, possibly 
parameterized, plus some language for constraints. OODBS's give the ability t o  
define new data types. The types are not dictated by the data structures. 
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Rather, da ta  structures are used to  represent instances of the type, but the 
operations for the type are defined explicitly, not defined implicitly from the 
data structures. What might we choose to  mean by the data model of an 
OODB? 

One possibility is the collection of constructors for forming the data  structures 
in the representations: reference, set, array, record or whatever. This choice is 
not very informative. It does not show how one thinks of the data  in the sys- 
tem. Different, collections of representation constructors can support the same 
set of abstract types a t  the application interface. This choice characterizes an 
OODBS by its implementation options for types, which is tantamount t o  
characterizing a conventional system by access methods available. 

Another possibility is that  the data  model of an  OODBS is the collection of 
types supplied with the system. There are several problems with this definition. 
Data models under this definition are hard to  compare, as it in not always 
apparent if two data  types are the same. Since an  OODBS should have an  
extensible set of types, equivalence of the initial type collections does not imply 
equivalence of the collection of types in use in a given application. Further, the 
initial collection of types is likely t o  change over time. Manufacturers will add 
new types as standard. 

A third possibility is t o  interpret "data model" as the type definition system of 
an  OODBS. It certainly makes sense to  compare these, but as argued above, 
this interpretation of data  model is a t  odds with the conventional interpreta- 
tion. It is a way t o  compare OODBS's with each other, but it will not work 
well for comparing OODBS's with the traditional data models. 

Using the last proposal for a definition, what would it take to  describe the data  
model of an  OODBS? A start  would be the representation constructors, plus 
the encapsulation mechanism, plus the collection of system-supplied types. Can 
there be agreement on a standard data model (type system) for OODBS's? 
Probably not on one, but maybe on some main ones. There will be models 
based on type systems of particular languages, such as C++ or Common Lisp. 
But such a data model will not suit all applications. It makes the match t o  one 
programming language good, a t  the expense of making the match to  other pro- 
gramming languages harder. What kind of OODBS type system would work 
well with multiple programming languages [O'B]? One approach is a vanilla 
type system: the intersection of the type system of several languages, or a col- 
lection of types that  map easily into all the programming languages. It would 
be a lingua franca for program structures. The advantage to  this approach is 
that  we could pass around data items that  have more semantics than files. 
This approach promotes sharing between applications in different languages, 
but restricts the programmer in any one language. The other extreme is the 
pistachio with whipped cream, nuts, chocolate sauce and a cherry type system: 
the union of type systems from multiple languages. Each programming 
language could store all its data  values directly. The problem is that  an object 
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created in one language could not be read easily into another language. My 
conclusion: there's just not enough experience to  standardize a type system yet. 

In thinking about OODBS data models as type systems, the question arises of 
whether the method language is part of the standard. Could we standardize a 
type system apart from a language? (A related question is whether there could 
a OODBS's that  supports databases with methods written in multiple languages 

[BMI -1 
5. SOURCES OF VARIATION 
The main problem of standardizing an OODBS type system is the sheer variety 
of features in current systems. I list some ways current OODBS's vary, particu- 
larly in their type systems. Many of the variations arise because of differences 
in intended use among the systems (for example, embedded in a tool versus run- 
ning stand-alone on a server). 

1. Representation Constructors. While the set of types provided by the 
database t o  an application programmer should be extensible, the set of 
constructors for defining the internal representation of objects could be 
fixed. Typical constructors are record, array, sequence, set and refer- 
ence. The precise set of constructors varies from system to  system. 
Nested relation systems merge the record and set constructors. Some 
have insertable lists t o  provide efficient edits to  ordered collections. The 
EXODUS system [CD+], through its own declaration, essentially allows 
using the definition of one type as a macro in defining the states of other 
types. 

2. Protocol Description. Differing amounts of specification can be pro- 
vided in the protocol for a type. The protocol can be nothing more than 
the set of messages that  instances of the type understand. I t  can include 
the type signatures of the operators, or go further and specify axioms 
relating different operators [SS]. A useful relationship to  know for inain- 
taining auxiliary access paths is which operations can cause the results of 
what other operations to  change. For example, knowing that  the get- 
Location message to  an Intersection object returns the same result 
until a setLocation message is processed is useful in maintaining an  
index on getlocation. 

3. What is Typed. Typing information can be associated with object 
instances, with variables, or with both. An object might have more than 
one type. In the Vbase system [AH], the language for specifying legal 
values for fields is more expressive than the type system for object 
instances. For example, a field value can be restricted to  belong to  one 
of two types, but there is no union type constructor. 

4. Hierarchies. OODBS vary in what hierarchies are supported and the 
exact semantics of those hierarchies. Sometimes the hierarchies must be 
strict tree structures, while other systems allow directed acyclic graphs. 
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5. Encapsulation. While encapsulation is a requirement, OODBS vary in 
what is inside the encapsulation envelope. In Smalltalk-like systems, 
only one layer of substructure is directly accessible inside the encapsula- 
tion envelope. So, if one wants to  construct an object state that  is an 
array of records, only the array can be manipulated structurally. The 
records will be separate objects that must be accessed through their pro- 
tocol. Lomet [Lo] gives a system where arbitrary substructure of an 
object can be in the envelope. Also, the envelope might include just the 
state of one instance, or the states of all instances of a type, as in a CLU 
cluster [Li]. 

6. Versions. A valuable feature for design support is versions of objects. 
Version histories can be linear or branching [EE+], and a variety of 
flavors of reference exist relative to  versions of an object: a fixed version, 
the latest version, all versions. 

7. Name Spaces. In some OODBS's, only collections or types can be given 
names that persist in the database, while other systems allow objects of 
arbitrary types to be given persistent names. 

8. Self-Reference. Some systems have type describing objects (TDOs) 
that hold type definitions and that are visible a t  runtime, much like rela- 
tional systems that  make schema information available in system rela- 
tions. In systems with TDOs, the TDOs can be read-only, or they can be 
updatable. Being able to update a type definition a t  runtime severely 
hampers the ability to  type check methods a t  compile time. 

9. Parameterization and Polymorphism. An OODBS might support 
parameterized types. The support can be for just a fixed set of system- 
supplied types, or it can include facilities for users to  define their own 
parameterized types. Polymorphism is the ability of a single piece of 
code to  operate on structurally dissimilar objects. The most common 
kind of polymorphism is "subtype polymorphism" [Ca, CW], in which 
code for a supertype works on the extended structure of the subtype. 
More general types of polymorphism are possible. Polymorphic analogs 
of relational algebra operators have been defined for object-oriented sys- 
tems; they require a sophisticated type system in which to  be typed [BO]. 

10. Extensibility. The type system than an application programmer sees 
must be extensible in an OODBS, but the suite of representation con- 
structors, storage structures and access routines might also be extensible 
[BBG+, CD+, LMP]. 

6. WHAT INFLUENCE WILL OODBS'S HAVE IN THE CO'MMER- 
CIAL MARKETPLACE? 

Here I offer my informed guesses on how OODB ideas and technology will 
emerge in the commercial marketplace over the next 3-4 years. 
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6.1. Relational Extensions 
Probably the first place where current users of mainframe database systems will 
see an  object-oriented flavor is in extensions t o  current relational systems (as in 
the GEM extension to  QUEL [Za]). The most likely extension will be simple 
support for complex objects [HL]. Attributes of relations will be declared as 
references t o  tuples in other relations, and path notation in the query language 
will make such connections easy to  follow. For example, t o  represent the road 
and intersection information from our running example, we might use several 
relations with reference attributes: 

Roads(name: String, roadType: String, ... ) 
RoadSegments(inRoad: ref Roads, start: ref Intersections, 

end: ref Intersections, ... 
Intersections(xPosition: Integer, yPosition: Integer, ...) 

An SQL-type query language might extend the dot notation to  traverse these 
connect ions: 

select r.inRoad.name 
from Roads r 
where r.end.xPosition 155 

There are several ways to  implement such a feature. The references could be 
foreign keys to  the other relations, or they could be internal tuple IDS. The 
joins t o  traverse the references can be supported by indices, direct links or clus- 
tering. The advantages of this extension is that  it will eliminate about 90% of 
the explicit joins used currently, it will simplify many queries, it goes hand in 
hand with referential integrity constraints, and having attributes declared as a 
reference is a good hint as t o  what auxiliary structures are worthwhile t o  main- 
tain [JF+]. 
Another likely addition is some type of relation hierarchy, such as in Postgres 
[SR, St87]. For example, we might define highways as a specialization of roads 
with an  additional attribute for highway number: 

Highways ~oads(HighwayN0: String) 

Such a declaration might pertain to  types (a Highways tuple can be provided 
where a ~ o a d s  tuple is expected) or it might pertain t o  extensions (all High- 
ways tuples are visible in the Roads relation, suitably projected) or both. 
This extension avoids null values in trying to  model similar, but not identical, 
entity types. It also captures certain useful constraints between relations. 
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A third likely extension is user-defined data  types as attribute values [OH, St86, 
WS+]. For example, in the road example, shapes of road segments might be 
described by some user-defined geometric data  type. Note that  such extensibil- 
ity is not the same as the type extensibility called for in the feature list for 
OODBS's. In the proposed schemes for adding user types to  relational systems, 
the added types have the same status as system-supplied base types, such as 
integer, string and float. Instances of these added types are internally uninter- 
preted by the database system; they cannot have references t o  other database 
entities as  part of their representation, nor are the operations of the added 
types defined with the database language. 

Storing packets of behavior in the database is already starting to  appear in 
commercial systems, although not encapsulated so as t o  form abstract data  
types. The main reason I see for this added feature is the performance boost 
obtained from being able t o  invoke a series of database commands with one call 
t o  the database. For example, the TP1 benchmark takes four or five separate 
DML commands to  specify in most relational languages. Being able t o  store 
tha t  sequence of commands in the database reduces five application-to-database 
calls t o  one. 

Along the lines of these extensions, some kind of standard "Object SQL" seems 
feasible t o  me. However, a database supporting such a language would not 
necessarily be an  OODBS by the definition offered earlier. 

As relational systems s tar t  trying to  serve the design database market better, I 
expect they will start  mimicking the partitioned workstation-server architec- 
tures popular in OODBS implementations. Doing some query processing and 
buffering localiy t o  the design tools is necessary to  approach the speeds on 
single-object navigation gotten with reading the design structures into program 
memory [Ma]. There is already movement in this directions with personal com- 
puter front-ends to  mainframe databases. 

6.2. Semantic Models 
The past year saw the introduction of a commercial product with a semantic 
data  model: SIM [JF+], which is based on SDM [HM]. SIM incorporates many 
of the features mentioned in the relational extensions section above. Many 
semantic data models include some of the features of OODBS's already, and 
can be extended to  include more of them. The success of commercial products 
based on semantic models depends wholly on the systems exploiting the added 
schema information for improved performance. 

6.3. Persistent Versions of Existing Languages 
There is a demand for a programming system for design environments with a 
very low impedance mismatch between programming language and database 
support. Thus, database systems will appear that  extend a n  existing language 
so that  data structures can persist. The first products will be some objectified 
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version of C, such as C++. Some CAD tool companies already have their own 
internal extensions for for object management, although they are usually con- 
cerned with just mapping data between main memory and disk, and do not pro- 
vide all the features of a database system, such as concurrency control and 
recovery. There are four companies I know of working on database systems 
that  will integrate closely with C++: Ontologic, Object Design, Object Sciences 
and Objectivity. Each of their efforts will provide in some way for persistent 
C++ objects, but will likely differ in added features for object versions, refer- 
ence flavors, configurations (consistent sets of versions), environment capture 
(such as what version of what tool was used to  create this VLSI cell), depen- 
dency tracking (which cell libraries does this chip use), concurrency control 
techniques, support for cooperative work and design partitioning and distribu- 
tion. 

The other place that  extensions for persistence are appearing are for LISP sys- 
tems, t o  support large knowledge bases for both expert systems and design 
applications [Fo+, WF+]. 

Initially, the users of such extended languages will be fairly sophisticated tool 
writers, although some sort of ad hoc query facilities will likely appear in later 
releases. I see such database systems creating a new market more than captur- 
ing much of the market away from more conventional database systems. 

6.4. Structural Object-Oriented Systems 

European development efforts on OODBS's have roots in semantic models, 
whereas North American efforts derive more from work in object-oriented pro- 
gramming languages. (Nascent Japanese efforts emphasize the connection t o  
logic programming.) Thus, European systems are mostly structural models, 
without the encapsulation of behavior. There are both nested-relation systems 
and systems with more direct modeling of object identity [Be, Da+, DGL, PS+]. 
These systems are now moving into the beta-test stage and beyond, being used 
as components for academic-industry research projects, such as common pro- 
gramming environments. In the intended model of use, the architecture ends up 
being not so far from the encapsulated behavior OODBS's: A layer is written on 
top of the structural model that  attaches behavior t o  the structures, for use 
within a particular domain of applications, such as programming environments, 
geographic information systems or graphics. This layer runs under the end 
application on individual worlistations, with the structural database on a cen- 
tral server. So the end architecture looks much like that  of behavioral 
OODBS's tha t  have a storage manager component and a language evaluation 
component. The difference is how tightly coupled the layers are. The European 
approach has the advantage that  it allowed the workstation-server distribution 
to  happen sooner than with the behavioral OODBS's. It also admits the possi- 
bility of having different behaviors attached to  the same structures for different 
applications, by going through a different semantic layer [Be]. The semantic 
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layer also can control batch movement of objects from server t o  workstation. 

6.5. Existing Commercial OODBS's 

Existing commercial products such as Gemstone, Vbase and VISION will con- 
tinue to  undergo refinements for performance. I see the most need for work in 
associative access support for bulk data types, and optimization techniques that  
take advantage of such support [GM]. Other added features will be appIication 
development environments and ways to  modularize object spaces. 
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