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Abstract 

Subdividing the iteration space of a loop into blocks or tilea with a fixed maximum size has 
several advantages. Tiles become a natural candidate as the unit of work for parallel task 
scheduling. Synchronization between processors can be done between tiles, reducing synchroni- 
zation frequency (at some loss of potential parallelism). The shape and size of a tile can be 
optimized to  take advantage of memory locality for memory hierarchy utilization. Vectoriza- 
tion and register locality naturally fits into the optimization within a tile, while parallelization 
and cache locality fits into optimization between tiles. 

1. Introduction 

Advanced compilers are capable of many program restructuring transformations, such as 
vectorization, concurrency detection and loop interchanging. In addition to  utilization of multi- 
ple vector processors, program performance on large systems now depends on effective use of the 
memory hierarchy. The memory hierarchy may comprise a virtual address space residing in a 
large (long latency) shared main memory, with either a shared cache memory serving all the 
processors or with a private cache memory sewing each processor. In addition, vector proces- 
sors typically have vector registers, which should be used effectively. 

It has long been known that program restructuring can dramatically reduce the load on a 
memory hierarchy subsystem [AbuS78, AbKL81, Wolf871. A recent paper ([hTr88]) describes a 
procedure to partition the iteration space of a tightly-nested loop into aupernodes, where each 
supernode comprises a set of iterations that will be scheduled as an atomic task on a processor. 
That procedure works from a new data dependence abstraction, called the dependence cone. 
The dependence cone is used to  find legal partitions and to  find dependence constraints between 
supernodes. 

This paper recasts and extends that work by using several elementary program restructur- 
ing transformations to  optimize programs with the same goals. Our procedures are not res- 
tricted to  tightly-nested loops and do not depend on a new dependence abstraction, although it 
will benefit from precise information. 

The next section describes and reviews basic concepts such as the iteration space of a loop, 
data dependence and parallel loop execution. The three most popular data dependence abstrac- 
tions are explained, along with a new abstraction inspired by [IrTr88]. Section 3 introduces the 
elementary loop restructuring transformations used in this paper: loop interchanging, loop skew- 
ing, strip mining and tiling. Section 4 defines the footprint of an array reference with respect to  
a loop; this is the basis for optimization for memory locality. Section 5 enumerates the optimi- 
zation goals for a compiler, while Section 6 describes the optimization process, and includes 
several examples. The final section has some concluding remarks. 

2. Iteration Space and Data Dependence 

We say that nested iterative loops (such as Fortran DO or Pascal FOR loops) define an 
i teration apace, comprising a finite discrete Cartesian space with dimensionality equal to  the 
loop nest level. For example, the two loops in Program 1 traverse the tw+dimensional iteration 



space shown in Figure 1. The semantics of a serial loop define how the iteration space is 
traversed (from left t o  right, top to bottom in our pictures). 

Program 1: 
do I = 1, 5 

do J =  1, 10 
A ( 1 , J )  = B ( I , J )  + C ( I ) * D ( J )  

enddo 
enddo 

There is no reason that  the iteration space need be rectangular; many popular algorithms 
have inner loops whose limits depend on the values of outer loop indices. The iteration space 
for Program 2 is triangular, as  shown in Figure 2, suggesting the name triangular loop. Other 
interesting iteration space shapes can be defined by nested loops, such as trapezoids, rhomboids, 
and so on; we will show how some of these shapes can be generated from each other via loop res- 
tructuring. 

Program 2: 
do I = 1, 5 

d o J = I ,  5 
A ( 1 . J )  = B ( 1 , J )  + C ( I ) * D ( J )  

enddo 
enddo 

Data Dependence: Many compilers available today for vector and parallel computers 
advertise the ability to detect vector or parallel operations from serial loops. Parallelism is 
detected by discovering the essential data flow (or data dependence) in the loop and allowing 
vector or parallel execution when data dependences are not violated. Loop restructuring 
transformations, such a s  loop interchanging, are often applied to  enhance the available parallel- 
ism or otherwise optimize performance; data dependence information is needed to  test whether 
restructuring transformations are legal (the program produces the same answer after restructur- 
ing as i t  did before). 

There are three essential kinds of data dependence, though in this paper they will be 
treated identically. A flow-dependence relation occurs when the value assigned t o  a variable or 
array element in the execution of one inatance of a statement is used (read, fetched) by the sub- 
sequent execution of an instance of (the same or another) statement. Program 3 has a flow 
dependence relation from statement S, to  itself, since the value assigned to  A ( I  + 1 )  will be used 
on the next iteration of the loop. We usually write this S, 6 S,. 

Program 3: 
do I = 1, N-1 

S,: A ( I + l )  = A ( 1 )  + B ( 1 )  
enddo 

An anti-dependence relation occurs when the value read from a variable or array element 
in an  instance of some statement is reassigned by a subsequent instance of some statement. In 
Program 4 there is an anti-dependence relation from S, t o  S,, since B  ( I ,  J) is used in S1 and 
subsequently reassigned by S, in the same iteration of the loop. We usually write this S, F S,. 

Program 4: 
do I = 1 ,  N  

do J = 1, M 
S, : A ( 1 . J )  = B ( I , J )  + 1 
S, : B ( 1 , J )  = C ( I , J )  -1 

enddo 
enddo 

Finally, an  output dependence relation occurs when some variable or array element is 
assigned in an  instance of a statement and reassigned by a subsequent instance of some state- 
ment. An example of this is Program 5 where there is an potential output dependence relation 
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from S, t o  S,, since the variable B ( I + 1 )  assigned in S, may be reassigned in the next iteration 
of the loop by S,. We usually write this S, b0 S,. This also shows that  the da ta  dependence 
relations in a program must be approximated; since a compiler will not know the actual paths 
taken in the program, i t  must make conservative assumptions. 

Program 6: 
do I = 1, N-1 

S,: i f  (A(1)  > 0) B ( 1 )  = C ( I ) / A ( I )  
S,: B ( I + l )  = C ( I )  / 2  

enddo 

In order t o  apply a wide variety of loop transformations, data dependence relations are 
annotated with information showing how they are related to  the enclosing loops. Three such 
annotations are popular today. Many dependence relations have a constant distance in each 
dimension of the iteration space. When this is the case, a diatance vector can be built where 
each element is a constant integer representing the dependence distances in the corresponding 
loop. For example, in Program 6 there is a data dependence relation in the iteration space as  
shown in Figure 3; each iteration (i, j) depends on the value computed in iteration ( i ,  j - 1 ) .  
We say that  the distances for this dependence relation are zero in the I loop and one in the J 
loop, and we write this S, 6(,,,) S,. 

Program 8: 
do I = 1, N 

do J = 2 ,  M 
S, : A ( 1 , J )  = A ( 1 , J - 1 )  + B ( 1 . J )  

enddo 
enddo 

For many transformations, the actual distance in each loop may not be so important as  
just the sign of the distance in each loop; also, often the distance is not constant in the loop, 
even though i t  may always be positive (or negative). 

Program 7: 
do I = 1, N  

do J = I, N  
S, : X ( I + 1 , 2 * J )  = X ( I , J )  + B ( I )  

enddo 
enddo 

As an  example, in Program 7 the assignment t o  X  ( I  + 1 , 2 *  5) is used in some subsequent itera- 
tion of the I and J loops by the X  ( I ,  J )  reference. Let S, [I=l,  J=l] refer t o  the instance of 
statement S, executing for the iteration when the loop variables I=l  and J=1. Then 
S, [I=l, J=l] assigns X  ( 2 , 2 ) ,  which is used by S, [ I = 2 ,  J = 2 ] ,  for a dependence distance of 
( 1 . 1 )  ; however, S, [ I = 2 ,  J = 2 ]  assigns X  ( 3 , 4 )  , which is used by S, [I =3, J=4] , for a depen- 

dence distance of (1,2). The distance for this dependence in the J loop is always positive, but 
is not a constant. A common method to represent this is t o  save a vector of the signs of the 
dependence distances, usually called a direction vector. Each direction vector element will beone 
of (+, 0, -) [Bane88]; for historical reasons, these are usually written (<, =, >) [WoBa87, 
Wolf891. In Program 7, we can associate the direction vector with the dependence relation by 
writing S, 6(,,,) S,, where in Program 6, the dependence relation would be written 
S l  b(=,<) Sl.  

Another (often more precise) annotation in inspired by [IrTr88]. Instead of saving only the 
sign of the distance (which loses a great deal of information about any actual distances), save a 
set of distance vectors from which all potential actual dependence distances can be formed by 
linear combination. In Program 7, for example, we would still save the distance vectors + ( 1 . 1 )  
and ( 0 ,  I ) ,  since all actual dependence distances are linear combinations of these distances; the 
+ in + ( 1 , l )  means tha t  the linear combination must include a non-zero coefficient for this dis- 
tance vector, while the other coefficients must be non-negative. 



Another popular data dependence annotation saves only the nest level of the outermost 
loop with a positive distance. The dependence relation for Program 6 has a zero distance in the 
outer loop, but a positive distance in the inner loop, so we would write S, 6' S,. We also say 
that  this dependence relation is carried by the inner J loop. Some dependence relations may not 
be carried by any loop, as in Program 8. 

Here the references t o  A ( I ,  J )  produce a dependence relation from S, to  S, with zero distance 
in both loops. We would thus say S, 6(,,,) S, or S, a(=,=) S,. Since i t  is carried by neither 
of the loops, we call i t  a loop independent dependence, represented S1 600 S,. 

2.1. Parallel Loop Execution 
We represent a parallel loop with a doall statement. We assume that  a parallel loop can 

be executed in a multiprocessor by scheduling the iterations of the loop on different processors in 
any order, with no synchronization between the iterations. The iteration space of a doall is the 
same as that  of sequential loop except that  the traversal of a parallel loop is unordered. If we 
replace the outer loop of Program 1 by a doall, as in Program 9, the iteration space traversal 
would be a s  in Figure 4, with a single fork, followed by 5 parallel unordered iterations of 1 
(each of which executed the 10 iterations of J), followed by a single join. 

Program 9: 
doall I = 1, 5 

do J = 1, 10 
A ( 1 , J )  = B ( 1 , J )  + C ( I ) * D ( J )  

enddo 
enddo 

If we instead replace the inner loop by a doall, as  in Program 10, the iteration space 
traversal would be as  in Figure 5, where each iteration of the I loop contained a fork, followed 
by 10 parallel unordered iterations of J ,  followed by a join. It  is obvious that  in most cases, 
the best performance will result when the number of forks and joins is minimized, which occurs 
when doalls are at the outermost nest level. 

Program 10: 
do I = 1, 5 

doall J = 1, 10 
A(1 . J )  = B(1.J) + C(I)*D(J)  

enddo 
enddo 

It  is also obvious that  a sequential loop may be converted into a doall when i t  carries no 
dependence relations. For example, in Program 11 there is a flow-dependence relation 
S, 6(,,,) S, due t o  the assignment and subsequent use of A. Even though the distance in the J 
loop dimension is non-zero, it may be executed in parallel since the only dependence relation is 
cam'ed by the outer I loop. The outer I loop can be executed in parallel only by the insertion 
of synchronization primitives. 
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Program 11: 
do I = 2 ,  N  

d o J = 3 ,  M 
S, : A ( I , J )  = A ( 1 - 1 . J - 2 )  + C ( I ) * D ( J )  

enddo 
enddo 

3. Restructuring Tramformations 
The most powerful compilers and translators are capable of advanced program restructur- 

ing transformations to  optimize performance on high speed parallel computers. Automatic 
conversion of sequential code to  parallel code is one example of program restructuring. h i -  
ated with each restructuring transformation is a data dependence test which must be satisfied 
by each dependence relation in order to  apply that transformation. As we have already seen, 
converting a sequential loop to  a parallel doall requires that the loop carries no dependence. 
This parallelization has no effect on the data dependence graph, though we will see that  other 
transformations do change data dependence relations somewhat. 

Loop Interchanging: One of the most important restructuring transformations is loop 
interchanging. Interchanging two loops can be used with several different goals in mind. As 
shown above, the outer loop of Program 11 cannot be converted to  a parallel doall without 
additional synchronization. However, the two loops can be interchanged, producing Program 
12. Loop interchanging is legal if there are no dependence relations that are carried by the 
outer loop and have a negative distance in the inner loop (i.e., no (<, >) direction vectors 
[A1Ke84, WoBa871). The distance or direction vector for the data dependence relation in the 
interchanged loop has the corresponding elements interchanged, giving the dependence relation 
S, 6(,,,) S,. Since the outermost loop with a positive distance is the outer J  loop, the J loop 
carries this dependence; now the I loop carries no dependences and can be executed in parallel. 
Loop interchanging thus enables parallel execution of other loops; this may be desirable if, for 
instance, it  is known that M is very small (so parallel execution of the J loop would give little 
speedup) or if parallel access to  the second dimension of A  would produce memory conflicts. 

Program 12: 
do J = 3 ,  M 

do I = 2 ,  N  
S, : A ( 1 . J )  = A ( 1 - 1 . J - 2 )  + C ( I ) * D ( J )  

enddo 
enddo 

Loop Skewing: Some nested loops have dependence relations carried by each loop, 
preventing parallel execution of any of the loops. An example of this is the relaxation algorithm 
shown in Program 13a. The data dependence relations in the iteration space of this loop are 
shown in Figure 6; the four dependence relations have distance vectors: 

One way to extract parallelism from this loop is via the wavefront (or hyperplane) method 
Wura71, Lamp741. We show how to implement the wavefront method via loop skewing and 
loop interchanging [Wolf86]. 

Program 13a: 
do I = 2 ,  N-1 

do J = 2 ,  M - 1  
S, : A ( 1 . J )  = 0.2*(~(1-~,J)+A(I,J-l)+A(I.J) 

+ A ( I + l , J ) + A ( I ,  J + l ) )  
enddo 

enddo 



Program 13b: 
do I = 2 ,  N-1 

do J = I + 2 ,  I + M - 1  
S1 : A ( 1 ,  J - I )  = 0 . 2 *  (A(1-1 ,  J - I )  + A ( I ,  J - 1 - 1 )  + A ( I ,  J - I )  

+ A ( I + l ,  J - I ) + A ( I , J - I + l ) )  
enddo 

enddo 

Program 13c: 
do J = 4, N+M-2 

do I = MAX (2,  CEIL (J-M+1) ) , MIN (N-1, CEIL ( J - 2 )  ) 
S1 : A ( 1 ,  J - I )  = 0 . 2 *  (A(1-1 ,  J - I )  + A ( I ,  J - 1 - 1 )  + A ( I ,  J - I )  

+ A ( I + l ,  J - I ) + A ( I ,  J - I + l ) )  
enddo 

enddo 

Loop skewing changes the shape of the iteration space from a rectangle t o  a parallelo- 
gram. We can skew the J loop of Program 13a with respect to the I loop by adding I to  the 
upper and lower limits of the J loop; this requires that  we then subtract 1 from J within the 
loop. The skewed loop is shown in Program 13b and the skewed iteration space is shown in Fig- 
ure 7. The direction vectors for the data dependence relations in the skewed loop will change 
from (d l ,  d,) to  (dl ,  d l + d l ) ,  so the modified dependence relations are: 

S l  6(0,1) S l  s1 6(1,1) S l  
S l  F(0.l) S1 S1 F(1,l) S l  

Interchanging the skewed loops requires some clever modifications t o  the loop limits, a s  shown in 
Program 13c. As before, interchanging the two loops requires that  we switch the corresponding 
elements in the direction vectors, giving: 

Notice that  in each case, the direction vector has a positive value in the first element, meaning 
that  each dependence relation is carried by the outer loop (the J loop); thus, the skewed and 
interchanged I loop can be executed in parallel, which gives us the wavefront formulation. 

Strip Mining: Vectorizing compilers often divide a single loop into a pair of loops, where 
the maximum trip count of the inner loop is equal to the maximum vector length of the 
machine. Thus, for a Cray vector computer, the loop in Program 14a will essentially be con- 
verted into the pair of loops in Program 14b. This process is called strip mining [Love77]. The 
original loop is divided into strips of some maximum size, the strip size; in Program 14b, the 
inner loop (or element loop) has a strip size of 64, which is the length of the Cray vector regis- 
ters. The outer loop (the I S  loop, for "strip loop") steps between the strips; on the Cray, the I 
loop corresponds t o  the vector instructions. 

Program 14a: 
do I = 1, N  

S,: A ( 1 )  = A ( I )  + B ( 1 )  
S1: C ( 1 )  = A ( 1 - 1 )  * 2  

enddo 

Program 14b: 
do IS = 1, N,  64 

do I = I S ,  MIN(N, IS+63)  
S l :  A ( 1 )  = A ( 1 )  + B ( 1 )  
s1: C ( 1 )  = A ( 1 - 1 )  * 2  

enddo 
enddo 
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Strip mining is always legal; however i t  does have an  effect on the data dependence rela- 
tions in the loop. As strip mining adds a loop, it adds a dimension to  the iteration space; thus i t  
must also add an  element t o  the distance or direction vector. When a loop is strip mined, a 
dependence relation with a ( d )  in the distance vector for that  loop is changed into one or two 
dependence relations. If d  is a multiple of the strip size ss, then a distance vector ( d )  is 
changed to  the distance vector ( d / s s ,  0). If d  is not a multiple of s s ,  then a distance vector 
( d )  generates two dependence relations, with distance vectors: 

, d mod a s )  ( 

In either case, if the original dependence distance is larger than (or equal to) the strip size, then 
after strip mining the strip loop will carry that  dependence relation, allowing parallel execution 
of the element loop. 

Iteration Space Tiling: When nested loops are strip mined and the strip loops are all 
interchanged t o  the outermost level, the result is a tiling of the iteration space. The double- 
nested loop in Program 15a can be tiled to become the four-nested loop in Program 15b. This 
corresponds to  dividing the two dimensional iteration space for Program 15a into "tiles", as  
shown in Figure 8. Each tile corresponds to  the inner two element loops, and the outer two 
"tile" loops step between the tiles. 

Program 168: 
do I = 1 .  N 

d o J = l ,  N 
s1: A ( 1 , J )  = A ( 1 , J )  + B ( 1 . J )  
sa: C ( 1 , J )  = A ( 1 - 1 , J )  2 

enddo 
enddo 

Program 16b: 
do IT = 1, N, SS 

do JT = 1, N ,  SS 
do I  = I T ,  MIN(N, I T + S S - 1 )  

do J = J T ,  M I N ( N ,  JT+SS-1)  
S1: A ( 1 , J )  = A ( I , J )  + B ( I , J )  
sa: C ( 1 , J )  = A ( 1 - 1 , J )  * 2 

enddo 
enddo 

enddo 
enddo 

Tiling irregular iteration spaces is slightly more complicated than simply strip mining each 
loop. A triangular loop, such as Program 16a, when tiled by independently strip mining each 
loop, produces iteration space tiles as  shown in Figure 9a. The desired tiling pattern is shown in 
Figure 9b; t o  get this pattern, the loops must be tiled as  in Program 16b. 

Program 168: 
do I = 1 ,  N 

d o J = I ,  N . . . 
Program l6b: 

do IT = 1 ,  N ,  SS 
do JT = I T ,  N ,  SS 

do I = I T ,  MIN(N, I T + S S - 1 )  
do J  = MAX ( J T ,  I )  , M I N  (N,  J T + S S - 1 )  

Triangular loop limits like this appear in many linear algebra algorithms, or may appear after 
other restructuring transformations, such as loop skewing. 



4. Footprints in the Iteration Space 
The portion of an  array which is touched by an  array reference within a loop is called the 

footprint of tha t  array reference. For instance, in Program 17a, the footprint of the A ( 1 , l )  
reference is the first column of A, while the footprint of B  ( 2 ,  I )  is the second row of B. Since 
we do not know the upper limit of the loop, we must assume tha t  the entire column or row may 
be touched; thus we assume that  the footprint of C  ( I )  is the entire vector C. When the loop 
limits are known, more knowledge can be extracted from the array references. For instance, if 
the loop in Program 17a were strip-mined, as  in Program 17b, the footprint of each array in the 
inner loop would be only 16 elements. 

Program 17s: 
do I = 1, N  

A ( I . 1 )  = B ( 2 , I )  C ( 1 )  
enddo 

Program 17b: 
do IS = 1, N, 16 

do I = I S ,  MIN(N, I S + 1 5 )  
A ( I . 1 )  = B ( 2 , I )  

enddo 
* C ( I )  

enddo 

The size of a footprint of an array reference is bounded by the product of the trip counts 
of the loops whose loop variables appear in the array subscripts (assuming all other induction 
variables are replaced by functions of the appropriate loop index variables). An array footprint 
can be calculated for each loop by setting the trip count for all outer loops to  one. The total 
footprint of a loop is the sum of the footprints for all the arrays in the loop. 

Thus, a t  each level of a nested loop we can find the footprint for each array reference in 
the loop. The footprint size is related to  the amount of data that  needs to be passed between 
ievels of a memory hierarchy in order to execute that  loop level. We would like the footprints 
for inner loops to  be small, so that  they can fit higher levels of the memory hierarchy. When 
loop limits are unknown, the size of a footprint may be unbounded; we use tiling t o  fix the size 
of footprints in the inner loops. 

When the size of a footprint of some array in a loop is smaller than the iteration space of 
that  loop, then there is some reuse of elements of the array in that  loop. If that  footprint fits 
into the highest level of the memory hierarchy, then it may already be available a t  that  level 
the second and subsequent time i t  is needed, enabling faster execution of the program. 

For instance, in Program 18a the footprint of C in the inner loop is only one element, but 
the footprint of B  is M elements; we could interchange the loops, but that  would lead to  a foot- 
print of N  elements for C. Tiling the loops gives Program 18b; now within a tile the footprints 
of both B  and C  are only 32 elements, while the tile size itself is 1024 iterations. Thus, each ele- 
ment of B  and C is used 32 times; if the 32 elements in the footprint of B  and C can fit into the 
highest level of the memory hierarchy (cache, registers, local memory), then they need to  be 
loaded only once (either automatically, as  in a hardware-managed cache, or by additional 
software, as  for registers). 

Program 18a: 
do I = 1, N 

d o J = l ,  M 
A ( 1 , J )  = B ( J )  * C ( 1 )  

enddo 
enddo 



Program 18b: 
do I = 1, N ,  32 

do J = 1, M, 32 
do I = IT, M I N ( N ,  IT+31) 

do J = JT, M I N ( M ,  JT+31) 
A ( 1 , J )  = B ( J )  C ( 1 )  

enddo 
enddo 

enddo 
enddo 

We note here tha t  there may be other problems with finding and optimizing for footprints. 
First, given a cache memory environment, a cache line may be more than one word wide. On 
the Sequent Symmetry, for example, a cache line is 2 words wide; thus, when a word is loaded 
into the cache memory, one of its neighbors is dragged along also, whether or not i t  is wanted. 
If a footprint comprised (say) 32 consecutive words, then a t  most 2 unneeded words would be 
dragged into the cache; if however the footprint comprised a row in an  array stored by columns, 
then each word would drag another word into the cache. This could potentially double the 
amount of cache memory used for this footprint; wider cache lines exacerbate the problem. This 
(or other considerations) may induce a preferred ordering when processing tiles. 

Second, for software managed memory hierarchies, we need to  not only optimize the foot- 
print size, but we need to  be able t o  identify it. Usually this is no problem, as  it will consist of 
a starting position, a stride and a length. 

6. Optimtation Goals 
Given our toolkit of restructuring transformations, we wish t o  optimize nested loops for 

execution on multiprocessors with a memory hierarchy, where each processor may also have vec- 
tor instructions. We tile the iteration space such that  each tile will be a unit of work to  be exe- 
cuted on a processor. Communication between processors will not be allowed during execution 
of a tile. Tiles will be optimized to  provide locality and vector execution. The scheduling of 
tiles onto processors will be done to  provide either locality across parallel tiles or not, depending 
on the memory hierarchy organization. 

Atomic Tiles: Each tile is a unit of work to  be scheduled on a processor. Once a tile is 
scheduled on a processor, i t  runs to  completion without preemption. A tile will not be initiated 
until all dependence constraints for that  tile are satisfied, so there will never be a reason tha t  a 
tile, once started, should have to  relinquish the processor. 

Parallelism between Tiles: As much as possible, the tiles should be arranged in the 
iteration space to  allow for as  much parallelism between tiles as  possible. If there is dependence 
in one dimension and not another, then the tile size may be adjusted so that  each tile has a 
small size in the independent dimension to  allow for more independent tiles along tha t  dimen- 
sion. Depending on how parallelism is implemented, the tile loops may need to  be reordered 
and/or skewed to  implement synchronization between tiles. 

Vectors within Tiles: If the processors have vector instructions, then the innermost loop 
should be vectorized. This corresponds to  ordering the element loops so that  the innermost ele- 
ment loop is vector. This goal may be somewhat inconsistent with the next goal. 

Locality within Tiles: The size of the tiles will be adjusted so as  t o  provide good usage 
of the memory hierarchy. When no data reuse occurs, the ordering of the loops within a tile will 
not matter (there is no locality anyway); when data reuse does occur, the ordering of the loops 
will be optimized to  take advantage of locality a t  least in the first and second levels. 

Locality between Tiles: In the best case, all the data for a single tile will fit into the 
highest level of the memory hierarchy (cache, perhaps) allowing the optimizer t o  look for reuse 
between tiles. When adjacent tiles in the iteration space share much or all of the data,  then 
the optimizer should try to  schedule those tiles on the same processor. If multiple processors 



share a cache, then parallel tiles which share much of the same data should be scheduled onto 
those processors a t  the same time to  take advantage of the shared cache. If multiple processors 
do not share a cache, then parallel tiles scheduled a t  the same time should be those which do 
not share data,  t o  prevent memory interference. 

6. Optimisation Process 

The tiling optimization process consists of several distinct steps, described below: 

1) The iteration space may be reshaped, through loop skewing. This will give differently 
shaped tiles in the next step. 

2) The iteration space is tiled. Tiling essentially consists of strip-mining each loop and inter- 
changing the strip loops outwards to become the tile loops, though there are some slight 
complexities that  should be handled properly for triangular loop limits. The tile size in 
each dimension is set in the next two steps. 

3) The element loops are reordered and optimized. We can optimize for locality by reorder- 
ing until the inner loops have the smallest total footprint. We may also optimize for vec- 
tor instructions or memory strides in the inner loop. The iteration space of the tile may 
be reshaped via loop skewing and loop interchanging in this step also. Some limits on tile 
sizes may be set in this step to  provide for locality within certain levels of the memory 
hierarchy (such a s  vector registers). 

4) The tile loops are reordered and optimized. Again, this may involve reshaping the tile 
iteration space via loop skewing and interchanging. The optimization a t  this level will 
depend on the model of parallelism used by the system, and the dependence constraints 
between tiles. The method described in [IrTr88] has one outermost serial loop surrounding 
several inner parallel tile loops, using loop skewing (wavefronting) in the tile iteration 
space to  satisfy any dependence relations. We also wish to take advantage of locality 
between tiles by giving each processor either a rule for which tile t o  execute next or a t  
least a preference for which direction in the tile iteration space to process tiles to best 
take advantage of locality. The sizes of the tiles are also set a t  this time. 

Let us show some simple examples to  illustrate the optimization process. 

Example 1: Given a simple nested sequential loop, such as Program 19a, let us see how 
tiling would optimize the loop for multiple vector processors with private caches. For a simple 
vector computer, we would be tempted to  interchange and vectorize the I loop, because i t  gives 
a chained multiply-add vector operation and all the memory references are stride-1 (with For- 
tran column-major storage; the J loop would be used otherwise); this is shown in Program 19b. 
However, if the column size (N) was larger than the cache size, each pass through the K loop 
would have to  reload the whole column of A and B into the cache. 

Program 198: 
do I = 1,  N 

do J = 1 ,  M 
A(1,J) = 0.0 
d o K = l ,  L 

A(1,J) = A(1,J) + B(I,K)*C(K,J) 
enddo 

enddo 
enddo 

Program 19b: 
do J = 1, M 

A(l:N,J) = 0 .0  
d o K = l ,  L 

A(l:N, J) = A(l:N, J) + B(1:N.K) *C(K,J) 
enddo 

enddo 



For a simple multiprocessor, we might be tempted t o  interchange the J loop outwards and 
parallelize it ,  as  in Program 19c, so that  each processor would operate on distinct columns of A 
and C. Each pass through the K loop would again have to  reload the cache with a row of B and 
column of C if L is too large. 

Program 19c: 
doall J =  1, M 

do I = 1, N 
A(1,J) = 0.0 
d o K = l ,  L 
A(1,J) = A(1,J) + B(I,K)*C(K,J) 

enddo 
enddo 

enddo 

Instead, let us attempt t o  tile the entire iteration space. We will use symbolics for the tile 
size in each dimension, since determining the tile sizes will be done later. Tiling the iteration 
space can proceed even though the loops are not perfectly nested. Essentially, each loop is 
strip-mined, then the strip loops are interchanged outwards to  become the tile loops. The tiled 
program is shown in Program 19d. 

Program 1Qd: 
do IT = 1, N, ITS 

do JT = 1, M, JTS 
do I = IT, MIN(N, IT+ITS-1) 

do J = 1, MIN(M,JT+JTS-1) 
A(1,J) = 0.0 

enddo 
enddo 
do KT = 1, L, KTS 

do I = IT, MIN(N,IT+ITS-1) 
do J = 1, MIN(M,JT+JTS-1) 

do K = 1, MIN(L,KT+KTS-1) 
A(1,J) = A(1,J) + B(I,K)*C(K,J) 

enddo 
enddo 

enddo 
enddo 

enddo 
enddo 

Each set of element loops is ordered to  provide the kind of local performance the machine needs. 
The first set of element loops has no locality (the footprint of A is ITSXJTS, the same size a s  
the iteration space), so we need only optimize for vector operations and perhaps memory stride; 
we do this by vectorizing the I loop. 

IVL = MIN (N, IT+ITS-1) 
do J = 1, MIN (M, JT+JTS-1) 
A(IT:IT+IVL, J) = 0.0 

enddo 

The second set of element loops can be reordered 6 ways; the JKI ordering gives stride-1 vector 
operations in the inner loop, and one level of locality for A in the second inner loop (the foot- 
print of A in the K loop is ITS while the iteration space is ITSXKTS. Furthermore, if ITS is the 
size of a vector register, the footprint of A fits into a vector register during that  loop, meaning 
that  the vector register load and store of A can be floated out of the K loop entirely. 



IVL = MIN (N, IT+ITS-1) 
do J = 1, MIN (M, JT+JTS-1) 

d o  K = 1, MIN(L,KT+KTS-1) 
A(IT:IT+IVL, J) = A(IT:IT+IVL, J) + B(IT:IT+IVL,K) *C(K, J) 

enddo 
enddo 

Since there are no dependence constraints between tiles along the IT and JT dimensions, 
those two loops can be executed in parallel. The method suggested in [IrTr88] will 'wavefront' 
the tile iteration space by having one sequential outermost loop surrounding parallel doalls; 
thus, the final program would as in Program 19e. Note that the tile loops had to  be distributed 
(their formulation only dealt with tightly nested loops); also, the nested doalls inside the KT 
loop will generate KTS fork/join operations. If processors are randomly assigned to  iterations 
of the doalls (and thus to  tiles), the system will not be able to take advantage of locality 
between tiles. 

P r o g r a m  1Oe: 
doall IT = 1, N, ITS 

doall JT = 1, M, JTS 
IVL = MIN (N, IT+ITS-1) 
do J = 1, MIN(M,JT+JTS-1) 
A(IT:IT+IVL,J) = 0.0 

enddo 
enddo 

enddo 
do KT = 1, L, KTS 

doall IT = 1, N, ITS 
doall JT = 1, M, JTS 
IVL = MIN (N, IT+ITS-1) 
d o  J = 1, MIN (M, JT+JTS-1) 

d o  K = 1, MIN(L,KT+KTS-1) 
A(IT:IT+IVL, J) = A(IT:IT+IVL, J) + B(IT:IT+IVL,K) *C(K, J) 

enddo 
enddo 

enddo 
enddo 

enddo 

Another obvious method is to  leave the parallel doalls outermost, as in Program 19f. This 
generates a single fork/join operation, but the size of the parallel task is much larger, meaning 
there is less opportunity for load balancing. However, a single parallel task now comprises all 
KTS tiles along the KT dimension. Each iteration of the KT loop uses the same the footprint of 
A, so scheduling all iterations on the same processor takes advantage of that locality between 
tiles. 



Program 19f: 
doall IT = 1, N, ITS 

doall JT = 1, M, JTS 
IVL = MIN (N, IT+ITS-1) 
do J = 1, MIN(M,JT+JTS-1) 
A(1T: IT+IVL, J) = 0.0 

enddo 
do KT = 1, L, KTS 
IVL = MIN (N, IT+ITS-1) 
do J = 1, MIN(M,JT+JTS-1) 

do K = 1, MIN(L,KT+KTS-1) 
A(IT:IT+IVL, J) = A(IT:IT+IVL, J) + B(IT:IT+IVL,K) *C(K, J) 

enddo 
enddo 

enddo 
enddo 

enddo 

Example 2: The example used in [IrTr88] is a five point difference equation, as  was shown 
in Program 13. We will show how our methods can derive the two partitionings shown in their 
paper. 

The first partition (Figure 2 of [IrTr88]) starts by skewing the iteration space before tiling, 
a s  in Figure 10a; each tile is executed with vector instructions along the I dimension. To satisfy 
data dependence relations between vertically adjacent tiles, the tile iteration space is then 
skewed again, as in Figure lob; in this figure, vertically aligned tiles can be executed con- 
currently on different processors. This could be implemented by a wavefront method (sequential 
loop surrounding a doall), or by assigning tiles long the J dimension t o  the same processor and 
synchronizing between tiles along the I dimension. 

The second partition (Figure 6 of [IrTr88]) tiles the iteration space first, as  in Figure l l a ,  
then skews each tile to get vector operations, as  in Figure l l b .  Finally, the tile iteration space 
is skewed to  satisfy dependences between vertically adjacent tiles, resulting in Figure l l c ;  again, 
processors can be assigned to  rows with time flowing to the right. 

7. Summary 

We have described several elementary program restructuring transformations which can 
be combined with parallelism detection to optimize programs for execution on parallel proces- 
sors with memory hierarchies. These techniques are similar t o  those described in [IrTr88], but 
are more general and simpler t o  apply in the setting of a compiler or other program restructur- 
ing tool. Before any of these techniques are implemented in a compiler we need to  understand 
the complexity of the optimization process. Given the data dependence information, it is simple 
to  discover whether and how a loop can be tiled. The difficulty is trying to  find the optimal 
loop ordering. This can be a 0 (dl) problem, where d is the loop depth, since we may have to  
consider each possible loop ordering. This is then complicated by the possibility of skewing the 
iteration space before tiling or skewing each tile individually. The procedure used here does 
have the advantage of decoupling the optimization of the code within a tile from optimization 
between tiles, reducing the complexity from 0 ( (2d) !) to  just 0 (d!) . For loops tha t  are not 
very deeply nested, the actual computation a t  each step in the optimization process is relatively 
small (computation of the footprints and dependences between iterations), so an exhaustive 
search of the loop orderings may be reasonable. 



Figure 10a. 

Figure lob. 



F i g u r e  lla. 

J d  

F i g u r e  llb. 

F i g u r e  llc. 
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