
More Iteration Space Tiling

Michael Wolfe

Oregon Graduate Institute
Department of Computer Science and Engineering

20000 NW Walker Rd
Beaverton, OR 97006-1999 USA

Technical Report No. CSIE 89-003
May, 1989

More Iteration Space Tiling

Michael Wolfe
Oregon Graduate Center

19600 NW von Neumann Drive
Beaverton, OR 97006

Abstract

Subdividing the iteration space of a loop into blocks or tilea with a fixed maximum size has
several advantages. Tiles become a natural candidate as the unit of work for parallel task
scheduling. Synchronization between processors can be done between tiles, reducing synchroni-
zation frequency (at some loss of potential parallelism). The shape and size of a tile can be
optimized to take advantage of memory locality for memory hierarchy utilization. Vectoriza-
tion and register locality naturally fits into the optimization within a tile, while parallelization
and cache locality fits into optimization between tiles.

1. Introduction

Advanced compilers are capable of many program restructuring transformations, such as
vectorization, concurrency detection and loop interchanging. In addition to utilization of multi-
ple vector processors, program performance on large systems now depends on effective use of the
memory hierarchy. The memory hierarchy may comprise a virtual address space residing in a
large (long latency) shared main memory, with either a shared cache memory serving all the
processors or with a private cache memory sewing each processor. In addition, vector proces-
sors typically have vector registers, which should be used effectively.

It has long been known that program restructuring can dramatically reduce the load on a
memory hierarchy subsystem [AbuS78, AbKL81, Wolf871. A recent paper ([hTr88]) describes a
procedure to partition the iteration space of a tightly-nested loop into aupernodes, where each
supernode comprises a set of iterations that will be scheduled as an atomic task on a processor.
That procedure works from a new data dependence abstraction, called the dependence cone.
The dependence cone is used to find legal partitions and to find dependence constraints between
supernodes.

This paper recasts and extends that work by using several elementary program restructur-
ing transformations to optimize programs with the same goals. Our procedures are not res-
tricted to tightly-nested loops and do not depend on a new dependence abstraction, although it
will benefit from precise information.

The next section describes and reviews basic concepts such as the iteration space of a loop,
data dependence and parallel loop execution. The three most popular data dependence abstrac-
tions are explained, along with a new abstraction inspired by [IrTr88]. Section 3 introduces the
elementary loop restructuring transformations used in this paper: loop interchanging, loop skew-
ing, strip mining and tiling. Section 4 defines the footprint of an array reference with respect to
a loop; this is the basis for optimization for memory locality. Section 5 enumerates the optimi-
zation goals for a compiler, while Section 6 describes the optimization process, and includes
several examples. The final section has some concluding remarks.

2. Iteration Space and Data Dependence

We say that nested iterative loops (such as Fortran DO or Pascal FOR loops) define an
i teration apace, comprising a finite discrete Cartesian space with dimensionality equal to the
loop nest level. For example, the two loops in Program 1 traverse the tw+dimensional iteration

space shown in Figure 1. The semantics of a serial loop define how the iteration space is
traversed (from left t o right, top to bottom in our pictures).

Program 1:
do I = 1, 5

do J = 1, 10
A (1 , J) = B (I , J) + C (I) * D (J)

enddo
enddo

There is no reason that the iteration space need be rectangular; many popular algorithms
have inner loops whose limits depend on the values of outer loop indices. The iteration space
for Program 2 is triangular, as shown in Figure 2, suggesting the name triangular loop. Other
interesting iteration space shapes can be defined by nested loops, such as trapezoids, rhomboids,
and so on; we will show how some of these shapes can be generated from each other via loop res-
tructuring.

Program 2:
do I = 1, 5

d o J = I , 5
A (1 . J) = B (1 , J) + C (I) * D (J)

enddo
enddo

Data Dependence: Many compilers available today for vector and parallel computers
advertise the ability to detect vector or parallel operations from serial loops. Parallelism is
detected by discovering the essential data flow (or data dependence) in the loop and allowing
vector or parallel execution when data dependences are not violated. Loop restructuring
transformations, such a s loop interchanging, are often applied to enhance the available parallel-
ism or otherwise optimize performance; data dependence information is needed to test whether
restructuring transformations are legal (the program produces the same answer after restructur-
ing as i t did before).

There are three essential kinds of data dependence, though in this paper they will be
treated identically. A flow-dependence relation occurs when the value assigned t o a variable or
array element in the execution of one inatance of a statement is used (read, fetched) by the sub-
sequent execution of an instance of (the same or another) statement. Program 3 has a flow
dependence relation from statement S, to itself, since the value assigned to A (I + 1) will be used
on the next iteration of the loop. We usually write this S, 6 S,.

Program 3:
do I = 1, N-1

S,: A (I + l) = A (1) + B (1)
enddo

An anti-dependence relation occurs when the value read from a variable or array element
in an instance of some statement is reassigned by a subsequent instance of some statement. In
Program 4 there is an anti-dependence relation from S, t o S,, since B (I , J) is used in S1 and
subsequently reassigned by S, in the same iteration of the loop. We usually write this S, F S,.

Program 4:
do I = 1 , N

do J = 1, M
S, : A (1 . J) = B (I , J) + 1
S, : B (1 , J) = C (I , J) -1

enddo
enddo

Finally, an output dependence relation occurs when some variable or array element is
assigned in an instance of a statement and reassigned by a subsequent instance of some state-
ment. An example of this is Program 5 where there is an potential output dependence relation

Figure 1.

Figure 2.

F i g u r e 3 .

from S, t o S,, since the variable B (I + 1) assigned in S, may be reassigned in the next iteration
of the loop by S,. We usually write this S, b0 S,. This also shows that the da ta dependence
relations in a program must be approximated; since a compiler will not know the actual paths
taken in the program, i t must make conservative assumptions.

Program 6:
do I = 1, N-1

S,: i f (A(1) > 0) B (1) = C (I) / A (I)
S,: B (I + l) = C (I) / 2

enddo

In order t o apply a wide variety of loop transformations, data dependence relations are
annotated with information showing how they are related to the enclosing loops. Three such
annotations are popular today. Many dependence relations have a constant distance in each
dimension of the iteration space. When this is the case, a diatance vector can be built where
each element is a constant integer representing the dependence distances in the corresponding
loop. For example, in Program 6 there is a data dependence relation in the iteration space as
shown in Figure 3; each iteration (i, j) depends on the value computed in iteration (i , j - 1) .
We say that the distances for this dependence relation are zero in the I loop and one in the J
loop, and we write this S, 6(,,,) S,.

Program 8:
do I = 1, N

do J = 2 , M
S, : A (1 , J) = A (1 , J - 1) + B (1 . J)

enddo
enddo

For many transformations, the actual distance in each loop may not be so important as
just the sign of the distance in each loop; also, often the distance is not constant in the loop,
even though i t may always be positive (or negative).

Program 7:
do I = 1, N

do J = I, N
S, : X (I + 1 , 2 * J) = X (I , J) + B (I)

enddo
enddo

As an example, in Program 7 the assignment t o X (I + 1 , 2 * 5) is used in some subsequent itera-
tion of the I and J loops by the X (I , J) reference. Let S, [I=l, J=l] refer t o the instance of
statement S, executing for the iteration when the loop variables I=l and J=1. Then
S, [I=l, J=l] assigns X (2 , 2) , which is used by S, [I = 2 , J = 2] , for a dependence distance of
(1 . 1) ; however, S, [I = 2 , J = 2] assigns X (3 , 4) , which is used by S, [I =3, J=4] , for a depen-

dence distance of (1,2). The distance for this dependence in the J loop is always positive, but
is not a constant. A common method to represent this is t o save a vector of the signs of the
dependence distances, usually called a direction vector. Each direction vector element will beone
of (+, 0, -) [Bane88]; for historical reasons, these are usually written (<, =, >) [WoBa87,
Wolf891. In Program 7, we can associate the direction vector with the dependence relation by
writing S, 6(,,,) S,, where in Program 6, the dependence relation would be written
S l b(=,<) Sl.

Another (often more precise) annotation in inspired by [IrTr88]. Instead of saving only the
sign of the distance (which loses a great deal of information about any actual distances), save a
set of distance vectors from which all potential actual dependence distances can be formed by
linear combination. In Program 7, for example, we would still save the distance vectors + (1 . 1)
and (0 , I) , since all actual dependence distances are linear combinations of these distances; the
+ in + (1 , l) means tha t the linear combination must include a non-zero coefficient for this dis-
tance vector, while the other coefficients must be non-negative.

Another popular data dependence annotation saves only the nest level of the outermost
loop with a positive distance. The dependence relation for Program 6 has a zero distance in the
outer loop, but a positive distance in the inner loop, so we would write S, 6' S,. We also say
that this dependence relation is carried by the inner J loop. Some dependence relations may not
be carried by any loop, as in Program 8.

Here the references t o A (I , J) produce a dependence relation from S, to S, with zero distance
in both loops. We would thus say S, 6(,,,) S, or S, a(=,=) S,. Since i t is carried by neither
of the loops, we call i t a loop independent dependence, represented S1 600 S,.

2.1. Parallel Loop Execution
We represent a parallel loop with a doall statement. We assume that a parallel loop can

be executed in a multiprocessor by scheduling the iterations of the loop on different processors in
any order, with no synchronization between the iterations. The iteration space of a doall is the
same as that of sequential loop except that the traversal of a parallel loop is unordered. If we
replace the outer loop of Program 1 by a doall, as in Program 9, the iteration space traversal
would be a s in Figure 4, with a single fork, followed by 5 parallel unordered iterations of 1
(each of which executed the 10 iterations of J), followed by a single join.

Program 9:
doall I = 1, 5

do J = 1, 10
A (1 , J) = B (1 , J) + C (I) * D (J)

enddo
enddo

If we instead replace the inner loop by a doall, as in Program 10, the iteration space
traversal would be as in Figure 5, where each iteration of the I loop contained a fork, followed
by 10 parallel unordered iterations of J , followed by a join. It is obvious that in most cases,
the best performance will result when the number of forks and joins is minimized, which occurs
when doalls are at the outermost nest level.

Program 10:
do I = 1, 5

doall J = 1, 10
A(1 . J) = B(1.J) + C(I)*D(J)

enddo
enddo

It is also obvious that a sequential loop may be converted into a doall when i t carries no
dependence relations. For example, in Program 11 there is a flow-dependence relation
S, 6(,,,) S, due t o the assignment and subsequent use of A. Even though the distance in the J
loop dimension is non-zero, it may be executed in parallel since the only dependence relation is
cam'ed by the outer I loop. The outer I loop can be executed in parallel only by the insertion
of synchronization primitives.

Figure 4 .

Figure 5 .

Program 11:
do I = 2 , N

d o J = 3 , M
S, : A (I , J) = A (1 - 1 . J - 2) + C (I) * D (J)

enddo
enddo

3. Restructuring Tramformations
The most powerful compilers and translators are capable of advanced program restructur-

ing transformations to optimize performance on high speed parallel computers. Automatic
conversion of sequential code to parallel code is one example of program restructuring. h i -
ated with each restructuring transformation is a data dependence test which must be satisfied
by each dependence relation in order to apply that transformation. As we have already seen,
converting a sequential loop to a parallel doall requires that the loop carries no dependence.
This parallelization has no effect on the data dependence graph, though we will see that other
transformations do change data dependence relations somewhat.

Loop Interchanging: One of the most important restructuring transformations is loop
interchanging. Interchanging two loops can be used with several different goals in mind. As
shown above, the outer loop of Program 11 cannot be converted to a parallel doall without
additional synchronization. However, the two loops can be interchanged, producing Program
12. Loop interchanging is legal if there are no dependence relations that are carried by the
outer loop and have a negative distance in the inner loop (i.e., no (<, >) direction vectors
[A1Ke84, WoBa871). The distance or direction vector for the data dependence relation in the
interchanged loop has the corresponding elements interchanged, giving the dependence relation
S, 6(,,,) S,. Since the outermost loop with a positive distance is the outer J loop, the J loop
carries this dependence; now the I loop carries no dependences and can be executed in parallel.
Loop interchanging thus enables parallel execution of other loops; this may be desirable if, for
instance, it is known that M is very small (so parallel execution of the J loop would give little
speedup) or if parallel access to the second dimension of A would produce memory conflicts.

Program 12:
do J = 3 , M

do I = 2 , N
S, : A (1 . J) = A (1 - 1 . J - 2) + C (I) * D (J)

enddo
enddo

Loop Skewing: Some nested loops have dependence relations carried by each loop,
preventing parallel execution of any of the loops. An example of this is the relaxation algorithm
shown in Program 13a. The data dependence relations in the iteration space of this loop are
shown in Figure 6; the four dependence relations have distance vectors:

One way to extract parallelism from this loop is via the wavefront (or hyperplane) method
Wura71, Lamp741. We show how to implement the wavefront method via loop skewing and
loop interchanging [Wolf86].

Program 13a:
do I = 2 , N-1

do J = 2 , M - 1
S, : A (1 . J) = 0.2*(~(1-~,J)+A(I,J-l)+A(I.J)

+ A (I + l , J) + A (I , J + l))
enddo

enddo

Program 13b:
do I = 2 , N-1

do J = I + 2 , I + M - 1
S1 : A (1 , J - I) = 0 . 2 * (A(1-1 , J - I) + A (I , J - 1 - 1) + A (I , J - I)

+ A (I + l , J - I) + A (I , J - I + l))
enddo

enddo

Program 13c:
do J = 4, N+M-2

do I = MAX (2, CEIL (J-M+1)) , MIN (N-1, CEIL (J - 2))
S1 : A (1 , J - I) = 0 . 2 * (A(1-1 , J - I) + A (I , J - 1 - 1) + A (I , J - I)

+ A (I + l , J - I) + A (I , J - I + l))
enddo

enddo

Loop skewing changes the shape of the iteration space from a rectangle t o a parallelo-
gram. We can skew the J loop of Program 13a with respect to the I loop by adding I to the
upper and lower limits of the J loop; this requires that we then subtract 1 from J within the
loop. The skewed loop is shown in Program 13b and the skewed iteration space is shown in Fig-
ure 7. The direction vectors for the data dependence relations in the skewed loop will change
from (d l , d,) to (dl , d l + d l) , so the modified dependence relations are:

S l 6(0,1) S l s1 6(1,1) S l
S l F(0.l) S1 S1 F(1,l) S l

Interchanging the skewed loops requires some clever modifications t o the loop limits, a s shown in
Program 13c. As before, interchanging the two loops requires that we switch the corresponding
elements in the direction vectors, giving:

Notice that in each case, the direction vector has a positive value in the first element, meaning
that each dependence relation is carried by the outer loop (the J loop); thus, the skewed and
interchanged I loop can be executed in parallel, which gives us the wavefront formulation.

Strip Mining: Vectorizing compilers often divide a single loop into a pair of loops, where
the maximum trip count of the inner loop is equal to the maximum vector length of the
machine. Thus, for a Cray vector computer, the loop in Program 14a will essentially be con-
verted into the pair of loops in Program 14b. This process is called strip mining [Love77]. The
original loop is divided into strips of some maximum size, the strip size; in Program 14b, the
inner loop (or element loop) has a strip size of 64, which is the length of the Cray vector regis-
ters. The outer loop (the I S loop, for "strip loop") steps between the strips; on the Cray, the I
loop corresponds t o the vector instructions.

Program 14a:
do I = 1, N

S,: A (1) = A (I) + B (1)
S1: C (1) = A (1 - 1) * 2

enddo

Program 14b:
do IS = 1, N, 64

do I = I S , MIN(N, IS+63)
S l : A (1) = A (1) + B (1)
s1: C (1) = A (1 - 1) * 2

enddo
enddo

Figure 7.

Figure 8.

Figure 9a.
Figure 9b.

Strip mining is always legal; however i t does have an effect on the data dependence rela-
tions in the loop. As strip mining adds a loop, it adds a dimension to the iteration space; thus i t
must also add an element t o the distance or direction vector. When a loop is strip mined, a
dependence relation with a (d) in the distance vector for that loop is changed into one or two
dependence relations. If d is a multiple of the strip size ss, then a distance vector (d) is
changed to the distance vector (d / s s , 0). If d is not a multiple of s s , then a distance vector
(d) generates two dependence relations, with distance vectors:

, d mod a s) (

In either case, if the original dependence distance is larger than (or equal to) the strip size, then
after strip mining the strip loop will carry that dependence relation, allowing parallel execution
of the element loop.

Iteration Space Tiling: When nested loops are strip mined and the strip loops are all
interchanged t o the outermost level, the result is a tiling of the iteration space. The double-
nested loop in Program 15a can be tiled to become the four-nested loop in Program 15b. This
corresponds to dividing the two dimensional iteration space for Program 15a into "tiles", as
shown in Figure 8. Each tile corresponds to the inner two element loops, and the outer two
"tile" loops step between the tiles.

Program 168:
do I = 1 . N

d o J = l , N
s1: A (1 , J) = A (1 , J) + B (1 . J)
sa: C (1 , J) = A (1 - 1 , J) 2

enddo
enddo

Program 16b:
do IT = 1, N, SS

do JT = 1, N , SS
do I = I T , MIN(N, I T + S S - 1)

do J = J T , M I N (N , JT+SS-1)
S1: A (1 , J) = A (I , J) + B (I , J)
sa: C (1 , J) = A (1 - 1 , J) * 2

enddo
enddo

enddo
enddo

Tiling irregular iteration spaces is slightly more complicated than simply strip mining each
loop. A triangular loop, such as Program 16a, when tiled by independently strip mining each
loop, produces iteration space tiles as shown in Figure 9a. The desired tiling pattern is shown in
Figure 9b; t o get this pattern, the loops must be tiled as in Program 16b.

Program 168:
do I = 1 , N

d o J = I , N . . .
Program l6b:

do IT = 1 , N , SS
do JT = I T , N , SS

do I = I T , MIN(N, I T + S S - 1)
do J = MAX (J T , I) , M I N (N, J T + S S - 1)

Triangular loop limits like this appear in many linear algebra algorithms, or may appear after
other restructuring transformations, such as loop skewing.

4. Footprints in the Iteration Space
The portion of an array which is touched by an array reference within a loop is called the

footprint of tha t array reference. For instance, in Program 17a, the footprint of the A (1 , l)
reference is the first column of A, while the footprint of B (2 , I) is the second row of B. Since
we do not know the upper limit of the loop, we must assume tha t the entire column or row may
be touched; thus we assume that the footprint of C (I) is the entire vector C. When the loop
limits are known, more knowledge can be extracted from the array references. For instance, if
the loop in Program 17a were strip-mined, as in Program 17b, the footprint of each array in the
inner loop would be only 16 elements.

Program 17s:
do I = 1, N

A (I . 1) = B (2 , I) C (1)
enddo

Program 17b:
do IS = 1, N, 16

do I = I S , MIN(N, I S + 1 5)
A (I . 1) = B (2 , I)

enddo
* C (I)

enddo

The size of a footprint of an array reference is bounded by the product of the trip counts
of the loops whose loop variables appear in the array subscripts (assuming all other induction
variables are replaced by functions of the appropriate loop index variables). An array footprint
can be calculated for each loop by setting the trip count for all outer loops to one. The total
footprint of a loop is the sum of the footprints for all the arrays in the loop.

Thus, a t each level of a nested loop we can find the footprint for each array reference in
the loop. The footprint size is related to the amount of data that needs to be passed between
ievels of a memory hierarchy in order to execute that loop level. We would like the footprints
for inner loops to be small, so that they can fit higher levels of the memory hierarchy. When
loop limits are unknown, the size of a footprint may be unbounded; we use tiling t o fix the size
of footprints in the inner loops.

When the size of a footprint of some array in a loop is smaller than the iteration space of
that loop, then there is some reuse of elements of the array in that loop. If that footprint fits
into the highest level of the memory hierarchy, then it may already be available a t that level
the second and subsequent time i t is needed, enabling faster execution of the program.

For instance, in Program 18a the footprint of C in the inner loop is only one element, but
the footprint of B is M elements; we could interchange the loops, but that would lead to a foot-
print of N elements for C. Tiling the loops gives Program 18b; now within a tile the footprints
of both B and C are only 32 elements, while the tile size itself is 1024 iterations. Thus, each ele-
ment of B and C is used 32 times; if the 32 elements in the footprint of B and C can fit into the
highest level of the memory hierarchy (cache, registers, local memory), then they need to be
loaded only once (either automatically, as in a hardware-managed cache, or by additional
software, as for registers).

Program 18a:
do I = 1, N

d o J = l , M
A (1 , J) = B (J) * C (1)

enddo
enddo

Program 18b:
do I = 1, N , 32

do J = 1, M, 32
do I = IT, M I N (N , IT+31)

do J = JT, M I N (M , JT+31)
A (1 , J) = B (J) C (1)

enddo
enddo

enddo
enddo

We note here tha t there may be other problems with finding and optimizing for footprints.
First, given a cache memory environment, a cache line may be more than one word wide. On
the Sequent Symmetry, for example, a cache line is 2 words wide; thus, when a word is loaded
into the cache memory, one of its neighbors is dragged along also, whether or not i t is wanted.
If a footprint comprised (say) 32 consecutive words, then a t most 2 unneeded words would be
dragged into the cache; if however the footprint comprised a row in an array stored by columns,
then each word would drag another word into the cache. This could potentially double the
amount of cache memory used for this footprint; wider cache lines exacerbate the problem. This
(or other considerations) may induce a preferred ordering when processing tiles.

Second, for software managed memory hierarchies, we need to not only optimize the foot-
print size, but we need to be able t o identify it. Usually this is no problem, as it will consist of
a starting position, a stride and a length.

6. Optimtation Goals
Given our toolkit of restructuring transformations, we wish t o optimize nested loops for

execution on multiprocessors with a memory hierarchy, where each processor may also have vec-
tor instructions. We tile the iteration space such that each tile will be a unit of work to be exe-
cuted on a processor. Communication between processors will not be allowed during execution
of a tile. Tiles will be optimized to provide locality and vector execution. The scheduling of
tiles onto processors will be done to provide either locality across parallel tiles or not, depending
on the memory hierarchy organization.

Atomic Tiles: Each tile is a unit of work to be scheduled on a processor. Once a tile is
scheduled on a processor, i t runs to completion without preemption. A tile will not be initiated
until all dependence constraints for that tile are satisfied, so there will never be a reason tha t a
tile, once started, should have to relinquish the processor.

Parallelism between Tiles: As much as possible, the tiles should be arranged in the
iteration space to allow for as much parallelism between tiles as possible. If there is dependence
in one dimension and not another, then the tile size may be adjusted so that each tile has a
small size in the independent dimension to allow for more independent tiles along tha t dimen-
sion. Depending on how parallelism is implemented, the tile loops may need to be reordered
and/or skewed to implement synchronization between tiles.

Vectors within Tiles: If the processors have vector instructions, then the innermost loop
should be vectorized. This corresponds to ordering the element loops so that the innermost ele-
ment loop is vector. This goal may be somewhat inconsistent with the next goal.

Locality within Tiles: The size of the tiles will be adjusted so as t o provide good usage
of the memory hierarchy. When no data reuse occurs, the ordering of the loops within a tile will
not matter (there is no locality anyway); when data reuse does occur, the ordering of the loops
will be optimized to take advantage of locality a t least in the first and second levels.

Locality between Tiles: In the best case, all the data for a single tile will fit into the
highest level of the memory hierarchy (cache, perhaps) allowing the optimizer t o look for reuse
between tiles. When adjacent tiles in the iteration space share much or all of the data, then
the optimizer should try to schedule those tiles on the same processor. If multiple processors

share a cache, then parallel tiles which share much of the same data should be scheduled onto
those processors a t the same time to take advantage of the shared cache. If multiple processors
do not share a cache, then parallel tiles scheduled a t the same time should be those which do
not share data, t o prevent memory interference.

6. Optimisation Process

The tiling optimization process consists of several distinct steps, described below:

1) The iteration space may be reshaped, through loop skewing. This will give differently
shaped tiles in the next step.

2) The iteration space is tiled. Tiling essentially consists of strip-mining each loop and inter-
changing the strip loops outwards to become the tile loops, though there are some slight
complexities that should be handled properly for triangular loop limits. The tile size in
each dimension is set in the next two steps.

3) The element loops are reordered and optimized. We can optimize for locality by reorder-
ing until the inner loops have the smallest total footprint. We may also optimize for vec-
tor instructions or memory strides in the inner loop. The iteration space of the tile may
be reshaped via loop skewing and loop interchanging in this step also. Some limits on tile
sizes may be set in this step to provide for locality within certain levels of the memory
hierarchy (such a s vector registers).

4) The tile loops are reordered and optimized. Again, this may involve reshaping the tile
iteration space via loop skewing and interchanging. The optimization a t this level will
depend on the model of parallelism used by the system, and the dependence constraints
between tiles. The method described in [IrTr88] has one outermost serial loop surrounding
several inner parallel tile loops, using loop skewing (wavefronting) in the tile iteration
space to satisfy any dependence relations. We also wish to take advantage of locality
between tiles by giving each processor either a rule for which tile t o execute next or a t
least a preference for which direction in the tile iteration space to process tiles to best
take advantage of locality. The sizes of the tiles are also set a t this time.

Let us show some simple examples to illustrate the optimization process.

Example 1: Given a simple nested sequential loop, such as Program 19a, let us see how
tiling would optimize the loop for multiple vector processors with private caches. For a simple
vector computer, we would be tempted to interchange and vectorize the I loop, because i t gives
a chained multiply-add vector operation and all the memory references are stride-1 (with For-
tran column-major storage; the J loop would be used otherwise); this is shown in Program 19b.
However, if the column size (N) was larger than the cache size, each pass through the K loop
would have to reload the whole column of A and B into the cache.

Program 198:
do I = 1, N

do J = 1 , M
A(1,J) = 0.0
d o K = l , L

A(1,J) = A(1,J) + B(I,K)*C(K,J)
enddo

enddo
enddo

Program 19b:
do J = 1, M

A(l:N,J) = 0 .0
d o K = l , L

A(l:N, J) = A(l:N, J) + B(1:N.K) *C(K,J)
enddo

enddo

For a simple multiprocessor, we might be tempted t o interchange the J loop outwards and
parallelize it , as in Program 19c, so that each processor would operate on distinct columns of A
and C. Each pass through the K loop would again have to reload the cache with a row of B and
column of C if L is too large.

Program 19c:
doall J = 1, M

do I = 1, N
A(1,J) = 0.0
d o K = l , L
A(1,J) = A(1,J) + B(I,K)*C(K,J)

enddo
enddo

enddo

Instead, let us attempt t o tile the entire iteration space. We will use symbolics for the tile
size in each dimension, since determining the tile sizes will be done later. Tiling the iteration
space can proceed even though the loops are not perfectly nested. Essentially, each loop is
strip-mined, then the strip loops are interchanged outwards to become the tile loops. The tiled
program is shown in Program 19d.

Program 1Qd:
do IT = 1, N, ITS

do JT = 1, M, JTS
do I = IT, MIN(N, IT+ITS-1)

do J = 1, MIN(M,JT+JTS-1)
A(1,J) = 0.0

enddo
enddo
do KT = 1, L, KTS

do I = IT, MIN(N,IT+ITS-1)
do J = 1, MIN(M,JT+JTS-1)

do K = 1, MIN(L,KT+KTS-1)
A(1,J) = A(1,J) + B(I,K)*C(K,J)

enddo
enddo

enddo
enddo

enddo
enddo

Each set of element loops is ordered to provide the kind of local performance the machine needs.
The first set of element loops has no locality (the footprint of A is ITSXJTS, the same size a s
the iteration space), so we need only optimize for vector operations and perhaps memory stride;
we do this by vectorizing the I loop.

IVL = MIN (N, IT+ITS-1)
do J = 1, MIN (M, JT+JTS-1)
A(IT:IT+IVL, J) = 0.0

enddo

The second set of element loops can be reordered 6 ways; the JKI ordering gives stride-1 vector
operations in the inner loop, and one level of locality for A in the second inner loop (the foot-
print of A in the K loop is ITS while the iteration space is ITSXKTS. Furthermore, if ITS is the
size of a vector register, the footprint of A fits into a vector register during that loop, meaning
that the vector register load and store of A can be floated out of the K loop entirely.

IVL = MIN (N, IT+ITS-1)
do J = 1, MIN (M, JT+JTS-1)

d o K = 1, MIN(L,KT+KTS-1)
A(IT:IT+IVL, J) = A(IT:IT+IVL, J) + B(IT:IT+IVL,K) *C(K, J)

enddo
enddo

Since there are no dependence constraints between tiles along the IT and JT dimensions,
those two loops can be executed in parallel. The method suggested in [IrTr88] will 'wavefront'
the tile iteration space by having one sequential outermost loop surrounding parallel doalls;
thus, the final program would as in Program 19e. Note that the tile loops had to be distributed
(their formulation only dealt with tightly nested loops); also, the nested doalls inside the KT
loop will generate KTS fork/join operations. If processors are randomly assigned to iterations
of the doalls (and thus to tiles), the system will not be able to take advantage of locality
between tiles.

P r o g r a m 1Oe:
doall IT = 1, N, ITS

doall JT = 1, M, JTS
IVL = MIN (N, IT+ITS-1)
do J = 1, MIN(M,JT+JTS-1)
A(IT:IT+IVL,J) = 0.0

enddo
enddo

enddo
do KT = 1, L, KTS

doall IT = 1, N, ITS
doall JT = 1, M, JTS
IVL = MIN (N, IT+ITS-1)
d o J = 1, MIN (M, JT+JTS-1)

d o K = 1, MIN(L,KT+KTS-1)
A(IT:IT+IVL, J) = A(IT:IT+IVL, J) + B(IT:IT+IVL,K) *C(K, J)

enddo
enddo

enddo
enddo

enddo

Another obvious method is to leave the parallel doalls outermost, as in Program 19f. This
generates a single fork/join operation, but the size of the parallel task is much larger, meaning
there is less opportunity for load balancing. However, a single parallel task now comprises all
KTS tiles along the KT dimension. Each iteration of the KT loop uses the same the footprint of
A, so scheduling all iterations on the same processor takes advantage of that locality between
tiles.

Program 19f:
doall IT = 1, N, ITS

doall JT = 1, M, JTS
IVL = MIN (N, IT+ITS-1)
do J = 1, MIN(M,JT+JTS-1)
A(1T: IT+IVL, J) = 0.0

enddo
do KT = 1, L, KTS
IVL = MIN (N, IT+ITS-1)
do J = 1, MIN(M,JT+JTS-1)

do K = 1, MIN(L,KT+KTS-1)
A(IT:IT+IVL, J) = A(IT:IT+IVL, J) + B(IT:IT+IVL,K) *C(K, J)

enddo
enddo

enddo
enddo

enddo

Example 2: The example used in [IrTr88] is a five point difference equation, as was shown
in Program 13. We will show how our methods can derive the two partitionings shown in their
paper.

The first partition (Figure 2 of [IrTr88]) starts by skewing the iteration space before tiling,
a s in Figure 10a; each tile is executed with vector instructions along the I dimension. To satisfy
data dependence relations between vertically adjacent tiles, the tile iteration space is then
skewed again, as in Figure lob; in this figure, vertically aligned tiles can be executed con-
currently on different processors. This could be implemented by a wavefront method (sequential
loop surrounding a doall), or by assigning tiles long the J dimension t o the same processor and
synchronizing between tiles along the I dimension.

The second partition (Figure 6 of [IrTr88]) tiles the iteration space first, as in Figure l l a ,
then skews each tile to get vector operations, as in Figure l l b . Finally, the tile iteration space
is skewed to satisfy dependences between vertically adjacent tiles, resulting in Figure l l c ; again,
processors can be assigned to rows with time flowing to the right.

7. Summary

We have described several elementary program restructuring transformations which can
be combined with parallelism detection to optimize programs for execution on parallel proces-
sors with memory hierarchies. These techniques are similar t o those described in [IrTr88], but
are more general and simpler t o apply in the setting of a compiler or other program restructur-
ing tool. Before any of these techniques are implemented in a compiler we need to understand
the complexity of the optimization process. Given the data dependence information, it is simple
to discover whether and how a loop can be tiled. The difficulty is trying to find the optimal
loop ordering. This can be a 0 (dl) problem, where d is the loop depth, since we may have to
consider each possible loop ordering. This is then complicated by the possibility of skewing the
iteration space before tiling or skewing each tile individually. The procedure used here does
have the advantage of decoupling the optimization of the code within a tile from optimization
between tiles, reducing the complexity from 0 ((2d) !) to just 0 (d!) . For loops tha t are not
very deeply nested, the actual computation a t each step in the optimization process is relatively
small (computation of the footprints and dependences between iterations), so an exhaustive
search of the loop orderings may be reasonable.

Figure 10a.

Figure lob.

F i g u r e lla.

J d

F i g u r e llb.

F i g u r e llc.

References

[AbuS78]
Walid Abdul-Karim Abu-Sufah, Improving the Performance of Virtual Memory Computers,
Ph.D. Thesis, Dept. of Comp. Sci. Rpt. No. 78-945, Univ. of Illinois, Urbana, IL, Nov., 1978;
available as document 79-15307 from University Microfilms, Ann Arbor, MI.

[AbKL81]
W. A. Abu-Sufah, D. J. Kuck and D. H. Lawrie, "On the Performance Enhancement of
Paging Systems Through Program Analysis and Transformations," IEEE Trans. on Com-
puters, Vol. G30, No. 5, pp. 341-356, May, 1981.

[m e 8 4 1
John R. Allen and Ken Kennedy, "Automatic Loop Interchange," Proc. of the ACM SIG-
PLAN '84 Symposium on Compiler Construction, Montreal, Canada, June 17-22, 1984,
SIGPLAN Notices Vol. 19, No. 6, pp. 233-246, June, 1984.

[Bane881
Utpal Banerjee, Dependence Analyss for Supercomputing, Kluwer Academic Publishers,
Norwell, MA, 1988.

[IrTr88]
R. Irigoin and R. Triolet, "Supernode Partitioning," Conf. Record of the 15th Annual ACM
Symp. on Principles of Programming Languages, pp. 319-329, Jan. 13-15, San Diego, CA,
ACM Press, New York, 1988.

[Lamp741
Leslie Lamport, "The Parallel Execution of DO Loops," Comm. of the ACM, Vol. 17, No. 2,
pp. 83-93, Feb., 1974.

[Love771
D. Loveman, "Program Improvement by Source-to-Source Transformation," J. of the ACM,
Vol. 20, No. 1, pp. 121-145, Jan. 1977.

pura711
Yoichi Muraoka, Parallelism Ezposure and Ezploitation in Programs, Ph.D. Thesis, Dept. of
Comp. Sci. Rpt. No. 71-424, Univ. of Illinois, Urbana, IL, Feb., 1971.

[Wolf861
Michael Wolfe, "Loop Skewing: The Wavefront Method Revisited," Int? Journal of Parallel
Programming, Vol. 15, No. 4, pp. 279-294, Aug. 1986.

[WoBa87]
Michael Wolfe and Utpal Banerjee, "Data Dependence and Its Application to Parallel Pro-
cessing," Int'l Journal of Parallel Programming, Vol. 16, No. 2, pp. 137-177, April, 1987.

[Wolf87]
Michael Wolfe, "Iteration Space Tiling for Memory Hierarchies," Proc. of the 3rd SLAM
Conf. on Parallel Processing for Scientific Computing, Garry Rodrigue (ed), Society for
Industrial and Applied Mathematics, Philadelphia, PA, pp. 357-361, 1987.

[Wolf891
Michael Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, Boston, 1989.

