
Loop Rotation

Michael Wolfe

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 89-004
May, 1989

This work was supported by Defense Advanced Research Projects Agency under grant no.
MDA972-88- J-1004.

Loop Rotation

Michael Wolfe

Oregon Graduate Institute
Department of Computer Science and Engineering

20000 NW Walker Rd
Beaverton, OR 97006-1 999 USA

Technical Report No. CSIE 89-004
May, 1989

Loop Rot ation

Michael Wolfe
Oregon Graduate Center

19600 NW von Neumann Drive
Beaverton, OR 97006

Abstract

We want t o map shared-memory programs, such as Fortran programs (perhaps with paral-
lel syntax), onto a distributed memory message passing multiprocessor (DMMP), such as a
hypercube. Using a domain decomposition approach, two things need to be specified: the parti-
tioning of the data among the processors and the communication between the processors. We
assume that the user will partition the data using language extensions and the compiler will
insert communication between processors. We show how parallel loops can be mapped into dis-
tributed code by prefetching all required data before doing any computation, which can i n t r e
duce broadcast operations for certain types of loops, which we call systolic loops. T o remove the
broadcast, we use variants of the wavefront method, a t a loss of efficiency. We then introduce a
new program transformation, called loop rotation, specifically targeted for mapping systolic
loops onto DMMPs. When it applies, loop rotation produces an efficient program with uniform
communication path utilization. We then discuss how to apply loop rotation in a three-
dimensional loop, where it improves efficiency but does not produce a perfectly parallel algo-
rithm. Finally, we use loop rotation as a mechanism to compile code for which the data was
distributed in a block-diagonal or block-anti-diagonal manner.

Loop Rotation

Michael Wolfe
Oregon Graduate Center

19600 NW von Neumann Drive
Beaverton, OR 97008

1. Prologue
We want t o map shared-memory programs, such as Fortran programs (perhaps with paral-

lel syntax), onto a distributed memory message passing multiprocessor (D M) , such as a
hypercube. We distinguish automatic discovery of parallelism in sequential programs from map-
ping parallel shared-memory programs onto DMMPs. This paper is concerned with the mapping
phase. Thus a sequential program can be automatically (or semi-automatically) converted to
parallel form and then mapped onto a DMMP, while a parallel program can proceed directly t o
the mapping phase:

Using a domain decomposition approach, two things need to be specified: the partitioning
of the data among the processors and the communication between the processors. Current
research assigns the partitioning task to the user (via directives or additional statements
[CaK88,KMV87,RoP89]; the task of identifying and inserting communication points is then left
to the compiler. We make the same assumption and show how parallel loops can be mapped
into distributed code by prefetching all required data before doing any computation. We show
how prefetching can introduce broadcast operations for certain types of data accesses in loops
(which we call spstolic loopa) which may not be desirable. T o remove the broadcast, we use
variants of the wavefront method, a t a loss of efficiency.

We then introduce a new program transformation specifically targeted for mapping sys-
tolic loops onto D M s . The new program transformation, called loop rotation, is described as
another variant of the two-dimensional wavefront method, but designed to improve interproces-
aor communication characteristics of the loop rather than to uncover more parallelism. When it
applies, loop rotation produces an efficient program with uniform communication path utiliza-
tion. We then discuss how to apply loop rotation in a three-dimensional loop, where i t improves
efficiency but does not produce a perfectly parallel algorithm. Finally, we use loop rotation as a
mechanism to compile code for which the data was distributed in a block-diagonal or block-
anti-diagonal manner.

2. Motivation
This section considers how shared-memory parallel loops can be mapped onto DMh4Ps.

Consider a ring-connected DMMP, with data distributed evenly among the processors, as below:

If A and B are matrices, we aasume that only one of the dimensions will be distributed, so each
processor will own [N/HUMP] columns (or rows). We emphasize that the distribution is given to
the system by the user. A simple parallel loop with no communication, such as:

Program 1:
doall I = 0:N-1

A (1) = A (1) + B (1)
enddo

could be compiled into the parallel code:

Program 2:
on each proceador P = 0:NUMP-1

NN = CEIL (N V)
PL = P*NN
PU = MIN(N-1, (P + l) *NN-1)
do I = PL, PU

A (1) = A (1) + B (1)
enddo

where the P index specifies parallel execution on all processors. We assume tha t the user does
not specify or even know the actual number of processors on which his code will be running, so
he will not know how much of each array will be stored on any processor. In cases where there
is communication between iterations, the compiler must insert communication; several methods
are shown below.

2.1. Prefetching
In a simple loop, such as:

Program 3:
doall I = l :N-2

A (1) = O.S*(B(I -1) + B (I + l))
enddo

the compiler would realize that some of the B (I -1) and B (I + 1) references would be to ele-
ments stored in neighboring processors, and could prefetch those elements before executing the
body of the loop:

Program 4:
on each proeeasor P = 0:NUMP-1

NN = CEIL(N/NUMP)
P L = MAX(1, P*NN)
PU = MIN (N-1, (P + l) *NN-1)
if(P > 0) mend(B(PL) , P - 1)
i f (P < NUMP-1) s e n d (B(PU) , P + 1)
if(P < NUMP-1) r e c v (B (P U + l) , P + 1)
i f (P > 0) r e c v (B (P L - 1) . P - 1)
do I = PL, PU

A (1) = O . S * (B (I - 1) + B (I + l))
enddo

The more complicated example below requires a more sophisticated approach:

Program 6:
d o d l I = 0:N-1

do J = 0, N-1
A (1) = A (1) + B (J)

enddo
enddo

We can apply the "prefetch" technique described above; since each processor needs the whole
vector B, each processor would prefetch the whole vector B into local memory before entering
the parallel loop. On a DMMP, this requires the "owner" of each segment of B to execute an
explicit broadcast:

Program 6:
on each processor P = 0:NUMP-1

NN = CEIL(N/NUMP)
P L = P*NN
PU = MIN (N-1, (P + l) *NN-1)
do JP = 0, NUMP-1

J L = JP*NN
JU = M I N (N-1, (J P + l) *NN-1)
i f (JP = P) then

broadcast (B (JL: J U))
e l se

r e c v (B (J L : J U) , .TP)
endif

enddo
do I = PL, PU

do J = 0, N-1
A (1) = A (1) + B (J)

enddo
enddo

Now all references to B in the computation loop are t o local memory; however, in addition t o
the overhead of the broadcasts, each processor must have enough memory to hold the entire
vector B. This may seem a trivial concern, but one of the common design characteristics of dis-
tributed memory systems is t o attach each processor t o a relatively small local memory. Also,
as mentioned, each element of B shown above may actually be a column of a matrix.

2.2. I n t e r l e a v i n g

T o get around this problem, the compiler may instead try to interleave the broadcasts
with the computation:

Program 7:
on each proceesor P = 0: NUMP-1
NN = CEIL(N/NUMP)
PL = P*NN
PU = MIN (N-1, (P+l) *NN-1)
do JP = 0, NUMP-1
JL = JF'*NN
JU = MIN (N-1, (JP+l) *NN-1)
if(JP = P) then

broadcast (B (JL: JU))
else

recv(B(JL:JU), JP)
endif
do I = PL, PU

do J = JL, JU
A(1) = A(1) + B(J)

enddo
enddo

enddo

Now each processor only needs enough local memory to store one extra "block" of B in addition
to its own; for simplicity, this program does not show the extra storage that would be required
for the extra block of B. The broadcasts constitute overhead that can be overlapped with the
computation if asynchronous communication is allowed. Each iteration through the loop can
initiate the broadcast and receive that will be needed in the subsequent iteration of the loop;
the communication can take place while the computation for this iteration is going on. The
generated code is messy, so a simplified version is shown below:

Program 8:
on each processor P = 0:NUMP-1
NN = CEIL(N/NUMP)
PL = P'NN
PU = MIN(N-1, (P+l) *NN-1)
if(P = 0) then

abroadcast (B (PL : PU))
else

arecv(B(PL:PU), 0)
endif
do JP = 0, NUMP-1
JL = JP*NN
JU = MIN(N-1, (JP+l)*NN-1)
NJL = (JP+l) *NN + 1
NJU = MIN(N, (JP+2) *NN)
if(JP+1 = P) then

abroadcast (B (NJL : NJU))
else if (JP < NPROC)

arecv(B(NJL:NJU), JF+1)
endif
do I = PL, PU

d o J = J L , JU
A(1) = A(1) + B(J)

enddo
enddo

enddo

where abroadcast and meev refer t o asynchronous communication; we have not shown the
code tha t would be required to check that the data was actually received before i t was used, or
the double buffering that would be used to prevent an arecv from overwriting the da ta buffer
too early. This method would be satisfactory except for the broadcasts; broadcasts may be too
expensive t o amortize efficiently over the computation.

We can look a t the iteration space of Program 5 a s partitioned by the methods above;
both the I and J dimensions of the iteration space are partitioned due t o the accesses of A
(aligned with the I dimension) and B (aligned with J).

We consider execution of each partition (or tile) t o be atomic, so a time step is the time to exe-
cute a whole partition. The methods of programs 6-8 assign processors along the I axis with
time flowing along the J axis. The problem is that vertically aligned blocks of the iteration
space, which will be executed in parallel, use the same partitions of B, requiring broadcasts.

2.3. Wavefronta
We can instead "wavefront" the loop to remove the broadcasts. The wavefront method

can be implemented by skewing the iteration space, as shown below, while still assigning proces-
sors along the I axis with time flowing to the right:

--+

At any time step, each processor uses distinct blocks of the B matrix. In fact, each block of the
B matrix is first processed by processor 1, then can be shifted down to processor 2, and so on.
This is essentially a "systolic" formulation of the algorithm, with the computation scheduled on
the processors when the data arrives. A systolic array, however, would have the A and B vec-
tors arriving from some external environment:

In our system model the data is already distributed among the processors. We can still use a
systolic formulation of the algorithm by having the processors 2 through MlMP shift their data
up towards processor 1 for the first NUMP-1 time steps. This requires that during some time
steps, some processors are shifting data and performing computation during some time steps; the
lower case letters in the figure below correspond to blocks of data being shifted without partici-

a 0 1
N O 1

i
u s 1
#11

url
YII

Ull
u s 1

a 1 1
N O 1

l o 1
Yll

Y o 1
A

u a l
Y S I

UU
Ull

~ 1 1 1
At*]

Y O 1
I

7

u r 1
A101

a 1 1
A

rlrl
u s 1 .

-

u s 1
N O 1

I
A111

pating in computation:

--+

The wavefront formulation sohes the problem of broadcasts, but with a loss of efficiency;
for large numbers of processors, the efficiency for doubly-nested loops such as this is close to
50%. In addition, da ta must flow up towards processor 1 (priming the pump), then back down
the processor ring, essentially bouncing off processor 1. Some processors have an unbalanced
load, having to pass along data from lower processors and compute with and pass along da ta
from upper processors. Some communication paths have twice the usage of others during cer-
tain time periods.

The wavefront method is usually used to uncover parallelism in a loop where da ta depen-
dence constraints prevent parallel execution of either loop [Lam74,Wo186]. In our example this
is not the case; in fact, the outer loop of the algorithm is explicitly parallel. However, t o map
the parallel loop onto the processor ring, we are required to introduce some sequentiality in
order t o allow the da ta t o reach the processor a t the time a t which i t is needed.

2.4. Reverse Wavefront
To remove the bidirectional data movement problem as well a s the unbalanced communi-

cation link problem, we can skew the iteration space the other way, letting processor NUMP lead
the way. The data flows upward along the processor array:

We still have a "pumppriming" phase, except now i t sends data around the ring connection.
All data communication flows in the same direction around the ring (uniform data flow) and no
communication path or processor has an unbalanced load. The only unsolved problem is the
50% efficiency.

8. Rotation
Using Program 5 as our example, we want t o generate a distributed parallel loop with

several characteristics:

1) Uniform data communication (as in the reverse wavefront).

2) Balanced communication and computation across processors.

3) High efficiency.

IT we again study the iteration space of the loop as partitioned along the I and J axes, we see
tha t each processor has the data necessary to s tar t executing the diagonal blocks. The reverse
wavefront formulation aligns these blocks of the iteration space; what we wish to do next is to
reorder the execution in each row of the iteration space so each processor starts executing at
the diagonal elements:

me --+

This is essentially taking the reverse wavefro11L iteration space and moving the priming phase to
fit in with the flushing phase; we call this loop rotation.

In the rotated iteration space, each processor can star t computing immediately, since i t
already has all the data for its first block; thus, the efficiency requirement is satisfied. Between
blocks (along the horizontal axis), all data communication moves upward and around the ring;
this produces uniform and balanced communication. Again, we emphasize that loop rotation
does not add parallelism t o an algorithm; the parallelism was already there. The problem was
the communication constraints, and the desire to remove the broadcasts.

a81

UOI

Y 11

a21

3.1. Requirements

US1

I

U O I

U11

a01

@* I

I 2 1

I 8 1

Under what conditions is loop rotation legal? If we consider only the case where the outer
loop is already parallel, then the only dependence relations allowed in the iteration space are
along the inner axis. If there are no such dependence relations (no dependences carried by the
inner loop [AlK87]), then rotation is clearly legal. Program 5 does not satisfy this condition,
since it accumulates a sum in the inner loop. Reordering the summation will produce the same
answer, except for the difference in roundoff error accumulation. Vectorizing compilers typically
have a switch which a user can toggle telling the compiler whether the roundoff error differences
are acceptable t o the user or not; some reduction operations can be reordered without fear of
roundoff error accumulation [Wo189]. Usually, for well-conditioned problems, the difference is
roundofl error accumulation is acceptable, especially with the gain in performance. We use the
same idea here, allowing reordering of associative reductions.

Ill

Y21

us1

a01

Loop rotation really only applies for nested loops with two characteristics:

1) the loop nesting is greater than the dimensionality of the processor topology;

2) some distributed dimension is accessed by more than one parallel loop.

In Program 5, we have a one-dimension processor ring with a loop nest depth of two, and the
distributed dimension of A is accessed by the I loop while the corresponding distributed dimen-
sion of B is accessed by the J loop. Another example of this would be a matrix multiply; s u p
pose we have the same one-dimensional ring of processors, and three matrices, A, B and C, all
distributed by columns (second dimension):

Program 9:
doall I = 0, N - 1

doall J = 0, N - 1
do K = 0 , N - 1

A (1 , J) = A (1 , J) + B(I ,K)*C(K,J)
enddo

enddo
enddo

In this case, we ignore the I loop, since i t indexes row number, and all rows of a particular
column will be stored on a single processor. The pertinent loops are J and K; we then have two
nested loops on a one-dimensional ring of processors, with the columns of A and C accessed by J ,
and columns of B accessed by K. This leads us t o believe that loop rotation may be of some
value here. In fact, if we ignore the first dimension and the I loop, we have a program very like
Program 5, and i t would be handled the same way.

8.2. Rotation vs. Wavefronts
The wavefront method of executing a loop can be described as moving a slanted line

through the iteration space, and executing in parallel all iterations which simultaneously inter-
sect with the slanted line. With a classical wavefront, the slanted line will first intersect with
the upper left corner of the iteration space, then move down and to the right:

In the reverse wavefront we used to derive loop rotation, the slanted line first intersects the
lower left corner of the iteration space, then moves up and to the right:

Loop rotation can be described as treating the iteration space as a cylinder (instead of a flat
rectangle), moving a slanted line through the iteration space (wrapping around the cylinder),
and executing in parallel all iterations which simultaneously intersect with the line. The
slanted line starts out going through the diagonal elements, then moves to the right and around

the iteration space:

At this point we note tha t the wavefront method of executed a nested loop involves skew-
ing the iteration space, then ordering the skewed loops such that sequential execution of the
outermost loop will satisfy all dependence relations and allow parallel execution of all inner
loops Po1861. In the two dimensional version, the sequential wavefront loop surrounds a single
parallel inner loop; in a three dimensional wavefront, the sequential wavefront loop surrounds
two nested parallel inner loops; the one-dimensional analog of a wavefront is just a single
sequential loop. Loop rotation corresponds to converting a two dimensional wavefront t o a vec-
tor of one-dimensional wavefronts in the rotated iteration space. We will see why this view is so
interesting in three dimensional loop rotation.

Loop skewing is simply defined a s changing the shape of the iteration space by adding the
outer loop index to the lower and upper limits of the inner loop; this requires tha t the subt rac t
ing the outer loop index from the inner loop index within the body of the loop. Thus program 5,
after skewing the inner loop, becomes:

Program 10:
doall I = 0:N-1

do J = I+O, I+N-1
A(1) = A(1) + B(J-I)

enddo
enddo

A classical wavefront is derived by interchanging these two loops [Wo186]. A reverse wavefront
will subtract the outer loop index from the inner loop limits:

Program 11:
doall I = 0: N-1

do J = 0-1, N-1-1
A(1) = A(1) + B(J+I)

enddo
enddo

A loop rotation optimization is defined simply when the loop lower limits are zero; the inner
loop is 'rotated' by adding the outer loop index to the inner loop index within the body of the
loop, modulo the trip count of the loop:

Program 12:
doall I = 0:N-1

do J = 0, N-1
A(1) = A(1) + B((J+I) mod N)

enddo
enddo

The way we have defined the optimizations, we would first partition (or tile) the iteration space
according t o the da ta distribution, and we would skew or rotate only the tile loops.

4. Loop Rotation in 3D
Now consider a twedimensional mesh (torus, actually) of processors, with matrices diitri-

buted evenly across the ensemble:

Simple twenested loops could be handled by prefetching data into the processors before per-
forming computation (as with the single-nested loops on a one-dimensional ring of processors).
Here we concentrate on loops nested three deep, where some distributed dimension of the
matrices is indexed by more than one loop variable. One example would be where a single
dimension is indexed by two loop variables:

Program 13:
doall I = 0, N - 1

doall J = 0, N-1
do K = 0, N - 1

A (1 . J) = A (1 , J) + B(I ,K)
enddo

enddo
enddo

I t is easy to see tha t this case can be handled the same way as the two dimensional case in the
previous section. The original iteration space (for N=4) is shown in figure 1; assigning processors
t o the I X J axes (with time flowing along the K axis) requires tha t all processors with the same
I address need the same block of B a t the same time. Using a reverse wavefront in J and K
gives the modified iteration space in figure 2. Assigning processors to the I X J axes has the pro-
perties we want; again, time flows to the right, so vertically aligned blocks in the iteration space
are executing in parallel. No two vertically aligned blocks require the same data; moreover,
only nearest neighbor connections are required. The A matrix stays in the same processor, while
B moves around the processors backwards (upwards) in the J dimension. Figure 3 shows the
rotated iteration space (K rotated around J), which has the property tha t all processors can
simultaneously with all local data, and the only data motion is blocks of B moving around the J
dimension. This program essentially a vector of twedimensional rotated loops, and so is noth-
ing new.

A more interesting problem arises in a triply nested loop where both dimensions are
indexed by more than one loop variable. Our old friend matrix multiply (program 9) is a per-
fect such example. We want t o derive a formulation for the program on a toroid DMMP with
high efficiency, uniform communication and no broadcasts.

The original partitioned iteration space is shown in figure 4. Simply skewing the iteration
space analogous to the 2D case gives the iteration space in figure 5; processors are assigned
down the columns (IXJ axes) and time runs to the right (K axis). Note tha t each processor
always refers to the same block of the A matrix, the B matrix moves across processors down the
J axis and the C matrix moves across processors down the I axis. As in the 2D case, this
corresponds to a systolic algorithm. This wavefront formulation requires the blocks of B data t o
be moved up to the (*, 0) processors and the blocks of C to be moved up to the (0, *) proces-
sors; while no broadcasts are required, data is moving in two directions (upwards to prime the

pump, and downwards for the systolic computation). Again, as in the 2D case, we aolve the
nonuniform communication problems by using a reverse wavefront; the iteration space for the
3D reverse wavefront is shown in figure 6. Here data moves uniformly up each dimension all the
time, though i t is not involved in any computation until it reaches the last processor in tha t
dimension. We still have low efficiency, however.

We are tempted to attack the low efficiency by finding a 3D loop rotation transformation,
since the 2D loop rotation generated perfect efficiency. What would be the characteristics of a
perfectly efficient rotation transformation? We need to find GxG blocks in the
iteration space where, for each block, all the data needed to star t that block is initially resident
in a single processor; this allows us to s tar t all these processors all a t once (assuming they are
distinct). Then we need to order the rest of the iterations in such a fashion tha t da ta flows
naturally between nearest neighbor processors in uniform directions.

The news on these points is not good. Let us first examine the efliciency question, since
the reverse wavefront already has uniform communication. We derived 2D loop rotation from
2D reverse wavefront by noticing that halfway through, all the diagonal blocks were aligned
and all were using data that was initially stored on those processors; by starting the processors
at the diagonal, loop rotation fell out. In 3D, again only the diagonal blocks use data which is
initially stored on the processor executing those blocks; unfortunately, there are only
diagonal blocks. Moreover, when we look a t the reverse wavefront iteration space (figure 6),
those diagonal blocks don't even line up; (0,O. 0) is executed before (1.1. I) , and so on.

What might happen if we did initiate those blocks? Not surprisingly, the 3D analog of
loop rotation is a vector of 2D wavefronts; the 3D rotated iteration space is shown in figure 7.
Figure 8 shows the original iteration space with the time steps a t which each block in the itera-
tion space would be executed; each 2D wavefront starts a t a diagonal iteration and spreads out
t o the right and down within a plane of the 3D iteration space. There are three possible orien-
tations of the vector of wavefronts, so we choose the one that allows the result matrix (A) t o
reside on the same processor throughout the loop. Thus, loop rotation in general seems t o
replace a d dimensional wavefront by a vector of (d-1) dimensional wavefronts. In the 2D case,
the result is perfect efficiency; for higher dimensionality, the savings is not so great and may not
be worth the trouble if i t brings added complexity.

Now for the added complexity. Looking carefully a t figure 7, we see the data blocks
required by each processor a t each time step. The orientation of the rotation was chosen t o
hold the A matrix blocks fixed within processors, while the communication pattern for the B
matrix blocks is very regular. The pattern for C is very irregular. Notice that in the third time
step, C (2 . 0) and C (O,2) are each used by two different processors simultaneously; the next
time step uses each C (2 , l) and C (1,2) simultaneously in two processors. While duplication is
not necessarily infeasible, the communication pattern is very irregular. Transposing the matrix
or other simple fixes will not help matters. It seems tha t the complexity required by 3D loop
rotation may well prevent its use in the only programs that could benefit from it.

6. Diagonal Di ibut ions
Given a ring of processors, there are distribution mechanisms other than by rows or by

columns; the one shown here was first described to the author by Martin Shultz of Yale Univ.
Suppose we divide each matrix into NUMPXNUMP square blocks, and assign block (I , J) t o pro-
cessor I -J mod NUMP (to get diagonal distribution, shown in figure 9) or I + J mod NUMP (to
get anti-diagonal distribution, shown in figure 10). These distributions have the advantage that
both array access by row and by column can be done in parallel.

With parallel loops using this distribution mechanism, we want a method t o identify the
proper iterations to execute on each processor. Loop rotation will adjust the iteration space to
align either the diagonal or anti-diagonal down one dimension of the iteration space, allowing
parallel execution across the other dimension.

6. Epilogue
To map parallel loops in shared-memory programs onto distributed memory message pass-

ing multiprocessors with predefined data partitioning, we must identify the data tha t needs to
be communicated between processors. In what we call systolic loops, prefetching all the data
wil l be too expensive, in time and local storage. The best loop schedule would have several key
characteristics:

1) good processor efficiency (all processors busy doing useful work)

2) uniform communication patterns

3) no broadcasts

We showed how loop skewing or wavefronting can remove broadcasts, and how reverse skewing
or reverse wavefronts can provide uniform communication patterns. T o address processor
efficiency we introduce a new program transformation, called loop rotation, which changes the
order of execution of the iterations in the loop. This may not always be feasible, but i t has cer-
tain advantages when i t is. In the 2D case (two dimensional loops on a one dimensional ring of
processors), loop rotation (when i t applies) can generate perfect efficiency while still satisfying
the other desires. In the 3D case, however, loop rotation falls apart; the 3D rotation
corresponds to changing from a 3D wavefront to a vector of 2D wavefronts. The efficiency of a
3D wavefront is (roughly) 33%, while the efficiency of a 2D wavefront is 50%; thus, rotation will
not even double the efficiency. The 3D rotation does not have uniform communication patterns
for all data, and some data is even required in multiple places a t the same time.

While i t is not clear that loop rotation scales beyond the 2D case a t all, i t is nonetheless
interesting within its limited field of application. We plan to continue study of rotation and
other such program transformations for distributed memory computers. I t is worthwhile t o
emphasize that loop rotation was not used to uncover any latent parallelism in the algorithm;
in fact, our examples all used explicit parallelism. Rotation (and other transformations) will be
used to efficiently map parallel algorithms onto distributed machines. This problem has some
relation t o the systolic algorithm mapping problem, but has the additional constraints of a fixed
data partition among the processors.

References

[AlK87] J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs to Vector
Form, ACM Transactions on Programming Languages and Systems Q, 4 (October
1987), 491-542 .

[CaK88] D. Callahan and K. Kennedy, Compiling Programs for Distributed-memory
Multiprocessors, The Journal of Supercomputing 2, 2 (August 1988)' .

[KMV87] C. Koelbel, P. Mehrotra and J. Van Rosendale, Semi-automatic Process Partitioning
for Parallel Computation, International J. of Parallel Programming 16, 5 (October
1987), 365-382.

barn741 L. Lamport, The Parallel Execution of DO Loops, Communications of the ACM 17, 2
(February 1974), 83-93, ACM.

[RoP89] A. Rogers and K. Pingali, Process Decomposition Through Locality of Reference, in
to appear in ACM SIGPLAN Notices '89 Conf. on Programming Language Design and
Implementation, 1989.

Po1861 M. Wolfe, Loop Skewing: The Wavefront Method Revisited, Int'l Journal of Parallel
Programming IS, 4 (August 1986), 279294.

[Wo189] M. Wolfe, Optimizing Supercompileru for Supercomputers, Pitman Publishing and
MIT Press, London and Boston, 1989.

Figure 1.

14

Figure 2.

Figure 3 .

16

AO0-300

COO

AOllBOO

C01

A O 2 a

C02

A03400

C03

A10-310

COO

A11-310

C01

A12410

C02

A131B10

C03

A20.IB20

COO

A21=B!XJ

C01

AP=-B20

C02

C03

Figure 4 .

17

AW-Bo3

C30

AOl=BO3

C31

A02=B03

C32

A03=B03

C33

AOO-BOl

C10

AOl=BOl

C11

A02=BO1

C12

AO3=BO1

C13

AlOIBll

C10

All-311

C11

A12411

C12

A13411

C13

A?O=B30

COO

A31=B30

C01

A32-

CIJ2

AS3-EWIASSleSl

C03

ACQ-BO2

c20

AOl-BO2

C21

Am*

C22

A03-BO2

C23

-1

C10

A21421

C11

A221821

C12

A23=B21

C13

A1-12

cm

A l l 4 1 2

C21

A124312

C22

A13412

C23

-1

C10

A31-331

C11

A32431

C12

C13

A10-B13

C30

A11413

C31

A12413

C32

A13-B13

C33

A!20=BZ

C20

A21-B22

C21

A22-

c22

A23-

C23

A2O=B23

C30

A21-B23

C31

A224323

C32

C33

A30=B32

cm

A31-2

C21

A32=B32

C22

A33-332

C23

A301B33

C30

A31433

C31

A32433

c32

A33=B33

C33

AOQm

COO

Figure 5 .

18

A011809

C31

A02-Bo2

C22

A031801

C13

AOOIBOl

C10

A o l a

C01

m B 2 0

COO

A21=B23

C31

A22-B22

C22

-21

C13

A02-300

C02

A021809

C32

A m a o 2

C23

A23+EU

C03

-22

C20

A21d321

C11

A22420

C02

m B 2 1

C10

A21-

C01

COO

A31-B33

C31

A32-332

C22

A3S=B31

C13

A02aO1

C12

Ao3-Bw

C03

AOQm

C20

AOl-BOl

C11

A031809

C33

Ap,B23

C30

A21-B22

C21

-1

C12

A22-

C32

A23=B22

C23

m a
C03

C20

A31-B31

C11

M2=B?iO

C02

AS[tiBSOA3o-B31A3o=B32A301B33

C10

A 3 1 a

C01

Aoo-BI3

CsO

AOla02

C21

A231B2-3

C33

C30

A31-B32

C21

A m 1

C12

A32-B33

C32

m a
C23

A351B33

'233

I 4
A-

COO

AOllBOl

C11

Am-Bo2

c22

Ao3=B@3

C33

1-1

AOllBOO

a 1

m a 0 1

C12

A w a o 2

C23

Ao3-Bcm

C03

AlO-ElO

COO

Al l lB l l

C11

A12412

C22

A13lB13

C33

143

Ao2..Boo

m

Ao3ao1

C13

AlllBlO

a 1

A121811

C12

A1-12

C23

Al-10

C03
1

COO

A31-1

C l l

'432-

C22

CS3

A m a o 3

c30

A m a o l

C10

AOl-Bo2

C21

AlOlBll

C10

A11412

C21

A12-Bl3

C32

AlhB10

C02

A13-Bll

C13

A 3 1 a

C01

m a 3 1

C12

C23 003

AwhBo3

C32

AQQ-EQ2

C20

AOl-Em

C31

A S 2 a

Go2

~ A 3 3 - B 3 1 ~ ~

C13

Al-12

C20

A114313

C31

CSO

A 3 0 3 8 9 0 ~ 1 A m - B 3 2 A 3 0 - B 3 3

C10

A31-

C21

AlO=B13

C30

A32-B33

C32

C20

A 3 1 a

C31

Figure 7 .

Figure 8 .

Figure 9.

Figure 10.

