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Abstract 
We present a new dataflow query evaluation system developed for database systems research and educa- 

tion. Volcano is extensible with new operators and algorithms because it  uses a standard interface between pro- 
cedures. It supports dynamic  query evaluat ion plans tha t  allow delaying some optimization decisions until run- 
time, e.g., for embedded queries with free variables. I t  includes an  exchange operator tha t  allows intra-operator 
parallelism on partitioned datasets and both vertical and horizontal inter-operator parallelism, translating 
between demand-driven dataflow within processes and data-driven dataflow between processes. 

1. Introduction 

In order t o  provide a testbed for database systems education and research we decided t o  design and imple- 

ment a modular, high-performance query evaluation system with our limited resources. We spent a fair amount 

of time thinking about making our software flexible without sacrificing efficiency. The result is a compact sys- 

tem, consisting of fewer than two dozen core modules with a total of about 12,000 lines of C code. These 

modules includes a file system, buffer management, sorting, B t t r e e s ,  and two algorithms each for natural join, 

semi-join, outer join, anti-join, aggregation, duplicate elimination, division, union, intersection, difference, anti- 

difference, and Cartesian product. Moreover, two modules implement dynamic query evaluation plans and allow 

parallel processing of all algorithms listed above. 

Volcano is a n  operational query evaluation system implemented on both single- and multi-processor sys- 

tems. I t  is not a complete database system since it  lacks a number of features such as  a query language, an  

' The name Volcano was born when David Maier asked about some drawings of index structures on the author's white 
board, left over from a conversation with Leonard Shapiro about the query evaluation system, whether they were pictures of 
"data volcanos." For a system developed in Oregon, not far from Mt. Hood and Mt. St. Helens, the name seemed just fine. 
The artwork on the cover was done by ICelly Atkinson from a photograph of Mt. Hood, Oregon. 



optimizer, a type system for instances (record definitions), and catalogs. This is by design; Volcano is intended 

t o  provide a n  experimental vehicle for our earlier work in query optimization [1,2,3] and for multi-processor 

query evaluation. 

Many design decisions in Volcano were deliberately left open, and typically can be expressed using run 

time variables, e.g., the number and sizes of buffer pools, the unit of buffering and 1/0 for each file, the unit of 

disk space allocation, the degree of parallelism in query evaluation, etc. All operations on records are  left open 

for later definition. Instead of inventing a language in which t o  specify selection predicates, hash functions, etc., 

we prefered t o  pass functions t o  the appropriate operators which a re  called when necessary with the right argu- 

ments. These support futzctions are explained in more detail in the text. The common theme is tha t  Volcano 

provides rnechanistns for query evaluation in order t o  allow the user of Volcano t o  experiment with policies. 

This paper is a general overview, i t  describes the Volcano system without special attention t o  any particu- 

lar  aspect. Other papers on Volcano were written for this purpose, e.g., [3,4,5,6,7,8,9, lo]. These papers also 

include experimental performance evaluations of Volcano's algorithms. 

In the following section, we briefly review previous work tha t  influenced our design. In Section 3, we pro- 

vide a more detailed description of Volcano. Section 4 is a discussion of extensibility in the system. Dynamic 

query evaluation plans and their implementation are  described in Section 5. Parallel processing is encapsulated 

in the ezchange module described in Section 6. In Section 7, we describe how the ezchange module can be used 

t o  efficiently exploit common subexpressions in a complex query. Section 8 describes alternative strategies and 

implementations of parallel sorting for very large files. Section 9 contains a summary and our conclusions from 

this effort. 

2. Related Work 

Since so many different systems have been developed t o  process large datasets efficiently, we only survey 

the systems t h a t  have strongly influenced the design of Volcano. The system grew in pieces, with first ideas 

developed a t  the University of Wisconsin without a clear design for Volcano. The ideas for dynamic query 

evaluation plans and for parallel execution were developed a t  the Oregon Graduate Center [3,11]. 



Our work is most strongly influenced by WiSS and GAMMA. The Wisconsin Storage System (WiSS), is a 

record-oriented file system providing heap files, B t r e e  and hash indices, buffering, and scans with predicates. 

GAMMA is a software database machine running on a number of general purpose computers as  a backend to a 

UNIX host machine. It  was developed on 17 VAX 11/750's connected with each other and the VAX 11/750 host 

via a 80 Mb/s token ring. Eight GAMMA processors have a local disk device, accessed with WiSS. The disks 

are accessible only locally, and update and selection operators use only these eight processors. The other, disk- 

less processors are used for join processing. GAMMA extensively uses hash-based algorithms, implemented in 

such a way tha t  each operator is executed on several (or all) processors and the input stream for each operator 

is partitioned into disjoint sets according to  a hash function [12,13,14]. A detailed description and a prelim- 

inary performance evaluation of GAMMA can be found in [13], more information on its performance in [15]. 

The GAMMA software is currently being ported to an Intel iPSC/2 hypercube with local disk drives. 

In early summer of 1987, there was only an  impression tha t  some decisions in WiSS [16] and GAMMA [13] 

were not optimal for performance, generality, or both. For instance, the decisions to  protect WiSS's buffer space 

by copying a da ta  record in or out for each request and to  re-request a buffer page for every record during a 

scan seemed to inflict too much overhead2. The desire to design and build a better file system drove the first 

effort towards Volcano's file system layer. 

During the design of the EXODUS storage manager [17], many of these issues were revisited. Lessons 

learned and tradeoffs explored in these discussions certainly helped in forming the ideas behind Volcano. The 

development of E [18] influenced the strong emphasis on iterators for query processing. 

Finally, a number of conventional (relational) and extensible systems have influenced our design. Without 

further discussion, we mention Ingres [19], System R [20], GENESIS [21], Starburst [22], Postgres [23], and XPRS 

[24]. It  is interesting to  note that  independently of our work the Starburst group has also identified the 

demand-driven iterator paradigm as a suitable basis for an  extensible, single process query evaluation architec- 

ture [25]. Furthermore, there has been a large amount of research and development in the database machine 

This statement only pertains to the original version of WiSS as described in [16]. Both decisions were reconsidered for 
the version of WiSS used in GAMMA. 



area, such t ha t  there.is a n  annual international workshop on the topic. Almost all database machine proposals 

and implementations utilize parallelism in some form. We certainly have learned from this work, in particular 

from GAMMA, and tried t o  include these lessons in the design and implementation of Volcano. In particular, 

we have strived for simplicity and symmetry in the design, mechanisms for well-balanced parallelism, and 

efficiency in all details. 

3. Volcano System Design 

In this section, we provide a n  overview of the modules in Volcano. The file system layer provides record, 

file, and index operations, including scans with predicates, and buffering. The query processing layer is a library 

of query processing modules t ha t  can be nested t o  build complex query evaluation trees. This separation can be 

found in most query evaluation systems, e.g., RSS and RDS in System R [20]. System catalogs or a da t a  diction- 

ary are  not included in Volcano since we did not want t o  commit ourselves t o  a particular da t a  model. We 

s ta r t  our description a t  the bottom, the file system, and then discuss the query processing modules. 

3.1. The File System 

Within our discussion of the Volcano file system, we also proceed bottom-up, from devices and memory 

management through buffer management t o  da t a  files and B+-trees. 

Volcano stores da t a  on disk devices. Devices are  viewed as  arrays of fixed-sized pages. Several devices of 

different sizes can be used concurrently. The page size is a compile-time constant, currently 1 ICB. We use 

UNM files t o  simulate devices, similar t o  WiSS. It is quite straightforward t o  port Volcano t o  using raw devices 

or other primitive OS services3. We assume tha t  we can read or write a contiguous array of pages (up t o  the 

maximum cluster size, see below) with a single read or write system call. 

Page allocation on a device is done using a contiguous bit map. The bit map is sized t o  contain one bit 

for each page on the,device. The bit map and the volume header are read into buffer space when a device is 

mounted, and kept there until i t  is dismounted. Mounting, page allocation, and actual 1/0 functions are per- 

formed by the physdo module. 

'In fact, this has been done successfully as reported in the performance section below 



A simple memory manager is used by all other system components, e.g., t o  allocate buffer space or  hash 

tables. It allocates a large chunk of memory when Volcano is initialized and satisfies requests from this chunk. 

Request are  expressed in number of pages. I t  uses a bit map and linked lists of small chunks t o  allocate and 

deallocate pages. 

The buffer manager is one of the more interesting parts of the system. I t  includes a number of novel 

features and mechanisms. Buffer pools can be created and destroyed dynamically, and multiple buffer pools can 

exist concurrently. When a device is mounted, i.e., created or  opened, the device is assigned t o  a buffer pool. 

When a pool is created, i t  is created with a norm site, e.g., 512 KB, and a n  actual size of 0.  The buffer pool 

grows with each new request t ha t  cannot be satisfied with the resident clusters until the actual size reaches the 

norm size, as  will be described shortly. 

When pages are  requested from the buffer and result in a buffer fault, the buffer manager allocates space 

for the new page using the memory manager described above. The reason for this strategy is t ha t  we wanted t o  

support variable-size chunks, which we call clusters, within devices without the problems of bufler shufling, i.e., 

moving pages around in the buffer in order t o  find contiguous pages. Buffer shuffling is undesirable for two rea- 

sons. First, i t  is slow and expensive t o  do. In many current systems, e.g., a DEC microVAX 11, memory t o  

memory copying is not much faster than typical disk transfer rates. Second, in order t o  avoid copying data  

between the buffer space and query processing algorithms we needed t o  pin buffer pages, i.e., guarantee the loca- 

tion of a cluster in the buffer until the cluster is explicitly unpinned. We opted against using double indirection 

a s  used in the EXODUS storage system [17,26] because i t  is too complex t o  implement and introduces unneces- 

sary performance penalties. 

A number of investigations concerned database buffer replacement strategies. For an  overview, see [27]. 

Buffer replacement in systems with variable size pages was investigated by Sikeler [28]. To comment only on 

one, Chou performed a n  extensive comparison using simulations driven by real database system traces t o  com- 

pare a number of replacement strategies [29,30]. When examining Chou's work, we noticed t ha t  most of the 

benefit of Chou's algorithm DBMIN could be realized by using hints from higher level software, e.g., the query 



processing routines, for each cluster when a cluster is pinned4. Thus, when pinning or unpinning a cluster in the 

buffer, a hint must be given t o  the buffer manager whether t o  KEEP or t o  TOSS this cluster. This hint is used 

by the buffer manager t o  decide whether t o  insert the cluster a t  the top or  a t  the bottom of a LRU list. In 

effect, the replacement policy is a switched LRU/MRU policy. The LRU policy is implemented in such a way 

tha t  dirty clusters are  paged out slower than  clean ones since their replacement cost is higher. Incidentally, this 

strategy is similar t o  the LOW/HATE hint used in Starburst's buffer manager [32]. However, while the default 

in Starburst is LOVE (LRU), the default in Volcano is TOSS (MRU). The M I N K  operating system [33] also 

inserts pages either a t  the top or the bottom of a LRU stack for da t a  and indirect pages. The decision is static, 

however, and does not accept hints from the user level. 

When the actual size reaches the norm size, page replacement commences. In the case of a buffer fault, i t  

first is checked whether the cluster a t  the bottom of the LRU stack is of the same size as  the requested cluster. 

If so, i t  is replaced. If not, or  if there is no free cluster in the stack because the buffer is overcommitted, space 

for the new cluster is allocated from the memory manager. For this purpose, there are more cluster descriptors 

in the buffer pool than  the norm size of the pool, and the buffer pool can grow beyond its norm size. After the 

requested cluster is loaded into the buffer, the buffer deallocates clusters from the bottom of the LRU stack until 

the actual size is below or equal t o  the norm size, or until the LRU stack is empty. 

Files are  composed of records, clusters, and extents. Clusters are the unit of 1/0 and of buffering, as  dis- 

cussed above. The cluster size is fixed for each file individually. Thus, different files on the same device can 

have different cluster sizes. Records must fit into clusters t o  avoid the difficulties and inefficiencies of spanning 

records, i.e., records t ha t  are  divided over multiple pages. Since clusters can be very large, this is hardly a res- 

triction. A t  the current time, the record length is also fixed for each file, i.e., all records within one file must 

have the same length. We realize tha t  this is a severe restriction for supporting complex objects with Volcano 

and will remedy this problem shortly. Disk space for file is allocated in extents, one primary and up t o  thirty 

Chou's algorithm also uses a hint when a scan is opened about which of a set of access patterns can be expected. 
Chou's algorithm also includes load control by detecting an overcommitted buffer and the danger of thrashing. However, we 
believe that load control can easily be added to Volcano simply by estimating hot set sizes 131) and keeping track of their 
sum. 



secondary extents. An extent contains multiple clusters. The extent sizes are  declared when a file is created. 

Records can be accessed directly using a record identifier (RID) or  through a scan. A RID consists of dev- 

ice number, page number, cluster size, and record number within the cluster, and i t  is 8 bytes long. Thus, there 

16 can be 256 devices, 232 pages per device, 256 pages per cluster, and 2 records per cluster. The cluster size is 

included the enable the buffer and 1 / 0  modules t o  perform all necessary operations using only a RID. 

There are  two modes of record insertion. If a near RID is provided with the insertion request, the new 

record is inserted into the old record's cluster. If this cluster is already full, the default strategy is used. By 

default, the record is inserted into a n  arbitrary cluster of the file. For this purpose the file descriptor includes a 

hint pointing t o  a cluster t h a t  has a n  open record slot. If no such cluster can be found, a new cluster is 

appended t o  the file. 

One special file is kept on each device called the volume table of contents (VTOC). It implements a single 

level directory, and is accessed with the standard file and record routines. Originally, this file was intended t o  

serve the purpose of inodes in the UNIX file system [34]. Later on we decided tha t  we also needed a mapping 

from names t o  VTOC entries. The name service in Volcano is rather simple. Instead of "going the whole nine 

yards" and implementing tree-structured directories, we opted for the quicker solution of including name strings 

in the VTOC entries. However, there is nothing tha t  prevents us from revisiting this decision. The name look- 

up service is encapsulated in a single procedure, thus changing this aspect of Volcano's design would be a very 

localized change. 

Internally, files are  identified by a closed file descriptor which is the RID of the file's entry in the VTOC. 

When a file is opened, the VTOC cluster containing the file's entry is fixed in the buffer pool. An open file 

descriptor is a pointer t o  a file's entry fixed in the buffer pool. While this is not the safest way to  implement 

handles t o  open files, i t  probably is the most efficient one, which is why we chose t o  use it. The closed file 

descriptor of the VTOC is kept in the volume header; a device's VTOC is kept open a s  long as  the device is 

mounted. 

There are  two interfaces t o  file scans; one is par t  of the file system and is the described momentarily; the 

other is par t  of the query processing level and is decribed later. The first one has the standard procedures for 



file scans open, nezt, close, rewind. The nezt procedure returns the main memory address of the next record. 

This address is guaranteed (pinned) until the next operation is invoked on the scan. A file scan supports the 

notion of a current record and current cluster, the cluster which includes the current record. The current record 

is the record returned by the last next call. The current cluster is fixed in the buffer while the scan is open. 

Thus, getting the next record within the same cluster does not require calling the buffer manager and can be 

performed in about 100 instructions. The current record's RID can be extracted from the scan descriptor if i t  is 

needed. 

It has been pointed out t o  us t ha t  for some applications, bi-directional scans are  desirable. Currently, Vol- 

cano does not provide reverse scans or a previous operation. We believe, however, tha t  such an  operation is 

easy t o  add if necessary. We did not implement i t  because Volcano's query processing modules in their current 

form have no use for reverse scans. 

For fast creation of files, scans support a n  append operation. I t  allocates a new record slot, either in the 

current cluster or in a new cluster appended t o  the end of the file, fixes the new cluster in the buffer pool, and 

returns the new slot's main memory address. Since it  can use the current cluster in most cases (without invok- 

ing the buffer manager) and does not perform any copying, i t  is about a s  fast as  the next operation. 

In addition, there is a marker associated with each file scan t ha t  can be used with the procedures set-mark 

and goto-mark. The former puts the marker on the current record. The la t ter  returns t o  the marker, i.e., the 

first call t o  nest after goto-naark returns the same record a s  the last call t o  nest before the last set-mark. This 

marking mechanism was designed for use by merge join. 

Finally, scans in Volcano support optional predicates. Predicates are  passed t o  the scan by means of a 

function entry point and a typeless pointer which serves as  a predicate argument. The predicate function is 

called by the nest procedure with the argument and a record address. Only records for which the predicate 

evaluates t o  TRUE are returned by the scan. Selective scans are  the first example of support functions men- 

tioned briefly in the introduction. Instead of determining a qualification itself, the scan mechanism relies on a 

function imported from a higher level. 



Arguments t o  support functions can be used in two ways. In compiled scans, i.e., when the predicate 

evaluation function is available in machine code, they can be used to pass a constant or a pointer t o  several 

constants t o  the predicate function. For example, while the predicate consists of comparing a record field with 

a string, the comparison function is passed a s  predicate function while the search string is passed as predicate 

argument. In interpreted scans, i.e., when a general interpreter is used to  evaluate all predicates in a query, 

they can be used to pass appropriate code for interpretation to  the interpreter. The interpreter is given a s  

predicate function. Thus, both interpreted and compiled scans are supported with a single simple and efficient 

mechanism. 

Indices are implemented currently only in the form of top-down 13+-trees. A leaf entry consists of a key 

and information. The information part typically is a RID, but it could include more or different information. 

The key and the information can be of any type; a comparison function must be provided to  compare keys. The 

comparison function uses an argument equivalent t o  the one described for file scan predicates. Currently both 

the key and the information must be of fixed size. Thus, some space may be wasted for keys of type string as 

the maximum size must always be reserved and keys may appear repeatedly if the indexed key is not unique. 

The size of internal index nodes and leaf clusters can be different multiples of a page. We hope that  by using 

larger nodes and leaves we will be able t o  provide adequate performance even for large keys. 

B+-trees are implemented on top of devices, not on top of files. Therefore, B+-tree nodes and leaves are 

not allocated using the extent mechanisms described above for files. 

B+-trees support scans similar to files, including predicates. In addition, B+-tree scans allow seeking to a 

particular key, and setting lower and upper bounds. Finally, B+-trees also support an append operation 

designed for fast loading. Its design assumes tha t  entries are appended in key order. Root-to-leaf traversals are 

necessary only when appending a, new leaf t o  the B+-tree. The append operation includes parameters for free 

space in B+-tree nodes and leaves. 

For testing purposes, we implemented memory devices, which simulate a disk device in process (virtual) 

memory. Obviously, their contents are lost when the program tha t  created and used them terminates. 110 on 

memory devices is translated to  copies between the "device" space and the buffer pool. 



For intermediate results in query processing (later called streams), we implemented special devices called 

virtual devices. A virtual device has a volume header and a page allocation map just like a real device. How- 

ever, da t a  pages of virtual devices only exist in the buffer. As soon a s  such da t a  pages are  unpinned, they disap- 

pear and their contents are  lost. Files on virtual devices are  called virtual files. 

In summary, most of Volcano's file system is rather conventional. Two aspects are  novel and warrant 

further performance studies. First, the buffer manager with multiple buffer pools, dynamic growth in case of 

overcommitment, and its simple but effective replacement hint promises most of the performance advantages of 

much more complex replacement strategies [35], but requires more thorough experimental analysis. Second, 

using clusters of different sizes on the same device and in the same buffer pool support small and large files and 

objects with one simple, efficient mechanism. 

3.2. Query Processing 

The basic routines above are  utilized by the query processing routines t o  evaluate complex query plans. 

Queries are  expressed a s  complex algebra expressions; the operators of this algebra are  query processing algo- 

rithms. We will describe the operations using relational terminology since we hope t ha t  this will assist the 

reader. We want t o  point out,  however, t ha t  the operations can be viewed and are  implemented as  operations 

on sets of structured objects, and tha t  Volcano is not dependent on assumptions about the structure of such 

objects6. 

Volcano does not include mechanisms t o  create such algebra expressions. In a complete database system, 

these expressions are created in a sequence of steps illustrated in Figure 1. After parsing, a query or command 

is first verified against the catalogs t o  determine whether or not the query is legal, e.g., whether it  references 

non-existing attributes. Second, in most relational systems, the query is modified t o  reflect views and integrity 

constraints [37]. This step can be seen a s  a translation from a n  external level of a database t o  the conceptual 

level [38]. Third, the query optimizer maps a query against the conceptual database t o  a program accessing the 

physical database. This program is called query evaluation plan, access plan, or simply plan, and can be 

In fact, we intend to use Volcano as query processing system for an object-oriented database system [36]. 



Figure 1: Query Preparation 

expressed in many languages, e.g., in ASL in System R [39] or a s  a set of s ta te  records a s  in Volcano. Since most 

queries can be mapped t o  many different, functionally equivalent plans, the optimizer includes an  elaborate 

search engine, e.g., [40,1]. Finally, in most database systems, the query evaluation plan is compiled into 

machine code, called the access module, either by a special purpose compiler or  a standard programming 

language compiler such as  the C compiler in the case of Volcano. 

Volcano, a s  mentioned in the introduction, is not a database system. Rather,  i t  provides mechanisms for 

query evaluation in database systems. Its "programming interface" are  s tate  records, currently built manually, 

but intended t o  be created by a n  optimizer. Multiple s ta te  records are linked together t o  form a complex query; 

each s tate  record represents one algebra operator. 

All algebra operators are implemented as  iterators, i.e., they support a simple open-next-close protocol 

similar t o  conventional file scans. Associated with each algorithm is a state record. The arguments for the algo- 

rithms, e.g., (pointers to) predicate evaluation functions, are  kept in the s tate  record. All functions on data  

records, e.g., comparisons and hashing, are compiled prior t o  execution and passed t o  the processing algorithms 

by means of pointers t o  the function entry points. Each of these functions uses a n  argument allowing inter- 

preted or  compiled query evaluation, a s  described earlier for file scan predicates. 



Each iterator has a n  associated s tate  record type. A state  record contains the arguments and the state of 

one operation. For example, the size of a hash table t o  be allocated in open is a n  argument, and its location is 

par t  of the state.  All state  information of an  iterator is kept in its s ta te  record; thus, an algorithm may be used 

multiple times in a query by including more than one s tate  record in the query. 

In queries involving more than one operator (i.e., almost all queries), s ta te  records are linked together by 

means of input pointers, a s  shown in Figure 2. The input pointers are  also kept in the s tate  records. They are 

pointers t o  a QEP structure t ha t  includes four pointers. These are t o  the input operator's s ta te  record and t o  

the entry points of the three procedures implementing the operator (open, next, and close). 

Using Volcano's standard form of iterators, an  operator does not need t o  know what kind of operatol- pro- 

duces its input, or whether its input comes from a complex query tree or  from a simple file scan. We call this 

concept anonymous inputs or streams. Streams are  a simple but powerful abstraction tha t  allows combining any 

number of operators t o  evaluate a complex query. Together with the iterator control paradigm, streams 

represent the most efficient execution model in terms of time (overhead for synchronizing operators) and space 

(number of records t ha t  must reside in memory concurrently) for single process query evaluation. 

Calling open for the top-most operator results in instantiations for the associated s tate  record's state,  e.g., 

allocation of a hash table, and in open calls for all inputs. In this way, all iterators in a query are initiated 

Figure 2: A Query Evaluation Plan 



recursively. In order t o  process the query, nezt for the top-most operator is called repeatedly until i t  fails with 

an  end-of-stream indicator. The top-most operator calls the nezt procedure of i ts input if i t  needs more input 

da t a  t o  produce a n  output record. Finally, the close call recursively "shuts down" all iterators in the query. 

This model of query execution matches very closely the one being included in the E programming language 

design [18] and the query executor of the Starburst relational database system [25]. 

A number of query and environment parameters may influence policy decisions during opening a query 

evaluation plan, e.g., query predicate constants and system load information. Such parameters are passed 

between all open procedures in Volcano with a parameter called bindings. This is a typeless pointer t ha t  can be 

used for policy decisions in support functions, e.g., t o  dynamically determine the degree of parallelism. This 

parameter is particularly useful in dynamic query evaluation plans, which are  described later in a separate sec- 

tion. 

The tree-structured query evaluation plan is used t o  execute queries by demand-driven dataflow. The 

return value of a next operation is, besides an  error indicator, a structure called NEXTXECORD which consists 

of a record identifier and a record address in the buffer pool. This record is pinned in the buffer. The protocol 

about fixing and unfixing records is a s  follows. Each record pinned in the buffer is owned by exactly one opera- 

tor a t  any point in time. After receiving a record, the operator can hold on t o  i t  for a while, e.g., in a hash 

table, unfix it ,  e.g., when a predicate fails, or pass it  on t o  the next operator. Complex operations tha t  create 

new records, e.g., join, have t o  fix their output records in the buffer before passing them on, ant1 have to  unfix 

their input records. 

A NEXTXECORD structure can point t o  one record only. All currently implemented query processing 

algorithms pass complete records between operators, e.g., join creates new, complete records by copying fields 

from two input records. It can be argued t ha t  creating complete new records and passing them between opera- 

tors is prohibitively expensive. An alternative is t o  leave original records in the buffer a s  they were retrieved 

from the  stored da ta ,  and compose NEXTREC pairs, triples, etc., for intermediate results. The advantage of 

this alternative is less memory-to-memory copying. While this may or may not translate t o  significant perfor- 

mance improvements in single-processor or  shared-nothing systems, i t  may provide substantial gains for shared- 



memory multi-processor systems in which the bus a s  a central resource can become the bottleneck. We are 

currently working on quantifying the performance impact. 

Another benefit of ananymous inputs is tha t  we can use a generic driver module for all queries. The driver 

module is par t  of Volcano; i t  consists of a call t o  its input's open procedure, a loop calling next until i t  fails, 

unfixing the produced records in the buffer, and a n  invokation of close. 

We could have chosen t o  implement demand-driven dataflow in a different way. Three methods were con- 

sidered. First, a central executor module can be used t o  schedule the progress in each query processing module, 

basically reinventing coroutines 1411. Each iterator is triggered by the executor and returns control t o  the exe- 

cutor either when i t  needs an  input record or  when it  has produced an  output record. We felt, however, tha t  

writing operators in the coroutine paradigm is less natural than in the iterator paradigm. 

Second, instead of one iterator directly calling its input iterator using a function entry point included in a 

QEP structure, we could have used a one-level executor tha t  uses a large case statement t o  decide which itera- 

tor t o  call. We did not see a n  advantage in this scheme since i t  introduces additional overhead (two procedure 

calls for each record passed between iterators instead of one) but still requires t ha t  each QEP structure have 

some knowledge (address, name) of i ts input operator. 

Third, we could have used rewriting techniques as  proposed by Freytag [42,43,44] t o  avoid all overhead of 

procedure calls between iterators and the overhead of invoking support functions. This schemes has three draw- 

backs, however. First, we felt tha t  i t  is harder t o  extend with new algorithms, e.g., for complex object retrieval. 

Second, in order t o  remove the overhead of calling support functions, the form and the types of predicates must 

be incorporated in the rewriting system. Thus, a type system is introduced into Volcano, something we wanted 

t o  avoid t o  keep i t  more flexible and extensible. Third, using rewriting techniques requires t ha t  the entire code 

be compiled; we felt tha t  we should leave the decision open for the user of Volcano whether predicates and other 

functions on individual objects are  compiled or interpreted. 

In summary, we chose t o  implement demand-driven dataflow by encoding operators a s  iterator, i.e., with 

open, next, and close procedures, since this scheme promises generality, extensibility, and low overhead. 



3.2.1. Scans, Functional Join, and Filter 

The first scan interface was discussed with the file system. The second interface t o  scans, both file scans 

and B+-tree scans, provides an iterator interface suitable for query processing. The open procedures open the 

file or B+-tree and a scan on it  (as described above). The file name or closed file descriptor are given in the 

state record as are an optional predicate and bounds for B+-tree scans. 

Typically, B+-tree indices hold keys and RID's in their leaves. In order to  use B+-tree indices, the records 

in the data file must be retrieved. In Volcano, this look-up operation is split from the B+-tree scan iterator and 

is performed by the functional join operator. This operator requires a stream of records containing RID's as 

input and either outputs the data file records retrieved using the RID's or it  composes new records from the 

input records and the retrieved data file records, thus "joining" the B+-tree entries and their corresponding data 

records. 

We separated B+-tree scan and functional join for a number of reasons. First, it  is not clear that storing 

data in B+-tree leaves never is a good idea. This was done, for example, in the original Ingres design [19], but 

abandoned in the commercial version of Ingres. At times, it is desirable to  have other types of information asso- 

ciated with look-up keys, e.g., primary keys in secondary indices in ARBRE [45]. 

Second, we wished to allow experimenting with manipulation of RID-lists for complex queries. While Blas- 

gen and Eswaran [46] did not find RID-list joins preferable over nested loops join and merge join, their conclu- 

sion may not hold for other operations and database systems, e.g., bibliographic search and retrieval systems. 

Third, while functional join is currently implemented rather naively, we can make this operation more 

intelligent. If the functional join operator considers a window of RID's a t  a time instead of only a single RID, it 

may be possible to avoid some buffer faults and to  save on disk seek operations if the records are retrieved in an 

organized way. It is not clear whether there is a payoff in this technique or not, but we wanted to  leave the 

option for later experimentation. 

Finally, we intend to  generalize functional join in a later project to  intelligently assemble complex objects 

consisting of many records in multiple nesting levels [36] A number of object ID'S or RID7s will be used, selec- 

tively based on field values of the input record or of retrieved component objects [9]. 



Typically, selection predicates are  applied by the file or  B+-tree scan operators. Selections t ha t  cannot be 

applied within scans a re  performed by the filter operator. The filter operator can actually perform three func- 

tions, switched by the presence or absence of corresponding support functions in the s ta te  record. The predicate 

function applies a selection predicate. If this function is present, only records for which the predicate returns 

TRUE are passed on. The transform function creates a new record, typically of a new type, from each old 

record. An example would be a relational projection (without duplicate elimination). More complex examples 

include compression and decompression, changes in codes and representations, and arithmetic. Finally, the apply 

function is invoked once on each record for the benefit of its side effects. Typical examples are  updates and 

printing. Both the transform and apply functions have access t o  the current RID througll one of their argu- 

ments. 

3.2.2. One-to-one Match 

The one-to-one match operator will probably be among the most frequently used query processing algo- 

rithm of Volcano. Originally, i t  was conceived after the observation t ha t  many aggregate functions require a 

subsequent join on the attributes of the bplist (grouping attributes). When using hash-based algorithms, imple- 

menting aggregate functions and equi-join in two separate modules results in the same hash table being built 

twice, once for computing aggregates for each group and once in preparation for the join. 

As a n  example for a query in which the same hash table is build twice, consider a (relational) university 

database and a request t o  

find the students who have taken all courses in their major department. 

This query can be evaluated using aggregate functions. Focus on the department relation. We will first count 

the courses for each department, which is a n  aggregate function grouping on department, and then join the out- 

put relation (with the attributes department,nuntber-of -courses) t o  the student relation or an  intermediate 

result relation using the department attribute. If the aggregate function was performed using a hash table on 

department, the same hash table can be used for the subsequent join. 

This observation sparked the definition of one-to-one match. Aggregate functions and join have in com- 

mon tha t  a tuple is included in the output depending on the result of a comparisons between a pair of tuples. 



The opposite is relational division where a tuple is included in the output depending on a set of matches with 

the tuples of the divisor relation. The main difference between aggregate functions and equi-joins is that  the 

former requires comparing tuples of the same input while the latter requires comparing tuples of two different 

inputs. 

In order t o  avoid unnecessary memory-to-memory copying and creation of redundant duplicates, i t  seemed 

necessary to  differentiate between semi-joins and joins that  need to  compose new intermediate relations. Furth- 

ermore, set operations between union-compatible relations can be viewed a s  variants of join and one-to-one 

match [47]; therefore, we wanted to implement them with the same algorithm. In our environment, i t  was a 

natural choice to  implement all these variants using a single module with numerous "bells and whistles." The 

extensions for set operations such as intersection were trivial, and are outlined below. 

The simple hash join algorithm as described in [48,12] proceeds in two phases. In the first phase, a hash 

table is built from one input; i t  is therefore called the build phase. In the second phase, the hash table is probed 

using tuples from the other input t o  determine matches and to  compose output tuples; i t  is called the probe 

phase. After the probe phase, the hash table and its entries are discarded. Instead, our one-teone match 

operator uses a third phase, which we call the push phase, and which is needed for aggregate functions and some 

other operations. 

Since the one-to-one match operator is also an iterator, the three phases are assigned t o  the open, nezt, 

and close functions. Open includes the build phase, while the other two phases are included in the next function. 

Successive invocations of the nezt function automatically switch from the probe phase to  the flush phase when 

the second input is exhausted. Closing the build and probe inputs is delayed until one-to-one match is closed 

because the file system does not allow closing a file on a virtual device until all its records are unpinned. 

The state  t o  be saved between invocations of next includes indicators for probe or flush phase, the current 

build record, and the current probe record. The current build record is required to  locate further build records 

in the same bucket chain which must also matched against the current probe record. 

If the one-to-one match operator is used to  implement relational join, i t  proceeds exactly like the simple 

hash join. The build phase requests input tuples from the build input and builds hash bucket chains. The probe 



phase determines matches by looping over members of a bucket and produces output tuples where appropriate. 

The flush phase unfixes the tuples in the hash table in the buffer and deallocates the hash table without produc- 

ing any output. Support functions are  used t o  calculate a record's hash value, t o  compare two records, and t o  

compose a n  output record from two input records. 

A semi-join is a join in which records of one input are selected depending on matches with records of the 

other input. In order t o  implement semi-join efficiently, the one-to-one match operator preserves rather than 

copies records of the first input. When performing a semi-join t ha t  preserves the probe input, a probe input 

tuple is matched only until a match is found. The probe tuple is then passed on as  output.  Thus, memory-to- 

memory copying is avoided. The module performs a semi-join instead of a join if the support function t o  com- 

pose output tuples is omitted. 

The opposite semi-join (which preserves build input tuples) requires a more sophisticated implementation. 

In our implementation, a bit is initialized t o  FALSE for each tuple in the hash table. When a match is found, 

this bit is set t o  TRUE. The flush phase scans through all buckets and outputs the tuples for which a match 

was found. 

Finally, outer-join and anti-join can be implemented using Volcano's one-to-one match module. Two addi- 

tional support functions compose result tuples from build or probe input tuples respectively. Input tuples tha t  

do not participate in the natural join (and hence have t o  be augmented with NULLS) are  identified using the 

same mechanisms used for semi-joins. 

The build phase can be used t o  eliminate duplicates or t o  perform an  aggregate function in the build 

input. Instead of inserting a new tuple into the hash table as  in simple hash join, an  input tuple is first matched 

with the tuples in its prospective hash bucket. If a match is found, the new tuple is discarded or i ts values are 

aggregated into the existing tuple. The one-to-one match module determines which variant of the algorithm is 

requested by the presence or absence of the three support functions used t o  compare two records from the build 

input, t o  initialize a n  aggregation (e.g., set a counter t o  O), and t o  aggregate two records. A Boolean argument 

switch controls whether build input records are inserted into the hash table, or  a new file and new records are 

created. The la t ter  may be necessary if new fields are  required for the aggregation, e.g., a sum and and a count 



for calculating a n  average. 

The one-to-one match module does not require a probe input; if only a n  aggregation is required without 

subsequent join, the absence of the probe input in the s tate  record signals t o  the module tha t  the probe phase 

should be skipped. 

I t  is possible t o  improve the operator's dataflow behavior for duplicate elimination by producing output 

records immediately when encountered. However, a copy would have t o  be held back t o  enable duplicate detec- 

tion. We felt t ha t  allowing upper level operators t o  proceed while keeping the record pinned in the buffer for 

duplicate detection would increase buffer contention without significant benefits. Therefore, we did not imple- 

ment this variant. 

While hash tables in main memory are usually quite fast, a severe problem occurs if the build input does 

not fit in main memory6. This situation is called hash table overflow. There are  two ways t o  deal with hash 

table overflow. First, if a query optimizer is used and can anticipate overflow, it  can be avoided by partitioning 

the input(s). This overflow avoidance technique is the basis for the hash join algorithm used in the Grace data- 

base machine [49]. Second, overflow files can be used t o  resolve the problem after i t  occurs. Several overflow 

resolution schemes have been designed and compared [48,12,50,51]. A t  the current time, we are  studying how 

best t o  implement hash table overflow avoidance and resolution for the rather complex one-to-one match opera- 

tor  in Volcano. 

The extension of the code described so far t o  set operations started with the observation tha t  the intersec- 

tion of two union-compatible relations is the same a s  the natural join of these relations, and can be imple- 

mented as  semi-join. The union is the (two-sided) outer join of union-compatible relations. The difference and 

anti-difference of two sets can be computed using special settings of the algorithm's bells and whistles. Finally, 

Cartesian product can be implemented by matching successfully all possible pairs of records from the two 

inputs. 

' Notice that if an aggregate function or duplicate elimination is performed on the build input, only the output of this 
operation must fit in main memory. In particular when memory is scarce, aggregating into a new, temporary file pays off 
since it avoids internal fragmentation in the buffer, i.e., the records are packed densely into clusters. 



The second version of one-to-one match is based on sorting. Its two modules are  a disk-based merge-sort 

and the actual merge-join. Opening the sort iterator prepares sorted runs for merging. If the number of runs is 

larger than  the maximal fan-in, runs are  merged into larger runs until the remaining runs can be merged in a 

single step. The final merge is performed on demand by the nezt function. If the entire input fits into the sort 

buffer, i t  is kept there until demanded by the nezt function. 

The sort operator has been implemented in such a way tha t  i t  supports aggregation7 and duplicate elimi- 

nation. I t  can perform these operations early, i.e., while writing temporary files [52,53]. Merge-join has been 

generalized similarly t o  hash-join t o  support semi-join, outer join, anti-join, and set operations. The sort algo- 

rithm is explained in detail in [7]. 

Hash-based one-to-one match, sort-based one-to-one match, and sorting all create new output records and 

files from input streams, with the exception of semi-join. Since records must be copied in any case, and since 

copying is always done by invoking support functions, these iterators trivially support record reformatting, e.g., 

relational projection (without duplicate elimination). For performance reasons, i t  is very important tha t  projec- 

tion be included in join operations since copying can contribute significantly t o  overall query processing costs. 

Considering performance results for relational join reported in [13,15,51,14], one might wonder why we did 

not include bit vector filtering [54] in the one-to-one match operator. We omitted this feature for five reasons. 

First, i t  is not obvious t ha t  the performance gain would be significant in a shared-memory multiprocessor. 

Second, i t  would further complicate the operator, its control logic, code, and support functions. Third, if i t  is 

really needed, i t  is straightforward t o  build the functionality with two filter operators. The first filter operator 

invokes a n  apply support function t o  build the bit vector. The second operator invokes a predicate function t o  

eliminate tuples. The address of the filter in shared memory is passed t o  the support functions using the argu- 

ments. Fourth, detaching bit vector filtering allows using i t  with merge join. A bit vector filter cannot be 

included in the merge join operation because the filter must be present before tuples can be eliminated. How- 

ever, if bit vector building is detached, the filter can be created before or  while sorting the first input, and 

To be precise, we mean aggregate functions here. For example, the "sum of salaries by department" can be computed 
by sorting employee records on their department field and adding salaries within each department. 



therefore be used to  eliminate tuples from the secoud input before they are passed to  the sort operator. Thus, 

bit vector filters can be used in Volcano not only to reduce join costs, including merge join, but also to reduce 

sort costs. Finally, separating bit vector filtering from one-to-one match allows using it with a single mechanism 

for both one-to-one match and one-to-many match. 

3.2.3. One-to-Many Match 

There are two versions of relational division in Volcano, probably the most typical and most frequently 

used operator of the one-to-many match variety. The first version, which we call naive division, is based on sort- 

ing. The second version, which we call hash-division, utilizes two hash tables, one on the divisor and one on the 

quotient. An exact description of the two algorithms and alternative algorithms based on aggregate functions 

can be found in [4] along with analytical and experimental performance comparisons and detailed discussions of 

two partitioning strategies, hash-table overflow, and multi-processor implementations. We are currently study- 

ing how to  generalize these algorithms in a way comparable with our generalizations of aggregation and join, 

e.g., for a majority function. 

4. Extensibility 

A number of database research efforts strive for extensibility, e.g., EXODUS, GENESIS, Postgres, Star- 

burst, DASDBS, and others. We believe that  Volcano is a very open query evaluation architecture that  provides 

easy extensibility. Let us consider a number of frequently proposed extensions and how they can be accommo- 

dated in Volcano. 

First, when extending the object type system, e.g., with a new abstract da ta  type (ADT) like date or boz, 

the Volcano software is not affected a t  all because i t  does not provide a type system for objects. All manipula- 

tion of and calculation based on individual objects is performed by support functions. Volcano solves some 

problems in composing complex objects with the functional join operator. Generalizations of this operator are 

probably necessary for an object-oriented or non-first-normal-form database system, but can be included in Vol- 

cano without difficulty. 

Second, in order t o  add new functions on individual objects or aggregate functions, e.g., geometric mean, 

t o  the database and query processing system, the appropriate support function is required and passed to a query 



processing routine. The reason why Volcano software is not affected by extensions of the functionality on indivi- 

dual objects is t ha t  Volcano's software only provides abstractions and implementations for dealing with and 

sequencing sets of objects using streams, whereas the capabilities for individual objects are  imported in the form 

of support functions. 

Third, in order t o  incorporate a new access method, e.g., multidimensional indices in form of R-trees [55], 

appropriate iterators have t o  be defined. The stream concept is very open; in particular, anonymous inputs 

shield existing query processing modules and the new iterators from one another. 

Fourth, t o  include a new query processing algorithm in Volcano, e.g., a n  algorithm for transitive closure or 

nest and unnest operations for nested relations, we need t o  code the algorithm in the iterator paradigm. In 

other words, we have t o  write the algorithm in such a way tha t  i t  provides and uses for i ts input open, nest, and 

close procedures. After an  algorithm has been brought into this form, its integration with Volcano is trivial. In 

fact, as  the Volcano query processing software grew, we did this a number of times. 

Extensibility can also be considered in a different context. In the long run, i t  clearly is desirable t o  pro- 

vide a front-end t o  make using Volcano easier. In particular, we are  currently exploring interfacing the 

EXODUS query optimizer generator [2,1] with Volcano. We are developing a module t ha t  "walks" query 

evaluation plans produced by a n  optimizer and generates C programs with embedded Volcano code, i.e., state 

records, support functions, etc. We will use this front-end as  a vehicle for experimentation after we have 

modified the EXODUS software to  create dynamic query evaluation plans, as  outlined in tlie next section. 

In summary, since Volcano is limited in scope, extensibility is provided naturally. In can be argued tha t  

this is the case only because Volcano does not address the hard problems in extensibility. We believe tha t  this 

argument does not hold. Rather,  Volcano addresses one subset of the extensibility problems and ignores a 

different subset. While it  provides extensibility of its set of query processing algorithms, i t  does not provide 

other essential services like a type system and type checking for the support functions and is therefore not an 

extensible database system. The Volcano routines assume tha t  the query evaluation plans and their support 

functions are  correct. Their correctness has t o  be ensured before Volcano is invoked. The significance of Vol- 

cano as  a n  extensible query evaluation system is tha t  i t  provides a simple but very useful set of mechanisms for 



efficient query processing and tha t  i t  can and will be used as a flexible research tool. 

5. Dynamic Query Evaluation Plans 

In most database systems, a query embedded in a program written in a conventional programming 

language is optimized when the program is compiled. The query optimizer must make assumptions about the 

values of the program variables that  appear a s  constants in the query and the da ta  in the database. These 

assumptions include tha t  the query can be optimized realistically using guessed "typical" values for the program 

variables and that  the database will not change significantly between query optimization and query evaluation. 

The optimizer must also anticipate the resources that  can be committed to query evaluation, e.g., the size of the 

buffer or the number of processors. The optimality of the resulting query evaluation plan depends on the vali- 

dity of these assumptions. If a query evaluation plan is used repeatedly over an  extended period of time, it is 

important to determine when reoptimization is necessary. We are working on a scheme in which reoptimization 

can be avoided by using a new technique called dynamic query evaluation plans [3]. 

Volcano includes a choose-plan operator t o  realize both multi-plan access modules and dynamic plans. 

This operator provides the same open-next-close protocol a s  the other operators and can therefore be inserted 

into a query plan a t  any location. The open operation decides which of several equivalent query plans to  use 

and invokes the open operation for this input. Open calls upon a support function for this policy decision, pass- 

ing i t  the bindings parameter described above. The next and close operations simply call the appropriate opera- 

tion for the input chosen during open. 

The choose-plan operator allows considerable flexibility. If only one choose-plan operator is used a s  top of 

a query evaluation plan, i t  implements a multi-plan access module. If multiple choose-plan operators are 

included in a plan, they implement a dynamic query evaluation plan. 

The choose-plan operator provides significant new freedom in query optimization and evaluation. Since it 

is compatible with the query processing paradigm, its presence does not affect the other operators a t  all, and it 

can be used in a very flexible way. We used the same philosophy when designing and implementing a scheme 

parallel for query evaluation. 



6. Multi-Processor Query Evaluation 

The multi-processor implementation grew out of a desire t o  leverage as  much of the effort a s  possible when 

the Oregon Graduate Center acquired a n  eight-processor shared-memory computer system. We decided tha t  i t  

would be desirable t o  use the query processing code described above without any change. The result is very 

clean, self-scheduling parallel processing. 

The module responsible for parallel execution and synchronization is the exchange iterator. Notice tha t  i t  

is a n  iterator with open, nezt, and close procedures; therefore, i t  can be inserted a t  any one place or a t  multiple 

places in a complex query tree. 

This section describes vertical 2nd horizontal parallelism followed by an  example, a discussion of varia- 

tions and variants of the exchange operator, an  overview of modifications t o  the file system required for parallel 

processing, and a comparison of Volcano's exchange operator with GAMMA'S mechanisms for parallelism. 

6.1. Vertical Parallelism 

The first function of exchange is t o  provide vertical parallelism or pipelining between processes. The open 

procedure creates a new process after creating a da t a  structure in shared memory called a port for synchroniza- 

tion and da t a  exchange. The child process, created using the UNIX fork system call, is an  exact duplicate of the 

parent process. The exchange operator then takes different paths in the parent and child processes. 

The parent prdcess serves as  the consumer and the child process as the producer in Volcano. The 

exchange operator in the consumer process acts a s  a normal iterator, the only difference from other iterators is 

t ha t  i t  receives its input via inter-process communication. After creating the child process, open-exchange in the 

consumer is done. Next-exchange waits for da t a  t o  arrive via the port and returns them a record a t  a time. 

Close-exchange informs the producer tha t  i t  can close, waits for a n  acknowledgement, and returns. 

The exchange operator in the producer process becomes the driver for the query tree below the exchange 

operator using open, next, and close on its input. The output of next is collected in packets, da t a  structures of 1 

KB which contain 83 NEXTRECORD structures. When a packet is filled, i t  is inserted into the port and a 



semaphore is used t o  inform the consumer about the new packet8. Records in packets are  fixed in the shared 

buffer and must be unfixed by a consuming operator. 

When i ts  input is exhausted, the exchange operator in the producer process marks the last packet with an 

end-of-stream tag, passes i t  t o  the consumer, and waits until the consumer allows closing all open files. This 

delay is necessary because files on virtual devices must not be closed before all its records are  unpinned in the 

buffer. 

The alert  reader has noticed tha t  the exchange module uses a different dataflow paradigm than all other 

operators. While all other modules are based on demand-driven dataflow (iterators, lazy evaluation), the 

producer-consumer relationship of exchange uses data-driven dataflow (eager evaluation). There are two very 

simple reasons for this change in paradigms. First, we intend t o  use the exchange operator also for horizontal 

parallelism, t o  be described below. Second, this scheme removes the need for request messages. Even though a 

scheme with request messages, e.g., using a semaphore, would probably perform acceptably on a shared-memory 

machine, we felt tha t  i t  creates unnecessary control overhead and delays. Since we believe t ha t  very high 

degrees of parallelism and true high-performance query evaluation requires a closely tied network, e.g., a hyper- 

cube, of shared-memory machines, we decided t o  use a paradigm for da t a  exchange t ha t  has has been proven t o  

perform well in a shared-nothing database machine [13]. 

A run-time switch of exchange enables flow control or  back pressure using a n  additional semaphore. If the 

producer is significantly faster than the consumer, the producer may pin a significant portion of the bufTer, thus 

impeding overall system performance. If flow control is enabled, after a producer has inserted a new packet into 

the port, i t  must request the flow control semaphore. After a consumer has removed a packet from the port, i t  

releases the flow control semaphore. The initial value of the flow control semaphore, e.g., 4, determines how 

many packets the producers may get ahead of the consumers. 

Notice tha t  flow control and demand-driven dataflow are not the same. One significant difference is tha t  

flow control allows some "slack" in the synchronization of producer and consumer and therefore truly overlapped 

83 records is the standard packet size. The actual packet size is an argument in the state record, and can be set 
between 1 and 255 records. 



execution, while demand-driven dataflow is a rather rigid structure of request and delivery in which the consu- 

mer waits while the producer works on its next output. The second significant difference is tha t  data-driven 

dataflow is easier t o  combine efficiently with horizontal parallelism and partitioning. 

6.2. Horizontal Parallelism 

There are  two forms of horizontal parallelism which we call bushy parallelism and intra-operator parallel- 

ism. In bushy parallelism, different CPU's execute different subtrees of a complex query tree. Bushy parallelism 

and vertical parallelism are forms of inter-operator parallelism. Intra-operator parallelism means tha t  several 

CPU's perform the same operator on different subsets of a stored dataset or  a n  intermediate result0. 

Bushy parallelism can easily be implemented by inserting one or  two exchange operators into a query tree. 

For example, in order t o  sort two inputs into a merge-join in parallel, the first or  both inputs are  separated from 

the merge-join by a n  exchange operation. The parent process turns t o  the second sort immediately after forking 

the child process t ha t  will produce the first input in sorted order. Thus, the two sort operations are  working in 

parallel. 

Intra-operator parallelism requires da t a  partitioning. Partitioning of stored datasets is achieved by using 

multiple files, preferably on different devices. Partitioning of intermediate results is implemented by including 

multiple queues in a port. If there are multiple consumer processes, each uses its own input queue. The produc- 

ers use a support function t o  decide into which of the queues (or actually, into which of the packets being filled 

by the producer) a n  output record must go. Using a support function allows implementing round-robin-, key- 

range-, or hash-partitioning. 

If a n  operator or a n  operator subtree is executed in parallel by a group of processes, one of them is desig- 

nated the master. When a query tree is opened, only one process is running, which is naturally the master. 

When a master forks 's  child process in a producer-consumer relationship, the child process becomes the master 

A fourth form of parallelism is inter-query parallelism, i.e., the ability of a database management system to work on 
several queries concurrently. In the current version, Volcano does not support inter-query parallelism. A fifth and sixth form 
of parallelism that can be used for database operations involve hardware vector processing [56] and pipelining in the instruc- 
tion execution. Since Volcano is a software architecture and following the analysis in [57], we do not consider hardware 
parallelism further. 



within its group. The first action of the master producer is t o  determine how many slaves are  needed by calling 

a n  appropriate support function. If the producer operation is t o  run in parallel, the master producer forks the 

other producer processes. 

Gerber pointed out  tha t  such a centralized scheme is suboptimal for high degrees of parallelism 1141. 

When we changed our initial implementation from forking all producer processes by the master t o  using a propa- 

gation tree scheme, we observed significant performance improvements. In such a scheme, the master forks one 

slave, then both fork a new slave each, then all four fork a new slave each, etc. This scheme has been used very 

effectively for broadcast communication and synchronization in binary hypercubes. 

Even after optimizing the forking scheme, its overhead is not negligible. We are considering using primed 

processes, i.e., processes t ha t  are  always present and wait for work packets. Primed processes are used in 

GAMMA [13] and in many commercial database systems. Since the distribution of compiled code for support 

functions is not trivial in our environment (Sequent Dynix), we delayed this change and plan on using primed 

processes only when we move t o  an  environment with multiple shared-memory machineslO. 

After all producer processes are forked, they run without further synchronization among themselves, with 

two exceptions. First, when accessing a shared da t a  structure, e.g., the port t o  the consumers, short-term locks 

must be acquired for the duration of one linked-list insertion. Concurrent invocation of routines of the file sys- 

tem, in particular the buffer manager, is described later in this section. Second, when a producer group is also a 

consumer group, i.e., there are at least two exchange operators and three process groups involved in a vertical 

pipeline, the processes t h a t  are  both consumers and producers synchronize twice. During the (very short) inter- 

val between synchronizations, the master of this group creates a port which serves all processes in its group. 

When a close request is propagated down the tree and reaches the first exchange operator, the master 

consumer's close-ezchange procedure informs all producer processes tha t  they are  allowed t o  close down using 

the semaphore mentioned above in the discussion on vertical parallelism. If the producer processes are also con- 

sumers, the master of the process group informs its producers, etc. In this way, all operators are  shut down in 

lo In fact, this work is currently under way. 



an  orderly fashion, and the entire query evaluation is self-scheduling. 

6.3. An Example 

Let us consider a n  example. Assume a query with four operators, A ,  B ,  C ,  and D such tha t  A calls B's, 

B calls C's, and  C calls D's open, close, and next procedures. Now assume tha t  this query plan is t o  be run in 

three process groups, ,called A ,  BC,  and D .  This requires a n  exchange operator between operat,ors A and B, 

say X, and one between C and D,  say Y. B and C continue t o  pass records via a simple procedure call t o  the 

C's next procedure without crossing process boundaries. Assume further tha t  A runs as  a single process, Ao, 

while B C  and D run in parallel in processes BC, t o  BC, and Do to  D3, for a total  of eight processes. 

A calls X's open, close, and next procedures instead of B's (Figure 3a), without kno~vledge tha t  a process 

boundary will be crossed, a consequence of anonymous inputs in Volcano. When X is opened, i t  creates a port 

with one input queue for A, and forks BC, (Figure 3b), which in turn forks BCl and BC, (Figure 3c). When the 

B C  group opens Y, BC, t o  BC2 synchronize, and wait until the Y operator in process BC, has initialized a port 

with three input queues. BC, creates the port and stores its location a t  an  address known only t o  the B C  

processes. Then BC, t o  BC2 synchronize again, and BC1 and BC2 get the port information from its location. 

Next, BCo forks Do (Figure 3d) which in turn forks Dl t o  D3 (Figure 3e). 

When the D operators have exhausted their inputs in Do t o  D3, they return a n  end-of-stream indicator t o  

the driver par ts  of Y. In each D process, Y flags its last packets t o  each of the B C  processes (i.e., a total of 

Figure 3a-c. Creating the B C  processes. 



Figure 3d-e. Creating the D processes. 

Figure 3f-11. Closing all processes down. 

3X4=13 flagged packets) with a n  end-of-s tream tag and then waits on a semaphore for permission t o  close. The 

copies of the Y operator in the BC processes count the number of tagged packets; after four tags (the number 

of producers or D processes), they have exhausted their inputs, and a call t o  Y's next  procedure will return an 



end-of-stream indicator. In effect, the end-or-stream indicator has been propagated from the D operators t o  the 

C operators. In due turn, C ,  B, and then the driver par t  of X will receive a n  end-of-stream indicator. After 

receiving three tagged packets, X's next procedure in A. will indicate end-of-stream t o  A .  

When end-of-stream reaches the root operator of the query, A ,  the query tree is closed. Closing the 

exchange operator X includes releasing the semaphore tha t  allows the BC processes t o  shut down (Figure 3f). 

The X driver in each BC process closes its input, operator B. B closes C ,  and C closes Y. Closing Y in BC1 

and BC2 is a n  empty operation. When the process BCo closes the exchange operator Y, Y permits the D 

processes t o  shut down by releasing a semaphore. After the processes of the D group have closed all files and 

deallocated all temporary da t a  structures, e.g., hash tables, they indicate the fact t o  Y in BC, using another 

semaphore, and Y's close procedure returns t o  its caller, C's close procedure, while the D processes terminate 

(Figure 3g). When all B C  processes have closed down, X's close procedure indicates the fact t o  A. and query 

evaluation terminates (Figure 3h). 

6.4. Variants of the Exchange Operator 

For some operations, i t  is desirable t o  replicate or  broadcast a stream to  all consumers. For example, one 

of the two partitioning methods for hash-division [4] requires tha t  the divisor be replicated and used with each 

partition of the dividend. Another example is Baru's parallel join algorithm in which one of the two input rela- 

tions is not moved at all while the other relation is sent through all processors [58]. T o  support these algo- 

rithms, the exchange operator can be directed (by setting a switch in the s ta te  record) t o  send all records t o  all 

consumers, after pinning them appropriately multiple times in the buffer pool. Notice t ha t  i t  is not necessary t o  

copy the records since they reside in a shared buffer pool; i t  is sufficient t o  pin them such t ha t  each consumer 

can unpin them a s  if i t  were the only process using them. After we implemented this feature, parallelizing our 

hash-division programs using both divisor partitioning and quotient partitioning [4] took only about three hours 

and yielded not insignificant speedups. 

When we implemented and benchmarked parallel sorting [7], we added two more features t o  exchange. 

First, we wanted t o  implement a merge network in which some processors produce sorted streams merge con- 

currently by other processors. Volcano's sort iterator can be used t o  generate a sorted stream. A merge iterator 



was easily derived from the sort module. I t  uses a single level merge, instead of the cascaded merge of runs used 

in sort. The input of a merge iterator is a n  exchange. Differently from other operators, the merge iterator 

requires t o  distinguish the input records by their producer. As a n  example, for a join operation it  does not 

matter where the input records were created, and all inputs can be accumulated in a single input stream. For a 

merge operation, i t  is crucial t o  distinguish the input records by their producer in order t o  merge multiple sorted 

streams correctly. 

We modified the ezchange module such tha t  i t  can keep the input records separated according t o  their pro- 

ducers, switched by setting a n  argument field in the s ta te  record. A third argument t o  next-exchange is used t o  

communicate the required producer from the merge t o  the exchange iterator. Further modifications included 

increasing the number of input buffers used by ezchange, the number of semaphores (including for flow control) 

used between producer and consumer part  of ezchange, and the logic for end-of-stream. 

Second, we implemented a sort algorithm tha t  sorts da t a  randomly partitioned over multiple disks into a 

range-partitioned file with sorted partitions, i.e., a sorted file distributed over multiple disks. Using the same 

number of processors and disks, we used two processes per CPU, one t o  perform the file scan and partition the 

records and another one t o  sort them. We realized tha t  creating more processes than processors inflicted a 

significant cost, since these processes competed for the CPU's and therefore required operating system schedul- 

ing. While the scheduling overhead may not be too significant, in our environment with a central run queue 

processes can migrate. Considering tha t  there is a large cache associated with each CPU, tlie ca.chc migration 

adds a significant cost. 

In order t o  make better use of the available processing power, we decided t o  reduce the number of 

processes by half, effectively moving t o  one process per disk. This required modifications t o  the exchange opera- 

tor. Until then, the exchange operator could "live" only a t  the top or the bottom of the operator tree in a pro- 

cess. Since the modification, the exchange operator can also be in the middle of s process' operator tree. When 

the exchange operator is opened, i t  does not fork any processes but establishes a communication port for da ta  

exchange. The next operation requests records from its input tree, possibly sending them off t o  other processes 

in the group, until a record for i ts own partition is found. 



This mode of operation" also makes flow control obsolete. A process runs a producer (and produces input 

for the other processes) only if i t  does not have input for the consumer. Therefore, if the producers are in 

danger of overrunning the consumers, none of the producer operators gets scheduled, and the consumers consume 

the available records. 

6.5. File System Modifications 

Clearly, the file system required some modifications t o  serve several processes concurrently. In order t o  

restrict the extent of such modifications, Volcano currently does not include protection of files and records other 

than the volume table of contents (VTOC). Furthermore, typically non-repetitive actions like mounting a dev- 

ice must be invoked by the query root process before or after a query is evaluated by multiple processes. The 

following few paragraphs list the changes tha t  were required in the file system t o  allow parallel execution. 

The m e m o r y  module allocates space in a shared segment rather than  a private segment, thus buffer space 

is also shared among all processes. In order t o  protect the memory allocation map, a single exclusive lock is 

held during the short periods of time while the allocation map is searched or updated. 

The physical I /O module uses two exclusive locks per device. First, device busy lock is held while calling 

UNIX's lseek, read,  and wri te  system calls. This is necessary because otherwise two processes could get into a 

race-condition in which one process's seek operation determines the location of the other process's write. 

Second, the m a p  busy lock protects the  free space bit map. 

Changes t o  the device module were restricted t o  protecting the volume table of contents. An exclusive 

lock is held while a n  entry is inserted or deleted or while the VTOC is scanned for the descriptor for a n  external 

file. 

The most difficult changes were required for the bufler module. While we could have used one exclusive 

lock as  in the m e m o r y  module, decreased concurrency would have removed most or all advantages of parallel 

query processing. Therefore, the buffer uses a two-level scheme. There is a lock for each buffer pool and one for 

l1 Whether exchange forks new producer processes or uses the existing process group to execute the producer operations 
is a run-time switch. 



each descriptor (cluster in the buffer). T l ~ e  buffer pool lock must be held while searching or  updating the hash 

tables and bucket chains. It is never held while doing I/O; thus, i t  is never held for a long period of time. A 

descriptors or cluster lock must be held while updating a descriptor in the buffer, e.g., t o  decrease its fix count, 

or  while doing 110. 

Other buffer managers do not use a pool lock but lock each search bucket and the free chain individually, 

e.g., the buffer manager of Starburst [59]. The advantage is increased concurrency, while the disadvantage is 

increased number of locks and lock operations. We are currently working on quantifying this tradeoff for our 

environment. 

If a process finds a requested cluster in the buffer, i t  uses a n  atomic test-and-lock opera.tion t o  lock the 

descriptor. If this operation fails, the pool lock is released, the operation delayed and restarted. I t  is necessary 

t o  restart the buffer operation including the hash table lookup because the process which holds the lock might 

be reading or replacing the requested cluster. Therefore, the requesting process must wait t o  determine the out- 

come of the prior operation. 

Using this restart-scheme for descriptor locks has the additional benefit of avoiding deadlocks. The four 

conditions for deadlock are  mutual ezclusion, hold-and-wait, no preemption, and circular wait [60,61]. Volcano's 

restart-scheme does not satisfy the second condition. 

While the locking scheme avoids deadlocks, i t  does not avoid convoys [62]. If a process exhausts its CPU 

time-slice while holding a "popular" exclusive lock, e.g., on a buffer pool, probably all other processes will block 

in a convoy until the lock-holding process is re-scheduled and releases the lock. However, since we do not use a 

"fair" scheduling policy t ha t  does not allow reacquiring a lock before all waiting processes held and released the 

lock, we expect t h a t  convoys will quickly evaporate [62]. We intend t o  investigate the special problem of con- 

voys in shared-memory multi-processors further. 

I t  is interesting t o  note t ha t  spin-locks are quite effective in a multi-processor environment. For instance, 

the pool is locked typically for about 100 instructions. If a process finds the pool locked, i t  is cheaper t o  waste 

100 instructions spinning than it  is t o  reschedule the CPU and t o  perform a context switch. 



After the buffer manager and the other file system modules were modified t o  serve multiple processes, i t  

was straightforward t o  include a read-aheadlwrite-bellind daemon. One or  more copies of this daemon process 

are  forked when the buffer manager is initialized, and accept work requests on a queue and semaphore similar t o  

the one used within the exchange module. There are three kinds of work requests, the first two are accompanied 

by a cluster identifier. First, FLUSH writes a cluster if i t  is in the buffer and dirty. Second, READAHEAD 

reads a cluster and inserts i t  a t  the top of the LRU chain. The cluster remains in the buffer using the normal 

aging process. If i t  is not fixed and removed from the free list before it  reaches the bottom of the free list, i t  is 

replaced. Third, a QUIT request terminates the daemon. 

6.6. Review and Comparison with GAMMA 

In summary, the exchange module encapsulates parallel processing in Volcano. Only very few changes had 

t o  be made t o  the buffer manager and the other modules of the file system in order t o  accommodate parallel 

execution. The most important properties of the exchange module are tha t  i t  implements three forms of parallel 

processing within a single module, tha t  i t  makes parallel query processing entirely self-scheduling, and tha t  i t  

did not require any changes in the existing query processing modules, thus leveraging significantly the time and 

effort spent on them and allowing easy parallel implementation of new algorithms. 

It might be interesting t o  compare Volcano and GAMMA [13] query processing in some detail. We only 

want t o  point out differences; we do not claim tha t  the design decisions in Volcano are  superior t o  those in 

GAMMA. First, Volcano runs on a shared-memory multi-processor, whereas GAh4A4A runs on a sliared-nothing 

architecture. This difference made Volcano easier t o  implement but will prevent very large configurations due 

t o  bus contention. We are currently investigating where the limit is for our software and hardware architec- 

ture, and how we can push i t  a s  far as  possible. Second, GAMMA is a complete system, with query language, 

system catalogs, query optimization, concurrent transactions, etc., whereas Volca.no in its current form only pro- 

vides mechanisms for single-user query evaluation. Third, Volcano schedules complex queries without the help of 

a scheduler process. Operators are  scheduled and activated top-down using a tree of iterators. In GAMMA, on 

the other hand, operators are  activated bottom-up by a scheduler process associated with the query. Fourth, 

GAMMA uses only left-deep query trees, i.e., the probing relation in a hash join [48,12] must be a stored rela- 



tion or  the result of a selection. In Volcano, both join inputs can be intermediate results. In fact, since Volcano 

uses anonymous inputs, a join operator has no way of knowing how the inputs were generated. Clearly, the 

decision whether t o  use bushy query trees or only left-deep trees has t o  be made very carefully since the compo- 

site resource consumption may lead t o  thrashing. Fifth, Volcano can execute two or more operators within the 

same process. In other words, vertical parallelism is optional. In the GAMMA design i t  is assumed tha t  da t a  

have t o  be repartitioned between operators. 

7. Multi-plan Query Evaluation 

Frequently, i t  is desirable t o  share intermediate results among two queries, or t o  share two subqueries of 

the same query. In the query optimization literature, common subexpression detection and global query optimi- 

zation are  popular topics [63,64,65,66,67,68]. However, none of the above query optimizers considers the prob- 

lem of scheduling queries with common subexpressions. In this section, we briefly illustrate how the mechanisms 

provided in Volcano can be used t o  execute common subexpressions efficiently. 

Consider two queries with a common subexpression. Let us call the common subexpression C and the 

query-specific tree components A and B respectively. In order t o  execute A ,  B, and C, we use one query expres- 

sion. A t  the top is an  exchange module which is used t o  fork two processes. The top-most operator in each of 

these process is a choose-plan operator which chooses between A and B using the get-my-id function provided 

by the exchange module. 

This mechanism allow two processes t o  execute two different plans concurrently. Thcir common subcxpres- 

sion C is connected t o  A and B with another exchange module. When A and B need input from C ,  they call on 

this exchange module. Recall tha t  multiple processes calling on the same exchange module synchronize a t  this 

point. Next, a third process is forked t o  execute C. The replicate or broadcast switch described above ensures 

t ha t  all of C's output is delivered t o  both A and B. 

Unfortunately, Volcano's exchange mechanisms do not provide all desired functionality. Since the design 

of the exchange operators was intended for intra-operator parallelism rather than execution of different plans, 

the subqueries A and B must obey a significant restriction. In particular, A and B must not include additional 

exchange modules. If A tried t o  execute another subquery, say D l  in a separate process, the exchange operator 



connecting A and D would try t o  synchronize with the other processes in its process group, namely the process 

executing B, which would leave A in an  infinite wait. If, however, D is a second common subexpression of -4 

and B, and if A and B open C and D in the same order, the exchange operators will connect the four processes 

correctly. 

8. Parallel Sorting 

We believe t ha t  parallel sorting is of interest in its own right, even though we feel tha t  the importance of 

sorting for query processing will diminish as  such algorithms are replaced by hash-based algorithms. Much work 

has been dedicated t o  parallel sorting, but onIy few algorithms have been implemented for database settings, 

i.e., where the total amount of da t a  is a large multiple of the total amount of main memory in the system. All 

such algorithms are  variants of the well-known merge-sort technique and require a final centralized merge step, 

e.g., [69,70,71,72]. In a highly parallel architecture, any centralized component t h a t  has  t o  process all da ta  is 

bound t o  be a severe bottleneck. 

In our algorithms, we t ry t o  exploit the duality between main memory mergesort and quicksort. Both 

these algorithms are  recursive divide-and-conquer algorithms. The difference is tha t  mergesort first divides phy- 

sically and then merges on logical keys, whereas quicksort first divides on logical keys and then combines physi- 

cally by trivially appending sorted subarrays. 

In general, one of the two phases dividing and combining is based on logical keys whereas the other 

arranges da t a  items only physically. We call this the logical and the physical phase. Sorting algorithms for 

very large da t a  sets stored on disk or tape are also based on dividing and combining. Usually, there are two 

distinct sub-algorithms, one for sorting within main memory and one for managing subsets of the da t a  set on 

disk or tape. The choices for mapping logical and physical phases t o  dividing and combining steps are  indepen- 

dent for these two sub-algorithms. For practical reasons, e.g., ensuring tha t  a run fits into main memory, the 

disk management algorithm typically uses physical dividing and logical combining (merging). A point of practi- 

cal importance is the fan-in or degree of merging, but this is a parameter rather than a defining property of the 

algorithm. 



For parallel sorting, we have essentially the same choices. Besides the two choices described above for disk 

based sorts, a similar decision has t o  be made for the da t a  exchange step. We assume tha t  da t a  redistribution 

among the processors or disks is required, and we wish t o  avoid transferring a da t a  item between processing 

nodes more than  once12. Therefore, any algoritllm has a local sort step and a da t a  exchange step. We can per- 

form the redistribution step either before or  after the local sort step. 

Consider the la t ter  method first. After all da ta  have been sorted locally on all nodes, all sort-nodes s tar t  

shipping their da t a  with the lowest keys t o  the receiving node for this key range. The receiving node merges all 

incoming da t a  streams, and  is the bottleneck in this step, slowing down all other nodes. After this key range is 

exhausted on all sources, the receiving node for the second key range becomes the bottleneck, and so on. Thus, 

this method allows only for limited parallelism in the da t a  exchange phase13. The described problem can be 

alleviated by reading all ranges in parallel. It is important, however, t o  use a smart  disk allocation strategy 

t ha t  allows doing this without too many disk seeks. We are exploring the possible strategies and their implica- 

tions on overall system performance. 

The second method s tar ts  the parallel sorting algorithm by exchanging da t a  based on logical keys. Notice 

that ,  provided a sufficiently fast network in the first step, all da t a  exchange can be done in parallel with no 

node depending on a single node for input values. First, all sites with da t a  redistribute the da t a  t o  all sites 

where the sorted da t a  will reside. Second, all those sites which have received da t a  sort them locally. This algo- 

rithm does not contain a centralized bottleneck, but i t  creates a new problem. Tlle local sort cfTort is dcter- 

mined by the amount of da t a  t o  be sorted locally. To  achieve high parallelism in the local sort phase, i t  is 

imperative tha t  the amount of da t a  be balanced among the receiving processors. The amount of da t a  at each 

receiving site is determined by the range of key values t ha t  the site is t o  receive and sort locally, and the 

l2 The reason is that we are interested in scalable algorithms, i.e., algorithms that perform well for high degrees of paral- 
lelism. In a shared-memory database processing system like the one we are using currently, a common system bus is bound 
to become a bottleneck as more processors are added. Therefore, an interconnection network must be introduced, e.g., in 
form of a hypercube, in which data transfer can be a significant cost. 

l3 This is not a problem for CPU scheduling in a shared-memory system that uses one central run queue as our system 
does. Depending on the disk configuration, however, it might be a problem due to uneven disk load. In a shared-nothing ar- 
chitecture it clearly is a problem. 



number of da t a  items with keys in this range. In order t o  balance the local sorting load, i t  is necessary t o  esti- 

mate the quantiles of the keys a t  all sites prior t o  the redistribution step. Quantiles are key values t ha t  are 

larger than a certain fraction of key values in the distribution, e.g., the median is the 50% or 0.5 quantile'4. 

For load balancing among N processors, the i/N quantiles for i=1, ..., N-1 need t o  be determined. Finding the 

median for a dataset distributed t o  a set of processors with local memory has been studied theoretically [73]. 

We need t o  extend this research for a set of quantiles, and adapt  i t  for a database setting, i.e., for disk-based 

large datasets. Sufficient load balancing can probably be achieved using good estimates for the quantiles 

instead of the exact values. Our work on describing da t a  distributions using moments and density functions 

may provide significant assistance for this problem 1741. 

We implemented both parallel sorting methods in Volcano. The second method, da t a  exchange followed 

by local sorts, can readily be implemented using the methods and modules described so far, namely the exchange 

module and the sort iterator. For the first method, local sorts followed by merges at the destination site, we 

needed t o  implemented another module, merge, and t o  extend the exchange module. 

The merge iterator was easily derived from the sort module. I t  uses a single level merge, instead of the 

cascaded merge of runs used in sort. The input of a merge iterator is a n  exchange. Differently from all other 

operators, the merge iterator must distinguish the input records by their producer. As a n  example, for a join 

operation i t  does not matter  where the input records were created, and all inputs can be accumulated in one 

input stream. For a merge operation, i t  is crucial t o  distinguish the input records by their producer in order to  

merge multiple sorted streams correctly. 

We modified the exchange module such tha t  i t  can keep the input records separated according t o  their pro- 

ducers, switched by setting a field in the s tate  record. A third argument t o  next-exchange is used t o  communi- 

cate the producer between the merge and exchange iterators. Further modifications included increasing the 

number of input buffers used by exchange, the number of semaphores (including flow control) used between pro- 

ducer and consumer par t  of exchange, and the logic for end-of-stream. 

l4 Notice that if the distribution is "skewed", the mean and the median can differ significantly. Consider the sequence 1, 
1, 1, 2, 10, 10, 10. The mean is 3517 = 5, whereas the median is 2. 



A more detailed description of Volcano's sort iterator and its parallel sort algorithms can be found in (71, 

along with a n  experimental performance evaluation. 

9. Summary and Conclusions 

We have described Volcano, a new query evaluation system tha t  combines compact, extensible, dynamic, 

and parallel algorithms in a dataflow query evaluation system. Compactness is achieved by focusing on few 

general algorithms. The one-to-one match operator implements join, semi-join, outer join, anti-join, intersec- 

tion, union, difference, anti-difference, and Cartesian product. Extensibility is achieved by implementing only 

one essential abstraction, streams, and  by relying on imported support functions for object interpretation and 

manipulation. The details of streams, e.g., the types and structure of their elements, are not par t  of the stream 

definition and its implementation, and can be determined a t  will. 

Dynamic query evaluation plans are  a new concept introduced in [3] tha t  allow efficient evaluation of 

queries with free variables. The choose-plan operator a t  the top of a plan or  a subplan makes a n  efficient deci- 

sion which alternative plan t o  use when the plan is invoked. Dynamic plans have the potential of increasing the 

performance of embedded and repetitive queries significantly. 

Volcano utilizes dataflow techniques within processes a s  well a s  between processes. Within a process, 

demand-driven dataflow is implemented by means of iterators. Between processes, data-driven dataflow is used 

t o  exchange d a t a  between producers and consumers efficiently. If necessary, Volcano's data-driven dataflow can 

be augmented with flow control or  back pressure. Horizontal partitioning is used both on stored and intcrmedi- 

a t e  datasets t o  allow intra-operator parallelism. The design of the exchange operator encapsulates the parallel 

execution mechanism for vertical, bushy, and intra-operator parallelism, and i t  performs the transitions from 

demand-driven t o  data-driven dataflow and back. 

A number of features make Volcano an interesting object of performance studies. First, the LRU/h4RU 

buffer replacement strategy switched by a keep-or-toss hint needs t o  be evaluated. Second, using clusters of 

different sizes on a single device and avoiding buffer shuming by allocating buffer space dynamically instead of 

statically require careful evaluation. Third, Volcano allows measuring the performance of parallel algorithms 

and identifying bottlenecks on a shared-memory architecture. Fourth, we will investigate the frequency and the 



effect of convoys in multi-processor query evaluation. Fifth, the advantages and disadvantages of a separate 

scheduler process should be evaluated. Sixth, after data-driven dataflow has been shown t o  work well on a 

shared-nothing database machine [13], the combination of demand- and data-driven dataflow should be explored 

on a network on shared-memory computers. 

While Volcano is a working system in its current form, we are considering several improvements. First, 

Volcano currently does very extensive error detection, including a number of self-tests, but i t  does not encapsu- 

late errors in fail-fast modules. I t  would be desirable t o  modify all modules such t ha t  they have all-or-nothing 

semantics for all requests. This might prove particularly tricky for the exchange module. Second, for a more 

complete performance evaluation, Volcano should be enhanced t o  a multi-user system t,hst allo\vs inter-query 

parallelism. Third, t o  make i t  a complete da t a  manager and query processor, transactions semantics including 

recovery should be added. 

Volcano is the first implemented query evaluation system tha t  combines extensibility and parallelism. We 

believe tha t  in Volcano we have a powerful tool for database systems research and education. We are making 

i t  available for student use, e.g., for implementation and performance studies, and we intend t o  use i t  in a 

number of research projects. First among those are  research on the optimization and evaluation of dynamic 

query evaluation plans [3] and the REVELATIONproject on query optimization in object-oriented database sys- 

tems with behavioral encapsulation [36]. 
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