
1 Volcrano : h Extensible and Parallel

Qery Evaluation Systen

Goetz Graeje

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 89-006

July, 1989

An Extensible and Parallel Query Evaluation System

Goetz Graefe

Oregon G r a d u a t e Cen te r
Beaverton, Oregon 97006- 1999

graefe@cse .ogc .edu

Abstract
We present a new dataflow query evaluation system developed for database systems research and educa-

tion. Volcano is extensible with new operators and algorithms because it uses a standard interface between pro-
cedures. It supports dynamic query evaluat ion plans tha t allow delaying some optimization decisions until run-
time, e.g., for embedded queries with free variables. I t includes an exchange operator tha t allows intra-operator
parallelism on partitioned datasets and both vertical and horizontal inter-operator parallelism, translating
between demand-driven dataflow within processes and data-driven dataflow between processes.

1. Introduction

In order t o provide a testbed for database systems education and research we decided t o design and imple-

ment a modular, high-performance query evaluation system with our limited resources. We spent a fair amount

of time thinking about making our software flexible without sacrificing efficiency. The result is a compact sys-

tem, consisting of fewer than two dozen core modules with a total of about 12,000 lines of C code. These

modules includes a file system, buffer management, sorting, B t t r e e s , and two algorithms each for natural join,

semi-join, outer join, anti-join, aggregation, duplicate elimination, division, union, intersection, difference, anti-

difference, and Cartesian product. Moreover, two modules implement dynamic query evaluation plans and allow

parallel processing of all algorithms listed above.

Volcano is a n operational query evaluation system implemented on both single- and multi-processor sys-

tems. I t is not a complete database system since it lacks a number of features such as a query language, an

' The name Volcano was born when David Maier asked about some drawings of index structures on the author's white
board, left over from a conversation with Leonard Shapiro about the query evaluation system, whether they were pictures of
"data volcanos." For a system developed in Oregon, not far from Mt. Hood and Mt. St. Helens, the name seemed just fine.
The artwork on the cover was done by ICelly Atkinson from a photograph of Mt. Hood, Oregon.

optimizer, a type system for instances (record definitions), and catalogs. This is by design; Volcano is intended

t o provide a n experimental vehicle for our earlier work in query optimization [1,2,3] and for multi-processor

query evaluation.

Many design decisions in Volcano were deliberately left open, and typically can be expressed using run

time variables, e.g., the number and sizes of buffer pools, the unit of buffering and 1/0 for each file, the unit of

disk space allocation, the degree of parallelism in query evaluation, etc. All operations on records are left open

for later definition. Instead of inventing a language in which t o specify selection predicates, hash functions, etc.,

we prefered t o pass functions t o the appropriate operators which a re called when necessary with the right argu-

ments. These support futzctions are explained in more detail in the text. The common theme is tha t Volcano

provides rnechanistns for query evaluation in order t o allow the user of Volcano t o experiment with policies.

This paper is a general overview, i t describes the Volcano system without special attention t o any particu-

lar aspect. Other papers on Volcano were written for this purpose, e.g., [3,4,5,6,7,8,9, lo]. These papers also

include experimental performance evaluations of Volcano's algorithms.

In the following section, we briefly review previous work tha t influenced our design. In Section 3, we pro-

vide a more detailed description of Volcano. Section 4 is a discussion of extensibility in the system. Dynamic

query evaluation plans and their implementation are described in Section 5. Parallel processing is encapsulated

in the ezchange module described in Section 6. In Section 7, we describe how the ezchange module can be used

t o efficiently exploit common subexpressions in a complex query. Section 8 describes alternative strategies and

implementations of parallel sorting for very large files. Section 9 contains a summary and our conclusions from

this effort.

2. Related Work

Since so many different systems have been developed t o process large datasets efficiently, we only survey

the systems t h a t have strongly influenced the design of Volcano. The system grew in pieces, with first ideas

developed a t the University of Wisconsin without a clear design for Volcano. The ideas for dynamic query

evaluation plans and for parallel execution were developed a t the Oregon Graduate Center [3,11].

Our work is most strongly influenced by WiSS and GAMMA. The Wisconsin Storage System (WiSS), is a

record-oriented file system providing heap files, B t r e e and hash indices, buffering, and scans with predicates.

GAMMA is a software database machine running on a number of general purpose computers as a backend to a

UNIX host machine. It was developed on 17 VAX 11/750's connected with each other and the VAX 11/750 host

via a 80 Mb/s token ring. Eight GAMMA processors have a local disk device, accessed with WiSS. The disks

are accessible only locally, and update and selection operators use only these eight processors. The other, disk-

less processors are used for join processing. GAMMA extensively uses hash-based algorithms, implemented in

such a way tha t each operator is executed on several (or all) processors and the input stream for each operator

is partitioned into disjoint sets according to a hash function [12,13,14]. A detailed description and a prelim-

inary performance evaluation of GAMMA can be found in [13], more information on its performance in [15].

The GAMMA software is currently being ported to an Intel iPSC/2 hypercube with local disk drives.

In early summer of 1987, there was only an impression tha t some decisions in WiSS [16] and GAMMA [13]

were not optimal for performance, generality, or both. For instance, the decisions to protect WiSS's buffer space

by copying a da ta record in or out for each request and to re-request a buffer page for every record during a

scan seemed to inflict too much overhead2. The desire to design and build a better file system drove the first

effort towards Volcano's file system layer.

During the design of the EXODUS storage manager [17], many of these issues were revisited. Lessons

learned and tradeoffs explored in these discussions certainly helped in forming the ideas behind Volcano. The

development of E [18] influenced the strong emphasis on iterators for query processing.

Finally, a number of conventional (relational) and extensible systems have influenced our design. Without

further discussion, we mention Ingres [19], System R [20], GENESIS [21], Starburst [22], Postgres [23], and XPRS

[24]. It is interesting to note that independently of our work the Starburst group has also identified the

demand-driven iterator paradigm as a suitable basis for an extensible, single process query evaluation architec-

ture [25]. Furthermore, there has been a large amount of research and development in the database machine

This statement only pertains to the original version of WiSS as described in [16]. Both decisions were reconsidered for
the version of WiSS used in GAMMA.

area, such t ha t there.is a n annual international workshop on the topic. Almost all database machine proposals

and implementations utilize parallelism in some form. We certainly have learned from this work, in particular

from GAMMA, and tried t o include these lessons in the design and implementation of Volcano. In particular,

we have strived for simplicity and symmetry in the design, mechanisms for well-balanced parallelism, and

efficiency in all details.

3. Volcano System Design

In this section, we provide a n overview of the modules in Volcano. The file system layer provides record,

file, and index operations, including scans with predicates, and buffering. The query processing layer is a library

of query processing modules t ha t can be nested t o build complex query evaluation trees. This separation can be

found in most query evaluation systems, e.g., RSS and RDS in System R [20]. System catalogs or a da t a diction-

ary are not included in Volcano since we did not want t o commit ourselves t o a particular da t a model. We

s ta r t our description a t the bottom, the file system, and then discuss the query processing modules.

3.1. The File System

Within our discussion of the Volcano file system, we also proceed bottom-up, from devices and memory

management through buffer management t o da t a files and B+-trees.

Volcano stores da t a on disk devices. Devices are viewed as arrays of fixed-sized pages. Several devices of

different sizes can be used concurrently. The page size is a compile-time constant, currently 1 ICB. We use

UNM files t o simulate devices, similar t o WiSS. It is quite straightforward t o port Volcano t o using raw devices

or other primitive OS services3. We assume tha t we can read or write a contiguous array of pages (up t o the

maximum cluster size, see below) with a single read or write system call.

Page allocation on a device is done using a contiguous bit map. The bit map is sized t o contain one bit

for each page on the,device. The bit map and the volume header are read into buffer space when a device is

mounted, and kept there until i t is dismounted. Mounting, page allocation, and actual 1/0 functions are per-

formed by the physdo module.

'In fact, this has been done successfully as reported in the performance section below

A simple memory manager is used by all other system components, e.g., t o allocate buffer space or hash

tables. It allocates a large chunk of memory when Volcano is initialized and satisfies requests from this chunk.

Request are expressed in number of pages. I t uses a bit map and linked lists of small chunks t o allocate and

deallocate pages.

The buffer manager is one of the more interesting parts of the system. I t includes a number of novel

features and mechanisms. Buffer pools can be created and destroyed dynamically, and multiple buffer pools can

exist concurrently. When a device is mounted, i.e., created or opened, the device is assigned t o a buffer pool.

When a pool is created, i t is created with a norm site, e.g., 512 KB, and a n actual size of 0. The buffer pool

grows with each new request t ha t cannot be satisfied with the resident clusters until the actual size reaches the

norm size, as will be described shortly.

When pages are requested from the buffer and result in a buffer fault, the buffer manager allocates space

for the new page using the memory manager described above. The reason for this strategy is t ha t we wanted t o

support variable-size chunks, which we call clusters, within devices without the problems of bufler shufling, i.e.,

moving pages around in the buffer in order t o find contiguous pages. Buffer shuffling is undesirable for two rea-

sons. First, i t is slow and expensive t o do. In many current systems, e.g., a DEC microVAX 11, memory t o

memory copying is not much faster than typical disk transfer rates. Second, in order t o avoid copying data

between the buffer space and query processing algorithms we needed t o pin buffer pages, i.e., guarantee the loca-

tion of a cluster in the buffer until the cluster is explicitly unpinned. We opted against using double indirection

a s used in the EXODUS storage system [17,26] because i t is too complex t o implement and introduces unneces-

sary performance penalties.

A number of investigations concerned database buffer replacement strategies. For an overview, see [27].

Buffer replacement in systems with variable size pages was investigated by Sikeler [28]. To comment only on

one, Chou performed a n extensive comparison using simulations driven by real database system traces t o com-

pare a number of replacement strategies [29,30]. When examining Chou's work, we noticed t ha t most of the

benefit of Chou's algorithm DBMIN could be realized by using hints from higher level software, e.g., the query

processing routines, for each cluster when a cluster is pinned4. Thus, when pinning or unpinning a cluster in the

buffer, a hint must be given t o the buffer manager whether t o KEEP or t o TOSS this cluster. This hint is used

by the buffer manager t o decide whether t o insert the cluster a t the top or a t the bottom of a LRU list. In

effect, the replacement policy is a switched LRU/MRU policy. The LRU policy is implemented in such a way

tha t dirty clusters are paged out slower than clean ones since their replacement cost is higher. Incidentally, this

strategy is similar t o the LOW/HATE hint used in Starburst's buffer manager [32]. However, while the default

in Starburst is LOVE (LRU), the default in Volcano is TOSS (MRU). The M I N K operating system [33] also

inserts pages either a t the top or the bottom of a LRU stack for da t a and indirect pages. The decision is static,

however, and does not accept hints from the user level.

When the actual size reaches the norm size, page replacement commences. In the case of a buffer fault, i t

first is checked whether the cluster a t the bottom of the LRU stack is of the same size as the requested cluster.

If so, i t is replaced. If not, or if there is no free cluster in the stack because the buffer is overcommitted, space

for the new cluster is allocated from the memory manager. For this purpose, there are more cluster descriptors

in the buffer pool than the norm size of the pool, and the buffer pool can grow beyond its norm size. After the

requested cluster is loaded into the buffer, the buffer deallocates clusters from the bottom of the LRU stack until

the actual size is below or equal t o the norm size, or until the LRU stack is empty.

Files are composed of records, clusters, and extents. Clusters are the unit of 1/0 and of buffering, as dis-

cussed above. The cluster size is fixed for each file individually. Thus, different files on the same device can

have different cluster sizes. Records must fit into clusters t o avoid the difficulties and inefficiencies of spanning

records, i.e., records t ha t are divided over multiple pages. Since clusters can be very large, this is hardly a res-

triction. A t the current time, the record length is also fixed for each file, i.e., all records within one file must

have the same length. We realize tha t this is a severe restriction for supporting complex objects with Volcano

and will remedy this problem shortly. Disk space for file is allocated in extents, one primary and up t o thirty

Chou's algorithm also uses a hint when a scan is opened about which of a set of access patterns can be expected.
Chou's algorithm also includes load control by detecting an overcommitted buffer and the danger of thrashing. However, we
believe that load control can easily be added to Volcano simply by estimating hot set sizes 131) and keeping track of their
sum.

secondary extents. An extent contains multiple clusters. The extent sizes are declared when a file is created.

Records can be accessed directly using a record identifier (RID) or through a scan. A RID consists of dev-

ice number, page number, cluster size, and record number within the cluster, and i t is 8 bytes long. Thus, there

16 can be 256 devices, 232 pages per device, 256 pages per cluster, and 2 records per cluster. The cluster size is

included the enable the buffer and 1 / 0 modules t o perform all necessary operations using only a RID.

There are two modes of record insertion. If a near RID is provided with the insertion request, the new

record is inserted into the old record's cluster. If this cluster is already full, the default strategy is used. By

default, the record is inserted into a n arbitrary cluster of the file. For this purpose the file descriptor includes a

hint pointing t o a cluster t h a t has a n open record slot. If no such cluster can be found, a new cluster is

appended t o the file.

One special file is kept on each device called the volume table of contents (VTOC). It implements a single

level directory, and is accessed with the standard file and record routines. Originally, this file was intended t o

serve the purpose of inodes in the UNIX file system [34]. Later on we decided tha t we also needed a mapping

from names t o VTOC entries. The name service in Volcano is rather simple. Instead of "going the whole nine

yards" and implementing tree-structured directories, we opted for the quicker solution of including name strings

in the VTOC entries. However, there is nothing tha t prevents us from revisiting this decision. The name look-

up service is encapsulated in a single procedure, thus changing this aspect of Volcano's design would be a very

localized change.

Internally, files are identified by a closed file descriptor which is the RID of the file's entry in the VTOC.

When a file is opened, the VTOC cluster containing the file's entry is fixed in the buffer pool. An open file

descriptor is a pointer t o a file's entry fixed in the buffer pool. While this is not the safest way to implement

handles t o open files, i t probably is the most efficient one, which is why we chose t o use it. The closed file

descriptor of the VTOC is kept in the volume header; a device's VTOC is kept open a s long as the device is

mounted.

There are two interfaces t o file scans; one is par t of the file system and is the described momentarily; the

other is par t of the query processing level and is decribed later. The first one has the standard procedures for

file scans open, nezt, close, rewind. The nezt procedure returns the main memory address of the next record.

This address is guaranteed (pinned) until the next operation is invoked on the scan. A file scan supports the

notion of a current record and current cluster, the cluster which includes the current record. The current record

is the record returned by the last next call. The current cluster is fixed in the buffer while the scan is open.

Thus, getting the next record within the same cluster does not require calling the buffer manager and can be

performed in about 100 instructions. The current record's RID can be extracted from the scan descriptor if i t is

needed.

It has been pointed out t o us t ha t for some applications, bi-directional scans are desirable. Currently, Vol-

cano does not provide reverse scans or a previous operation. We believe, however, tha t such an operation is

easy t o add if necessary. We did not implement i t because Volcano's query processing modules in their current

form have no use for reverse scans.

For fast creation of files, scans support a n append operation. I t allocates a new record slot, either in the

current cluster or in a new cluster appended t o the end of the file, fixes the new cluster in the buffer pool, and

returns the new slot's main memory address. Since it can use the current cluster in most cases (without invok-

ing the buffer manager) and does not perform any copying, i t is about a s fast as the next operation.

In addition, there is a marker associated with each file scan t ha t can be used with the procedures set-mark

and goto-mark. The former puts the marker on the current record. The la t ter returns t o the marker, i.e., the

first call t o nest after goto-naark returns the same record a s the last call t o nest before the last set-mark. This

marking mechanism was designed for use by merge join.

Finally, scans in Volcano support optional predicates. Predicates are passed t o the scan by means of a

function entry point and a typeless pointer which serves as a predicate argument. The predicate function is

called by the nest procedure with the argument and a record address. Only records for which the predicate

evaluates t o TRUE are returned by the scan. Selective scans are the first example of support functions men-

tioned briefly in the introduction. Instead of determining a qualification itself, the scan mechanism relies on a

function imported from a higher level.

Arguments t o support functions can be used in two ways. In compiled scans, i.e., when the predicate

evaluation function is available in machine code, they can be used to pass a constant or a pointer t o several

constants t o the predicate function. For example, while the predicate consists of comparing a record field with

a string, the comparison function is passed a s predicate function while the search string is passed as predicate

argument. In interpreted scans, i.e., when a general interpreter is used to evaluate all predicates in a query,

they can be used to pass appropriate code for interpretation to the interpreter. The interpreter is given a s

predicate function. Thus, both interpreted and compiled scans are supported with a single simple and efficient

mechanism.

Indices are implemented currently only in the form of top-down 13+-trees. A leaf entry consists of a key

and information. The information part typically is a RID, but it could include more or different information.

The key and the information can be of any type; a comparison function must be provided to compare keys. The

comparison function uses an argument equivalent t o the one described for file scan predicates. Currently both

the key and the information must be of fixed size. Thus, some space may be wasted for keys of type string as

the maximum size must always be reserved and keys may appear repeatedly if the indexed key is not unique.

The size of internal index nodes and leaf clusters can be different multiples of a page. We hope that by using

larger nodes and leaves we will be able t o provide adequate performance even for large keys.

B+-trees are implemented on top of devices, not on top of files. Therefore, B+-tree nodes and leaves are

not allocated using the extent mechanisms described above for files.

B+-trees support scans similar to files, including predicates. In addition, B+-tree scans allow seeking to a

particular key, and setting lower and upper bounds. Finally, B+-trees also support an append operation

designed for fast loading. Its design assumes tha t entries are appended in key order. Root-to-leaf traversals are

necessary only when appending a, new leaf t o the B+-tree. The append operation includes parameters for free

space in B+-tree nodes and leaves.

For testing purposes, we implemented memory devices, which simulate a disk device in process (virtual)

memory. Obviously, their contents are lost when the program tha t created and used them terminates. 110 on

memory devices is translated to copies between the "device" space and the buffer pool.

For intermediate results in query processing (later called streams), we implemented special devices called

virtual devices. A virtual device has a volume header and a page allocation map just like a real device. How-

ever, da t a pages of virtual devices only exist in the buffer. As soon a s such da t a pages are unpinned, they disap-

pear and their contents are lost. Files on virtual devices are called virtual files.

In summary, most of Volcano's file system is rather conventional. Two aspects are novel and warrant

further performance studies. First, the buffer manager with multiple buffer pools, dynamic growth in case of

overcommitment, and its simple but effective replacement hint promises most of the performance advantages of

much more complex replacement strategies [35], but requires more thorough experimental analysis. Second,

using clusters of different sizes on the same device and in the same buffer pool support small and large files and

objects with one simple, efficient mechanism.

3.2. Query Processing

The basic routines above are utilized by the query processing routines t o evaluate complex query plans.

Queries are expressed a s complex algebra expressions; the operators of this algebra are query processing algo-

rithms. We will describe the operations using relational terminology since we hope t ha t this will assist the

reader. We want t o point out, however, t ha t the operations can be viewed and are implemented as operations

on sets of structured objects, and tha t Volcano is not dependent on assumptions about the structure of such

objects6.

Volcano does not include mechanisms t o create such algebra expressions. In a complete database system,

these expressions are created in a sequence of steps illustrated in Figure 1. After parsing, a query or command

is first verified against the catalogs t o determine whether or not the query is legal, e.g., whether it references

non-existing attributes. Second, in most relational systems, the query is modified t o reflect views and integrity

constraints [37]. This step can be seen a s a translation from a n external level of a database t o the conceptual

level [38]. Third, the query optimizer maps a query against the conceptual database t o a program accessing the

physical database. This program is called query evaluation plan, access plan, or simply plan, and can be

In fact, we intend to use Volcano as query processing system for an object-oriented database system [36].

Figure 1: Query Preparation

expressed in many languages, e.g., in ASL in System R [39] or a s a set of s ta te records a s in Volcano. Since most

queries can be mapped t o many different, functionally equivalent plans, the optimizer includes an elaborate

search engine, e.g., [40,1]. Finally, in most database systems, the query evaluation plan is compiled into

machine code, called the access module, either by a special purpose compiler or a standard programming

language compiler such as the C compiler in the case of Volcano.

Volcano, a s mentioned in the introduction, is not a database system. Rather, i t provides mechanisms for

query evaluation in database systems. Its "programming interface" are s tate records, currently built manually,

but intended t o be created by a n optimizer. Multiple s ta te records are linked together t o form a complex query;

each s tate record represents one algebra operator.

All algebra operators are implemented as iterators, i.e., they support a simple open-next-close protocol

similar t o conventional file scans. Associated with each algorithm is a state record. The arguments for the algo-

rithms, e.g., (pointers to) predicate evaluation functions, are kept in the s tate record. All functions on data

records, e.g., comparisons and hashing, are compiled prior t o execution and passed t o the processing algorithms

by means of pointers t o the function entry points. Each of these functions uses a n argument allowing inter-

preted or compiled query evaluation, a s described earlier for file scan predicates.

Each iterator has a n associated s tate record type. A state record contains the arguments and the state of

one operation. For example, the size of a hash table t o be allocated in open is a n argument, and its location is

par t of the state. All state information of an iterator is kept in its s ta te record; thus, an algorithm may be used

multiple times in a query by including more than one s tate record in the query.

In queries involving more than one operator (i.e., almost all queries), s ta te records are linked together by

means of input pointers, a s shown in Figure 2. The input pointers are also kept in the s tate records. They are

pointers t o a QEP structure t ha t includes four pointers. These are t o the input operator's s ta te record and t o

the entry points of the three procedures implementing the operator (open, next, and close).

Using Volcano's standard form of iterators, an operator does not need t o know what kind of operatol- pro-

duces its input, or whether its input comes from a complex query tree or from a simple file scan. We call this

concept anonymous inputs or streams. Streams are a simple but powerful abstraction tha t allows combining any

number of operators t o evaluate a complex query. Together with the iterator control paradigm, streams

represent the most efficient execution model in terms of time (overhead for synchronizing operators) and space

(number of records t ha t must reside in memory concurrently) for single process query evaluation.

Calling open for the top-most operator results in instantiations for the associated s tate record's state, e.g.,

allocation of a hash table, and in open calls for all inputs. In this way, all iterators in a query are initiated

Figure 2: A Query Evaluation Plan

recursively. In order t o process the query, nezt for the top-most operator is called repeatedly until i t fails with

an end-of-stream indicator. The top-most operator calls the nezt procedure of i ts input if i t needs more input

da t a t o produce a n output record. Finally, the close call recursively "shuts down" all iterators in the query.

This model of query execution matches very closely the one being included in the E programming language

design [18] and the query executor of the Starburst relational database system [25].

A number of query and environment parameters may influence policy decisions during opening a query

evaluation plan, e.g., query predicate constants and system load information. Such parameters are passed

between all open procedures in Volcano with a parameter called bindings. This is a typeless pointer t ha t can be

used for policy decisions in support functions, e.g., t o dynamically determine the degree of parallelism. This

parameter is particularly useful in dynamic query evaluation plans, which are described later in a separate sec-

tion.

The tree-structured query evaluation plan is used t o execute queries by demand-driven dataflow. The

return value of a next operation is, besides an error indicator, a structure called NEXTXECORD which consists

of a record identifier and a record address in the buffer pool. This record is pinned in the buffer. The protocol

about fixing and unfixing records is a s follows. Each record pinned in the buffer is owned by exactly one opera-

tor a t any point in time. After receiving a record, the operator can hold on t o i t for a while, e.g., in a hash

table, unfix it , e.g., when a predicate fails, or pass it on t o the next operator. Complex operations tha t create

new records, e.g., join, have t o fix their output records in the buffer before passing them on, ant1 have to unfix

their input records.

A NEXTXECORD structure can point t o one record only. All currently implemented query processing

algorithms pass complete records between operators, e.g., join creates new, complete records by copying fields

from two input records. It can be argued t ha t creating complete new records and passing them between opera-

tors is prohibitively expensive. An alternative is t o leave original records in the buffer a s they were retrieved

from the stored da ta , and compose NEXTREC pairs, triples, etc., for intermediate results. The advantage of

this alternative is less memory-to-memory copying. While this may or may not translate t o significant perfor-

mance improvements in single-processor or shared-nothing systems, i t may provide substantial gains for shared-

memory multi-processor systems in which the bus a s a central resource can become the bottleneck. We are

currently working on quantifying the performance impact.

Another benefit of ananymous inputs is tha t we can use a generic driver module for all queries. The driver

module is par t of Volcano; i t consists of a call t o its input's open procedure, a loop calling next until i t fails,

unfixing the produced records in the buffer, and a n invokation of close.

We could have chosen t o implement demand-driven dataflow in a different way. Three methods were con-

sidered. First, a central executor module can be used t o schedule the progress in each query processing module,

basically reinventing coroutines 1411. Each iterator is triggered by the executor and returns control t o the exe-

cutor either when i t needs an input record or when it has produced an output record. We felt, however, tha t

writing operators in the coroutine paradigm is less natural than in the iterator paradigm.

Second, instead of one iterator directly calling its input iterator using a function entry point included in a

QEP structure, we could have used a one-level executor tha t uses a large case statement t o decide which itera-

tor t o call. We did not see a n advantage in this scheme since i t introduces additional overhead (two procedure

calls for each record passed between iterators instead of one) but still requires t ha t each QEP structure have

some knowledge (address, name) of i ts input operator.

Third, we could have used rewriting techniques as proposed by Freytag [42,43,44] t o avoid all overhead of

procedure calls between iterators and the overhead of invoking support functions. This schemes has three draw-

backs, however. First, we felt tha t i t is harder t o extend with new algorithms, e.g., for complex object retrieval.

Second, in order t o remove the overhead of calling support functions, the form and the types of predicates must

be incorporated in the rewriting system. Thus, a type system is introduced into Volcano, something we wanted

t o avoid t o keep i t more flexible and extensible. Third, using rewriting techniques requires t ha t the entire code

be compiled; we felt tha t we should leave the decision open for the user of Volcano whether predicates and other

functions on individual objects are compiled or interpreted.

In summary, we chose t o implement demand-driven dataflow by encoding operators a s iterator, i.e., with

open, next, and close procedures, since this scheme promises generality, extensibility, and low overhead.

3.2.1. Scans, Functional Join, and Filter

The first scan interface was discussed with the file system. The second interface t o scans, both file scans

and B+-tree scans, provides an iterator interface suitable for query processing. The open procedures open the

file or B+-tree and a scan on it (as described above). The file name or closed file descriptor are given in the

state record as are an optional predicate and bounds for B+-tree scans.

Typically, B+-tree indices hold keys and RID's in their leaves. In order to use B+-tree indices, the records

in the data file must be retrieved. In Volcano, this look-up operation is split from the B+-tree scan iterator and

is performed by the functional join operator. This operator requires a stream of records containing RID's as

input and either outputs the data file records retrieved using the RID's or it composes new records from the

input records and the retrieved data file records, thus "joining" the B+-tree entries and their corresponding data

records.

We separated B+-tree scan and functional join for a number of reasons. First, it is not clear that storing

data in B+-tree leaves never is a good idea. This was done, for example, in the original Ingres design [19], but

abandoned in the commercial version of Ingres. At times, it is desirable to have other types of information asso-

ciated with look-up keys, e.g., primary keys in secondary indices in ARBRE [45].

Second, we wished to allow experimenting with manipulation of RID-lists for complex queries. While Blas-

gen and Eswaran [46] did not find RID-list joins preferable over nested loops join and merge join, their conclu-

sion may not hold for other operations and database systems, e.g., bibliographic search and retrieval systems.

Third, while functional join is currently implemented rather naively, we can make this operation more

intelligent. If the functional join operator considers a window of RID's a t a time instead of only a single RID, it

may be possible to avoid some buffer faults and to save on disk seek operations if the records are retrieved in an

organized way. It is not clear whether there is a payoff in this technique or not, but we wanted to leave the

option for later experimentation.

Finally, we intend to generalize functional join in a later project to intelligently assemble complex objects

consisting of many records in multiple nesting levels [36] A number of object ID'S or RID7s will be used, selec-

tively based on field values of the input record or of retrieved component objects [9].

Typically, selection predicates are applied by the file or B+-tree scan operators. Selections t ha t cannot be

applied within scans a re performed by the filter operator. The filter operator can actually perform three func-

tions, switched by the presence or absence of corresponding support functions in the s ta te record. The predicate

function applies a selection predicate. If this function is present, only records for which the predicate returns

TRUE are passed on. The transform function creates a new record, typically of a new type, from each old

record. An example would be a relational projection (without duplicate elimination). More complex examples

include compression and decompression, changes in codes and representations, and arithmetic. Finally, the apply

function is invoked once on each record for the benefit of its side effects. Typical examples are updates and

printing. Both the transform and apply functions have access t o the current RID througll one of their argu-

ments.

3.2.2. One-to-one Match

The one-to-one match operator will probably be among the most frequently used query processing algo-

rithm of Volcano. Originally, i t was conceived after the observation t ha t many aggregate functions require a

subsequent join on the attributes of the bplist (grouping attributes). When using hash-based algorithms, imple-

menting aggregate functions and equi-join in two separate modules results in the same hash table being built

twice, once for computing aggregates for each group and once in preparation for the join.

As a n example for a query in which the same hash table is build twice, consider a (relational) university

database and a request t o

find the students who have taken all courses in their major department.

This query can be evaluated using aggregate functions. Focus on the department relation. We will first count

the courses for each department, which is a n aggregate function grouping on department, and then join the out-

put relation (with the attributes department,nuntber-of -courses) t o the student relation or an intermediate

result relation using the department attribute. If the aggregate function was performed using a hash table on

department, the same hash table can be used for the subsequent join.

This observation sparked the definition of one-to-one match. Aggregate functions and join have in com-

mon tha t a tuple is included in the output depending on the result of a comparisons between a pair of tuples.

The opposite is relational division where a tuple is included in the output depending on a set of matches with

the tuples of the divisor relation. The main difference between aggregate functions and equi-joins is that the

former requires comparing tuples of the same input while the latter requires comparing tuples of two different

inputs.

In order t o avoid unnecessary memory-to-memory copying and creation of redundant duplicates, i t seemed

necessary to differentiate between semi-joins and joins that need to compose new intermediate relations. Furth-

ermore, set operations between union-compatible relations can be viewed a s variants of join and one-to-one

match [47]; therefore, we wanted to implement them with the same algorithm. In our environment, i t was a

natural choice to implement all these variants using a single module with numerous "bells and whistles." The

extensions for set operations such as intersection were trivial, and are outlined below.

The simple hash join algorithm as described in [48,12] proceeds in two phases. In the first phase, a hash

table is built from one input; i t is therefore called the build phase. In the second phase, the hash table is probed

using tuples from the other input t o determine matches and to compose output tuples; i t is called the probe

phase. After the probe phase, the hash table and its entries are discarded. Instead, our one-teone match

operator uses a third phase, which we call the push phase, and which is needed for aggregate functions and some

other operations.

Since the one-to-one match operator is also an iterator, the three phases are assigned t o the open, nezt,

and close functions. Open includes the build phase, while the other two phases are included in the next function.

Successive invocations of the nezt function automatically switch from the probe phase to the flush phase when

the second input is exhausted. Closing the build and probe inputs is delayed until one-to-one match is closed

because the file system does not allow closing a file on a virtual device until all its records are unpinned.

The state t o be saved between invocations of next includes indicators for probe or flush phase, the current

build record, and the current probe record. The current build record is required to locate further build records

in the same bucket chain which must also matched against the current probe record.

If the one-to-one match operator is used to implement relational join, i t proceeds exactly like the simple

hash join. The build phase requests input tuples from the build input and builds hash bucket chains. The probe

phase determines matches by looping over members of a bucket and produces output tuples where appropriate.

The flush phase unfixes the tuples in the hash table in the buffer and deallocates the hash table without produc-

ing any output. Support functions are used t o calculate a record's hash value, t o compare two records, and t o

compose a n output record from two input records.

A semi-join is a join in which records of one input are selected depending on matches with records of the

other input. In order t o implement semi-join efficiently, the one-to-one match operator preserves rather than

copies records of the first input. When performing a semi-join t ha t preserves the probe input, a probe input

tuple is matched only until a match is found. The probe tuple is then passed on as output. Thus, memory-to-

memory copying is avoided. The module performs a semi-join instead of a join if the support function t o com-

pose output tuples is omitted.

The opposite semi-join (which preserves build input tuples) requires a more sophisticated implementation.

In our implementation, a bit is initialized t o FALSE for each tuple in the hash table. When a match is found,

this bit is set t o TRUE. The flush phase scans through all buckets and outputs the tuples for which a match

was found.

Finally, outer-join and anti-join can be implemented using Volcano's one-to-one match module. Two addi-

tional support functions compose result tuples from build or probe input tuples respectively. Input tuples tha t

do not participate in the natural join (and hence have t o be augmented with NULLS) are identified using the

same mechanisms used for semi-joins.

The build phase can be used t o eliminate duplicates or t o perform an aggregate function in the build

input. Instead of inserting a new tuple into the hash table as in simple hash join, an input tuple is first matched

with the tuples in its prospective hash bucket. If a match is found, the new tuple is discarded or i ts values are

aggregated into the existing tuple. The one-to-one match module determines which variant of the algorithm is

requested by the presence or absence of the three support functions used t o compare two records from the build

input, t o initialize a n aggregation (e.g., set a counter t o O), and t o aggregate two records. A Boolean argument

switch controls whether build input records are inserted into the hash table, or a new file and new records are

created. The la t ter may be necessary if new fields are required for the aggregation, e.g., a sum and and a count

for calculating a n average.

The one-to-one match module does not require a probe input; if only a n aggregation is required without

subsequent join, the absence of the probe input in the s tate record signals t o the module tha t the probe phase

should be skipped.

I t is possible t o improve the operator's dataflow behavior for duplicate elimination by producing output

records immediately when encountered. However, a copy would have t o be held back t o enable duplicate detec-

tion. We felt t ha t allowing upper level operators t o proceed while keeping the record pinned in the buffer for

duplicate detection would increase buffer contention without significant benefits. Therefore, we did not imple-

ment this variant.

While hash tables in main memory are usually quite fast, a severe problem occurs if the build input does

not fit in main memory6. This situation is called hash table overflow. There are two ways t o deal with hash

table overflow. First, if a query optimizer is used and can anticipate overflow, it can be avoided by partitioning

the input(s). This overflow avoidance technique is the basis for the hash join algorithm used in the Grace data-

base machine [49]. Second, overflow files can be used t o resolve the problem after i t occurs. Several overflow

resolution schemes have been designed and compared [48,12,50,51]. A t the current time, we are studying how

best t o implement hash table overflow avoidance and resolution for the rather complex one-to-one match opera-

tor in Volcano.

The extension of the code described so far t o set operations started with the observation tha t the intersec-

tion of two union-compatible relations is the same a s the natural join of these relations, and can be imple-

mented as semi-join. The union is the (two-sided) outer join of union-compatible relations. The difference and

anti-difference of two sets can be computed using special settings of the algorithm's bells and whistles. Finally,

Cartesian product can be implemented by matching successfully all possible pairs of records from the two

inputs.

' Notice that if an aggregate function or duplicate elimination is performed on the build input, only the output of this
operation must fit in main memory. In particular when memory is scarce, aggregating into a new, temporary file pays off
since it avoids internal fragmentation in the buffer, i.e., the records are packed densely into clusters.

The second version of one-to-one match is based on sorting. Its two modules are a disk-based merge-sort

and the actual merge-join. Opening the sort iterator prepares sorted runs for merging. If the number of runs is

larger than the maximal fan-in, runs are merged into larger runs until the remaining runs can be merged in a

single step. The final merge is performed on demand by the nezt function. If the entire input fits into the sort

buffer, i t is kept there until demanded by the nezt function.

The sort operator has been implemented in such a way tha t i t supports aggregation7 and duplicate elimi-

nation. I t can perform these operations early, i.e., while writing temporary files [52,53]. Merge-join has been

generalized similarly t o hash-join t o support semi-join, outer join, anti-join, and set operations. The sort algo-

rithm is explained in detail in [7].

Hash-based one-to-one match, sort-based one-to-one match, and sorting all create new output records and

files from input streams, with the exception of semi-join. Since records must be copied in any case, and since

copying is always done by invoking support functions, these iterators trivially support record reformatting, e.g.,

relational projection (without duplicate elimination). For performance reasons, i t is very important tha t projec-

tion be included in join operations since copying can contribute significantly t o overall query processing costs.

Considering performance results for relational join reported in [13,15,51,14], one might wonder why we did

not include bit vector filtering [54] in the one-to-one match operator. We omitted this feature for five reasons.

First, i t is not obvious t ha t the performance gain would be significant in a shared-memory multiprocessor.

Second, i t would further complicate the operator, its control logic, code, and support functions. Third, if i t is

really needed, i t is straightforward t o build the functionality with two filter operators. The first filter operator

invokes a n apply support function t o build the bit vector. The second operator invokes a predicate function t o

eliminate tuples. The address of the filter in shared memory is passed t o the support functions using the argu-

ments. Fourth, detaching bit vector filtering allows using i t with merge join. A bit vector filter cannot be

included in the merge join operation because the filter must be present before tuples can be eliminated. How-

ever, if bit vector building is detached, the filter can be created before or while sorting the first input, and

To be precise, we mean aggregate functions here. For example, the "sum of salaries by department" can be computed
by sorting employee records on their department field and adding salaries within each department.

therefore be used to eliminate tuples from the secoud input before they are passed to the sort operator. Thus,

bit vector filters can be used in Volcano not only to reduce join costs, including merge join, but also to reduce

sort costs. Finally, separating bit vector filtering from one-to-one match allows using it with a single mechanism

for both one-to-one match and one-to-many match.

3.2.3. One-to-Many Match

There are two versions of relational division in Volcano, probably the most typical and most frequently

used operator of the one-to-many match variety. The first version, which we call naive division, is based on sort-

ing. The second version, which we call hash-division, utilizes two hash tables, one on the divisor and one on the

quotient. An exact description of the two algorithms and alternative algorithms based on aggregate functions

can be found in [4] along with analytical and experimental performance comparisons and detailed discussions of

two partitioning strategies, hash-table overflow, and multi-processor implementations. We are currently study-

ing how to generalize these algorithms in a way comparable with our generalizations of aggregation and join,

e.g., for a majority function.

4. Extensibility

A number of database research efforts strive for extensibility, e.g., EXODUS, GENESIS, Postgres, Star-

burst, DASDBS, and others. We believe that Volcano is a very open query evaluation architecture that provides

easy extensibility. Let us consider a number of frequently proposed extensions and how they can be accommo-

dated in Volcano.

First, when extending the object type system, e.g., with a new abstract da ta type (ADT) like date or boz,

the Volcano software is not affected a t all because i t does not provide a type system for objects. All manipula-

tion of and calculation based on individual objects is performed by support functions. Volcano solves some

problems in composing complex objects with the functional join operator. Generalizations of this operator are

probably necessary for an object-oriented or non-first-normal-form database system, but can be included in Vol-

cano without difficulty.

Second, in order t o add new functions on individual objects or aggregate functions, e.g., geometric mean,

t o the database and query processing system, the appropriate support function is required and passed to a query

processing routine. The reason why Volcano software is not affected by extensions of the functionality on indivi-

dual objects is t ha t Volcano's software only provides abstractions and implementations for dealing with and

sequencing sets of objects using streams, whereas the capabilities for individual objects are imported in the form

of support functions.

Third, in order t o incorporate a new access method, e.g., multidimensional indices in form of R-trees [55],

appropriate iterators have t o be defined. The stream concept is very open; in particular, anonymous inputs

shield existing query processing modules and the new iterators from one another.

Fourth, t o include a new query processing algorithm in Volcano, e.g., a n algorithm for transitive closure or

nest and unnest operations for nested relations, we need t o code the algorithm in the iterator paradigm. In

other words, we have t o write the algorithm in such a way tha t i t provides and uses for i ts input open, nest, and

close procedures. After an algorithm has been brought into this form, its integration with Volcano is trivial. In

fact, as the Volcano query processing software grew, we did this a number of times.

Extensibility can also be considered in a different context. In the long run, i t clearly is desirable t o pro-

vide a front-end t o make using Volcano easier. In particular, we are currently exploring interfacing the

EXODUS query optimizer generator [2,1] with Volcano. We are developing a module t ha t "walks" query

evaluation plans produced by a n optimizer and generates C programs with embedded Volcano code, i.e., state

records, support functions, etc. We will use this front-end as a vehicle for experimentation after we have

modified the EXODUS software to create dynamic query evaluation plans, as outlined in tlie next section.

In summary, since Volcano is limited in scope, extensibility is provided naturally. In can be argued tha t

this is the case only because Volcano does not address the hard problems in extensibility. We believe tha t this

argument does not hold. Rather, Volcano addresses one subset of the extensibility problems and ignores a

different subset. While it provides extensibility of its set of query processing algorithms, i t does not provide

other essential services like a type system and type checking for the support functions and is therefore not an

extensible database system. The Volcano routines assume tha t the query evaluation plans and their support

functions are correct. Their correctness has t o be ensured before Volcano is invoked. The significance of Vol-

cano as a n extensible query evaluation system is tha t i t provides a simple but very useful set of mechanisms for

efficient query processing and tha t i t can and will be used as a flexible research tool.

5. Dynamic Query Evaluation Plans

In most database systems, a query embedded in a program written in a conventional programming

language is optimized when the program is compiled. The query optimizer must make assumptions about the

values of the program variables that appear a s constants in the query and the da ta in the database. These

assumptions include tha t the query can be optimized realistically using guessed "typical" values for the program

variables and that the database will not change significantly between query optimization and query evaluation.

The optimizer must also anticipate the resources that can be committed to query evaluation, e.g., the size of the

buffer or the number of processors. The optimality of the resulting query evaluation plan depends on the vali-

dity of these assumptions. If a query evaluation plan is used repeatedly over an extended period of time, it is

important to determine when reoptimization is necessary. We are working on a scheme in which reoptimization

can be avoided by using a new technique called dynamic query evaluation plans [3].

Volcano includes a choose-plan operator t o realize both multi-plan access modules and dynamic plans.

This operator provides the same open-next-close protocol a s the other operators and can therefore be inserted

into a query plan a t any location. The open operation decides which of several equivalent query plans to use

and invokes the open operation for this input. Open calls upon a support function for this policy decision, pass-

ing i t the bindings parameter described above. The next and close operations simply call the appropriate opera-

tion for the input chosen during open.

The choose-plan operator allows considerable flexibility. If only one choose-plan operator is used a s top of

a query evaluation plan, i t implements a multi-plan access module. If multiple choose-plan operators are

included in a plan, they implement a dynamic query evaluation plan.

The choose-plan operator provides significant new freedom in query optimization and evaluation. Since it

is compatible with the query processing paradigm, its presence does not affect the other operators a t all, and it

can be used in a very flexible way. We used the same philosophy when designing and implementing a scheme

parallel for query evaluation.

6. Multi-Processor Query Evaluation

The multi-processor implementation grew out of a desire t o leverage as much of the effort a s possible when

the Oregon Graduate Center acquired a n eight-processor shared-memory computer system. We decided tha t i t

would be desirable t o use the query processing code described above without any change. The result is very

clean, self-scheduling parallel processing.

The module responsible for parallel execution and synchronization is the exchange iterator. Notice tha t i t

is a n iterator with open, nezt, and close procedures; therefore, i t can be inserted a t any one place or a t multiple

places in a complex query tree.

This section describes vertical 2nd horizontal parallelism followed by an example, a discussion of varia-

tions and variants of the exchange operator, an overview of modifications t o the file system required for parallel

processing, and a comparison of Volcano's exchange operator with GAMMA'S mechanisms for parallelism.

6.1. Vertical Parallelism

The first function of exchange is t o provide vertical parallelism or pipelining between processes. The open

procedure creates a new process after creating a da t a structure in shared memory called a port for synchroniza-

tion and da t a exchange. The child process, created using the UNIX fork system call, is an exact duplicate of the

parent process. The exchange operator then takes different paths in the parent and child processes.

The parent prdcess serves as the consumer and the child process as the producer in Volcano. The

exchange operator in the consumer process acts a s a normal iterator, the only difference from other iterators is

t ha t i t receives its input via inter-process communication. After creating the child process, open-exchange in the

consumer is done. Next-exchange waits for da t a t o arrive via the port and returns them a record a t a time.

Close-exchange informs the producer tha t i t can close, waits for a n acknowledgement, and returns.

The exchange operator in the producer process becomes the driver for the query tree below the exchange

operator using open, next, and close on its input. The output of next is collected in packets, da t a structures of 1

KB which contain 83 NEXTRECORD structures. When a packet is filled, i t is inserted into the port and a

semaphore is used t o inform the consumer about the new packet8. Records in packets are fixed in the shared

buffer and must be unfixed by a consuming operator.

When i ts input is exhausted, the exchange operator in the producer process marks the last packet with an

end-of-stream tag, passes i t t o the consumer, and waits until the consumer allows closing all open files. This

delay is necessary because files on virtual devices must not be closed before all its records are unpinned in the

buffer.

The alert reader has noticed tha t the exchange module uses a different dataflow paradigm than all other

operators. While all other modules are based on demand-driven dataflow (iterators, lazy evaluation), the

producer-consumer relationship of exchange uses data-driven dataflow (eager evaluation). There are two very

simple reasons for this change in paradigms. First, we intend t o use the exchange operator also for horizontal

parallelism, t o be described below. Second, this scheme removes the need for request messages. Even though a

scheme with request messages, e.g., using a semaphore, would probably perform acceptably on a shared-memory

machine, we felt tha t i t creates unnecessary control overhead and delays. Since we believe t ha t very high

degrees of parallelism and true high-performance query evaluation requires a closely tied network, e.g., a hyper-

cube, of shared-memory machines, we decided t o use a paradigm for da t a exchange t ha t has has been proven t o

perform well in a shared-nothing database machine [13].

A run-time switch of exchange enables flow control or back pressure using a n additional semaphore. If the

producer is significantly faster than the consumer, the producer may pin a significant portion of the bufTer, thus

impeding overall system performance. If flow control is enabled, after a producer has inserted a new packet into

the port, i t must request the flow control semaphore. After a consumer has removed a packet from the port, i t

releases the flow control semaphore. The initial value of the flow control semaphore, e.g., 4, determines how

many packets the producers may get ahead of the consumers.

Notice tha t flow control and demand-driven dataflow are not the same. One significant difference is tha t

flow control allows some "slack" in the synchronization of producer and consumer and therefore truly overlapped

83 records is the standard packet size. The actual packet size is an argument in the state record, and can be set
between 1 and 255 records.

execution, while demand-driven dataflow is a rather rigid structure of request and delivery in which the consu-

mer waits while the producer works on its next output. The second significant difference is tha t data-driven

dataflow is easier t o combine efficiently with horizontal parallelism and partitioning.

6.2. Horizontal Parallelism

There are two forms of horizontal parallelism which we call bushy parallelism and intra-operator parallel-

ism. In bushy parallelism, different CPU's execute different subtrees of a complex query tree. Bushy parallelism

and vertical parallelism are forms of inter-operator parallelism. Intra-operator parallelism means tha t several

CPU's perform the same operator on different subsets of a stored dataset or a n intermediate result0.

Bushy parallelism can easily be implemented by inserting one or two exchange operators into a query tree.

For example, in order t o sort two inputs into a merge-join in parallel, the first or both inputs are separated from

the merge-join by a n exchange operation. The parent process turns t o the second sort immediately after forking

the child process t ha t will produce the first input in sorted order. Thus, the two sort operations are working in

parallel.

Intra-operator parallelism requires da t a partitioning. Partitioning of stored datasets is achieved by using

multiple files, preferably on different devices. Partitioning of intermediate results is implemented by including

multiple queues in a port. If there are multiple consumer processes, each uses its own input queue. The produc-

ers use a support function t o decide into which of the queues (or actually, into which of the packets being filled

by the producer) a n output record must go. Using a support function allows implementing round-robin-, key-

range-, or hash-partitioning.

If a n operator or a n operator subtree is executed in parallel by a group of processes, one of them is desig-

nated the master. When a query tree is opened, only one process is running, which is naturally the master.

When a master forks 's child process in a producer-consumer relationship, the child process becomes the master

A fourth form of parallelism is inter-query parallelism, i.e., the ability of a database management system to work on
several queries concurrently. In the current version, Volcano does not support inter-query parallelism. A fifth and sixth form
of parallelism that can be used for database operations involve hardware vector processing [56] and pipelining in the instruc-
tion execution. Since Volcano is a software architecture and following the analysis in [57], we do not consider hardware
parallelism further.

within its group. The first action of the master producer is t o determine how many slaves are needed by calling

a n appropriate support function. If the producer operation is t o run in parallel, the master producer forks the

other producer processes.

Gerber pointed out tha t such a centralized scheme is suboptimal for high degrees of parallelism 1141.

When we changed our initial implementation from forking all producer processes by the master t o using a propa-

gation tree scheme, we observed significant performance improvements. In such a scheme, the master forks one

slave, then both fork a new slave each, then all four fork a new slave each, etc. This scheme has been used very

effectively for broadcast communication and synchronization in binary hypercubes.

Even after optimizing the forking scheme, its overhead is not negligible. We are considering using primed

processes, i.e., processes t ha t are always present and wait for work packets. Primed processes are used in

GAMMA [13] and in many commercial database systems. Since the distribution of compiled code for support

functions is not trivial in our environment (Sequent Dynix), we delayed this change and plan on using primed

processes only when we move t o an environment with multiple shared-memory machineslO.

After all producer processes are forked, they run without further synchronization among themselves, with

two exceptions. First, when accessing a shared da t a structure, e.g., the port t o the consumers, short-term locks

must be acquired for the duration of one linked-list insertion. Concurrent invocation of routines of the file sys-

tem, in particular the buffer manager, is described later in this section. Second, when a producer group is also a

consumer group, i.e., there are at least two exchange operators and three process groups involved in a vertical

pipeline, the processes t h a t are both consumers and producers synchronize twice. During the (very short) inter-

val between synchronizations, the master of this group creates a port which serves all processes in its group.

When a close request is propagated down the tree and reaches the first exchange operator, the master

consumer's close-ezchange procedure informs all producer processes tha t they are allowed t o close down using

the semaphore mentioned above in the discussion on vertical parallelism. If the producer processes are also con-

sumers, the master of the process group informs its producers, etc. In this way, all operators are shut down in

lo In fact, this work is currently under way.

an orderly fashion, and the entire query evaluation is self-scheduling.

6.3. An Example

Let us consider a n example. Assume a query with four operators, A , B , C , and D such tha t A calls B's,

B calls C's, and C calls D's open, close, and next procedures. Now assume tha t this query plan is t o be run in

three process groups, ,called A , BC, and D . This requires a n exchange operator between operat,ors A and B,

say X, and one between C and D, say Y. B and C continue t o pass records via a simple procedure call t o the

C's next procedure without crossing process boundaries. Assume further tha t A runs as a single process, Ao,

while B C and D run in parallel in processes BC, t o BC, and Do to D3, for a total of eight processes.

A calls X's open, close, and next procedures instead of B's (Figure 3a), without kno~vledge tha t a process

boundary will be crossed, a consequence of anonymous inputs in Volcano. When X is opened, i t creates a port

with one input queue for A, and forks BC, (Figure 3b), which in turn forks BCl and BC, (Figure 3c). When the

B C group opens Y, BC, t o BC2 synchronize, and wait until the Y operator in process BC, has initialized a port

with three input queues. BC, creates the port and stores its location a t an address known only t o the B C

processes. Then BC, t o BC2 synchronize again, and BC1 and BC2 get the port information from its location.

Next, BCo forks Do (Figure 3d) which in turn forks Dl t o D3 (Figure 3e).

When the D operators have exhausted their inputs in Do t o D3, they return a n end-of-stream indicator t o

the driver par ts of Y. In each D process, Y flags its last packets t o each of the B C processes (i.e., a total of

Figure 3a-c. Creating the B C processes.

Figure 3d-e. Creating the D processes.

Figure 3f-11. Closing all processes down.

3X4=13 flagged packets) with a n end-of-s tream tag and then waits on a semaphore for permission t o close. The

copies of the Y operator in the BC processes count the number of tagged packets; after four tags (the number

of producers or D processes), they have exhausted their inputs, and a call t o Y's next procedure will return an

end-of-stream indicator. In effect, the end-or-stream indicator has been propagated from the D operators t o the

C operators. In due turn, C , B, and then the driver par t of X will receive a n end-of-stream indicator. After

receiving three tagged packets, X's next procedure in A. will indicate end-of-stream t o A .

When end-of-stream reaches the root operator of the query, A , the query tree is closed. Closing the

exchange operator X includes releasing the semaphore tha t allows the BC processes t o shut down (Figure 3f).

The X driver in each BC process closes its input, operator B. B closes C , and C closes Y. Closing Y in BC1

and BC2 is a n empty operation. When the process BCo closes the exchange operator Y, Y permits the D

processes t o shut down by releasing a semaphore. After the processes of the D group have closed all files and

deallocated all temporary da t a structures, e.g., hash tables, they indicate the fact t o Y in BC, using another

semaphore, and Y's close procedure returns t o its caller, C's close procedure, while the D processes terminate

(Figure 3g). When all B C processes have closed down, X's close procedure indicates the fact t o A. and query

evaluation terminates (Figure 3h).

6.4. Variants of the Exchange Operator

For some operations, i t is desirable t o replicate or broadcast a stream to all consumers. For example, one

of the two partitioning methods for hash-division [4] requires tha t the divisor be replicated and used with each

partition of the dividend. Another example is Baru's parallel join algorithm in which one of the two input rela-

tions is not moved at all while the other relation is sent through all processors [58]. T o support these algo-

rithms, the exchange operator can be directed (by setting a switch in the s ta te record) t o send all records t o all

consumers, after pinning them appropriately multiple times in the buffer pool. Notice t ha t i t is not necessary t o

copy the records since they reside in a shared buffer pool; i t is sufficient t o pin them such t ha t each consumer

can unpin them a s if i t were the only process using them. After we implemented this feature, parallelizing our

hash-division programs using both divisor partitioning and quotient partitioning [4] took only about three hours

and yielded not insignificant speedups.

When we implemented and benchmarked parallel sorting [7], we added two more features t o exchange.

First, we wanted t o implement a merge network in which some processors produce sorted streams merge con-

currently by other processors. Volcano's sort iterator can be used t o generate a sorted stream. A merge iterator

was easily derived from the sort module. I t uses a single level merge, instead of the cascaded merge of runs used

in sort. The input of a merge iterator is a n exchange. Differently from other operators, the merge iterator

requires t o distinguish the input records by their producer. As a n example, for a join operation it does not

matter where the input records were created, and all inputs can be accumulated in a single input stream. For a

merge operation, i t is crucial t o distinguish the input records by their producer in order t o merge multiple sorted

streams correctly.

We modified the ezchange module such tha t i t can keep the input records separated according t o their pro-

ducers, switched by setting a n argument field in the s ta te record. A third argument t o next-exchange is used t o

communicate the required producer from the merge t o the exchange iterator. Further modifications included

increasing the number of input buffers used by ezchange, the number of semaphores (including for flow control)

used between producer and consumer part of ezchange, and the logic for end-of-stream.

Second, we implemented a sort algorithm tha t sorts da t a randomly partitioned over multiple disks into a

range-partitioned file with sorted partitions, i.e., a sorted file distributed over multiple disks. Using the same

number of processors and disks, we used two processes per CPU, one t o perform the file scan and partition the

records and another one t o sort them. We realized tha t creating more processes than processors inflicted a

significant cost, since these processes competed for the CPU's and therefore required operating system schedul-

ing. While the scheduling overhead may not be too significant, in our environment with a central run queue

processes can migrate. Considering tha t there is a large cache associated with each CPU, tlie ca.chc migration

adds a significant cost.

In order t o make better use of the available processing power, we decided t o reduce the number of

processes by half, effectively moving t o one process per disk. This required modifications t o the exchange opera-

tor. Until then, the exchange operator could "live" only a t the top or the bottom of the operator tree in a pro-

cess. Since the modification, the exchange operator can also be in the middle of s process' operator tree. When

the exchange operator is opened, i t does not fork any processes but establishes a communication port for da ta

exchange. The next operation requests records from its input tree, possibly sending them off t o other processes

in the group, until a record for i ts own partition is found.

This mode of operation" also makes flow control obsolete. A process runs a producer (and produces input

for the other processes) only if i t does not have input for the consumer. Therefore, if the producers are in

danger of overrunning the consumers, none of the producer operators gets scheduled, and the consumers consume

the available records.

6.5. File System Modifications

Clearly, the file system required some modifications t o serve several processes concurrently. In order t o

restrict the extent of such modifications, Volcano currently does not include protection of files and records other

than the volume table of contents (VTOC). Furthermore, typically non-repetitive actions like mounting a dev-

ice must be invoked by the query root process before or after a query is evaluated by multiple processes. The

following few paragraphs list the changes tha t were required in the file system t o allow parallel execution.

The m e m o r y module allocates space in a shared segment rather than a private segment, thus buffer space

is also shared among all processes. In order t o protect the memory allocation map, a single exclusive lock is

held during the short periods of time while the allocation map is searched or updated.

The physical I /O module uses two exclusive locks per device. First, device busy lock is held while calling

UNIX's lseek, read, and wri te system calls. This is necessary because otherwise two processes could get into a

race-condition in which one process's seek operation determines the location of the other process's write.

Second, the m a p busy lock protects the free space bit map.

Changes t o the device module were restricted t o protecting the volume table of contents. An exclusive

lock is held while a n entry is inserted or deleted or while the VTOC is scanned for the descriptor for a n external

file.

The most difficult changes were required for the bufler module. While we could have used one exclusive

lock as in the m e m o r y module, decreased concurrency would have removed most or all advantages of parallel

query processing. Therefore, the buffer uses a two-level scheme. There is a lock for each buffer pool and one for

l1 Whether exchange forks new producer processes or uses the existing process group to execute the producer operations
is a run-time switch.

each descriptor (cluster in the buffer). T l ~ e buffer pool lock must be held while searching or updating the hash

tables and bucket chains. It is never held while doing I/O; thus, i t is never held for a long period of time. A

descriptors or cluster lock must be held while updating a descriptor in the buffer, e.g., t o decrease its fix count,

or while doing 110.

Other buffer managers do not use a pool lock but lock each search bucket and the free chain individually,

e.g., the buffer manager of Starburst [59]. The advantage is increased concurrency, while the disadvantage is

increased number of locks and lock operations. We are currently working on quantifying this tradeoff for our

environment.

If a process finds a requested cluster in the buffer, i t uses a n atomic test-and-lock opera.tion t o lock the

descriptor. If this operation fails, the pool lock is released, the operation delayed and restarted. I t is necessary

t o restart the buffer operation including the hash table lookup because the process which holds the lock might

be reading or replacing the requested cluster. Therefore, the requesting process must wait t o determine the out-

come of the prior operation.

Using this restart-scheme for descriptor locks has the additional benefit of avoiding deadlocks. The four

conditions for deadlock are mutual ezclusion, hold-and-wait, no preemption, and circular wait [60,61]. Volcano's

restart-scheme does not satisfy the second condition.

While the locking scheme avoids deadlocks, i t does not avoid convoys [62]. If a process exhausts its CPU

time-slice while holding a "popular" exclusive lock, e.g., on a buffer pool, probably all other processes will block

in a convoy until the lock-holding process is re-scheduled and releases the lock. However, since we do not use a

"fair" scheduling policy t ha t does not allow reacquiring a lock before all waiting processes held and released the

lock, we expect t h a t convoys will quickly evaporate [62]. We intend t o investigate the special problem of con-

voys in shared-memory multi-processors further.

I t is interesting t o note t ha t spin-locks are quite effective in a multi-processor environment. For instance,

the pool is locked typically for about 100 instructions. If a process finds the pool locked, i t is cheaper t o waste

100 instructions spinning than it is t o reschedule the CPU and t o perform a context switch.

After the buffer manager and the other file system modules were modified t o serve multiple processes, i t

was straightforward t o include a read-aheadlwrite-bellind daemon. One or more copies of this daemon process

are forked when the buffer manager is initialized, and accept work requests on a queue and semaphore similar t o

the one used within the exchange module. There are three kinds of work requests, the first two are accompanied

by a cluster identifier. First, FLUSH writes a cluster if i t is in the buffer and dirty. Second, READAHEAD

reads a cluster and inserts i t a t the top of the LRU chain. The cluster remains in the buffer using the normal

aging process. If i t is not fixed and removed from the free list before it reaches the bottom of the free list, i t is

replaced. Third, a QUIT request terminates the daemon.

6.6. Review and Comparison with GAMMA

In summary, the exchange module encapsulates parallel processing in Volcano. Only very few changes had

t o be made t o the buffer manager and the other modules of the file system in order t o accommodate parallel

execution. The most important properties of the exchange module are tha t i t implements three forms of parallel

processing within a single module, tha t i t makes parallel query processing entirely self-scheduling, and tha t i t

did not require any changes in the existing query processing modules, thus leveraging significantly the time and

effort spent on them and allowing easy parallel implementation of new algorithms.

It might be interesting t o compare Volcano and GAMMA [13] query processing in some detail. We only

want t o point out differences; we do not claim tha t the design decisions in Volcano are superior t o those in

GAMMA. First, Volcano runs on a shared-memory multi-processor, whereas GAh4A4A runs on a sliared-nothing

architecture. This difference made Volcano easier t o implement but will prevent very large configurations due

t o bus contention. We are currently investigating where the limit is for our software and hardware architec-

ture, and how we can push i t a s far as possible. Second, GAMMA is a complete system, with query language,

system catalogs, query optimization, concurrent transactions, etc., whereas Volca.no in its current form only pro-

vides mechanisms for single-user query evaluation. Third, Volcano schedules complex queries without the help of

a scheduler process. Operators are scheduled and activated top-down using a tree of iterators. In GAMMA, on

the other hand, operators are activated bottom-up by a scheduler process associated with the query. Fourth,

GAMMA uses only left-deep query trees, i.e., the probing relation in a hash join [48,12] must be a stored rela-

tion or the result of a selection. In Volcano, both join inputs can be intermediate results. In fact, since Volcano

uses anonymous inputs, a join operator has no way of knowing how the inputs were generated. Clearly, the

decision whether t o use bushy query trees or only left-deep trees has t o be made very carefully since the compo-

site resource consumption may lead t o thrashing. Fifth, Volcano can execute two or more operators within the

same process. In other words, vertical parallelism is optional. In the GAMMA design i t is assumed tha t da t a

have t o be repartitioned between operators.

7. Multi-plan Query Evaluation

Frequently, i t is desirable t o share intermediate results among two queries, or t o share two subqueries of

the same query. In the query optimization literature, common subexpression detection and global query optimi-

zation are popular topics [63,64,65,66,67,68]. However, none of the above query optimizers considers the prob-

lem of scheduling queries with common subexpressions. In this section, we briefly illustrate how the mechanisms

provided in Volcano can be used t o execute common subexpressions efficiently.

Consider two queries with a common subexpression. Let us call the common subexpression C and the

query-specific tree components A and B respectively. In order t o execute A , B, and C, we use one query expres-

sion. A t the top is an exchange module which is used t o fork two processes. The top-most operator in each of

these process is a choose-plan operator which chooses between A and B using the get-my-id function provided

by the exchange module.

This mechanism allow two processes t o execute two different plans concurrently. Thcir common subcxpres-

sion C is connected t o A and B with another exchange module. When A and B need input from C , they call on

this exchange module. Recall tha t multiple processes calling on the same exchange module synchronize a t this

point. Next, a third process is forked t o execute C. The replicate or broadcast switch described above ensures

t ha t all of C's output is delivered t o both A and B.

Unfortunately, Volcano's exchange mechanisms do not provide all desired functionality. Since the design

of the exchange operators was intended for intra-operator parallelism rather than execution of different plans,

the subqueries A and B must obey a significant restriction. In particular, A and B must not include additional

exchange modules. If A tried t o execute another subquery, say D l in a separate process, the exchange operator

connecting A and D would try t o synchronize with the other processes in its process group, namely the process

executing B, which would leave A in an infinite wait. If, however, D is a second common subexpression of -4

and B, and if A and B open C and D in the same order, the exchange operators will connect the four processes

correctly.

8. Parallel Sorting

We believe t ha t parallel sorting is of interest in its own right, even though we feel tha t the importance of

sorting for query processing will diminish as such algorithms are replaced by hash-based algorithms. Much work

has been dedicated t o parallel sorting, but onIy few algorithms have been implemented for database settings,

i.e., where the total amount of da t a is a large multiple of the total amount of main memory in the system. All

such algorithms are variants of the well-known merge-sort technique and require a final centralized merge step,

e.g., [69,70,71,72]. In a highly parallel architecture, any centralized component t h a t has t o process all da ta is

bound t o be a severe bottleneck.

In our algorithms, we t ry t o exploit the duality between main memory mergesort and quicksort. Both

these algorithms are recursive divide-and-conquer algorithms. The difference is tha t mergesort first divides phy-

sically and then merges on logical keys, whereas quicksort first divides on logical keys and then combines physi-

cally by trivially appending sorted subarrays.

In general, one of the two phases dividing and combining is based on logical keys whereas the other

arranges da t a items only physically. We call this the logical and the physical phase. Sorting algorithms for

very large da t a sets stored on disk or tape are also based on dividing and combining. Usually, there are two

distinct sub-algorithms, one for sorting within main memory and one for managing subsets of the da t a set on

disk or tape. The choices for mapping logical and physical phases t o dividing and combining steps are indepen-

dent for these two sub-algorithms. For practical reasons, e.g., ensuring tha t a run fits into main memory, the

disk management algorithm typically uses physical dividing and logical combining (merging). A point of practi-

cal importance is the fan-in or degree of merging, but this is a parameter rather than a defining property of the

algorithm.

For parallel sorting, we have essentially the same choices. Besides the two choices described above for disk

based sorts, a similar decision has t o be made for the da t a exchange step. We assume tha t da t a redistribution

among the processors or disks is required, and we wish t o avoid transferring a da t a item between processing

nodes more than once12. Therefore, any algoritllm has a local sort step and a da t a exchange step. We can per-

form the redistribution step either before or after the local sort step.

Consider the la t ter method first. After all da ta have been sorted locally on all nodes, all sort-nodes s tar t

shipping their da t a with the lowest keys t o the receiving node for this key range. The receiving node merges all

incoming da t a streams, and is the bottleneck in this step, slowing down all other nodes. After this key range is

exhausted on all sources, the receiving node for the second key range becomes the bottleneck, and so on. Thus,

this method allows only for limited parallelism in the da t a exchange phase13. The described problem can be

alleviated by reading all ranges in parallel. It is important, however, t o use a smart disk allocation strategy

t ha t allows doing this without too many disk seeks. We are exploring the possible strategies and their implica-

tions on overall system performance.

The second method s tar ts the parallel sorting algorithm by exchanging da t a based on logical keys. Notice

that , provided a sufficiently fast network in the first step, all da t a exchange can be done in parallel with no

node depending on a single node for input values. First, all sites with da t a redistribute the da t a t o all sites

where the sorted da t a will reside. Second, all those sites which have received da t a sort them locally. This algo-

rithm does not contain a centralized bottleneck, but i t creates a new problem. Tlle local sort cfTort is dcter-

mined by the amount of da t a t o be sorted locally. To achieve high parallelism in the local sort phase, i t is

imperative tha t the amount of da t a be balanced among the receiving processors. The amount of da t a at each

receiving site is determined by the range of key values t ha t the site is t o receive and sort locally, and the

l2 The reason is that we are interested in scalable algorithms, i.e., algorithms that perform well for high degrees of paral-
lelism. In a shared-memory database processing system like the one we are using currently, a common system bus is bound
to become a bottleneck as more processors are added. Therefore, an interconnection network must be introduced, e.g., in
form of a hypercube, in which data transfer can be a significant cost.

l3 This is not a problem for CPU scheduling in a shared-memory system that uses one central run queue as our system
does. Depending on the disk configuration, however, it might be a problem due to uneven disk load. In a shared-nothing ar-
chitecture it clearly is a problem.

number of da t a items with keys in this range. In order t o balance the local sorting load, i t is necessary t o esti-

mate the quantiles of the keys a t all sites prior t o the redistribution step. Quantiles are key values t ha t are

larger than a certain fraction of key values in the distribution, e.g., the median is the 50% or 0.5 quantile'4.

For load balancing among N processors, the i/N quantiles for i=1, ..., N-1 need t o be determined. Finding the

median for a dataset distributed t o a set of processors with local memory has been studied theoretically [73].

We need t o extend this research for a set of quantiles, and adapt i t for a database setting, i.e., for disk-based

large datasets. Sufficient load balancing can probably be achieved using good estimates for the quantiles

instead of the exact values. Our work on describing da t a distributions using moments and density functions

may provide significant assistance for this problem 1741.

We implemented both parallel sorting methods in Volcano. The second method, da t a exchange followed

by local sorts, can readily be implemented using the methods and modules described so far, namely the exchange

module and the sort iterator. For the first method, local sorts followed by merges at the destination site, we

needed t o implemented another module, merge, and t o extend the exchange module.

The merge iterator was easily derived from the sort module. I t uses a single level merge, instead of the

cascaded merge of runs used in sort. The input of a merge iterator is a n exchange. Differently from all other

operators, the merge iterator must distinguish the input records by their producer. As a n example, for a join

operation i t does not matter where the input records were created, and all inputs can be accumulated in one

input stream. For a merge operation, i t is crucial t o distinguish the input records by their producer in order to

merge multiple sorted streams correctly.

We modified the exchange module such tha t i t can keep the input records separated according t o their pro-

ducers, switched by setting a field in the s tate record. A third argument t o next-exchange is used t o communi-

cate the producer between the merge and exchange iterators. Further modifications included increasing the

number of input buffers used by exchange, the number of semaphores (including flow control) used between pro-

ducer and consumer par t of exchange, and the logic for end-of-stream.

l4 Notice that if the distribution is "skewed", the mean and the median can differ significantly. Consider the sequence 1,
1, 1, 2, 10, 10, 10. The mean is 3517 = 5, whereas the median is 2.

A more detailed description of Volcano's sort iterator and its parallel sort algorithms can be found in (71,

along with a n experimental performance evaluation.

9. Summary and Conclusions

We have described Volcano, a new query evaluation system tha t combines compact, extensible, dynamic,

and parallel algorithms in a dataflow query evaluation system. Compactness is achieved by focusing on few

general algorithms. The one-to-one match operator implements join, semi-join, outer join, anti-join, intersec-

tion, union, difference, anti-difference, and Cartesian product. Extensibility is achieved by implementing only

one essential abstraction, streams, and by relying on imported support functions for object interpretation and

manipulation. The details of streams, e.g., the types and structure of their elements, are not par t of the stream

definition and its implementation, and can be determined a t will.

Dynamic query evaluation plans are a new concept introduced in [3] tha t allow efficient evaluation of

queries with free variables. The choose-plan operator a t the top of a plan or a subplan makes a n efficient deci-

sion which alternative plan t o use when the plan is invoked. Dynamic plans have the potential of increasing the

performance of embedded and repetitive queries significantly.

Volcano utilizes dataflow techniques within processes a s well a s between processes. Within a process,

demand-driven dataflow is implemented by means of iterators. Between processes, data-driven dataflow is used

t o exchange d a t a between producers and consumers efficiently. If necessary, Volcano's data-driven dataflow can

be augmented with flow control or back pressure. Horizontal partitioning is used both on stored and intcrmedi-

a t e datasets t o allow intra-operator parallelism. The design of the exchange operator encapsulates the parallel

execution mechanism for vertical, bushy, and intra-operator parallelism, and i t performs the transitions from

demand-driven t o data-driven dataflow and back.

A number of features make Volcano an interesting object of performance studies. First, the LRU/h4RU

buffer replacement strategy switched by a keep-or-toss hint needs t o be evaluated. Second, using clusters of

different sizes on a single device and avoiding buffer shuming by allocating buffer space dynamically instead of

statically require careful evaluation. Third, Volcano allows measuring the performance of parallel algorithms

and identifying bottlenecks on a shared-memory architecture. Fourth, we will investigate the frequency and the

effect of convoys in multi-processor query evaluation. Fifth, the advantages and disadvantages of a separate

scheduler process should be evaluated. Sixth, after data-driven dataflow has been shown t o work well on a

shared-nothing database machine [13], the combination of demand- and data-driven dataflow should be explored

on a network on shared-memory computers.

While Volcano is a working system in its current form, we are considering several improvements. First,

Volcano currently does very extensive error detection, including a number of self-tests, but i t does not encapsu-

late errors in fail-fast modules. I t would be desirable t o modify all modules such t ha t they have all-or-nothing

semantics for all requests. This might prove particularly tricky for the exchange module. Second, for a more

complete performance evaluation, Volcano should be enhanced t o a multi-user system t,hst allo\vs inter-query

parallelism. Third, t o make i t a complete da t a manager and query processor, transactions semantics including

recovery should be added.

Volcano is the first implemented query evaluation system tha t combines extensibility and parallelism. We

believe tha t in Volcano we have a powerful tool for database systems research and education. We are making

i t available for student use, e.g., for implementation and performance studies, and we intend t o use i t in a

number of research projects. First among those are research on the optimization and evaluation of dynamic

query evaluation plans [3] and the REVELATIONproject on query optimization in object-oriented database sys-

tems with behavioral encapsulation [36].

Acknowledgements

The one-to-one match operators were implemented by Tom Iceller of OGC starting from existing hash

join, hash aggregate, merge join, and sort code. Dynamic query evaluation plans and the choose-plan operator

were designed and implemented by Karen Ward. The performance measurements were performed by Frank

Symonds of Sequent Computer Systems. We are also very much indebted t o the members of the GAMMA and

EXODUS projects. David DeWitt, Leonard Shapiro, and David Maier contributed t o the quality and clarity of

the exposition with insightful comments. Jim Gray, Stoncbraker, and Marguerite Murphy gave very help-

ful comments on earlier drafts of this paper.

References
G. Graefe, "Rule-Based Query Optimization in Extensible Database Systems," Ph.D. Thesis, University of
Wisconsin, (August 1987).

G. Graefe and D.J. DeWitt, "The EXODUS Optimizer Generator," Proceedings of the ACM SIGMOD
Conference, pp. 160-171 (May 1987).

G. Graefe and Ii . Ward, "Dynamic Query Evaluation Plans," Proceedings of the ACM SIGMOD Confer-
ence, p. 358 (May-June 1989).

G. Graefe, "Relational Division: Four Algorithms and Their Performance," Proceedings of the IEEE
Conference on Data Engineering, pp. 94-101 (February 1989).

G. Graefe, "Encapsulation of Parallelism in the Volcano Query Processing System," Oregon Graduate
Center, Computer Science Technical Report, (89-007)(June 1989).

G. Graefe, F. Symonds, and G. Kelley, "Shared-Memory Dataflow Query Processing in Volcano," Oregon
Graduate Center, Computer Science Technical Report, (89-010)(June 1989).

G. Graefe, "Parallel External Sorting in Volcano," Oregon Graduate Center, Computer Scienwe Technical
Report, (89-008)(June 1989).

T. Keller and G. Graefe, "The One-to-one Match Operator of the Volcano Query Processing System,"
Oregon Graduate Center, Computer Science Technical Report, (89-009)(June 1989).

G. Graefe, "Set Processing and Complex Object Assembly in Volcano and the REVELATION Project,"
Oregon Graduate Center, Computer Science Technical Report, (89-013)(June 1989).

G. Graefe and S.S. Thakkar, "Tuning a Parallel Database Algorithm on a Shared-Memory Multiproces-
sor," in preparation, (July 1989).

G. Graefe, "Datacube: An Integrated Data and Compute Server Based on a Cube-Connected Dataflow
Database Machine," Oregon Graduate Center, Computer Science Technical Report, (88-024)(July 1988).

D.J. DeWitt and R.H. Gerber, ''Multiprocessor Hash-Based Join Algorithms," Proceedings of the Conference
on Very Large Data Bases, pp. 151-164 (August 1985).

D.J. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, 1C.B. Kumar, and M. Muralikrislina, "GAMMA - A
High Performance Dataflow Database Machine," Proceedings of the Conference on Very Large Data Bases,
pp. 228-237 (August 1986).

R. Gerber, "Dataflow Query Processing using Multiprocessor Hash-Partitioned Algorithms," Ph.D. Thesis,
University of Wisconsin, (October 1986).

D.J. DeWitt, S. Ghandeharizadeh, and D. Schneider, "A Performance Analysis of the GAllhIA Database
Machine," Proceedings of the AC'Ad SIGMOD Conference, pp. 350-360 (June 1988).

H.T. Chou, D.J. DeWitt, R.H. Icatz, and A.C. Iclug, "Design and Implementation of the kvisconsin Storage
System," Software - Practice and Experience 15(10) pp. 943-962 (October 1985).

M.J. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita, "Object and File Management in the
EXODUS Extensible Database System," Proceedings of the Conference on Very Large Data Bases, pp. 91-
100 (August 1986).

J.E. Richardson and M.J. Carey, "Programming Constructs for Database System Implementation in
EXODUS," Proceedings of the ACM SIGAlOD Conference, pp. 208-219 (May 1987).

M. Stonebraker, E. Wong, P . Iireps, and G.D. Held, "The Design and Implementation of INGRES," ACAI
Transactions on Database Systenas l(3) pp. 189-222 (Skptember 1976).

M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P. Grifiths, W.F. Icing, R.A.
Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L. Traiger, B.W. Wade, and V. Watson, "System R: A
Relational Approach to Database Management," ACM Transactions on Database Systenas l(2) pp. 97-137
(June 1976).

D.S. Batory, "GENESIS: A Project to Develop an Extensible Database Management System," Proceedings
of the Int'l Workshop on Object-Oriented Database Systems, pp. 207-208 (September 1986).

P. Schwarz, W. Chang, J.C. Freytag, G. Lohman, J. McPherson, C. Mohan, and H. Pirahesh, "Extensibility
in the Starburst Database System," Proceedings of the Int'l Workshop on Object-Oriented Database Sys-
tems, pp. 85-92 (September 1986).

M. Stonebraker and L A . Rowe, "The Design of POSTGRES," Proceedings of the ACM SIGMOD Confer-
ence, pp. 340-355 (May 1986).

M. Stonebraker, R. Icatz, D. Patterson, and J. Ousterhout, "The Design of XPRS," Proceedings of the
Conference on Very Large Databases, pp. 318-330 (August 1988).

L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis, B.G. Lindsay, G.M. Lohman, K. Ono, and H. Pirahesh, "An
Extensible Processor for an Extended Relational Query Language," Computer Science Research Report,
(RJ 6182 (60892))IBM Almaden Research Center, (April 1988).

M.J. Carey, D.J. DeWitt, G. Graefe, D.M. Haight, J.E. Richardson, D.T. Schuh, E.J. Shekita, and S. Van-
denberg, "The EXODUS Extensible DBMS Project: An Overview," in Readings on Object-Oriented Data-
base Systems, ed. D. Maier and S. Zdonik,Morgan ICaufman, San Mateo, CA. (1989).

W. Effelsberg and T. I-Iaerder, "Principles of Database Buffer Management," ACM Transactions on Data-
base Systems Q(4) pp. 560-595 (Decembcr 1984).

A. Sikeler, 'VAR-PAGELRU: A Buffer Replacement Algorithm Supporting Different Page Sizes," Lecture
Notes in Computer Science 303 p. 336 Springer Verlag, (April 1988).

H.T. Chou, "Buffer Management of Database Systems," Ph.D. Thesis, University of Wisconsin, (May 1985).

H.T. Chou and D.J. DeWitt, "An Evaluation of Buffer Management Strategies for Relational Database
Systems," Proceedings of the Conference on Very Large Data Bases, pp. 127-141 (August 1985).

G.M. Sacco and M. Schkolnik, "A Mechanism for Managing the Buffer Pool in a Relational Database Sys-
tem Using the Hot Set Model," Proceeding of the Conference on Very Large Data Bases, pp. 257-262 (Sep-
tember 1982).

J. McPherson, M. Lee, and B. Lindsay, Personal Communication. December 1988.

A.S. Tanenbaum, Operating Systems - Design and Implementation, Prentice Hall, Englewood Cliffs, NJ
(1987).

M.K. McICusick, W. Joy, S. Leffler, and R. Fabry, "A Fast File System for UNDC," ACM Transactions of
Computer Systems 2(3) pp. 181-197 (August 1984).

H.T. Chou, Personal Communication. May 1988.

G. Graefe and D. Maier, "Query Optimization in Object-Oriented Database Systems: A Prospectus," pp.
358-363 in Advances in Object-Oriented Database Systems, ed. 1C.R. Dittric11,Springer-Verlag (September
1988).

M. Stonebraker, "Implementation of Integrity Constraints and Views by Query Modification," Proceedings
of the ACM SIGMOD Conference, (June 1975).

ANSI, "The ANSI/XS/SPARC DBMS Framework, Report of the Study Group on Database Management
Systems," AFIPS Press, (1977).

R.A. Lorie and J.F. Nilsson, "An Access Specification Language for a Relational Database Management
System," IBM Journal of Research and Developmefit 23(3) pp. 286-298 (May 1979).

P . Griffiths Selinger, M.M. Astrahan, D.D. Chamberlin, R A . Lorie, and T.G. Price, "Access Path Selection
in a Relational Database Management System," Proceedings of the ACM SIGAilOD Conference, pp. 23-34
(May-June 1979).

M. Conway, "A Multiprocessor Systenl Design," Proceedings of the AFIPS Fall Joint Computer Conference,
pp. 139-146 (1963).

J.C. Freytag, "Translating Relational Queries into Iterative Programs," P1t.D. Thesis, Harvard University,
(September 1985).

J.C. Freytag and N. Goodman, "Rule-Based Transformation of Relational Queries into Iterative Pro-
grams," Proceedings of the ACA4 SIGA4OD Conference, pp. 206-214 (May 1988).

J.C. Freytag and N. Gooclman, "Translating Aggregate Queries into Iterative Programs," Proceeding of
the Conference on Very Large Data Bases, pp. 138-148 (August 1986).

R. Lorie, J. Daudenarde, G. Hallmark, J. Stamos, and I-I. Young, "Adding Intra-Transaction Parallelism to
an Existing DBMS: Early Experience," IEEE Database Engineering 12(1) pp. 58-64 (March 1989).

M. Blasgen and K. Eswaran, "Storage and Access in Relational Databases," IBM Systems Journal
16(4)(1977).

This was observed in the Peterlee Relational Test Vehicle project; unfortunately, the author was unable to
locate the exact reference..

D.J. DeWitt, R . Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood, "Implementation Techniques
for Main Memory Database Systems," Proceedings of the ACM SIGMOD Conference, pp. 1-8 (June 1984).

S. Fushimi, M. Kitsuregawa, and 13. Tanaka, "An Overview of The System Software of A P:~rnllel Rcla-
tional Database. Machine GRACE," Proceeding of the Conference on Very Large Data Bases, pp. 209-219
(August 1986).

R.H. Gerber, "The Hash-Partitioned Algorithms," Preliminary Proposal, University of Wisconsin, (January
1985).

D. DeWitt and D. Schneider, "A Performance Evaluation of Four Parallel Join Algoritlims in a Shared-
Nothing Multiprocessor Environment," Proceedings of the ACM SIGMOD Conference, p. 110 (May-June
1989).

A. Klug, "Access Pa th s in the 'ABE' Statistical Query Facility," Proceedings of the ACAd SIGMOD Confer-
ence, pp. 161-173 (June 1982).

D. Bitton and D.J. DeWitt, "Duplicate Record Elimination in Large Data Files," ACM Transactions on
Database Systems 8(2) pp. 255-265 (June 1983).

E. Babb, "Implementing a Relational Database by Means of Specialized Hardware," ACAl Transactions on
Database Systems 4(1) pp. 1-29 (March 1979).

A. Guttman, L'R-Trees: A Dynamic Index Structure for Spatial Searching," Proceedings of the ACM SIG-
MOD Conference, pp. 47-57 (June 1984).

S. Torii, I(. Kojima, Y. Kanada, A. Sakata, S. Yoshizumi, and X4. Takal~aslii , "Accelerating Nonnumcrical
Processing by a n Extended Vector Processor," Proceedings of the IEEE Conference on Data Engineering,
pp. 194-201 (February 1988).

H. Boral and D.J. DeWitt, "Database hlachines: An Idea Whose Time Has Passed? A Critique of the
Future of Database Machines," Proceeding of the International 1Vorkshop on Database Machines, Springer,
(1983).

C.K. Baru, 0. Frieder, D. Kandlur, and M. Segal, "Join on a Cube: Analysis, Simulation, and Implementa-
tion," Proceedings of the 5th International Workshop on Database Machines, (1987).

B. Lindsay, Personal Comnzunication. February 1989.

E.G. Coffman, Jr., M.J. Elphick, and A. Shoshani, "System Deadlocks," ACM Coniputi~zg Surveys 3(3) pp.
67-78 (June 1971).

R.C. Holt, "Some Deadlock Properties of Computer Systems," ACM Computing Surveys 4(3) pp. 179-196
(September 1972).

M. Blasgen, J.N. Gray, M. Mitoma, and T. Price, "The Convoy Phenomenon," Operating Systems Review
13(2) pp. 20-25 (April 1979).

M. Jarke, "Common Subexpression Isolation in Multiple Query Optimization," pp. 191-205 in Query Pro-
cessing in Database Systems, ed. W. Kim, D.S. Reincr, and D.S. Batory,Springer, Berlin (1985).

W. Kim, "Global Optimization of Relational Queries: A First Step," pp. 206-216 in Query Processing in
Database Systems, ed. W. Kim, D.S. Reiner, and D.S. Batory,Springer, Berlin (1985).

J. Park and A. Segev, "Using Common Subexpressions To Optimize Multiple Queries," Proceedings of the
IEEE Conference on Data Engineering, pp. 311-319 (February 1988).

A. Rosenthal and U. Chakravarthy, "Anatomy of a Modular Multiple Query Optimizer," Proceedings of
the Conference on Very Large Databases, pp. 230-239 (August 1988).

K. Satoh, M. Tsuchida, F. Nakamura, and I<. Oomachi, "Local and Global Query Optimization Mechan-
isms for Relational Databases," Proceedings of the Conference on Very Large Data Bases, pp. 405-417
(August 1985).

T.K. Sellis, "Multiple-Query Optimization," ACM Transaction on Database Systems 13(1) pp. 23-52 (March
1988).

D. Bitton Friedland, "Design, Analysis, and Implementation of Parallel External Sorting Algorithms,"
Computer Sciences Technical Report 464University of Wisconsin, (January 1982).

D. Bitton, D.J. DeWitt, D.K. Hsiao, and J. Menon, "A Taxonomy of Parallel Sorting," ACAf Conzputing
Surveys 16(3) pp. 287-318 (September 1984).

M. Beck, D. Bitton, and W.K. Wilkinson, "Sorting Large Files on a Backend Multiprocessor," Department
of Computer Science Technical Report, (March 1986).

J. Menon, "A Study of Sort Algorithms for Multiprocessor Database Machines," Proceeding of the Confer-
ence on Very Large Data Bases, pp. 197-206 (August 1986).

M. Blum, R.W. Floyd, V.R. Pratt , R.L. Rivest, and R.E. Tarjan, "Time Bounds for Selection," Journal of
Computer and System Sciences 7(4) pp. 448-461 (1972).

G. Graefe, "Selectivity Estimation Using Moments and Density Functions," Oregon Graduate Center, Com-
puter Science Technical Report, (87-012)(November 1987).

Abstract ...
1 . Introduction ..
2 . Related Work ..
3 . Volcano System Design ..
3.1. The File System ...
3.2. Query Processing ...
3.2.1. Scans, Functional Join, and Filter ..
3.2.2. One-to-one Match ..
3.2.3. One-to-Many Match ...
4 . Extensibility ..
5 . Dynamic Query Evaluation Plans ...
6 . Multi-Processor Query Evaluation ..
6.1. Vertical Parallelism ...
6.2. Horizontal Parallelism ..

.. 6.3. An Example
6.4. Variants of the Exchange Operator ...
6.5. File System Modifications ...
6.6. Review and Comparison with GAIvMA ..
7 . Multi-plan Query Evaluation ..
8 . Parallel Sorting ...
9 . Summary and Conclusions ...

.. Acknowledgements

