
Parallel External Sorting in Volcano

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 89-008
June, 1989

OREGON GRADUATE CENTER

19800 N.W. VON NEUMANN DRIVE
BEAVERTON. OREGON 97-1969

Parallel External Sorting in Volcano

Goetz Graefe

Oregon Graduate Center
Beaverton, Oregon 97006-1999

graefe@cse.ogc .edu

Abstract
We add yet another paper on parallel sorting t o the large body of literature on the topic. We briefly sur-

vey a new query evaluation system called Volcano developed for database systems research and education, and
then focus on Volcano's sort algorithms. Volcano's single-process sort algorithm has several interesting features
tha t make it quite efficient. Volcano's flexible multi-processing architecture provides efficient mechanisms for
single- and multi-input and for single- and multi-output sort operations, in any combination. We report experi-
mental performance results sorting medium size and large files on a shared-memory machine.

1. Introduction

A large amount of research effort has been spent on parallel sorting. Instead of reporting on yet another

theoretical twist, we report here on a set of implemented parallel sort algorithms and analyze their perfor-

mance. We implemented these algorithms within Volcano, a new modular, high-performance query evaluation

system. Volcano is operational on both single- and multi-processor systems. I t is not a complete database sys-

tem since it lacks a number of features such as a query language, an optimizer, a type system for instances

(record definitions), and catalogs. This is by design; Volcano is intended t o provide a n experimental vehicle for

our earlier work in query optimization [I, 2, 31 and for multi-processor query evaluation.

In the following section, we briefly review previous work and propose our taxonomy of parallel external

sort algorithms. In Section 3, we provide an overview of Volcano. Parallel processing is encapsulated in the

ezchange module introduced in Section 4. Section 5 describes the single-process sort operation which is the basis

for all parallel sort algorithms. Section 6 describes alternative strategies and implementations of parallel sort-

ing for very large files. In Section 7, we present and analyze experimental performance results for single-process

and parallel sorting in Volcano. Section 8 contains a summary and our conclusions from this effort.

The art work on the cover was done by Kelly Atklnson from a photograph of Mt Hood, Oregon

1

2. Related Work

Sort algorithms have been studied very extensively, both single-site and parallel algorithms. The best

source for single-site algorithms probably still is [4]. For a survey of parallel algorithms, we refer the reader t o

[5]. We know of only very few recent investigations and implementations of parallel sort algorithms for large

files, namely [6, 7, 81, the sorting method used in the Teradata database machine, and a Sequent-internal paral-

lel sorting project.

We will attempt a taxonomy of parallel external sort algorithms. By external sort algorithm we mean a

sort algorithm tha t utilizes secondary storage for intermediate files, and is therefore able t o sort files much

larger than main memory. Almost all combinations of design decisions outlined below have been proposed or

tried, with disks or tapes as secondary storage, with or without hardware support, and with or without cascad-

ing individual (merge) steps. We consider these latter variations parameters rather than algorithm properties.

The first two determinants are whether the input is presented as a single file or as multiple files, and

whether the output is desired as a single file or as multiple files. All four combinations have practical uses.

Single-input single-output is the classical case with obvious use. Tandem's FastSort is of this kind 171.

Multiple-input single-output is useful t o present a large file striped over multiple disks [9] t o a user or single-

thread application program. Teradata's algorithm is of this kind, using hardware support for merging multiple

locally sorted streams. Single-input multiple-output has probably the fewest applications. One of those might

be distributing a single-stream query output over multiple disks or sites and building separate indexes. With

multiple output we typically require range-partitioning, i.e., tha t disjoint key ranges be assigned t o the sites. A

range-partitioned file can be viewed as one sorted file, and can be read or processed just as efficiently.

Multiple-input multiple-output is the most general case. Using a randomly partitioned or striped input file [9],

the goal is t o create a range-partitioned output file. We will report on multiple-input single-output and

multiple-input multiple-output algorithms in the section on experimental results.

The next determinant is how often each da ta item migrates between sites, i.e., the number of data

exchange steps. In our algorithms, we wish t o avoid transferring a da ta item between processing nodes more

than once. The reason is tha t we are interested in scalable algorithms, i.e., algorithms tha t perform well for

high degrees of parallelism. In a shared-memory query processing system like the one we are using currently, a

common system bus is bound to become a bottleneck as more processors are added. Therefore, a n interconnec-

tion network must be introduced, in which da ta transfer can be a significant cost. We will not investigate

parallel sort algorithms with more than one da t a exchange step.

Another determinant is the question of record vs. key sorts. In the former, the entire records are moved

around, written t o intermediate files, etc. In the latter, the sort key of each record is extracted and associated

with its record identifier. The actual sort operation considers only the key-RID pairs and can be performed

with less or even no 110. A final phase retrieves records in the sorted order using RID'S. A variant of key sort-

ing is used in [8] t o reduce communication costs.

There are three more determinants, namely which main memory sorting method is used, how intermediate

files are managed on disk (or tape), and whether the local sort or merge step is performed before or after the

da ta exchange step. We will come back t o these points when we describe Volcano's sort algorithms.

3. Overview of Volcano

In this section, we provide an overview of the modules of Volcano. Most of Volcano's file system is rather

conventional. It provides da ta files, scans with predicates, and B+-tree indices. The unit of I/O and buffering,

called a cluster in Volcano, is set for each file individually when i t is created. Files with different cluster sizes

can reside on the same device. Volcano uses its own buffer manager and bypasses operating system buffering by

using raw devices.

Queries are expressed as complex algebra expressions; the operators of this algebra are query processing

algorithms. All algebra operators are implemented as iterators, i.e., they support a simple open-next-close proto-

col similar t o conventional file scans.

Associated with each algorithm is a state record. The arguments for the algorithms, e.g., predicate evalua-

tion functions, are kept in the state record. All functions on da ta records, e.g., comparisons and hashing, are

compiled prior t o execution and passed t o the processing algorithms by means of pointers t o the function entry

points.

In queries involving more than one operator (i.e., almost all queries), state records are linked together by

means of input pointers. All state information for an iterator is kept in its s ta te record; thus, a n algorithm may

be used multiple times in a query by including more than one state record in the query. The input pointers are

also kept in the state records. They are pointers t o a QEP structure which includes four pointers t o the entry

points of the three procedures implementing the operator (open, nezt, and close) and a s tate record. An opera-

tor does not need t o know what kind of operator produces its input, and whether its input comes from a com-

plex query tree or from a simple file scan. We call this concept anonymous inputs or streams. Streams are a

simple but powerful abstraction tha t allows combining any number of operators t o evaluate a complex query.

Together with the iterator control paradigm, streams represent the most efficient execution model in terms of

time and space for single process query evaluation.

Calling open for the top-most operator results in instantiations for the associated s tate record, e.g., alloca-

tion of a hash table, and in open calls for all inputs. In this way, all iterators in a query are initiated recur-

sively. In order t o process the query, nezt for the top-most operator is called repeatedly until i t fails with an

end-of-stream indicator. Finally, the close call recursively "shuts down" all iterators in the query. This model of

query execution matches very closely the one being included in the E programming language design [lo] and the

algebraic query evaluation system of the Starburst extensible relational database system [ll].

The tree-structured query evaluation plan is used t o execute queries by demand-driven dataflow. The

return value of nezt is a structure called NEXTJECORD which consists of a record identifier and a record

address in the buffer pool. This record is pinned in the buffer. The protocol for fixing and unfixing records is as

follows. Each record pinned in the buffer is owned by exactly one operator a t any point in time. After receiving

a record, the operator can hold on t o it for a while (e.g., in a hash table), unfix it, e.g., when a predicate fails, or

pass it on t o the next operator. Complex operations like join tha t create new records have t o fix them in the

buffer before passing them on, and have t o unfix input records.

Another benefit of ananymous inputs is tha t we can use a generic driver module for all queries. The driver

module is part of Volcano; i t consists of a call t o its input's open procedure, a loop calling nezt until i t fails,

unfixing the produced records in the buffer, and an invokation of close.

All operations on records, e.g., comparisons and hashing, are performed by support junctions which are

given in the state records as arguments t o the iterators. Thus, the query processing modules could be imple-

mented without knowledge or constraint on the internal structure of da ta objects.

4. Multi-Processor Query Evaluation

When we considered porting Volcano t o a multi-processor environment, we decided tha t i t would be desir-

able t o use the query processing code described above without any change. The result is very clean, self-

scheduling parallel processing.

The module responsible for parallel execution and synchronization is the exchange iterator. Notice tha t i t

is an iterator with open, nezt, and close procedures; therefore, i t can be inserted a t any one place or a t multiple

places in a complex query tree.

The first function of exchange is t o provide vertical parallelism or pipelining between processes. The open

procedure creates a new process after creating a da ta structure in shared memory called a port for synchroniza-

tion and da ta exchange. The child process, created using the UNIX fork system call, is an exact duplicate of the

parent process. The exchange operator now takes different paths in the parent and child processes.

The parent process serves as the consumer and the child process a s the producer in Volcano. The

exchange operator in the consumer process acts as a normal iterator, the only difference t o other iterators is

tha t i t receives its input via inter-process communication. After creating the child process, open-exchange in the

consumer is done. Next-exchange waits for data t o arrive via the port and returns them a record a t a time.

Close-exchange informs the producer tha t i t can close, waits for an acknowledgement, and returns.

The exchange operator in the producer process becomes the driver for the query tree below the exchange

operator using open, nezt, and close on its input. The output of next is collected in packets, da ta structures of

1KB which contain about 80 NEXTXECORD structures. When a packet is filled, i t is inserted into the port

and a semaphore is used to inform the consumer about the new packet.

When its input is exhausted, the exchange operator in the producer process marks the last packet with an

end-of-stream tag, passes it t o the consumer, and waits until the consumer allows closing all open files. This

delay is necessary because a virtual file used for intermediate results must not be closed before all its records are

unpinned in the buffer. Virtual devices and files are used t o provide space for intermediate query results.

While all other modules are based on demand-driven dataflow (iterators, lazy evaluation), the producer-

consumer relationship of exchange uses data-driven dataflow (eager evaluation). If the producers are

significantly faster than the consumers, they may pin a significant portion of the buffer, thus impeding overall

system performance. A run-time switch of exchange enables flow control or back pressure using an additional

semaphore. If flow control is enabled, after a producer has inserted a new packet into the port, i t must request

the flow control semaphore. After a consumer has removed a packet from the port, i t releases the flow control

semaphore. The initial value of the flow control semaphore, e.g., 4, determines how many packets the producers

may get ahead of the consumers.

There are two forms of horizontal parallelism which we call bushy parallelism and intra-operator parallel-

ism. In bushy parallelism, different CPU's execute different subtrees of a complex query tree. Bushy parallelism

and vertical parallelism are forms of inter-operator parallelism. Intra-operator parallelism means tha t several

CPU's perform the same operator on different subsets of a stored dataset or a n intermediate result.

Bushy parallelism can easily be implemented by inserting one or two exchange operators into a query tree.

Intra-operator parallelism requires da ta partitioning. Partitioning of stored datasets is achieved by using multi-

ple files, preferably on different devices. Partitioning of intermediate results is implemented by including multi-

ple queues in a port. If there are multiple consumer processes, each uses its own queue. The producers use a

support function t o decide which of the queues (or actually, which of the packets being filled by the producer)

an output record has t o go to. Using a support function allows implementing round-robin-, key-range-, or hash-

partitioning.

If an operator or an operator subtree is executed in parallel by a group of processes, one of them is desig-

nated the master. When a query is opened, only one process is running, which is naturally the master. When a

master forks a child process in a producer-consumer relationship, the child process becomes the master within its

group. If the producer operation is t o run in parallel, the master producer forks the other producer processes.

After all producer processes are forked, they run without further synchronization among themselves, with

two exceptions. First, when accessing a shared data structure, e.g., the port t o the consumers, short-term locks

must be acquired for the duration of one linked-list insertion. Concurrent invocation of routines of the file sys-

tem, in particular the buffer manager, is described later in this section. Second, when a producer group is also a

consumer group, i.e., there are a t least two exchange operators and three process groups involved in a vertical

pipeline, the processes tha t are both consumers and producers synchronize twice. During the (very short) inter-

val between synchronizations, the master of this group creates a port which serves all processes in its group.

When a close request is propagated down from the root and reaches the first exchange operator, the mas-

ter consumer's close-ezchange procedure informs all producer processes tha t they are allowed t o close down using

the semaphore mentioned above in the discussion of vertical parallelism. If the producer processes are also con-

sumers, the master of the process group informs its producers, etc. In this way, all operators are shut down in

an orderly fashion, and the entire query evaluation is self-scheduling.

Clearly, the file system required some modifications t o serve several processes concurrently. In order t o

restrict the extent of such modifications, Volcano currently does not include protection of files and records other

than the VTOC. Furthermore, typically non-repetitive actions like mount must be invoked by the query root

process before or after a query is evaluated by multiple processes.

The most difficult changes were required for the b u f e r module. While we could have used one exclusive

lock as in the m e m o r y module, decreased concurrency would have removed most or all advantages of parallel

algorithms. Therefore, the buffer uses a two-level scheme. There is a lock for each buffer pool and one for each

descriptor (cluster in the buffer). The buffer pool lock must be held while searching or updating the hash tables

and bucket chains. It is never held while doing I/O; therefore i t is never held for a long period of time. A

descriptors or cluster lock must be held while updating a descriptor in the buffer, e.g., t o decrease its fix count,

or while doing I/O.

5. Single-Process External Sorting

External sorting is known t o be an expensive operation, and a large number of algorithms has been devised

[4]. In all of our sort algorithms, we try t o exploit the duality between main memory mergesort and quicksort.

Both these algorithms are recursive divide-and-conquer algorithms. The difference is tha t mergesort first divides

physically and then merges on logical keys, whereas quicksort first divides on logical keys and then combines

physically by trivially appending sorted subarrays.

In general, one of the two phases dividing and combining is based on logical keys whereas the other

arranges da t a items only physically. We call these the logical and the physical phases. Sorting algorithms for

very large da t a sets stored on disk or tape are also based on dividing and combining. Usually, there are two

distinct sub-algorithms, one for sorting within main memory and one for managing subsets of the da ta set on

disk or tape. The choices for mapping logical and physical phases t o dividing and combining steps are indepen-

dent for these two sub-algorithms. For practical reasons, e.g., ensuring tha t a run fits into main memory, the

disk management algorithm typically uses physical dividing and logical combining (merging). A point of practi-

cal importance is the fan-in or degree of merging, but this is a parameter rather than a defining property of the

algorithm.

For Volcano, we needed a simple, robust, and efficient algorithm. Therefore, we opted for quicksort in

main memory with subsequent merging. The initial runs are as large as the sort space in memory. Initial runs

are also called level-0 runs. When several level-0 runs are merged, the output is called a level-1 run. The sort

module does not impose a limit on the size of the sort space, the fan-in of the merge phase, or the number of

merge levels in Volcano.

In order t o ensure tha t the sort module interfaces well with the other operators in Volcano, e.g., file scan

or merge join, we had t o implement it as an iterator, i.e., with open, nezt, and close procedures. Most of the

sort work is done during open. This procedure consumes the entire input and leaves appropriate da ta structures

for next t o produce the final, sorted output. If the entire input fits into the sort space in main memory, open

leaves a sorted array of pointers t o records in the buffer which is used by nezt t o produce the records in sorted

order. If the input is larger than main memory, the open procedure creates sorted runs and merges them until

only one final merge phase is left. The last merge step is performed in the next procedure, i.e., when demanded

by the consumer of the sorted stream'. Similarly, the input t o Volcano's sort module must be an iterator, and

' In the actual implementation, nezt-sort and close-sort are also used by open-sort to create runs, i.e., for writing level-0
runs after quicksort and for merging runs of one level into a run at a higher level. This is made possible by additional fields
in the state record.

sort uses open, nezt, and close procedures to request its input.

Quicksort is only one of a number of alternative methods for generating initial runs. We also considered

using a heap in memory because a heap allows creating initial runs twice as large as memory 141. The basic idea

is tha t after the first record has been written t o a run, it is immediately replaced in memory by another record

from the input. If the new record's key is greater than all keys written into the run so far (assuming an ascend-

ing output sequence), the new record can be included in the current run. Otherwise it is tagged t o go into the

next run. The tag of the last record written is considered the run's tag. The record tags are always included in

record comparisons, and in case of different record tags, the record with a tag equal t o the current run's t ag is

considered less.

At first, the probability is quite high that the next input record can be included in the current run. As

more records are written into a run and as the last key written t o the current run increases, the probability

decreases tha t the next input record's key is greater. On the average, for a random input sequence, runs can be

expected t o contain twice as many records as the heap, and many more if the input sequence is closer t o

ordered.

In our environment, however, the advantage of larger initial runs is not without cost. For the sake of

explanation, let us assume tha t we may use B buffer pages which hold R records each. Consider how records

are placed in pages. Typically, and in the best case, records in the input stream are packed densely in pages in

the buffer, i.e., we could quicksort BR records in this space. Ideally, we would like not t o move records in the

buffer; therefore, we choose to let the heap contain BR pointers t o records as they were produced as sort input.

If records are removed selectively from the heap, the records remaining in the heap will not be packed densely in

pages. On the average, the pages pointed to in the buffer will be half full. In order not t o overcommit the sort

space, the heap size must be reduced t o about half, i.e., %BR. But tha t exactly offsets the advantage of creat-

ing runs twice as long as the heap! In other words, nothing was gained.

In order t o save the advantages of heap-based run creation, we could copy records into a designated heap

space, and keep this heap space always densely packed. This, however, would introduce another copying step

for all records in the input stream. We considered this prohibitively expensive, and abandoned the idea of using

heaps for creating initial runs.

The next step is merging runs into larger runs and finally into the output stream. Merging is also limited

by the memory size, since a n input buffer is needed for each input run2. The mazimal merge fan-in can be deter-

mined by dividing the memory size by the input runs' cluster size.

Volcano's merge implementation uses a binary heap quite similar t o the tournament sort in [4]. The heap

d
size must be a power of 2, say 2 . If the number of merge inputs is not a power of 2, the heap is "padded" with

d
empty runs. An array of length 2 is used t o store the heap. An item from run r s tar ts i ts tournament a t array

d entry e = (r+2)/2. Thus, two runs s ta r t a t each entry point. The run tha t "wins" the "match" a t e advances,

and "competes" next at 1e/2j. The "winner" of the entire tournament moves t o entry 0.

When creating the heap, the tournament must be limited. When the first run is inserted into the heap

(run 0), no tournament takes place. When the next run (run 1) is added, one comparison is performed and one

of the runs advances. No tournament takes place when run 2 is added. For run 3, two comparisons take place.

In the second comparison, the winner of 0-1 and the winner of 2-3 are compared, and one of them advances. In

general, during creation of the heap, run r is compared exactly as often a s the number of trailing 1's in r . This

d
trick also works if run 2 -1 is added first. In this case, trailing 0's control the tournament depth for each run.

We have encountered two basic merging strategies which we call eager and lazy merging. In eager merg-

ing, higher level runs are created as soon as the number of lower level runs reaches the maximal merge fan-in.

In this strategy, the number of existing runs is quite limited, and runs can easily be kept track of.

In lazy merging, merging is delayed until the entire input is consumed and sorted into initial runs. A

potentially large number of runs must be kept track of, but lazy merging has a significant advantage. Consider

a system in which the maximal fan-in is F . If the input size requires F+2 initial runs, eager merging writes and

reads each record t o two run files. In lazy merging, i t is sufficient t o merge three level-0 runs into one level-1

run. The remaining F-1 level-0 runs and the single level-1 run can then be merged in a single step. Knuth

describes and analyzes many such optimizations in much more detail [4].

In Volcano, there is no limit on the number of open files.

From a different viewpoint, merging is a way to reduce the number of sorted runs, with the goal t o reduce

this number t o one. In order t o make best use of the final merge step, the number of runs should be reduced t o

F . Since each merge step reduces the number of runs by F-1 (removing F runs, creating 1 run), generalizing

this idea suggests reducing the number of runs in the first merge step t o F+k(F-1) for some suitable k, and

then decrement k with each merge step.

To visualize the advantage of such optimizations, consider how the cost of merging grows for increasing

file sizes. For eager merging, the cost is basically linear with the number of records until the input size requires

an additional merge level3. At this point, the cost increases by a significant step since all records make an addi-

tional trip t o and from disk. For lazy merging, the cost function is much smoother. The two cost functions are

equal a t the lower end of each step. Between steps, however, the cost of lazy merging increases gradually fol-

lowing an N log N function, and is therefore much lower than the cost of eager merging.

Volcano uses a hybrid strategy which we call semi-eager merging. This strategy combines the advantages

of eager and lazy merging, even if the input size is not known a priori. We call i t semi-eager because it merges

eagerly when the number of runs on a level reaches 2F. Since there is a limit on the number of runs on each

level, the number of intermediate files in a sort is also limited. At the end of the input stream, between F and

2 F runs are left at each level except the highest. The final merging starts a t level 0 and continues for all levels.

Merging during open terminates when the number of runs a t the highest level is equal t o F. At each level, one

of three actions is taken. If the number of runs is F or more, F runs are merged. Otherwise, if the sum of the

number of runs a t the current and the next higher level is less than or equal t o 2F, the runs a t the current level

are "promoted," i.e., moved t o the next level in the merging scheme without actually moving any data . Other-

wise, runs from the next level up are "demoted" t o fill the current level t o F runs, and these runs are merged.

At each level, we make sure tha t we promote the largest or demote the smallest files. Since the number of runs

on one level can be larger than F , a second merge step on the same level might be required.

The I/O cost is linear with the number of records. The comparison cost is not exactly linear due to the increased
number of runs to be merged.

Volcano's sort module includes a number of additional optimizations which we will describe in the

remainder of this section. Since sorting is frequently used for aggregation or duplicate elimination [12, 13, 141,

we included these operations in the sort module. Notice tha t from a n algorithmic standpoint, these operations

are almost the same. Including aggregation in the sort has the benefit tha t duplicates can be removed early,

i.e., while writing a run t o disk. Consider a grouping operation which aggregates 1,000 groups from 1,000,000

input records. If aggregations are performed as early as possible, no run a t any level will include more 1,000

records. If aggregations are delayed until the sort is completed, runs with 100,000 records might be created.

Bitton and DeWitt presented an external sort algorithm with duplicate elimination using tw-way merging, and

demonstrated its superior performance when compared t o sorting with subsequent duplicate elimination [14].

During merging, half of the 110's will be input and half will be output operations. The input operations

refer t o a number of files and do not exhibit any locality, but the output operations are basically sequential. To

benefit from this fact, the Volcano sort module can use two alternate devices for runs of different levels. Since

sequential 110 operations are much more efficient than random I/O1s, this simple mechanism can result in a

significant speedup by cutting the number of disk seeks in half. Unfortunately, when runs are promoted and

demoted for the final merge after the end of the input stream, this benefit is lost. The exact tradeoff between

promoting/demoting and alternate devices is left for future analysis.

As for all files in Volcano, the cluster size can be set for each file individually. There are a number of

interesting observations about how the 110 cost depends on the cluster size. Obviously, large clusters allow

more efficient da ta transfer and seem therefore very desirable. Recall, however, tha t the maximal merge fan-in

is the quotient of buffer size and cluster size. If the input is sufficiently large, and if the cluster size is too large,

additional merge levels might become necessary. What, then, is the best cluster size?

To calculate the 1 /0 cost depending on the cluster size, we must distinguish between the number of seek

operations (which for the purpose of this analysis include rotational latency) and the number of bytes

transferred. The number of seek operations, interestingly, turns out t o be independent of the cluster size. If we

increase the cluster size, say by a factor of 2, we cut the maximal merge fan-in in half and therefore double the

number of merge levels. Consequently, all records have t o make twice as many trips t o and from disk as with

the original cluster size. Since we doubled the cluster size, however, the seek cost per record and trip is cut in

half, resulting in no difference in the total seek cost.

The transfer cost, on the other hand, has indeed doubled, since each record has t o be transferred twice as

often. As long as transfer costs are dominated by seek costs and therefore negligible, the cluster size does not

really matter. For example, a cluster of 1 KB can typically be transferred t o or from disk in 0.25 t o 0.5 rns,

compared t o 25 t o 35 ms seek and latency time. As a rule, i t seems reasonable t o choose the cluster size t o be

as large as possible such tha t i t still allows single level merging.

We have not considered read-ahead in our 1/0 cost calculations. Read-ahead clearly has potential

benefits, particularly if i t is controlled by the smallest largest key in all pages in the merge input buffer, a tech-

nique usually called forecasting. Although Volcano's design and implementation include a buffer daemon for

read-ahead and write-behind, we left the additional complexity of analyzing performance and experimental

results due t o read-ahead for the future. For the performance measurements reported in Section 7 the buffer

daemon was disabled.

Finally, we would like t o remark briefly on record vs. key sorts. Volcano's sort module uses record sorting

but does not preclude key sorting. Recall tha t the input into the sort iterator is a stream. Condensing each

record into a k e y - R I D pair and materializing entire records from k e y - R I D pairs can easily be accomplished

with the filter and functional jo in modules, both of which are standard parts of Volcano. Volcano is designed t o

be a set of mechanisms; hardly anything tha t can easily be built from components is provided explicitly in Vol-

cano. Therefore, Volcano's sort module only sorts entire records.

6. Parallel Sorting

We believe tha t parallel sorting is of interest in its own right, even though we feel tha t the importance of

sorting for query processing will diminish as such algorithms are replaced by hash-based algorithms. Much work

has been dedicated to parallel sorting, but only few algorithms have been implemented for database settings,

i.e., where the total amount of data is a large multiple of the total amount of main memory in the system. All

such algorithms are variants of the well-known merge-sort technique and require a final centralized merge step

[15, 5, 6 , 161. In a highly parallel architecture, any centralized component tha t has t o process all da ta is bound

t o be a severe bottleneck.

For parallel sorting, we have essentially the same choices as for any divide-and-conquer sort algorithm.

This fact has been observed and used before by Baer et al. 1171. Besides the two choices described above for

disk-based sorts, a similar decision has t o be made for the da ta exchange step. We assume tha t da t a redistribu-

tion among the processors or disks is required, and we wish t o avoid transferring a da t a item between processing

nodes more than once. Therefore, any algorithm has a local sort step and a da t a exchange step. We can per-

form the redistribution step either before or after the local sort step.

Consider the latter method first. After all data have been sorted locally on all nodes, all sort-nodes s tar t

shipping their da ta with the lowest keys t o the receiving node for this key range. The receiving node merges all

incoming da ta streams, and is the bottleneck in this step, slowing down all other nodes. After this key range is

exhausted on all sources, the receiving node for the second key range becomes the bottleneck, and so on. Thus,

this method allows only for limited parallelism in the data exchange phase4. The problem can be alleviated by

reading all ranges in parallel. It is important, however, t o use a smart disk allocation strategy tha t allows

doing this without too many disk seeks. We are exploring the possible strategies and their implications on

overall system performance.

The second method s tar ts the parallel sorting algorithm by exchanging da t a based on logical keys. Notice

tha t , provided a sufficiently fast network in the first step, all da t a exchange can be done in parallel with no

node depending on a single node for input values. First, all sites with da ta redistribute the da t a t o all sites

where the sorted da ta will reside. Second, all those sites which have received da t a sort them locally. This algo-

rithm does not contain a centralized bottleneck, but i t creates a new problem. The local sort effort is deter-

mined by the amount of da t a t o be sorted locally. To achieve high parallelism in the local sort phase, i t is

imperative tha t the amount of da ta be balanced among the receiving processors. The amount of da ta a t each

receiving site is determined by the range of key values tha t the site is t o receive and sort locally, and the

This is not a problem for CPU scheduling in a shared-memory system that uses one central run queue as our system
does. Depending on the disk configuration, however, it might be a problem due to uneven disk load. In a shared-nothing ar-
chitecture it clearly is a problem.

number of da t a items with keys in this range. In order t o balance the local sorting load, i t is necessary t o esti-

mate the quantiles of the keys a t all sites prior t o the redistribution step. Quantiles are key values tha t are

larger than a certain fraction of key values in the distribution, e.g., the median is the 50% or 0.5 quantile5. For

load balancing among N processors, the i/N quantiles for i=1, ..., N-1 need t o be determined. Finding the median

for a dataset distributed t o a set of processors with local memory has been studied theoretically [18]. We need

t o extend this research for a set of quantiles, and adapt i t for a database setting, i.e., for disk-based large

datasets. Sufficient load balancing can probably be achieved using good estimates for the quantiles instead of

the exact values. Our work on describing da ta distributions using moments and density functions may provide

significant assistance for this problem 1191.

We implemented both parallel sorting methods in Volcano. The second method, da t a exchange followed

by local sorts, can readily be implemented using the methods and modules described so far, namely the exchange

module and the sort iterator. Actually, the data exchange and the sort phase overlap naturally due to the

iterator behavior of the algorithms. For the first method, local sorts followed by merges a t the destination site,

we needed t o implemented another module, merge, and t o extend the ezchange module.

The merge iterator was easily derived from the sort module. It uses a single level merge, instead of the

cascaded merge of runs used in sort. The input of a merge iterator is a n exchange. Unlike other operators, the

merge iterator must distinguish the input records by their producer. As an example, for a join operation it does

not matter where the input records were created, and all inputs can be accumulated in one input stream. For a

merge operation, i t is crucial t o distinguish the input records by their producer in order to merge multiple sorted

stream correctly.

We modified the exchange module such tha t i t can keep the input records separated according t o their pro-

ducers, switched by setting a n argument field in the state record. A third argument t o next-exchange is used t o

communicate the required producer from the merge t o the exchange iterator. Further modifications included

increasing the number of input buffers used by exchange, increasing the number of semaphores (including for flow

Notice that if the distribution is skewed, the mean and the median can differ significantly. Consider the sequence 1, 1,
1, 2, 10, 10, 10. The mean is 35/7 - 5, whereas the median is 2.

15

control) used between producer and consumer part of ezchange, and the logic for end-of-stream.

7. Performance Evaluation

In this section, we present experimental performance results. The measurements were obtained on a

Sequent Symmetry with 8 CPU's connected via a 80 MB/s bus, 2 dual-channel disk controllers, and 8 disk

drives, two per channel. The CPU's were 16 MHz Intel 80386 CPU's with 64 KB cache using a write-behind

cache protocol (Rev. B boards). The disks were Fujitsu Swallow 3 drives with 264 MB storage, 20 ms average

seek time, 8.3 ms average latency time, and 2.46 MB/s transfer rate. A portion of each disk was configured for

UNIX file systems, while another portion of about 110 ME3 was opened by Volcano as raw device.

File space was allocated in extents of 4 MI3 with a cluster size of 32 KB. We used 8 MI3 sort space within

a 10 MI3 buffer. The physical memory of the machine was more than 30 ME3 such tha t virtual memory page

faults were basically eliminated. If multiple processes compete for the sort space, i t is divided equally among

them. The record length was uniformly 100 bytes t o make the performance measurement comparable t o other

21
systems [20]. The keys are four-byte integers randomly chosen from the range 0 t o 2 -1.

In the following graphs, time measurement curves are marked X and relate t o the scales on the left side of

the graphs. Speedups curves, where used, are marked and relate t o the scales on the right side of the graphs.

Measurements are shown using solid lines, while derived da ta are shown using dashed lines, in particular

speedup curves. The ideal speedup is shown using a dotted line. Speedups are calculated relative t o single pro-

cess performance.

7.1. Multiple-Input Multiple-Output Sorting

We measured the elapsed times for sorting partitioned or striped da t a files. We assume random partition-

ing for the input, and require range-partitioning for the output file. Records were exchanged between processes

using quantiles determined a priori and then sorted using the sort operator. The elapsed times given in this sec-

tion do not include mounting and dismounting the devices, but do include flushing the buffer a t the end of the

sort.

First, we measured the speed-up when increasing the number of disks and the number of processes while

keeping the total number of records constant.

Originally, we used two processes per disk, one t o perform the file scan and partition the records and

another one t o sort them. We realized tha t creating more processes than processors inflicted a significant cost,

since these processes competed for the CPU's and therefore required operating system scheduling. While the

scheduling overhead may not be too significant, in our environment with a central run queue processes migrate.

Considering tha t a large cache associated with each CPU, cache migration adds significant costs.

In order t o make better use of the available processing power, we decided t o reduce the number of

processes by half, effectively moving t o one process per disk. This required modifications t o the exchange opera-

tor. Until then, the exchange operator could "live" only a t the top or the bottom of the operator tree in a pro-

cess. After the modification, the exchange operator could also be in the middle of a process' operator tree.

When the exchange operator was opened, it did not fork any processes but established the communication port

for data exchange. The nezt operation either returned a record received from another process, or requested

records from its input tree, possibly sending them off t o other processes in the group, until a record for its own

partition was found.

This mode of operation6 also makes flow control obsolete. A process runs the producer operators (and pro-

duces input for the other processes) only if it does not have input for the consumer operators. Therefore, if the

producers are in danger of overrunning the consumers, none of the producer operators gets scheduled, and the

consumers consume the available records.

Figure 1 shows the elapsed times and speedup for sorting 100,000 100-byte records, i.e., 10 MB of data .

The elapsed time (marked X) increases when a single process is split into a pipeline, from 119 t o 136 seconds, for

reasons tha t we have not determined yet. As the number of processes and disks increased, the elapsed time

decreased from 136 to 25 seconds.

The speedup curve (marked 0) shows these improvements, but also shows tha t the speedup falls short of

the ideal, linear speedup, shown by the dotted line. The reason is tha t we only increased the number of

processes and disks, but not the sort and buffer space. It cannot really be expected tha t the performance of a

'Whether exchange forks new producer processes (the original exchange design described in Section 4) or uses the exist-
ing process group to execute the producer operations is a run-time switch.

17

Time
in seconds
marked x

100,000 Records Partitioned

I

Speedup
single process = 1

marked

0 1 2 3 4 5 6 7 8
of disks - 0 means single process

Figure 1. Multiple-input multiple-output Sort.

memory-intensive operation such as sorting improves linearly with the number of processes or disks if only those

and not all resources are increased simultaneously.

For 1,000,000 records, or 100 MB of data , the disks partitions available for our use were too small t o allow

single-process single-disk sorting. Recall tha t disk space for about three times the actual da t a volume is needed

for the input file, intermediate files, and the output file. Since there is always some amount of fragmentation on

the disk, we started our experiments with 4 disks and sort processes.

Figure 2 shows tha t the elapsed times, between 362 and 195 seconds, are a little less than 10 times those

for 100,000 records, even tough one would have expected them to be a little more. Again, we haven't deter-

mined the exact reason, but we suspect tha t i t results from the burst pattern of the sort input requests. Recall

tha t the sort space is loaded without any processing of the records, and tha t no input requests are issued while

the records in the sort space are sorted using quicksort and written into an initial level-0 run. While a process

performs a quicksort or writes a run, i t does not produce any records for the other processes. We suspect tha t in

the 100,000 record case this might lead t o waiting times a t the end when almost all processes have exhausted

Time
in seconds
marked X

1,000,000 Records Partitioned

I I

Speedup
single process = 1

marked

0 1 2 3 4 5 6 7 8
of disks - 0 means single process

Figure 2. Multiple-input multiple-output Sort.

their local inputs.

It is interesting to note tha t the speedup in this experiment is quite close t o linear. This fact gives

encouragement for our plan for using the sort algorithm with even higher degrees of parallelism.

The next experiment was a capacity scaling experiment, i.e., we increased the number of records, CPU's

and disks proportionately. First, we assigned 10,000 records t o each disk. Thus, Figure 3 represents sort runs

between 10,000 and 80,000 records, or 1 to 8 MB. I t would have been desirable if the response time had been

constant, but i t is immediately apparent tha t this is not the case. In fact, the response time more than doubles

between single-process performance (marked 0 a t the bottom) and eight sort processes, from 7.66 t o 17.48

seconds.

We suspect a number of reasons for this behavior. First, we had observed in earlier experiments [21] that

forking processes is quite expensive. Second, with an increased number of sort processes, waiting increased a t

the end of the input, as discussed above. Third, da ta exchange between operators is not entirely free since it

10,000 Records per Disk

Time
in seconds

0 1 2 3 4 5 6 7 8
of disks - 0 means single process

Figure 3. Single Output, Medium File.

uses operating system semaphores.

When we run the same experiment with 10 times as many records, as shown in Figure 4, we observed closer

to constant elapsed times. While single-process performance is superior t o single-pipeline performance by 120 to

137 seconds for 100,000 records in either case, elapsed times do not increase very much when more disks and

records were added, t o 159 seconds for 800,000 records on eight CPU's and disks. As in the speedup experi-

ments, we observe better performance for large da ta sets.

7.2. Multiple-Input Single-Output Sorting

In the following experiments, there was one sort process for each disk, using the sort operator t o deliver a

sorted stream to an exchange module. Furthermore, there was one process tha t merged the sorted input streams

and simulated the application program. The application program did nothing, i t only consumed the records and

unfixed them in the buffer. In the case of one input process, the sort process and the merge process were simply

a pipeline. We did not run this program as single process.

100,000 Records per Disk

Time 100
in seconds

80

O I I I I I I I I I
0 1 2 3 4 5 6 7 8

of disks - 0 means single process

Figure 4. Single Output, Large File.

In these experiments, the processor utilization for the merge processor is obviously a potential bottleneck.

We decided to include this process' time in user mode in the following figures. This time indicates what percen-

tage of a single CPU's power was spent on the merge process, independent of which CPU's actually ran this pro-

cess. This time was gathered by the operating system, DYNM. The system time was only about 5% of the user

time, which speaks for the efficiency of Volcano's da ta exchange mechanism. The scale, given on the left inside

of the graphs, runs from 0% to loo%, and corresponds t o the dashed line marked with 0's.

Figure 5 shows elapsed times for sorting and merging da ta from one t o eight disks into an application pro-

gram. Initially, when there were only very few sort processes, the merge process could easily keep up with them,

and we observe almost linear speedup, 101 to 51 seconds. As more disks and processes were added, however, the

merge process became a bottleneck. Toward the end of the curve, the elapsed time hardly decreased a t all, e.g.,

from 35 seconds for 6 disks t o 32 seconds for 8 disks, while the merge process became more and more loaded,

51% for 6 disks t o 58% for 8 disks.

100,000 Records Partitioned

Speedup
single disk = 1

marked

l09r-

80 -
70 Time

in seconds
marked X 60 -

50
Merge Proc.
Util. in % 40 -
marked 0 30

20 -
10

0

Figure 5. Multiple-input single-output Sort.

- 8

- 7

- - 6

,*Q - 5

- - 4

- x
- 2

- - 1

I I I I I I I I
1 2 3 4 5 6 7 8

of disks

1,000,000 Records Partitioned

Time
in seconds
marked X

Merge Proc
Util. in %
marked 0

Speedup
single disk = 1

marked

1 2 3 4 5 6 7 8
of disks

Figure 6 . Multiple-input single-output Sort.

Figure 6 shows the elapsed times for sorting and merging 1,000,000 records in an application program. As

in the earlier experiments, we could not sort 100 MI3 of da ta with less than four disks. As could be expected

from the previous graph, additional resources for the sort phase do not improve performance as much as desir-

able, only from 351 seconds for 4 disks t o 289 seconds for 8 disks. The bottleneck, obviously, is the merge pro-

cess, which requires from 46% t o 64% of one processor's power.

We conclude from these experiment tha t making effective use of parallel sorting is not possible when "feed-

ing" sorted records into a single-thread application program. Two alternative conclusions can be drawn from

this. Either we restrict ourselves t o low degrees of parallelism, as was presumed in the design of FastSort [7], or

we focus on parallelizing not only the database query processing engine but also the applications, as suggested

in [22].

In these experiments, we did not see a detrimental effect of parallelism. Since we assume a fixed total

memory in the machine, the available memory had t o be divided among the sort processes for sorting and merg-

ing. As the number of processes increases, there is less space for each single process. Consequently, the initial

runs are shorter, and the fan-in in each merge is reduced. Thus, important tuning parameters have changed for

the worse, and sorting cannot be expected to perform equally well. We are currently investigating how to

adjust t o variety of parameters t o always guarantee optimal sort performance in Volcano.

8. Summary and Conclusions

Parallel sorting is of significant interest. The Volcano query processing system provides a n ideal testbed

for database processing algorithms and their parallel versions. Volcano utilizes dataflow techniques within

processes as well as between processes. Within a process, demand-driven dataflow is implemented by means of

iterators. Between processes, data-driven dataflow is used t o exchange da ta between producers and consumers

efficiently. If necessary, Volcano's data-driven dataflow can be augmented with flow control or back pressure.

Horizontal partitioning is used both on stored and intermediate datasets t o allow intra-operator parallelism.

The design of the exchange operator encapsulates the parallel execution mechanism for vertical, bushy, and

intra-operator parallelism, and i t performs the transitions from demand-driven t o data-driven dataflow and

back.

Volcano's sort operator not only includes aggregation and duplicate elimination, i t also uses a number of

performance enhancements. Most important among those is the semi-eager merging scheme. Using stream input

and output makes the sort iterator a versatile operator tha t can easily and efficiently be combined with other

query processing modules.

When the sort operator and the exchange operator are combined, they allow for very efficient parallel

sorting. If the parallel sort is t o produce a single output stream, local sort with subsequent merge can be used.

If key distribution quantiles are known a priori or can be gathered by sampling, range-partitioning with subse-

quent local sort gives good performance and almost linear speed-up.

Acknowledgements

David DeWitt sparked my interest in parallel sorting, and many of the thoughts in this paper were

developed in connection with the GAMMA project. The semi-eager merging scheme was developed while visiting

the University of Wisconsin in the summer of 1988. I appreciate David letting me graduate without implement-

ing parallel sort algorithms on GAMMA; I hope I could convince him with this work tha t his efforts did bear

fruit after all. Gary Kelley, Frank Symonds, and Satish Doshi of Sequent provided a sounding board for ideas,

in particular the exchange operator, and generously let me to use their machine for experiments.

References
1. G. Graefe, "Rule-Based Query Optimization in Extensible Database Systems," Ph.D. Thesis, University of

Wisconsin, (August 1987).

2. G. Graefe and D.J. DeWitt, "The EXODUS Optimizer Generator," Proceedings of the ACM SIGMOD
Conference, pp. 160-171 (May 1987).

3. G. Graefe and K. Ward, "Dynamic Query Evaluation Plans," Proceedings o j the ACM SIGMOD Confer-
ence, p. 358 (May-June 1989).

4. D. Knuth, The Art o j Computer Programming, Addison-Wesley, Reading, MA. (1973).

5. D. Bitton, D.J. DeWitt, D.K. Hsiao, and J. Menon, "A Taxonomy of Parallel Sorting," ACM Computing
Surveys 16(3) pp. 287-318 (September 1984).

6. M. Beck, D. Bitton, and W.K. Wilkinson, "Sorting Large Files on a Backend Multiprocessor," Department
of Computer Science Technical Report, (March 1986).

7. A. Tsukerman, J. Gray, M. Stewart, S. Uren, and B. Vaughan, "Fastsort: An External Sort Using Parallel
Processing," Tandem Technical Report 86.3(1986).

8. R.A. Lorie and H.C. Young, "A Low Communication Sort Algorithm for a Parallel Database Machine,"
IBM Research Report 6669(February 1989).

9. K. Salem and H. Garcia-Molina, "Disk Striping," EECS Techical Report 332, Princeton University,
(December 1984).

10. J.E. Richardson and M.J. Carey, "Programming Constructs for Database System Implementation in
EXODUS," Proceedings of the ACM SIGMOD Conference, pp. 208-219 (May 1987).

11. L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis, B.G. Lindsay, G.M. Lohman, K. Ono, and H. Pirahesh, "An
Extensible Processor for an Extended Relational Query Language," Computer Science Research Report,
(RJ 6182 (60892))IBM Almaden Research Center, (April 1988).

12. R. Epstein, "Techniques for Processing of Aggregates in Relational Database Systems," UCB/ERL
Memorandum, (M79/8)University of California, (February 1979).

13. A. Klug, Statistical Query Facility"" "Investigating Access Paths for Aggregates using the "Abe" Statisti-
cal Query Facility," IEEE Database Engineering 5(3)(September 1982).

14. D. Bitton and D.J. DeWitt, "Duplicate Record Elimination in Large Data Files," ACM Transactions on
Database Systems 8(2) pp. 255-265 (June 1983).

15. D. Bitton Friedland, "Design, Analysis, and Implementation of Parallel External Sorting Algorithms,"
Computer Sciences Technical Report 464University of Wisconsin, (January 1982).

16. J . Menon, "A Study of Sort Algorithms for Multiprocessor Database Machines," Proceeding of the Confer-
ence on Very Large Data Bases, pp. 197-206 (August 1986).

17. J.-L. Baer, S.C. Kwan, G. Zick, and T. Snyder, "Parallel Tag-Distribution Sort," Computer Sciences
Technical Report, (85-01-03)University of Washington, (January 1985).

18. M. Blum, R.W. Floyd, V.R. Pra t t , R.L. Rivest, and R.E. Tarjan, "Time Bounds for Selection," Journal of
Computer and System Sciences 7(4) pp. 448-461 (1972).

19. G. Graefe, "Selectivity Estimation Using Moments and Density Functions," Oregon Graduate Center, Com-
puter Science Technical Report, (87-012)(November 1987).

20. Anon. e t al., "A Measure of Transaction Processing Power," Datamation, pp. 112-118 (April 1, 1985).

21. G. Graefe, "Volcano: An Extensible and Parallel Dataflow Query Processing System," Oregon Graduate
Center, Computer Science Technical Report, (89-006)(June 1989).

22. G . Graefe, "Datacube: An Integrated Data and Compute Server Based on a Cube-Connected Dataflow
Database Machine," Oregon Graduate Center, Computer Science Technical Report, (88-024)(July 1988).

