
The One-to-one Match Operator
of the Volcano Query Processing System

Tom Keller, Goetz Graefe

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 89-009

June, 1989

The One-to-one Match Operator

of the Volcano Query Processing System

Tom Keller, Goetz Graefe

Oregon Graduate Center
Beaverton, Oregon 97006-1999

Abstract

Much of the current research on relational database systems focuses on increasing the func-
tionality and flexibility of query processing. Query processing in relational databases is based
on relational operators. There are a number of theoretical operations, however, tha t are typi-
cally not included in commercial systems. For example, most commercial systems provide the
natural join operation but not all provide relational operators such as semi-join and outer join.

We present an operator tha t exploits the similarity between binary relational operators. Binary
operators are those tha t produce a single output relation from two input relations. The one-to-
one matcqoperator has the capability of computing a class of binary relational operations.

The hash-based implementation of one-to-one match, currently used in the Volcano query pro-
cessing system, is described in this paper. This implementation can compute the following
binary relational operations: natural join, semi-join, outer join, anti-join, union, intersection,
difference, anti-difference and Cartesian product. Furthermore, i t is able t o perform aggregate
functions and duplicate elimination in conjunction with these binary operators. The implemen-
tation is based on the classical hash join algorithm. By enhancing the simple hash join algo-
rithm, the functionality of the algorithm is increased without severely affecting execution time.
In addition, user supplied arguments determine the operation one-to-one match performs, mak-
ing i t very flexible.

1. Introduction

Among the many proposed da ta models, the relational model, first proposed in [l], is most

widely used in current commercial database systems. The firm mathematical theory behind the

relational model [2,3,4] and efficient implementations have contributed t o its success [5,6].

Much of the current research on relational database systems focuses on increasing the func-

tionality, flexibility and speed of query processing. Each year, new query processing algorithms

and improvements of old query processing algorithms are proposed.

Query processing in relational databases utilizes relational operators. The five fundamen-

ta l relational algebra operators are select, project, Cartesian product, union and set-diflerence.

Of particular interest are binary relational operators; those operators that output a single rela-

tion given two relations as input. One of the most heavily used binary relational operators is

the join. Other binary operators include semi-join, outer join, union, intersection and diference.

The binary relational operations mentioned above have a common basis of execution.

This means tha t i t is possible to do all of the operations using a single module. Volcano's one-

to-one match is an operation capable of performing a class of binary relational operators includ-

ing the operations listed above.

Two implementations of one-to-one match are used in the Volcano query evaluation sys-

tem. One implementation is based on sort-merge (71. The sort-based algorithm has all the abili-

ties of the hash-based implementation except that aggregate functions and duplicate elimination

are done when the inputs are sorted, not in one-to-one match. The hash-based one-to-one

match operator is the focus of this paper.

This paper is organized as follows. Section 2 briefly surveys other join, aggregation and

duplicate elimination algorithms with special attention on those that are hash-based. A brief

overview of the Volcano query evaluation system is given in Section 3. In Section 4 the back-

ground of the one-to-one match operator is presented and the hash-based implementation is

explained in detail. Some experimental performance results are presented in Section 5. Section

6 contains directions for future work.

2. Related Work

2.1. Relational Join

Join is a binary relational operator used for combining two relations. It is one of the most

time-consuming relational operators and also one of the most frequently used. A great amount

of research effort has been given to the development of join algorithms and improvements of

existing algorithms.

Table 1. Enrollment Relation.

Enrollment

Course Number
Data Structures

C2 Algorithms
C3 Architecture
C4 4 Database

El
E2
E3
E4
E5
E6
E7

Table 2. Course Relation.

Tables 1 and 2 represent two example relations used throughout the paper. Consider the

Name
Adam
Adam
Betty
Carol
Denny
Earl

Frank

Enrollment relation (Table 1). For each course that a student takes there is one tuple in the

Course Number
1
2
1
2
3
4
5

Enrollment relation. Assume that each student is uniquely identified by name so that the first

two tuples in the table represent courses taken by the same person (i.e. Adam is taking course

number 1 and 2). Table 2 contains only those course numbers and names of Computer Science

courses. The labels consisting of a letters followed by a number are unique tuple identifiers.

For example, E l is interpreted as tuple one of the Enrollment relation.

Table 3. Student-Course Relation.

Student-Course
Course.Name

Data Structures
Algorithms

Data Structures
Algorithms

Architecture
Database

Enrollment.Name
Adam
Adam
Betty
Carol

1 Denney
Earl

Course Number
1
2
1
2
3
4

The natural join of these two relations is shown in Table 3. Tuples from each relation

that have equal values in common fields, Course Number in the example, are "joined" to pro-

duce an output tuple. The common field or attribute is called the join attribute. For instance,

tuple El from the Enrollment relation and tuple C1 from the Course relation match and pro-

duce the output tuple SC1.

2.2. Non-Hash-Based Join Algorithms

The most natural, and most naive, way to compute the join is called nested loops join or

simple iteration. For each tuple in one of the relations, say the Enrollment relation, the entire

other relation, Course, is scanned sequentially for matching tuples. Each tuple in one relation is

compared with all tuples in the other relation. The algorithmic complexity of nested loops join

is the product of the relation sizes.

A simple optimization can be made to the nested loops join algorithm. Instead of process-

ing each relation a tuple a t a time, they are processed a block a t a time. This algorithm is

called block nested loops join. Now the Course relation is scanned once for each block of tuples

in Enrollment instead of each tuple in Enrollment. The number of times Course must be

scanned is reduced by a factor equal t o the number of Enrollment tuples that fit in one block.

If there is an index on the join attribute, Course Number in our example, the scan of the

second relation is reduced to an index lookup. This modification to nested loops join is called

index nested loops. It has the advantage of reducing the time needed to search for matching

tuples from a file scan to an index lookup.

Another group of join algorithms are those which are merge-based and are consequently

named merge join. The first step is t o sort both relations on the join attribute if they are not

already sorted. Once sorted on the join attribute, joining the relations can be accomplished by

well known merge techniques [8]. Blasgen and Eswaran provide a detailed description of the

sort-merge join algorithm [7].

As in the case for nested loopa join, aort-merge join can benefit from the use of an index on

the join attribute. Consider the case where Enrollment is sorted by join attribute but Course is

not. Also, there is an index on Course Number (the join attribute) for the Couree relation.

Because the Course index contains references to the tuples of Course sorted on Course Number,

the index can serve in place of the sorted Courae relation. However, because Courae is not phy-

sically sorted by Course Number, more storage accesses will be needed than if it were sorted.

2.3. Hash-Based Join Algorithms

First, we describe claasic hashing as described in [9]. A main memory hash .table is built

with tuples from the smaller relation, the build input, hashed on the join attribute. As the

second relation, the probe input, is scanned, the hash value of each tuple is used to probe the

hash table for matches.

To see one advantage hash-based join algorithms offer over sort-based algorithms, consider

joining N relations. Specifically, the N relations are to be joined in the order shown in Figure 1.

If a sort-based algorithm is used, the relations R and S are sorted and joined. The next join

operation, RS joined with T, must wait until the join of R and S is complete. This is necessary

Join R
Join

Join

R S

Figure 1: Join of N Relations

because RS must be sorted before i t can be joined with T and the entire result is needed for

sorting. With sorb-based join algorithms, no more than one join operation can execute at any

given time. However, hash-based algorithms allow more dataflow. As soon as a tuple of RS is

produced by the first join i t can be consumed by the next join. With hash-based join algorithms

possibly all join operation can be going on simultaneously if the output of each join is the probe

input t o another join. That is, if the tuple being produced by each join are being used to probe

an existing hash table, not being used to build it, hash-based joins have greater parallel execu-

tion potential. In the example, if RS were being used to fill the hash table of the next join then

the next join would have to wait until the join of R and S was complete. Only after the entire

hash table has been filled with tuples from RS can the table be probed with tuples of T to pro-

duce results.

Clasaic hashing fails when the main memory cannot hold the entire hash table. This situa-

tion is known as hash table overflow. Each of the following sections details a method of handling

hash table overflow.

2.3.1. Simple Hash Join

Simple hash join [lo, 111 is identical to classic hash join until hash table overflow occurs.

The simple hash join algorithm handles overflow in the simplest way possible (hence the name).

When overflow occurs, a portion of the hash table is written to an overflow file on disk. In Fig-

ure 2 the hash table is being built with relation R when overflow occurs. Now, hashing tuples

Hash
6

Table

Figure 2: Hash Table Overflow While Building Hash Table

becomes more complicated. If a tuple hashes to the range of values contained in main memory

i t is inserted into the hash table. However, a tuple that hashes outside the range is appended to

the overflow file R'.

While scanning the second relation a similar situation occurs. A tuple that hashes within

the range of values contained in main memory is processed in the same way as classic hash join.

Other tuples are written to another overflow file on disk, S', as shown in Figure 3. When the

entire second relation has been scanned, processing does not halt. Instead, the two overflow

files, R' and S', must now be joined. This continues until all tuples have been processed.

Although overflow is handled in a simple and natural way, simple hash join performs

poorly when the smallest of the relations is many times larger than main memory.

2.3.2. Grace Algorithm

Simple hash join handles overflow by reeolving i t when i t occurs, an optimistic approach.

Another method of handling overflow is to avoid it, as the people working on the Grace data-

base machine have. The Grace algorithm [12,13,14] uses overflow avoidance t o prevent overflow

before i t occurs.

Instead of partitioning the relations when overflow occurs, the relations are partitioned

prior t o joining them. The first step of the Grace algorithm partitions both R and S into N dis-

joint sets as shown in Figure 4. By choosing N appropriately, every partition can be made small

enough to fit in main memory, thus avoiding overflow. Partitioning is accomplished by hashing

Figure 3: Hash Table Overflow While Probing Hash Table

7

Hash

Table

4
W~thin Mamy

Hash

Ransc

Output M t Ovsfbw Tuple8
00 &tch

v

Figure 4: Grace Hash Join

on the join attributes of both relations. Once the relations have been partitioned, each parti-

tion pair can be joined.

T o make certain tha t overflow does not occur, many small partitions may be created.

When the partitions only take up a fraction of main memory, more than one partition may be

joined a t a time. The Grace algorithm requires two passes over the data . As a result, i t only

outperforms simple hash join when the smallest relation is many times the size of main memory.

In this case simple hash join makes repeated passes over the same da t a because overflow occurs

a number of times. Grace, however, only makes the two passes over the data .

Figure 5: Hybrid Hash Join Build.

I
c, /

Hash

Table
1

<
n p k d Fnnl
~~ltitiaam

2.3.3. Hybrid Hash Join

Hybrid hash join (101 combines features of simple hash join and Grace hash join. The

Grace algorithm first partitions the relations and then begins processing the partitions. Hybrid

hash join processes one of the partitions while doing the partitioning. Thus, hybrid hash join

begins by building the hash table from one partition of relation R while spooling the other parti-

tions out t o disk. When relation R has been partitioned, relation S is processed. The first parti-

tion of S can be immediately joined with the first partition of R while the remaining partitions

of S are also spooled to disk. This process is shown in Figures 5 and 6.

For relations that are many times larger than main memory, hybrid hash join behaves

similar to Grace hash join. When the relation size is slightly larger than main memory, the

algorithm performs like simple hash join.

2.4. Join Algorithm Comparison

It is beyond the scope of this paper to compare and analyze the different join algorithms.

The sections above allude to relative algorithm advantages. Detailed comparison of sort-merge,

simple hash, Grace hash and hybrid hash join for a uniprocessor system is given in [9,10]. The

same algorithms are analyzed for shared-memory multiprocessor systems in [11,15] and for

shared-nothing multiprocessor systems in [16]. In [17], a number of sort-based and hash-based

Hash

Table -

Output 'hpk
0n)UBtch

v

Figure 6: Hybrid Hash Join Probe

pipelined multiprocessor join algorithms are described and analyzed. A hash-based join algo-

rithm for a specific multiprocessor architecture, a cube-connected parallel computer, is presented

in [18].

2.5. Aggregate Functions and Duplicate Elimination

The one-to-one match operator has the ability to perform aggregate functions and dupli-

cate elimination. Notice that duplicate elimination can be considered a special form of aggre-

gate functions. An aggregate function is an operation that computes a piece of information

about groups of tuples in a relation. A group is defined as a set of tuples with equal values for

a specified attribute. Common aggregate operations are count, rnaz and aum.

As an example, suppose that we need to know how many courses each student is enrolled

in. This is the result of performing a count aggregate operation on the Enrollment relation

(Table 1). In this example the tuples need to be grouped by the Name attribute. The number

of tuples in each group is counted to produce the aggregation result. Table 4 shows the result

of this aggregation. The attribute Name is the grouping attribute and the aggregate operation

is count. Techniques for performing aggregation are discussed in greater detail in [19,4,20].

3. The Volcano Query Evaluation System

In this section we present aspects of the Volcano query processing system used in the

remainder of this paper. For a complete description of Volcano, see [21].

Table 4. Aggregate Function - Number of Courses Taken By Each Student

Course Load

CL1
CL2
CL3
CL4
CL5
CL6

Name
Adam
Betty
Carol
Denny
Earl

Frank

Number of Courses

2
1
1
1
1
1

File Scan File Scan

Figure 7: Join of Relations R and S

A query in Volcano is expressed a s an algebra expression or tree. Each node of the tree

represents a n operation. For example, a join of two relations, R and S, is expressed by the tree

shown in Figure 7. A File Scan node reads tuples of a relation by scanning the file they are

stored in. Tuples read by the File Scans are consumed by the Join operation. The Join opera-

tion uses these tuples t o compute the join of the two relations.

Each operator used in forming query trees is implemented as an iterator. Tha t is, all

operators are implemented by three procedures: open, nezt, and close. In addition t o requiring

all operations t o be implemented as iterators, all operations are required t o have a uniform

argument list. The standardized interface and argument list mean tha t a n operator does not

need t o know what operator produces its input. We call this concept anonymous input or

streams. Returning t o the example, Join has two input streams, both of them happen t o be file

scans. However, with the standardized interface and argument list, Join only sees its inputs as

iterators. So, the inputs t o Join can be any valid Volcano operator without affecting the Join

algorithm.

ks a consequence of the iterator paradigm, each operator must maintain its s ta te between

function calls. This is analogous t o the need for local s ta te in coroutines [22]. In the example,

each nezt call t o File Scan returns a single tuple of the relation. When a call t o nezt returns the

tuple, the iterator s ta te must be saved so tha t the following call t o nezt will return the next

tuple from the file being scanned. This is accomplished in Volcano by the use of state records.

In addition t o storing iterator state between calls t o nezt, the s tate records in Volcano contain

pointers to the iterator(s) used for input to the operator.

Volcano incorporates all of the query information into Query Evaluation Plans (QEPs).

Figure 8 shows a more detailed view of the join example. It is now apparent how the operations

are linked together. Each QEP contains pointers to the functions implementing the operator,

namely open, nezt and close. QEPs also contain another pointer to the state record of the

operator. The state record contains, among other things, input pointers to QEPs. In Figure 8,

the join operation has two inputs, inputl and input2, that are themselves operators.

One-to-one match is a single module in the Volcano query evaluation system. It can com-

pute a number of binary relational algebra operators, e.g., join, semi-join, outer join, union,

intersection, difference, aggregate functions, and projection (duplicate elimination). One opera-

tion not directly computable by the one-to-one match operator is relational division. Relational

division belongs to another class of binary relational operators and is handled by Volcano's

one-to-many match operator. Two modules are used to carry out one-to-many match. The first

module uses a standard algorithm, called naive diuieion, to compute division. Division is also

s ta te I
File File

Scan: o p e n 3 () Scan: o p e n J s ()
nextfs ()
closeJs ()

- -openjo in ()
next j o i n () - c lose jo in ()

h

Join:

n e x t f s ()
closeJs ()

- - -

Figure 8: Query Evaluation Plan
Implementing Join of Relations R and S

Join State Record

I I
arguments

input l
input2

provided by a new algorithm called hash-division which is described and compared to conven-

tional division algorithms in [23]. It turns out, however, that multiple one-to-one match opera-

tors can be combined to compute a relational division using aggregate functions [23].

Another module essential to any database system is a sort module. Volcano's sorting algo-

rithms are presented in [24]. This module is used, for example, to complement the sort-based

one-to-one match operator, which is based on merge join.

To simplify the content of this paper, we assume that one-to-one match and Volcano are

confined to a uniprocessor system. However, parallelism is a primary feature of Volcano and is

encapsulated by Volcano's exchange operator [25].

4. One-to-one Match

4.1. Binary Operators Suited for One-to-one Match

This section focuses on one-to-one match independent of the algorithm implementing it.

As mentioned previously, one-to-one match can compute natural join, semi-join, outer join,

union, intersection, difference, anti-difference and Cartesian product. Each of these binary

operators are based on a single principle. In all of these operations, a tuple is included in the

operation's result depending on the outcome of one comparison with another tuple. To illus

trate this principle, we focus on a sample of these binary operators.

4.1.1. Natural Join

Recall the two relations, Enrollment and Course, in Tables 1 and 2. The natural join of

these relations is shown in Table 3. The tuples of Enrollment and Course are compared. Tuples

that match (i.e. have the same join attribute value) are combined into a single result tuple. To

be more concrete, the common join attribute of Enrollment and Course is Course Number.

Because the Course Number of tuple E l in Enrollment and C1 in Course is the same, E l and C1

match. E l and C1 are combined to produce tuple SC1 in Student-Course.

Figure 9: Natural Join of Enrollment and Course

Figure 9 shows a Venn diagram of the two relations. The intersecting region of the two

relations consists of tuples from either relation tha t have a matching tuple in the other relation.

So, El is in the intersecting region because it matches C1. Similarly, C1 matches both E l and

E3 so is also in the intersecting region. As the figure shows, each pair of matching tuples in the

intersecting region are composed t o produce a tuple in the result.

4.1.2. Semi-Join

The advantages of the semi-join operator were considered mainly for distributed databases

[26]. An important consideration in distributed databases is the amount of da t a tha t must be

sent over the network. Assume tha t the Enrollment relation is stored a t Node 1 and the Course

relation is stored a t Node 2. Furthermore, the natural join of Enrollment and Course is needed

a t Node 2. Without using a semi-join, the strategy is t o send the entire Enrollment relation t o

Node 2 and compute the natural join there.

If the Enrollment relation contains a large percentage of tuples tha t don't participate in

the join, like tuple E7, a lot of unnecessary tuples will be transmitted. An alternate strategy is

t o project Course onto the join attribute as shown in Table 5. This relation is then shipped t o

Course Number

4

Table 5. Course Projected Onto Course Number

Node 1. Using the projected values, only the tuples of Enrollment that will participate in the

join are chosen to send to Node 2. Semi-join is the operation that does this selection. Table 6

shows the semi-join of Table 1 and Table 5. The result of the semi-join is then sent to Node 2

where the natural join is computed.

Tuples are matched in semi-join the same way they are matched in natural join, when join

attribute values are equal. The difference between natural and semi-join is the way that

matching tuples produce a result. In natural join, the two matching tuples are composed into a

single tuple. In semi-join, however, the result is the tuple from the first relation, the Enrollment

tuple in the example. This is shown in Figure 10. Note the similarity of this figure and the pre-

vious figure.

4.1.3. O u t e r Jo in

Outer join [27], like semi-join, is a slight modification of natural join. Like natural join,

pairs of matching tuples are composed to get a tuple in the result. However, tuples from the

Table 6. Semi-Join of Enrollment and Course Number.

Enrollment '

E l
E2
E3
E4
E5
E6

Name
Adam
Adam
Betty
Carol
Denny
Earl

Course Number
1
2
1
2
3
4

Enrollment' u
Figure 10: Semi-Join of Enrollment and Course Number

first relation t ha t do not have a match in the second relation are not discarded in outer join.

Instead, unmatched tuples are concatenated with an all NULL tuple. The outer join of Enroll-

ment and Course is shown in Table 7. As Table 7 shows, tuple E7 of the Enrollment relation is

unmatched but produces tuple SC7 in the result. This tuple has a NULL value for the Course

Name attribute because E7 had no matching tuple in Course. Figure 11 shows the semi-join

operation in a Venn diagram.

Outer join preserves all tuples of the first relation. This is useful in situations where all of

the information from the first relation is needed t o complete a query. For example, suppose

Student-Course'
Enrollment.Name I Course Number I Course.Name

Adam
Adam
Betty
Carol

Denney
Earl

Frank

Data Structures
Algorithms

Data Structures
Algorithms

Architecture
I Database

NULL

Table 7. Outer Join of Enrollment and Course.

Figure 11: Outer Join of Enrollment and Course

tha t we need t o get the number of valid courses taken by each student from the Student-Course

relation in Table 3. Table 1 shows tha t Frank is enrolled for course number 5 which is invalid.

However, the information tha t Frank is enrolled in zero valid courses cannot be determined

from Table 3. The fact tha t Frank is a student not enrolled in any valid courses can be deter-

mined from the outer join shown in Figure 7

4.1.4. Set Operations

Intersection will be used as an example of a set operation. Set operations are only mean-

ingful for relations tha t are union compatible. Union compatibility is the constraint tha t both

relations have tuples with exactly the same attributes. Table 8 introduces a new relation,

Part-Time Enrollment, tha t is union compatible with the Enrollment relation. The intersection

Part-Time Enrollment
Name Course Number

p- Carol

Table 8. Part-Time Enrollment Relation.

Common Enrollment
Name Course Number

El-PI -1
E3=P3 Carol

Table 9. Common Enrollment Relation.

of these relations is given in Table 9.

As in natural join and semi-join, the result of intersection comes from the tuples tha t

match. Unlike natural join, the result tuple is not a composition of the matching pair of tuples.

In this respect, intersection is more like semi-join. The primary difference between intersection

and semi-join is tha t matching tuples are exactly the same tuple. Tha t is, the tuples have the

same values for all attributes. So, in the example, tuple El and tuple P1 are the same tuple.

The Venn diagram for intersection is shown in Figure 12. Note tha t because matching

tuples are the same tuple, relationally, i t does not make sense t o say tha t the result tuple comes

from one relation or the other. In fact, the result can be said t o come from both relations. I t is

only a t the algorithm level tha t a distinction must be made.

Figure 12: Intersection of Enrollment and Part-Time Enrollment

4.1.5. General Classification of Binary Operators

To capture the essence of one-to-one match we move away from operation consideration

and view binary operations from the relation viewpoint. The general case of a binary operation

on two relations, R and S, is shown in Figure 13. As in the examples, the tuples of both rela-

tions are separated into four groups. The groups are determined by matches between tuples of

R and tuples of S. Note that i t is not necessary at this point t o define what matchea means.

The fours groups are:

(1) Tuples of R with no matching tuple in S

(2) Tuples of S with no matching tuple in R

(3) Tuples of R with one or more matching tuples in S and

(4) Tuples of S with one or more matching tuples in R

Given these four groups, each binary operation can be classified by the source of result

tuples. Table 10 classifies join, semi-join, outer join, union, intersection and difference. Recall

from the previous section that for intersection it makes no sense to distinguish tuples in Group 3

and Group 4. Also, marks in both Group 3 and Group 4 for non-set operations, join and outer

join in Table 10, signifies that pairs of tuples that match are composed to produce a result.

Figure 13: Classification of Tuples

Table 10. Classification of Operations by Source of Results.

From this classification i t is apparent tha t there are a n unlimited number of operations

tha t can be performed. In this section there have been no restrictions placed on the definition

of match, the way in which matching tuples are composed or how a tuple can be modified before

being included in the result. Recently, a new operation has been proposed in [28] as a means of

efficiently evaluating queries with universal quantifiers. The operator is called complement join'.

Results of this operation come from Group 1 only. Looking back a t Table 10 i t looks similar t o

a set difference. In fact, i t is identical t o set difference except tha t the relations are not union

compatible. This fact was also noted in (281.

Operation
Join

Outer Join
Semi- Join

Intersection
Union

Difference

4.1.6. Aggregate Functions and Duplicate Elimination

Aggregate functions and duplicate elimination are not binary operators. As such they

cannot be described in terms of two relations and a nice Venn diagram. In spite of this, there is

some similarity of aggregation and duplicate elimination t o the operators examined above.

Concentrating on aggregation for the moment, recall tha t i t is a mathematical operation per-

formed on groups of tuples within a relation. Once the groups of tuples have been determined,

aggregation can be performed. This reduces aggregation t o the finding of these groups. Group-

ing is based on equality of an attribute, the grouping attribute. The group tha t a tuple belongs

t o is found by the comparison of the tuple t o a tuple representing the group. In other words, by

comparing a single tuple t o another tuple it is possible t o determine the groups. This is the

GROUP 1

X

X
X

' This operator bears a striking resemblance t o an operator the author recently heard referred t o a s natural-
anti-semi-join.

GROUP 2

X

GROUP 3
X
X
X
X
X

GROUP 4 .

X
X

X
X

principle on which the one-to-one match operator is based.

4.2. Advantages of One-to-one Match

The progression of the examples above is meant not only t o show the underlying principle

of the operations, but also t o show how a small change of one operator produces a new opera-

tor. Indeed, the similarity, we argue, points to the fact tha t all of these operations are but

facets of a single operation.

Consider the advantages of adopting the one-to-one match operator instead of a number

of modules able t o perform individual operations. For example, suppose a database system has

one module for computing join and another module for computing semi-join. Furthermore,

assume both of the algorithms are hash-based. Replacing the two modules with the one-to-one

match operator increases the functionality of the database system. That is, instead of being

limited t o join and semi-join, the database system can now perform outer join, intersection,

difference, union, etc. In fact, i t now has the capability of performing a class of binary rela-

tional operations.

The functionality of da ta items tha t one-to-one match operates on is encapsulated in sup-

port functions. Support functions are supplied by the query implementor (which is the query

optimizer in a complete database system) and used by the one-to-one match operator in com-

puting the query. No da t a specific code is contained in the implementation of the one-to-one

match operator. The encapsulation of functionality on da ta items increases the extensibility of

the one-to-one match operator. For instance, extending a database system t o allow complex

objects or new abstract da t a types does not affect the one-to-one match implementation. All

knowledge of the new da ta type or structure is encapsulated in the support functions. Examples

and explanation of support functions will be given during the description of the hash-based one-

to-one match implementation in the next section.

There is a second way of looking a t the interaction of the one-to-one match operator and

its support functions. The support functions can be viewed a s arguments t o a n algorithm shell.

The shell represents a class of operations. A particular relational operation is created by map-

ping a set of support functions using this algorithm shell. This interaction of Volcano operators

and support functions is used in all iterators, but i t is best demonstrated by the one-to-one

match operator and the wide variety of operations it implements.

Because of the similarity between join and semi-join, the two algorithms look very much

alike. The changes made in one module t o optimize and tune the operation are also applicable

t o the other module. Also, a bug found in one module is likely t o exist in the other module as

well. In addition, porting the modules t o another operating system or new hardware requires

changes t o both modules. All three of these changes or modifications; optimization/tuning,

maintenance, and porting t o a new platform; occur in one place with the one-to-one match

operator. The only change in performance in going from the two modules t o the one-to-one

match module is the time spent, by one-to-one match, determining which operation t o perform.

Time spent determining which operation t o perform is overshadowed by computing the opera-

tion and does impact performance.

More detailed examples of advantages of one-to-one match follow. Using the definition of

semi-join a s an example, i t is relatively straightforward t o modify a given natural join algo-

rithm to make it compute semi-join. The same is true of the other operators. Now consider a

database system tha t includes a classic hash join algorithm. Suppose also t ha t small

modifications have been done t o the algorithm t o obtain modules for computing semi-join, outer

join and intersection. However, i t is determined tha t the size of the relations in the system have

grown too large t o fit into main memory. Each module, four of them, must be modified t o han-

dle overflow. Adding overflow handling t o the one-to-one match operator involves modifying a

single section of code.

Suppose instead tha t each operation is still implemented within its own module but now

each module shares code common t o all operations. Because the common code is shared, adding

overflow handling t o the classic hash join algorithm must only be done in one place. Consider

adding the union operation to this database system. A new module is created using the shared

code used by the other modules. For each new operator to be implemented, a new module must

be created. However, one-to-one match would only require the change of a few arguments

without any code writing or modification. That is, one-to-one match is already capable of com-

puting the operation, i t is just a matter of using appropriate arguments.

4.3. Hash-Based One-to-one Match

We turn now to the hash-based implementation of one-to-one match. This implementation

is based on classic hash join. Classic hash join is separated into two phases. The first phase,

called the build phase, constructs a memory resident hash table with tuples from one relation.

The relation used to fill the hash table is referred to as the build relation or build input. During

the second phase, called the probe phase, tuples from the other relation are used to probe the

hash table. This relation is called the probe relation or probe input. Our algorithm extends the

classic hash join algorithm by adding a third phase, called the flush phase.

Only the logical phases of our algorithm have been mentioned. However, the algorithm is

invoked as an iterator so the three phases are embedded in open, nezt and close calls. A call to

open begins and completes the build phase. Both the probe and flush phases are accomplished

through repeated calls t o nezt. Before the first call to nezt neither the probe or push phase has

begun. At the point when all of the results have been returned, both the probe and flush phases

have been completed.

4.3.1. Natural Join

At this point a detailed example would best serve to describe the details of the algorithm.

We begin by describing how one-to-one match implements natural join. Recall tha t the first

phase, the build phase, constructs a hash table with the build relation. The hash table consists

of N bucket pointers. Each bucket contains an arbitrary number of tuples in the form of a

linked list. This is illustrated in Figure 14. Each tuple of the build relation is inserted into this

hash table. The bucket the tuple is inserted into is determined by the hash value of the tuple.

Figure 14: Hash Table

When the final build input tuple is inserted into the hash table the build phase ends. All of the

build phase occurs during the open call.

During the probe phase, the hash table is probed for tuples matching those in the probe

input. Probing occurs during a call t o nezt. The first call t o nezt retrieves the first tuple of the

probe input. This tuple's hash value determines the hash table bucket where matching tuples

can be found. If a match is found, the matching tuples are combined and this new tuple is

returned. Note tha t a single probe input tuple may have more than one matching tuple in the

hash table and cannot be discarded after finding a single match. Once all of the matching

tuples have been found the current probe input tuple is discarded and the next probe input

tuple is retrieved. The probe phase ends when the last probe input tuple is discarded.

Before returning an end-of-stream from the last nezt call, after the probe phase has ended,

the memory consumed by the hash table is freed. Releasing the hash table memory occurs dur-

ing the flush phase. More importantly, tuples in the hash table tha t were fixed in the buffer are

unfixed. All of this happens during the last call t o nezt and not during the call t o close.

There are a number of support functions and arguments tha t are needed t o perform the

algorithm described above. The hash table size, N, is needed. Also, two hash functions are

required. One hash function operates in tuples from the build input and one operates on tuples

from the probe input, called build hash and probe hash respectively. Probing requires a function

tha t compares a build input and a probe input tuple. This function, compare, returns either

TRUE or FALSE. Finally, when a pair of matching tuples is found they must be combined by

another function. The combining function, eompoae, fills a result tuple given the matching build

and probe tuples.

4.3.2. Semi-Join

The semi-join implementation differs from the natural join implementation only in the way

tha t matching tuples are used t o produce a result. When computing natural join, a matching

build and probe tuple are combined into a result tuple. Combining matching tuples in natural

join produces a new tuple. In semi-join, however, matching tuples do not produce a new tuple.

Tha t is, no output tuples are created and no result file must be created and filled. Instead, the

result a matching build and probe tuple is the probe input tuple. When performing semi-join,

the one-to-one match operator behaves as a filter on the probe input. Tha t is, one-to-one match

only passes on those tuples of the probe input tha t would have participated in the join.

Without the need t o combine a build input and probe input tuple there is no no need for the

compose support function.

4.3.3. Outer Join

To compute outer join, the entire probe phase must behave differently than the probe

phase described for natural join. Matching tuples are still combined t o make a result tuple but

probe input tuples without a match are handled differently. Unmatched probe input tuples were

discarded in natural join. In outer join, these unmatched tuples are combined with a n all NULL

tuple and returned as a result. Because these unmatched tuples produce a new result tuple,

another support function is required t o compute outer join. This function, probe compose, com-

bines a n unmatched probe input tuple with an all NULL tuple.

4.3.4. Aggregation

The one-to-one match operator is capable of performing an aggregate function on the

build input. As in natural join, the hash table is constructed from the build input during the

build phase. In order t o describe aggregation the previous aggregation example will be refer-

enced. After a tuple is retrieved from the build input i t is hashed t o a bucket. In natural join

the bucket a tuple belongs in was based on the value of its join attribute. But, t o perform

aggregation, the bucket is based on the value of the grouping attribute. Therefore, tuples with

the same grouping attribute value, Name in the example, get hashed t o the same bucket.

Instead of inserting this tuple into the bucket, a s natural join does, the bucket must be

searched for a matching tuple. Again, tuples with the same grouping attribute value are

matching tuples. When no match is found, the tuple is inserted and aggregation for t ha t group

of tuples is initialized. For example, tuple El in the Enrollment relation gets hashed t o bucket

K. There is no matching tuple in the bucket (i.e. no previous tuple belonging t o the same group

has been found) so i t is inserted into the bucket. As it is inserted into the bucket, the count,

representing the number of courses Adam is enrolled in, is initialized t o one. If a matching tuple

is found, the tuple being inserted is aggregated with the tuple already in the hash table. Now

tuple E2 of Enrollment is hashed t o the same bucket as E l , namely K. However, E2 matches

tuple El because both names are Adam. Instead of inserting E2 into the bucket, the number of

courses Adam is enrolled in is incremented by one.

When the entire build input has been inserted into the hash table, aggregation is finished.

Note tha t this is all accomplished during the open call. Now the hash table contains the results

of the aggregation. There is no probe input and no probing relation so the probe phase accom-

plishes nothing during aggregation. Instead, the flush phase begins on the first nezt call. Each

call t o nezt returns one of the results contained in the hash table. When computing aggrega-

tion, the flush phase is responsible for more than just freeing the hash table memory. In this

case i t flushes results from the hash table while freeing hash table memory.

As with natural join, aggregate functions require a number of support functions. While a

tuple is being inserted i t must be compared t o tuples already in the hash table. A function,

called build compare, compares a tuple being inserted into the hash table with tuples already in

the hash table. If no match is found, aggregation is initialized by invoking a n initialize function

on the tuple after inserting i t into the hash table. Tuples tha t match must be aggregated with

an aggregate function. Unlike natural join, aggregation does not require a probe input, a probe

hash function, a compare function or a compoee function.

If an aggregate function or duplicate elimination is required on the build input to one-to-

one match, the output records typically have a different format than the input records. There-

fore, a new file is created for such output records, typically on a virtual device. Virtual devices

are a construct that allows allocating and manipulating temporary space in memory in the

same way as disk-resident files, but virtual devices never require I/O.

4.3.5. Aggregation with Natural Join

Instead of just producing the result of the aggregation as described in the previous section,

suppose the results are to be used in a subsequent join. For example, now that the number of

courses taken by each student has been determined we may want to know each student's year in

school. Table 11 shows the Class relation and Table 12 shows the result of joining Table 4 and

Table 11.

Adam Freshman
Betty Freshman
Carol Sophomore
Denny Sophomore

Junior
Frank Senior

Table 11. Class Relation

CLCl
CLC2
CLC3
CLC4
CLC5
CLC6

Table 12. Aggregation Followed by Join

Class
Freshman
Freshman
Sophomore
Sophomore

Junior
Senior

Name
Adam
Betty
Carol
Denny
Earl

Frank

Number of Courses
2
1
1
1
1
1

Aggregation is performed first, just as described in the previous section. However, the

probe input is not empty now. On the first call t o nezt, the first tuple of Class is retrieved and

the probe phase begins. From this point on the algorithm performs exactly a s described for

natural join.

The previous explanation may be used t o show the advantage of including aggregation

and duplicate elimination in the one-to-one match operator. One-to-one match was born from

the observation tha t aggregation of a relation is often followed by a join. More importantly,

the grouping attribute of the aggregation is also the join attribute of the join. Consider what

would happen if the aggregate and join operations were separated. First, a hash table is used

for performing the aggregation of the Enrollment relation. When the aggregation is complete,

each aggregate tuple is removed from the hash table and sent t o the join operation. The join

operation takes each tuple resulting from the aggregation and inserts i t into a new hash table.

In fact, because the join attribute is the same as the grouping attribute, the new hash table will

be equivalent t o the previous hash table. By combining the aggregate and join operations, the

hash table is only constructed a single time.

4.3.6. Intersection

As already observed, intersection is the equivalent of a natural join of union compatible

relations. However, the implementation of intersection resembles the implementation of semi-

join. Recall tha t semi-join differed from natural join because it did not create new result tuples,

instead, the result of a matching build and probe tuple was the probe tuple. Because the

matching build and probe tuple are exactly the same in intersection, i t does not matter which

tuple is returned as the result. In order t o prevent having t o check for intersection, the imple-

mentation of semi-join is used t o implement intersection.

4.3.7. Difference

The implementation of difference varies from tha t of the previously described implementa-

tions during the probe and flush phases. When nezt is first called the probe phase begins. A

tuple from the probe input is used t o probe the hash table. Instead of producing a result when

a matching tuple is found, the build input tuple, in the hash table, is marked. Marked tuples in

the hash table are those tha t also exist in the probe input. The probing phase finishes during

the first call t o nezt because probing does not produce any output tuples.

After the probe phase completes, the hash table still contains all of the tuples of the build

input. However, some of the tuples are marked and some are unmarked. The result of the

difference are those tuples in the hash table tha t are unmarked (i.e. no matching tuple exists in

the probe input). During the flush phase, unmarked tuples are returned while the hash table is

being emptied.

Difference still requires build hash, probe hash and compare support functions but does not

need compose. Notice tha t the support functions needed for difference are exactly the same as

those needed for semi-join. From the standpoint of support functions the two algorithms are

indistinguishable. For this reason it is necessary t o include another argument t o one-to-one

match t o differentiate between semi-join and difference.

4.3.8. Other Operators

As mentioned early in the paper, i t is advantageous t o build the hash table with smaller of

the two relations. This may conflict with the way the implementation has been described so far.

For example, suppose relation R has 10,000 tuples and relation S has only 100 tuples. The

desired operation is the semi-join of R and S (i.e. those tuples of relation S tha t participate in

the join of R and S). semi-join, as described above, requires tha t the hash table be built with

relation R and probed with relation S.

We observed tha t with the capability of selecting tuples in the hash table and the addition

of the flush phase i t should be possible t o perform the semi-join the other way around (i.e. build

with relation S and probe with relation R). In fact, one-to-one match has the capability of

always building the hash table with the smaller relation regardless of operator requirements.

First, the hash table is built with tuples from relation S. The probe phase behaves similar t o

the difference implementation described above. That is, the hash table is probed with tuples

from relation R but instead of producing results while probing, tuples in the hash table are

marked. After the probe phase has completed the flush phase empties the hash table returning

those tuples tha t have been marked. Recall that marked tuples are those with one or more

matching tuples in the probe input.

4.3.9. Operator Summary

The combination of marking tuples in the hash table and using the flush phase to remove

result tuples from the hash table makes it possible t o return tuples from any group shown in

Figure 13. Furthermore, by associating a function with each of the groups, tuples from each

domain can be transformed before being returned (i.e. combining a tuple from Group 1 with an

all NULL tuple when computing outer join).

One-to-one match determines which operation to perform from the user supplied support

functions. Table 13 lists the operations that have been discussed and the support functions that

are needed for these operations. Note again that some operations, such as semi-join and

difference, require another argument t o be distinguishable. Also, operations called "Reverse" are

Table 13. Argument Determination of Operation.

those described in the section on other operators.

4.4. Hash Table Overflow

While hash tables in main memory are usually quite fast, a severe problem occurs if the

hash table does not fit in main memory. This situation is called hash table overflow. There are

two ways t o deal with hash table overflow. First, if a query optimizer is used and can antici-

pate overflow, overflow can be avoided, typically by partitioning the input(s). Such overflow

avoidance techniques are the basis for the hash join algorithm used in the Grace database

machine [14]. Second, overflow files can be used t o resolve the problem after i t occurs. Several

overflow resolution schemes have been designed and compared [10,11,29,16]. At the current

time, we are studying how best t o implement hash table overflow avoidance and resolution for

the rather complex one-to-one match operator in Volcano.

Almost all techniques t o deal with hash table overflow use several temporary files called

overflow files. The number of bucket files can be quite large, and is limited only by the buffer

memory needed t o hold clusters being filled with records. Depending on the scheme, the records

of selected or all hash buckets of the hash table t o be built are written into bucket files. Using

several bucket files allows partitioning, the main reason for and advantage of hash based algo-

rithms.

Gerber also considered two schemes tha t do no use partitioned overflow files [11,29]. Both

schemes use multiple passes and assume tha t in each pass, the hash buckets t o be kept in

memory can be determined a priori. First, re-reading the input multiple times and extracting

the currently needed records in each pass clearly works if the build input is a stored relation; if

the build input is produced by another operation, i t is written when i t is first received, and can

then be scanned repeatedly. Both variants require the same number of 1 /0 operations. Second,

i t might be tempting t o write a new file each time some records are extracted, thus limiting the

number of record t o be read in subsequent passes. I t turns out, however, tha t the additional

write operations exactly counter-balance the savings in read operations. Therefore, all three

schemes and variants discussed in this paragraph have the same 110 complexity. If the total

build input size is a multiple of the memory size, say N times the memory size, the build input

must be read N times. Thus, the 1 / 0 complexity of all these algorithms is I@, rather undesir-

able for large inputs and not competitive with sort based algorithms for very large files.

More efficient schemes fan the overflow into multiple files simultaneously, thus providing

for reading selected records efficiently. Typically, records are assigned t o these partition files

using the same or a modified hash function tha t is used for the in-memory hash table. In fact,

in a n overflow resolution scheme, i t might be advisable t o decide dynamically whether or not t o

use the same hash function, depending on how uniformly it distributed input records over the

hash buckets.

Multiple overflow files carry both advantages and disadvantages. The premier advantage

is tha t in most cases, each record has t o be written and read only once. The exception occurs if

the number of files necessary t o ensure tha t each file will fit into memory exceeds the number of

output buffers available during the partitioning phase. In this case, recursive or multi-level par-

titioning is required, in which each partition is partitioned again until all partition files fit into

memory. I t is interesting t o note tha t this is exactly the situation in which multiple merge lev-

els are required for sorting a large file or relation. A careful comparative analysis shows tha t

the I/O behaviors of partitioning and merging are the same, including the fractions of random

and sequential I/O, except tha t the directions of the da ta streams are reversed.

A second advantage is tha t multiple overflow files allow bucket tuning, i.e., grouping

overflow files such t ha t each group will fit into memory. However, the advantage of bucket tun-

ing is not entirely clear since it seems tha t the same performance could be achieved simply by

processing one bucket a t a time.

A chief disadvantage of multiple overflow files is tha t they have t o be written using ran-

dom I/O which is much more expensive on moving-head disks than sequential 110. In fact,

whether or not random 110 is necessary can turn the superior performance of hash-based algo-

rithms such a s hybrid hash join [10,9] into inferior performance when compared t o carefully

tuned sort-based algorithms, a t least in certain parameter ranges [30].

I t is interesting t o note tha t if a n aggregate function or duplicate elimination is performed

on the build input, only the output of this operation must fit in main memory. In particular

when memory is scarce, aggregating into a new, temporary file pays off since i t avoids internal

fragmentation in the buffer, i.e., the records are packed densely into clusters.

For Volcano's one-to-one match operator, we are considering three overflow resolution

schemes. First, we consider a refinement of hybrid hash join, suitably modified for aggregation

processing and tuned for fast reaction t o overflow t o allow continued dataflow from the build

input operator. Second, since Volcano is meant t o run on a shared-memory machine or a group

of homogeneous shared-memory machines, we will explore memory trading between partitions.

Third, we intend t o experiment with data compression.

If a n aggregate function or duplicate elimination is required on the build input of one-to-

one match, the output records typically have a different format than the input records, and a

new file is created for such output records. Instead of using a single such file, we create multiple

files. These files will become overflow files if necessary, but only if necessary. The latter condi-

tion distinguishes our scheme from Grace's overflow avoidance scheme. If overflow occurs, one

of these files is selected t o be dumped to disk. Clusters (pages) of this file can be written very

fast because records are already assembled into suitable pages, thus no copying occurs a t this

point. This distinguishes our algorithm from standard hybrid hash as implemented in GAMMA

[16]. Thus, our algorithm combines hybrid hash's flexibility t o handle overflow as it occurs with

Grace's overflow avoidance technique. We believe tha t this combination will also result in the

best dataflow behavior, i.e., one-to-one match's input operator will have t o be stopped for the

least amount of time while hash table overflow is being resolved.

If an operator is execute by multiple processes, i.e., the input is partitioned into multiple

disjoint subsets, there is a good chance tha t the load is not entirely balanced, and only a subset

of the partitions experience hash table overflow. If all these processes run on one shared-

memory machine, memory trading can be used t o avoid overflow alltogether. Of course, this will

require a t least some amount of synchronization between these processes, which may impede

overall performance. However, since all processes work with one shared buffer, a counting sema-

phore is probably sufficient t o control total memory demand and determine when overflow reso-

lution is required.

Finally, data compression can be used t o reduce space requirements. As CPUs' perfor-

mance improvements proceed at a faster rate than disk transfer rate improvements [31],

compressing da t a in the hash table might be become a very attractive technique t o resolve hash

table overflow, in particular if the final hash table size (without compression) is only slightly

larger or a small multiple of total memory size. Recent compression techniques, originally

developed chiefly for networking applications, can yield significant compression rates, particu-

larly for text data .

5. Performance

From the beginning, we focussed our attention on the performance of the Volcano system,

in particular the tradeoff of generality and extensibility vs. performance. This section presents

preliminary performance results of the one-to-one match operator.

5.1. Benchmarks

The relations used for measuring performance are those used in the Wisconsin Benchmark

[32]. Each tuple is 208 bytes in length and is composed of 13 4-byte integer fields and 3 52-

character (byte) strings. An example tuple is shown in Table 14. The attribute names signify

the values the attribute can have. Unique1 and unique2 have unique integers ranging from zero

Table 14. Example Wisconsin Benchmark Tuple

stringu2
Gx..xZ

string4
Ox..xO

..

..
unique1

6546
stringul

Ax.A..xA
..
..

tenthousand
9999

unique2

10.

two
1

four
3

t o the size of the relation (i.e. 0-99999 for a 10,000 tuple relation). Remaining integer fields

have integers in the range signified by the attribute name. Thus, the ten thousand attribute

contains integers in the range 0-9999. Both atringul and atringud are unique strings. Each

string has three varying character positions with x's separating them. The final attribute,

atring4, is confined to four specific strings. In order t o limit the results from these performance

runs, we restricted the operations to join and aggregation.

6.2. Hardware

The queries were run on a dedicated Tektronix 4316 workstation (Motorola 68020 CPU)

with 4 MEiytes of RAM running under the UTek 3.1 operating system. Two Tektronix 4495

Mass Storage Units with an 86 MEiyte CDC WREN I11 hard disk drives were connected to the

workstation through a SCSI port. The SCSI bus interface transfer rate is 1.25 MBytes per

Wisconsin Benchmark

Time
in seconds
(log scale)

One-tpone match --------- Hash joln

I I I
10 100 1000

Relation Size
in tuples

(log scale)

Figure 15: One-to-one match and Hash join Comparison

second but a t the time of printing the performance specifications of the hard drive were unavail-

able. All relations, both input and output, were stored in operating system files.

6.3. One-to-one Match versus Classical Hash Join

To begin, one-to-one match was used t o join relations of varying sizes. Relation sizes

varied from 10 tuples t o 10000 tuples with both inputs being the same size. Each join produced

a result relation with the same number of tuples as the relations tha t were joined. For example,

two 10,000 tuple relations are joined t o produce a 10,000 tuple relation. Results are measured

in elapsed time to complete the join, in seconds, and are shown in Figure 15. Also plotted in the

figure is the performance of a hash-based join algorithm. The hash-based join algorithm,

labeled hash join, is a classical hash join algorithm. Notice tha t using one-to-one match t o com-

pute join instead of a dedicated hash-based join algorithm does not reduce performance. Any

time tha t the one-to-one match operator needs t o determine which operation t o perform is negli-

gible compared t o the time required t o read and write the relations.

6.4. The Mect of Join Selectivity on One-to-one Match

Wisconsin Benchmark

Time
in seconds 17.50
(log scale)

9.50
8 .OO

Join Selectivity
(log scale)

Figure 16: One-to-one Match With Variable Join Selectivities

To show the impact of result size on performance, we restricted the input relation sizes t o

10,000 tuples and varied the join selectivity. The join selectivity is the ratio of the size of the

result t o the largest result size possible. For example, if relation R is of size M and relation S is

K
of size N and the join of R and S results in a relation of size K then the join selectivity is -

MN'

Therefore, a join selectivity of lo4 when joining two 10,000 tuple relations will produce a

100,000 tuple result:

Figure 16 shows the results. The first interesting feature of the graph is the drastic change in

slope a t a join selectivity of lo4. This is the point a t which the size of the result relation

begins t o approach and then dominate the size of the input relations. For example, a join selec-

tivity of 10" results in a relation containing 1,000 tuples. But note tha t the result tuples are

almost twice as long as the input tuples. So, with a join selectivity of lo4,

20,000 x 208 bytes = 4,160,000 by t e s

are read and

1,000X412 bytes = 412,000 by t e s

are written. As the size of the result gets larger, the cost of reading the inputs becomes less

significant. Thus, the time it takes t o complete the join becomes proportional t o the size of the

result. This can be seen in the graph as the curve becomes linear after a join selectivity of lo4.

5.5. One-to-one Match versus Aggregation+Join

T o show the advantage of including aggregation in one-to-one match, we performed an

aggregation followed by a join on the grouping attribute. In the first group of tests, the aggre-

gation operation and join operation were computed separately. Remember tha t this requires

the hash table t o be built twice. The second group of runs were computed by the one-to-one

match operator which combines aggregation and join into a single operation. The comparison

Wisconsin Benchmark

17.75 One-to-one match
- - - - - - - Aggregation+ Join - ---- ----

#I--

* -
C C - - C

/--

Time 17.25 - @ - - -
in seconds I e - *

500 1000 2000 5000
Build Relation Size After Aggregation

in tuples

Figure 17: One-to-one Match and Aggregation+Join Comparison

of the two methods is shown in Figure 17. The most important feature of the graph is the

difference between the two curves. Both methods require the same amount of time to compute

the aggregation and t o compute the join. However, the aggregation+join algorithm must empty

the hash table of aggregation results, communicate those results t o the join operation and build

a new hash table with the aggregation results. As the size of the aggregation result increases so

does the cost of destroying and rebuilding the hash table. In the graph this is seen a s the

increasing distance between the two curves as the aggregation result size increases.

6. Future Work

The one-to-one match operator is currently based on classic hash join. This means tha t

no provision has been made for hash table overflow. I t is not clear a t this point if i t is feasible

t o handle hash table overflow as described in Section 2 or whether another means of handling

overflow will be required.

It was mentioned previously tha t the use of support functions t o encapsulate functionality

on da ta items leads t o greater extensibility. The Volcano query evaluation system is being

developed with this goal in mind. In fact, Volcano will be one of the components of the Revela-

tion system currently being researched.

Currently, the hash-based implementation of one-to-one match contains specific code deal-

ing with creation and destruction of the hash table as well as the insertion and removal of

tuples from the hash table. By removing index dependent code, the implementation of one-to-

one match may be further generalized. Manipulation of the index, a hash table in the hash-

based implementation, could be made through index implementation independent calls (i.e.

insert (item), remove (item), etc.). This generalization could allow replacing the index imple-

mentation without affecting the one-to-one match algorithm. For example, instead of using a

hash table for finding matches, a n in memory B T r e e could be used. The benefits of making the

one-to-one match algorithm independent of indexing may be outweighed by the costs, particu-

larly in a parallel environment.

7. Summary

We have presented the one-to-one match operator, an operator in the Volcano query

evaluation system. It is capable of performing a class of binary relational operators including

natural join, semi-join, outer join, ant i join, union, intersection, difference, anti-difference and

Cartesian product. All of these operations are based on a single principle. The results of the

operation are determined by comparing a single tuple of one relation t o a single tuple of the

other relation. In addition, aggregation and duplicate elimination can also be performed

independent of or in conjunction with the operations listed above.

We have discussed the hash-based implementation of one-to-one match. Because a single

module is used t o perform a number of binary relational operators, a s opposed t o using a

separate module for each operator, the code is easier t o maintain, debug, optimize, tune, and

port t o new hardware and software platforms. The operation tha t one-to-one match performs is

determined by a number support functions, supplied by the query implementor or the query

optimizer. By allowing the support functions t o be determined outside of the algorithm the

flexibility of one-to-one match is increased. In addition, support functions encapsulate func-

tionality on data items. All these advantages are obtained while maintaining the performance

achieved in a module-per-operator database system.

8. Acknowledgments

We thank Len Shapiro for asking the questions requiring the most thought. We also thank

him for providing a basis for describing one-to-one match.

References

1. E.F. Codd, "A Relational Model of Data for Large Shared Data Banks," Communications
of the ACM 13(6) pp. 377-387 (June 1970).

2. E.F. Codd, "Relational Completeness of Database Sublanguages," pp. 65-98 in Data Base
Systems, ed. R. Rustin,Prentice-Hall, New York (1972).

3. D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville, MD.
(1983).

4. A. Klug, "Equivalence of Relational Algebra and Relational Calculus Query Languages
Having Aggregate Functions," Journal of the ACM 29(3) pp. 699-717 (July 1982).

5. M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P. Griffiths,
W.F. King, R A . Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L. Traiger, B.W. Wade,
and V. Watson, "System R: A Relational Approach to Database Management," ACM
Transactions on Database Systems l(2) pp. 97-137 (June 1976).

6. M. Stonebraker, E. Wong, P. Kreps, and G.D. Held, "The Design and Implementation of
INGRES," ACM Transactions on Database Systems l(3) pp. 189-222 (September 1976).

7. M. Blasgen and K. Eswaran, "Storage and Access in Relational Databases," IBM Systems
Journal 16(4)(1977).

8. D. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA. (1973).

9. L.D. Shapiro, "Join Processing in Database Systems with Large Main Memories," ACM
Transactions on Database Systems l l (3) pp. 239-264 (September 1986).

10. D.J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood, "Implementa-
tion Techniques for Main Memory Database Systems," Proceedings of the ACM SIGMOD
Conference, pp. 1-8 (June 1984).

11. D.J. DeWitt and R.H. Gerber, c'Multiprocessor Hash-Based Join Algorithms," Proceedings
of the Conference on Very Large Data Bases, pp. 151-164 (August 1985).

12. M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, "Application of Hash to Data Base
Machine and Its Architecture," New Generation Computing l(1) pp. 63-74 (1983).

13. M. Kitsuregawa et al., "Architecture and performance of relational algebra machine
GRACE," Proc. Int. Conf. Parallel Processing, pp. 241-250 (1984).

14. S. Fushimi, M. Kitsuregawa, and H. Tanaka, "An Overview of The System Software of A
Parallel Relational Database Machine GRACE," Proceeding of the Conference on Very
Large Data Bases, pp. 209-219 (August 1986).

15. R. Gerber, "Dataflow Query Processing using Multiprocessor Hash-Partitioned Algo-
rithms," Ph.D. Thesis, University of Wisconsin, (October 1986).

16. D. DeWitt and D. Schneider, "A Performance Evaluation of Four Parallel Join Algorithms
in a Shared-Nothing Multiprocessor Environment," Proceedings of the ACM SIGMOD
Conference, p. 110 (May-June 1989).

J.P. Richardson, H. Lu, and K. Mikkilineni, "Design and Evaluation of Parallel Pipelined
Join Algorithms," Proceedinga of the ACM SIGMOD Conference, pp. 399-409 (May 1987).

E. Omiecinski and E. Tien, "A Hash-Based Algorithm for a Cube-Connected Parallel Com-
puter," Information Processing Letters 30(5) pp. 264275 (March 1989).

R. Epstein, "Techniques for Processing of Aggregates in Relational Database Systems,"
UCBIERL Memorandum, (M79/8)University of California, (February 1979).

A. Klug, Statistical Query Facility"" "Investigating Access Paths for Aggregates using the
"Abe" Statistical Query Facility," IEEE Database Engineering S(S)(September 1982).

G. Graefe, "Volcano: An Extensible and Parallel Dataflow Query Processing System," Ore-
gon Graduate Center, Computer Science Technical Report, (84006)(June 1989).

M. Conway, "A Multiprocessor System Design," Proceedings of the AFIPS Fall Joint Com-
puter Conference, pp. 139146 (1963).

G. Graefe, "Relational Division: Four Algorithms and Their Performance," Proceedings of
the IEEE Conference on Data Engineering, pp. 94-101 (February 1989).

G. Graefe, "Parallel External Sorting in Volcano," Oregon Graduate Center, Computer
Science Technical Report, (89-008)(June 1989).

G. Graefe, "Encapsulation of Parallelism in the Volcano Query Processing System," Ore-
gon Graduate Center, Computer Science Technical Report, (89-007)(June 1989).

P A . Bernstein, N. Goodman, E. Wong, C. Reeve, and J.B. Rothnie, "Query Processing in a
System for Distributed Databases (SDD-I)," ACM Transactions on Database Systems
6(4)(December 1981).

C.J. Date, "The Outer Join," Proceedings of the Second International Conference on Data-
bases, (September 1983).

F. Bry, "Towards an Efficient Evaluation of General Queries: Quantifier and Disjunction
Processing Revisited," Proceedinga of the ACM SIGMOD Conference, p. 193 (May-June
1989).

R.H. Gerber, "The Hash-Partitioned Algorithms," Preliminary Proposal, University of
Wisconsin, (January 1985).

G. Graefe, "Heap-Filter Merge Join: A New Algorithm for Joining Medium-Size Relations,"
Oregon Graduate Center, Computer Science Technical Report, (89-012)(June 1989).

H. Boral and D.J. DeWitt, "Database Machines: An Idea Whose Time Has Passed? A Cri-
tique of the Future of Database Machines," Proceeding of the International Workshop on
Database Machines, Springer, (1983).

D. Bitton, D.J. DeWitt, and C. Turbyfill, "Benchmarking Database Systems: A Systematic
Approach," Proceeding of the Conference on Very Large Data Bases, pp. 8-19 (October-
November 1983).

