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Abstract 
Pitch detection based on neural-net classifiers is investigated. T o  this end, the 

extent of generalization attainable with neural nets is first examined, and i t  is shown 
t h a t  a suitable choice of features is required t o  utilize this property. Specifically, invari- 
a n t  features should be used whenever possible. For pitch detection, two feature sets, one 
based on waveform samples and the  other based on properties of waveform peaks, are 
introduced. Experiments with neural classifiers demonstrate t h a t  the la t ter  feature set 
- which has better invariance properties - performs more successfully. I t  is found t h a t  
the best neural-net pitch tracker approaches the level of agreement of human labelers 
on the  same d a t a  set ,  and performs competitively in comparison t o  a sophisticated 
feature-based tracker. An analysis of the errors committed by the  neural net (relative 
to the  hand labels used for training) reveals t h a t  they are mostly due t o  inconsistent 
hand labeling of ambiguous waveform peaks. 

Permission to publish this abstract separately is granted. 
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I. Introduction 
Of all the new developments in the pattern-recognition literature in the past 

decade, few have been a s  important  a s  the growth of interest in classifiers based on 
neural nets. This development is already influencing approaches t o  speech recognition 
significantly - whereas very few researchers studied the applications of neural nets t o  
speech recognition as recently a s  1985, there are  numerous indications t h a t  neural nets 
are  currently seen a s  a n  important  tool for speech recognition. This new interest is 
typified by the presence of a session a t  the Fall 1988 meeting of the Acoustical Society 
of America entitled "Speech Communication IV: Neural Networks and Other  Tech- 
niques." ("Other Techniques" included descriptions of the most successful speech recogni- 
tion systems of t h a t  time.) [I] provides an  excellent review of the research in this area .  

Whereas some fraction of this recent activity is simply at tr ibutable t o  the novelty 
of the subject, it has become clear t h a t  there is indeed a niche t h a t  neural-net 
classifiers fill well. T o  understand why this is the case, one should consider the decision 
boundaries in feature space created by various classifiers. [2] The "old-style" neural nets, 
(perceptron, [3] Widrow-Hoff classifier [4] ) are  characterized by linear decision boun- 
daries, and therefore have limited discriminatory ability. Multivariate Gaussian 
classifiers [5] generally form quadratic decision boundaries. This represents some 
improvement, but  is still unsatisfactory for many applications, especially those involv- 
ing multimodal distributions. In addition, the assumption of normality fundamental t o  
Gaussian classifiers is rarely valid in practice, so t h a t  these classifiers often fail even 
when optimally placed quadratic surfaces would suffice. Neural-net classifiers such a s  
the backpropagation (BP) classifier, [6] on the other hand, use (approximately) 
piecewise-linear discrimination surfaces, and do  not assume a particular parametric 
form for the underlying probability distributions. Since any "reasonable" function can 
be approximated t o  arbitrary accuracy by a piecewise linear surface, such neural nets 
are  in principle much more powerful than both linear classifiers and Gaussian classifiers. 
This improved discriminatory ability is especially useful for problems such a s  speech 
recognition, which are  characterized by highly variable signals. (Nearest-neighbor 
classifiers [5] also have piecewise-linear decision boundaries. Their usefulness is limited, 
however, by the need t o  retain a large number of prototypes for classification.) 

Although piecewise-linear decision surfaces constitute a useful extension t o  the 
capabilities of pat tern  classifiers, the abilities of neural nets should not be overes- 
t imated.  For example, the number of classification surfaces required typically grows 
exponentially with the number of features, in a well-defined sense, so t h a t  unrealisti- 
cally large nets and unrealistically long training times could be required if the feature 
space has  too many dimensions. Such considerations (and others which we detail below) 
imply t h a t  one should exercise some care in formulating a neural-net solution t o  a given 
problem: if the input features are  not selected appropriately, no current neural net will 
be able t o  perform satisfactorily. On  the other hand, if it is possible t o  describe a prob- 
lem so t h a t  discrimination by simple surfaces is sufficient, the power of neural nets  is 
often not required. Only in the intermediate range of complexity will existing neural 



We investigate the advantages and problems associated with neural-net classifiers 
on a particular problem, namely the detection of pitch. This problem is interesting for a 
number of reasons: i t  represents a n  important  pa r t  of many speech processing systems, 
[9] i t  has  a t t rac ted a wide variety of proposed solutions, [lo] i t  is still considered a 
difficult task,  [ll] and i t  is similar t o  a variety of other classification problems, such a s  
identification of R-waves in EKG waveforms. A neural-net pitch tracker is sensible 
from a n  implementational perspective: as neural-net hardware is becoming increasingly 
powerful, [12] speech subsystems implemented a s  neural nets promise t o  become fast 
and economical alternatives. Additionally, as we shall see, this problem allows us t o  
demonstrate many of the pitfalls and advantages of neural nets. 

Pitch trackers can be classified into three groups: those t h a t  employ time informa- 
tion, those using frequency information, and hybrids which use both time and frequency 
information. Rabiner e t  al.  [lo] have reviewed the properties of many popular pitch 
trackers. They did not find any one group of trackers t o  be superior in all respects. We 
employ time-domain signals for the neural-net pitch tracker, since the time waveforms 
lead straightforwardly t o  a classifier paradigm; however, a neural-net tracker based on 
frequency-domain or  hybrid inputs is also conceivable. 

In Section I1 we investigate some general properties of the types of features which 
can be used a s  input t o  a neural classifier, with particular at tention t o  the invariance 
required if satisfactory performance is t o  be obtained on real problems. The conclusions 
reached in Section I1 are  relevant for most applications of neural-net classifiers, a s  will 
become clear. In Section I11 our problem formulation and feature spaces a re  presented 
in more detail, and general experimental procedures are  described. Various experiments 
pertaining t o  the details of a neural-net pitch detector are  described in Section IV, and 
results are  presented. Section V contains a n  analysis of the errors which our best pitch 
tracker commits. This system does not include any post-processing; although it is clear 
t h a t  a number of simple procedures (e.g. median filtering) can improve the performance 
of a pitch tracker considerably, [13,9] post-processing is logically separate from the 
classification stage.  T o  evaluate the performance of the classifier, we therefore do  not 
include such a post-processing step, even though it would be used in practice. Section VI 
summarizes the lessons learned from this research. 

11. Neural nets for invariant recognition 
The  power of neural-net classifiers has  led many researchers t o  employ them in 

ways which would have been unthinkable with conventional classifiers. For  example, 
whereas spectral coefficients would generally not have been considered sufficient for s ta-  
tistical classification of phonetic categories before the new wave of interest in neural 
nets, precisely these features have been used a s  the input t o  various neural net 
classifiers - sometimes with much success. [14,15] This a t tes ts  t o  the ability of 
classifiers based on neural nets. However, i t  is important  t o  understand the limitations 
of neural nets. This will enable us t o  decide what input descriptions are  appropriate, 

It should be stressed that we concentrate on neural-net classifiers, because of their discriminatory power. There 
are many other functions which neural nets can perform (such as optimization 171 or hierarchical clustering 181 ), which 
might be useful for other reasons. 



and what problems a re  simply too complicated for current neural-net solutions. 

Let  us first investigate what is meant by "generalization by neural nets." In Fig. 
l ( a )  we show training samples from 2 classes (denoted by x's and o's, respectively) for a 
t w ~ d i m e n s i o n a l  

feature space. In this space, each class is distinguished by a clear pattern:  for the x- 
class, feature z, tends t o  be large when 2, is small, and vice versa, whereas the *class is 
distinguished by larger values of z, (irrespective of the 2,-value). A classifier trained on 
the d a t a  of Fig. l ( a )  may create a decision boundary (the solid line in Fig. l ( a )  and l(b)) 
which t o  some extent captures these relationships. Thus, when new samples are  
presented (the bold x and o in Fig. l(b)), they are  classified according to these patterns. 
Since the new samples may never have been seen, "generalization" is said t o  occur. 

This limited generalization property is easy t o  confuse with a more powerful form 
of generalization. Consider the following artificial problem: we are  to classify the 8 
time signals shown in Fig. 2(a) into two classes, as indicated by the solid (class 1) and 
dashed (class 2) lines. Each signal consists of three non-zero samples, which have been 
connected by straight  lines in Fig. 2 to facilitate interpretation. I t  is clear t h a t ,  with 
this representation, the signals in class 1 form a se t  of positive peaks (i.e. the intermedi- 
a t e  value is consistently larger than either of the end values), whereas the signals in 
class 2 a re  all negative peaks. The  height, baseline, width and time of onset of these 
peaks are  all variable. 

Now consider using the sample values a t  times t=0,1, ..., 7 a s  input features t o  a 
neural-net classifier. The net "learns" t h a t ,  for class 1, the sample a t  precisely t=5 
must be larger than the samples a t  t=3 and t=7, and similarly the sample a t  t=2 must 
be larger than  the samples a t  t = l  and t=6. For class 2, the sample a t  t=2 must be 
smaller than  those a t  t = l  and t = 3 ,  etc. The classifier has learned the amplitude 

Fig. 1: Graph showing samples from two classes demonstrating the ability of a neural 
net to generalize: (a) training set; (b) classification of two unseen test samples. 



Fig. 2: Representation of classification problem: (a) training set; (b) test sample which 
is classified correctly; (c) test sample for which classifier generalization is not 
sdcient .  

relationships between a number of specific triplets. As we discussed above, this learning 
involves some generalization; a s  long a s  the middle value of a specific triplet is larger 
than  the flanking values, the classifier will assign the pat tern  t o  class 1.  Thus, the 
input in Fig. 2(b) is classified correctly even though it has  not been seen before (since 
the net has  learned the class-1 relationships between the values a t  t=3, t=5, and t=7). 
However, the  net has  no basis to  classify the input shown in Fig. 2(c), since i t  has  not 
obtained any information about relationships between samples a t  t=O, t=3 and t=5. 
Since the pat tern  which should be deduced from the training samples does not refer t o  a 
particular set  of features, but  t o  relationships between different sets  of features, the net 
cannot learn i t  from the samples shown. Only if positive and negative peaks involving 
every possible triplet of times are  included in the training set  will the net be able t o  
discriminate between positive and negative peaks faultlessly. 



There are  therefore two levels of generalization: a classifier might be able t o  gen- 
eralize by detecting a certain pattern among a set  of features, without being able to 
generalize such pat terns  t o  other sets of features. Whereas humans are able t o  perform 
the more general operation, current neural-net classifiers specialize in the more limited 
domain. Thus, when we speak of generalization by neural nets, we have to keep in 
mind t h a t  we refer t o  the type of situation shown in Fig. 1, and not the situation of Fig. 
2. 

Now consider using a spectrogram a s  input t o  a neural classifier. This presents us 
with a problem analogous t o  t h a t  of the la t ter  situation, since the distinctive pat terns  
again involve different se ts  of features, depending on factors such as phonetic context, 
speech ra te  and the vocal t r ac t  length of the speaker. This implies t h a t  this feature set  
will only lead to suitable generalization if the classification is simple enough t h a t  a 
large fraction of all possible transformations of the relevant signals are  input during 
training. 

A feature set  t h a t  is generally more appropriate a s  input for a classifier is sug- 
gested by the problem of Fig. 2: for t h a t  problem, we can use a three-dimensional 
feature space, with the three features being the three non-zero samples, ordered with 
respect t o  their time of occurrence. In this case, the class 1 feature vectors would be 
represented by se ts  of three numbers, with the middle number larger than the other 
two. With these features, generalization of the  type shown in Fig. 1 is sufficient t o  
learn the correct classification of positive and negative peaks from samples such a s  
those shown. The  critical property of these features is t h a t  they have a n  invariant 
meaning for this problem. Similarly, when speech recognition is performed with neural 
nets, one should try to capture the important features of the desired output  classes by 
features with invariant meaning. This will often require considerable knowledge of the 
speech problem, since appropriate invariant features are  highly problem-dependent. 

In conclusion, neural-net classifiers are  capable of only a limited form of generali- 
zation. If the problem under consideration is sufficiently complex, a n  intelligent choice 
of features is required in conjunction with neural classifiers, since such a choice can 
ensure t h a t  this limited generalization is sufficient. I t  is possible t h a t  neural nets which 
d o  not function as conventional classifiers might be able t o  overcome this limitation; 
however, we a re  not aware of any realistic model which has  been demonstrated t o  be 
able to do so. 

We now give a more detailed description of the problem we wish t o  solve. Thus  
we will be able to elaborate on the extent to which our problem requires a quasi- 
invariant input description. 

III. Problem description and experimental method 
T o  understand the fundamental issues involved in the time-domain estimation of 

pitch, we consider the waveforms in Fig. 3. In this figure (and all similar figures below) 
the waveform is delimited by two horizontal bars, and (3 msec.) frame and sample-point 
marks and labels are  shown above the top line. The frame labels, which are  the smaller 
topmost numbers in Fig. 3, will be used to identify particular portions of the waveform. 
All waveforms we show have been low-pass filtered by a zero-phase filter with cut-off 
frequency of 700 Hz. (The filter was designed using the Remez exchange algorithm t o  
have 48 d B  per octave rolloff in the transition band and 0.48 d B  ripple in the passband.) 



Fig. 3: Low-pass filtered waveforms of three vowels (a-c), demonstrating the time- 
domain characteristics of pitch excitation. 

Figs. 3(a), (b) and (c) are  taken from vowels spoken by three different speakers. In all 
these vowels, two harmonic patterns can be discerned: a quasi-periodic high-frequency 
structure is modulated by a pattern of lower frequency, so t h a t  every n-th period is 
noticeably larger than the surrounding periods (with n ranging from 2 in Fig. 3(a) t o  5 
in Fig. 3(c)) - a s  indicated by the +-signs in Fig. 3. I t  is well known [9] t h a t  the high- 
frequency pat tern  is caused by the resonant cavity formed by the speech organs (and 
thus correlates most strongly with the first formant), and t h a t  the lower-frequency pat-  
tern corresponds t o  the periodic excitation due t o  the vocal cords. T h a t  is, the long 
periods are  caused by pitch excitation, and the shorter periods are  resonances induced 
by this excitation. Note t h a t  the low-pass filtering enhances this pattern,  since it 
reduces additional structure in the time waveform caused by the high-frequency content 
of the signal. 

The  purpose of a time-domain pitch tracker is t o  isolate this low-frequency period- 
icity by locating the large-amplitude periods within vocalized speech. The pitch- 
estimation problem can therefore be s ta ted  as  a two-class classification problem, 
namely: given a portion of a waveform, decide whether a specified pa r t  of i t  corresponds 
t o  a pitch excitation or not. All the conventional tools of pattern recognition can thus 
be employed on this  problem - in particular, a neural-net classifier can be used t o  per- 
form the discrimination process. This approach also makes i t  unnecessary t o  first isolate 
the vocalized portions of the waveform, since we can train the classifier so t h a t  all non- 
vocalized pa r t s  of the waveform are  classified a s  devoid of pitch. The classifier-based 
pitch tracker can therefore be used t o  help locate sonorant portions of speech. 

To sensibly employ a neural classifier, we have t o  decide what  features are  
appropriate for this classification task (as was stressed in Section 11). From Fig. 3 it is 
clear t h a t  features based on the peak excursions of each of the periods contain most of 
the required information, so  a feature set based on the waveform peaks is at tractive.  
We therefore rephrase our classification problem in terms of the waveform peaks by 
asking whether a given peak corresponds t o  a pitch excitation, and choose features t h a t  



describe the to-be-classified peak in relation t o  i ts  neighborhood. (Since every positive 
peak is associated with a negative peak, the classification question need only be asked 
about either the  positive or the negative peaks. We chose to work with the positive 
peaks - they tend t o  show a more pronounced pitch pattern.) 

Waveform Samples as Features. One way of describing the waveform neigh- 
boring a given peak is simply t o  list the amplitudes of a number of waveform samples in 
a window surrounding the peak. The required sampling frequency can be calculated 
using the Nyquist criterion and the cut-off frequency of the low-pass filter by which the 
waveform is preprocessed. The number of samples should be large enough t o  allow the 
classifier t o  extract  the typical pitch patterns such a s  those in Fig. 3. 

This feature se t  is intuitively simple, and straightforward t o  calculate, but suffers 
from limited invariance: since classification will always be centered on a waveform 
peak, the feature set  is time-translation invariant, but  i t  is not invariant t o  changes in 
frequency, since a fixed sampling ra te  is used. This is exactly analogous t o  the situation 
described in relation to Figure 2 .  Thus, this feature set  is not automatically invariant 
t o  changes in speaker pitch, and might suffer from the problems described in Section 11. 
Since we were not able t o  decide theoretically how detrimental this limited invariance 
would be, experiments t o  test  the performance of this waveform-based feature set  were 
performed. These experiments are  described in Section 1V.A. 

Peak Descriptors as Features. With the preceding feature set ,  consisting of 
waveform samples, we have not utilized the fact t h a t  it is the surrounding peaks which 
carry most information about the identity of a given waveform peak. The  characteristic 
features of pitch peaks are  t h a t  they are  larger than neighboring peaks, and t h a t  there 
is a regular decrease in the amplitudes of peaks intermediate t o  the pitch peaks (see 
Fig. 3), and t h a t  successive peaks tend t o  be equally spaced. This pat tern  can be cap- 
tured by using features such a s  the following: the amplitude of the peak t o  be classified; 
the amplitudes of a certain number of peaks prior and subsequent t o  this peak; the time 
difference between each of these peaks, etc. If we use such peak-based features, we 
obtain significantly enhanced frequency invariance, since the effective sampling ra te  is 
now adapted t o  the dominant waveform frequency. T h a t  is, if the waveform is stretched 
in time (corresponding t o  a decrease in the frequency a t  which the utterance is spoken), 
the same set  of surrounding peaks will still be used t o  describe the neighborhood of a 
given waveform peak. The amplitudes of these peaks will remain unchanged, and their 
time differences will be increased by a constant factor. These features are therefore con- 
ceptually similar t o  those occurring in Fig. 1 and those recommended for the problem of 
Fig. 2.  The second set of experiments described in Section IV employed such peak-based 
features. 

Experimental Procedures. The experiments used utterances drawn from the 
TIMIT database,  a standardized corpus designed for acoustic phonetic research. [16,17] 
The  training set  consisted of one utterance each from 80 different speakers (approxi- 
mately 213 male), and the test  set consisted of one utterance each from a set  of 20 
different speakers (14 male, 6 female). 

The  goal of classification is t o  assign a label of "pitch" or "no pitch" to each candi- 
da te  peak in the filtered waveform. Candidate peaks were located using a straightfor- 
ward peak-detection algorithm t h a t  locates the largest waveform values between every 
pair of positive-to-negative transitions of the waveform. 



The correct label for each candidate peak - which indicates whether the peak is a 
pitch peak or not - was produced by a human expert, using the waveform a s  well as  
various derived features, including information provided by a zero crossings parameter 
and the phonetic labels provided with the TIMIT database.  Thus,  every peak located by 
the peak-picking algorithm was submitted t o  the expert for classification, in conjunction 
with these derived features. Comparison of the expert's labels t o  those provided by two 
additional labelers revealed an average agreement between 98% and 99% (see Section 
V); this level of accuracy is sufficient for the applications (such a s  speech recognition) 
t h a t  we have in mind. 

Network Design. Figure 4 illustrates the structure of the neural-net classifiers 
t h a t  were used in the experiments. The networks were trained based on s tandard back- 
propagation (BP). [6] We used layered nets, with adjacent layers completely intercon- 
nected. The  nets had either three or four layers, where the input layer is included in 
the  counting of layers. T o  minimize the B P  criterion function, we employed conjugate- 
gradient minimization. [18] This technique has a number of advantages over gradient 
descent and gradient descent with momentum (which are  customarily used with BP) - 
in particular, i t  eliminates the search for suitable training parameters such a s  the 
learning ra te ,  and minimizes the criterion function fairly rapidly. I t s  main disadvantage 
is t h a t  i t  forces us t o  use the batch mode of updating, [5] which implies t h a t  the weight 
vectors are  only updated after all training samples have been processed. These merits 
and demerits of conjugate-gradient training are discussed in more detail elsewhere. [19] 

All experiments used the following procedure: The network was trained for 50 
iterations with the conjugate gradient optimizer on the training vectors from the 80 
speakers. The trained network was then evaluated on the test  vectors from 20 speakers 
in the test  set .  This procedure was iterated until no further improvement was observed 
on the test set  following several sets  of 50 iterations. We note t h a t ,  for a set  of 20,000 
test  vectors and a classification accuracy of 98%, a change of less than  0.2% is not sta-  
tistically significant. This percentage was used as a criterion of significance throughout 
the research. 

Preliminary Experiments. Before start ing our main experimental series, we first 
determined appropriate values for two fundamental parameters, namely (i) the number 
of speakers t o  use in our training database and (ii) the number of training samples t o  
use. The optimal values of these parameters depend t o  some extent on the details of the 
experiment performed, so t h a t  our purpose with these pretests was not t o  determine 
these parameters once and for all. Rather,  we wished t o  find what regions of values are  
suitable t o  use in comparing different feature sets. Once a n  optimal feature set  is 
determined, we can then re-estimate optimal values for the number of speakers and 
training samples, and retrain our best classifier with the optimal values. 

Results of the pretests are  shown in Fig. 5. We used amplitude and time-difference 
features (for more details, see Section 1V.B) for seven peaks prior and seven peaks sub- 
sequent t o  the peak t o  be classified. We trained neural classifiers with different numbers 
of training samples derived from different numbers of speakers, and determined the 
optimal performance achievable on a test se t  obtained from a separate set  of speakers. 
In this test ,  and all experiments reported below, the test  set  consisted of utterances 
from 20 different speakers; these utterances contain approximately 19,000 peaks of 
which approximately 6,000 are pitch peaks. As can be seen in Fig. 5(a) and (b), no 
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Fig. 4: Typical three-layered feed-forward neural net, with complete interconnects 
between successive layers. 

Formant Tracking 

Formants a re  the resonant frequencies of the vocal tract.  The frequencies of the three 
lowest formants (Fl, F2, and F3) provide sufficient information t o  identify vowels, and formant 
movements a t  vowel boundaries provide important information about the identity of adjacent 
phonemes. Accurate formant tracking provides important information for speech coding, recog- 
nition and synthesis. 

Formant tracking is a most difficult problem because two formants may merge t o  form a 
single peak in the spectrum. For example, in words such as  "roar" the second and third for- 
mants of the [r] sound typically merge t o  form a single band of energy. In other vowels, the first 
and second formant merge t o  form a single spectral peak. A second problem is t ha t  a single for- 
mant may split (usually when next t o  a nasal, as  in "mom") and be realized as two distinct 
peaks. 



number of speakers number of training samples 

Fig. 5: Graph of (a) number of speakers; and (b) number of samples in training set 
plotted against error rate of a classifier. 

A. Waveform Samples 
The first set  of experiments used the waveform feature set  introduced in Section 

111. T o  derive these features, we proceeded a s  follows: all candidate peaks were located 
(as described above), and for every candidate peak, 2 m + l  samples of the low-pass 
filtered waveform, evenly spaced 0.375 msec. apa r t  and centered on the candidate peak, 
were used a s  features. These samples were normalized by dividing by the maximum 
amplitude in the low-pass filtered waveform found in the window from the beginning of 
the utterance t o  250 msec. after the candidate peak. 

T o  arrive a t  the best classifier we had t o  decide how many samples t o  use in the 
feature set ,  and we also had t o  determine a n  appropriate size for the neural net (i.e. the 
number of layers, and the number of neurons in each of the hidden layers). Two sets  of 
experiments were performed t o  settle these issues. We first used a neural net with the 
number of hidden neurons fixed a t  10, and trained with different numbers of waveform 
samples. In Fig. 6(a) we show the optimal performance at tained on the  test  set  as a 
function of the number of waveform samples. I t  can be seen t h a t  performance improves 
a s  the number of samples is increased from 11 t o  21, but thereafter performance levels 
off. Since larger neural nets might be able t o  utilize somewhat more information, we 
decided t o  use 41 samples in our next experimental set. 



number of samples number of hidden neurons 

Fig. 6: Performance graph of pitch classifier based on waveform features as a function 
of (a) the number of waveform samples; and (b) the number of hidden neurons. 

Theoretically, one hidden layer is sufficient for any classification task,  since any 
decision boundary can be approximated t o  arbitrary accuracy by a neural net  with one 
hidden layer and sufficiently many hidden neurons. (201 In practice it is often desirable 
t o  use two hidden layers, since a single hidden layer might require unrealistic accuracy 
in the calculation of neuron activities. We first experimented with one hidden layer, and 
varied the number of hidden neurons in t h a t  layer. As can be seen in Fig. 6(b), there is 
very little improvement in the performance of the neural net a s  the size of the hidden 
layer is increased beyond 5. A separate experiment with two hidden layers, containing 
15 and 10 neurons respectively, also did not improve performance beyond t h a t  of the 
neural net with 5 neurons in a single hidden layer. 

Since the number of training samples and the number of speakers were determined 
under different circumstances, we verified t h a t  the number of samples used was 
sufficient. T o  do this, we compared performance of our best classifier (41 waveform Sam- 
ples a s  input features, 10 hidden units) on the training set .  If the performance of the 
classifier on the training set  were considerably better than the performance on the test 
set ,  i t  would indicate insufficient variability in the training set .  However, we found 
t h a t  the error r a t e  on the training set was 2.3%, which is close enough t o  the perfor- 
mance on the  test  se t  (2.5%) t o  imply t h a t  a larger training se t  would not lead t o  
significant improvement in the performance of the classifier. 



We therefore conclude t h a t  the lowest error ra te  at tainable with the  neural 
classifier and the waveform feature set is 2.5%. T o  determine whether the neural net 
was really needed, we also trained linear and multivariate Gaussian classifiers with the 
same training set .  The linear classifier we used is based on the sigmoid criterion func- 
tion (see (211 ). We obtained a n  error ra te  of 3.5% with the linear classifier and 22.4% 
with the Gaussian classifier. Thus, the decision boundaries required for this task are  
sufficiently non-linear, and the d a t a  are  sufficiently non-normal, t h a t  a neural classifier 
is indeed required. 

B. Peak Descriptors 
We next investigated the performance of the neural net using the peak-based 

feature set .  Since a large variety of features based on the structure and location of the 
prior and following peaks can be envisaged, we decided t o  experiment with different 
combinations of features t o  obtain optimal performance. Amplitude, negative- 
amplitude, width, time-difference and correlation features were used, a s  shown in Figs. 7 
(b-f). 

Thus, for every peak t o  be classified (e.g. Fig. 7a), a n  appropriate combination of 
these features was calculated for each peak within a window containing n peaks prior 
t o  t h a t  peak and n peaks subsequent t o  the candidate peak (with n variable). For each 
of these 2n+l peaks, the peak-based features were calculated a s  follows: 

amplitude: the amplitude of the peak is divided by the amplitude of the largest 
peak found in a window spanning from the beginning of the utterance t o  250 ms 
after  the current candidate peak. 

time differences: the time between the peak and the peak t o  be classified, normal- 
ized by a maximum period of 20 ms. 

correlation: for this feature, the waveform is segmented; each segment spans the 
pa r t  of the waveform between two successive negative peaks. Thus, one segment is 
associated with each of the (2n+l) peaks, and the (negative) correlation of this peak 
with the candidate peak is calculated a s  

R R 

Ci = C (si(r) - s(r)12 / C (si(r12 + ~ ( r ) ~ ) ,  
r-R r--R 

where Ci is the negative correlation, is the r ' th  sample in the par t  of the 
waveform corresponding t o  segment i ,  s ( r )  is the f t h  sample in the segment associ- 
a ted  with the peak t o  be classified, and R is the maximum extent of the larger of 
these two segments (measured from the location of the peak). 

width: this equals the time elapsed between the zero-crossing before the  peak and 
the zero-crossing after the peak (normalized by 2 msec). 

negative amplitude: similar t o  the amplitude feature, except t h a t  the most nega- 
tive sample value between every pair of positive peaks is used. 



Fig. 7: Peak-based feature set. (a) Candidate peak ( ~ e a k  0);  (b) amplitude; (c) nega- 
tive amplitude; (d) width; (e) time difference; and (f) correlation. 

As with the waveform feature set ,  we had t o  determine a suitable number of peaks 
and a suitable neural-net size. For this purpose we again used only amplitude and 
time-difference features, and first varied the number of peaks used for a fixed neural-net 
size. (The net had one hidden layer, with 15 neurons.) The results, shown in Fig. 8(a), 
indicate t h a t  a s  few a s  3 peaks give virtually asymptotic performance with this 
configuration. 

However, we allowed for the possibility tha t  this number may increase somewhat 
as more features and larger nets are  used; we therefore used four prior and following 
peaks in the further experiments. Fig. 8(b) shows the results obtained when the number 
of hidden neurons was varied in a net with one hidden layer. In this case, the minimal 
number of hidden neurons with asymptotic performance is approximately 10. As in Sec- 
tion IV.A, no improvement was obtained by using a net with two hidden layers. 



number of peaks number of hidden neurons 

Fig. 8: Graph showing performance of pitch classifier based on peak features as a 
function of (a) the number of peaks; and (b) the number of hidden neurons. 

Having determined the appropriate number of peaks and hidden neurons, we next 
performed experiments t o  determine the optimal combination of peak-based features. In 
Table I the results for various such combinations a re  listed. With only positive- 
amplitude features, approximately 4.4% of all peaks were misclassified; adding informa- 
tion about the time difference between successive peaks reduced this number t o  2.9%. 
Of the features t h a t  were added t o  these two, the correlation feature was most useful 
(leading t o  an  error r a t e  of 2.4%), and a slight further improvement (error r a t e  equals 
2.3%) was obtained by adding the negative-amplitude feature t o  this set .  

When we tested on the training set  i t  was clear t h a t  the number of training Sam- 
ples was  not sufficient for this  feature se t  - whereas a n  error r a t e  of 2.3% was obtained 
on the test  set ,  the error r a t e  on the training set  was only 1.9%. We therefore increased 
the number of training samples t o  35,000, and retrained the net. Now the error r a t e  on 
the training set  was 2.0%, and the test-set error ra te  remained at 1.9%. Thus, 35,000 
training samples suffice, and 2.0%. is the lowest error ra te  we could obtain with these 
features. 

For this feature set ,  the linear classifier produced an error r a t e  of 5.0%, and the 
Gaussian classifier had a n  error r a t e  of 9.1%. The utility of the neural classifier is again 
clear. 



Table I: Performance of neural-net classifier using various 
peak-based feature sets. 

V. Analysis of errors 

Neural-net Classifier Performance 

T o  analyze the performance of our pitch detector, we have studied i ts  detailed 
performance on numerous utterances. For this purpose the low-pass filtered waveform 
was printed ou t  in conjunction with the labels generated by the classifier and the 
human expert, and the differences were examined. I t  seems t h a t  almost all the 
discrepancies between the human and automatic labels arise from one or more of the 
following four causes: (i) ambiguity in the waveform, leading t o  inconsistent human 
labeling, (ii) weak signals which are  sometimes labeled a s  containing pitch peaks by the 
tracker,  (iii) signals whose local structure obscures the overall pitch pat tern  and (iv) 
places in voiced signals where the pattern of peaks changes, leading t o  incorrect 
automatic labeling. These effects will now be described in more detail. 

Ambiguous peaks: around half of the differences between the human and 
machine labels can be at tr ibuted t o  inconsistent labeling (of both training and test 
d a t a )  because of ambiguity in the waveform. This is particularly likely t o  occur a t  the 
end of voiced sections of speech, when i t  is not clear how far the voiced section extends. 
In Fig. 9(a) we show a case where a peak was labeled a s  a pitch peak by the machine 
but  not the human ( a  short  vertical bar below a peak indicates t h a t  i t  was labeled a s  a 
pitch peak by the human expert, whereas a horizontal bar indicates t h a t  the classifier 
labeled i t  a s  such), and also a case where the opposite occurs. I t  is clear t h a t  these 
"errors" are really intrinsic t o  the transient nature of the waveform; consistent labeling 
of these peaks is probably neither possible nor necessary. 

Weak signals: in Fig. 9(b) we show a peak (which occurs within the phoneme "t") 
which is erroneously labeled a s  a pitch peak by the tracker. The amplitude of this peak 
is small, but  comparable t o  the amplitudes of pitch peaks which occur a t  the end of 
voiced utterances. Also, the pattern of surrounding peaks happens t o  be fairly periodic. 
Thus, it is understandable t h a t  mislabelings will occur in such cases. Fortunately, this 

Feature Set 

Amp1 
Ampl, time diff 

Ampl, time diff, corrln 
Ampl, time diff, width 

Ampl, time diff, neg amp1 
Ampl, time diff, corrln, neg amp1 

Error R a t e  

4.4% 
2.9% 
2.4% 
2.5% 
2.9% 
2.3% 
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Fig. 9: Examples of the types of errors committed by neural tracker, caused by (a) 
ambiguous peaks; (b) weak signals; (c) signals with confusing structure; and (d) transi- 
tions in peak patterns. 

phenomenon is fairly rare, and can almost always be eliminated by suitable post- 
processing because of the small amplitude of these peaks, their relative isolation and,  in 
this case, the high zero crossing ra te  of the unfiltered waveform. 

Signals with confusing local structure: in the first pa r t  of the waveform shown 
in Fig. 9(c) there are  four non-pitch peaks between every pitch peak; the second of these 
peaks is much larger than the other three. Towards the end of the vocal segment 
(around time frame 340) and a t  the beginning of the subsequent nasal (frames 343 and 
349) this  pat tern  causes the classifier t o  insert incorrect pitch markings. Errors in this 
class may be impossible t o  correct with post-processing since they can lead to a spuri- 
ous periodic set  of pitch labels which cannot be discerned from the correct labels. Again 
the  se t  of conditions which lead t o  this error is fortunately sufficiently rare t h a t  this is 



not a major concern - we estimate t h a t  errors due to this effect occur on the  average 
less than  once in every three seconds of speech. 

Transitions in pitch patterns: the low-pass filtered waveform sometimes shows 
small changes in the  peak structure which cause a discontinuous change in the features 
input to the classifier. Consequently, the classifier might mistakenly classify the 
waveform as though a large change in the input signal has occurred. An example of this 
occurs in the waveform shown in Fig. 9(d): four consecutive pitch peaks are  followed by 
a small non-pitch peak (and thereafter the pat tern  changes t o  one non-pitch peak 
between every pair of pitch peaks). Because of this transition, the classifier mislabels 
the last of the  initial four consecutive pitch peaks. This phenomenon is generally amen- 
able t o  correction by median filtering, since i t  leads t o  a single insertion/deletion of a 
pitch peak. 

Comparison with Human Labelers. T o  provide a basis t o  evaluate these 
results, two additional human labelers marked each pitch peak on visual displays of the 
filtered waveforms for the  20 utterances in the test set .  The average disagreement 
between these two labelers was 1.1%. The  average disagreement between each of these 
labelers and the labeler whose hand-marked labels used to evaluate the pitch tracker 
was 2.0%. 

Comparison to Another Pitch Tracker. We also compared performance of our 
best neural net pitch tracker t o  performance of a feature-based pitch tracker used 
extensively in the Carnegie Mellon speech effort in recent years. [15] The la t ter  employs 
multivariate classifiers and knowledge-based features t o  assign labels t o  candidate 
peaks. Rules are  then used t o  select the final set  of classified peaks. The statistical 
pitch tracker disagreed with the hand-labeled peaks in the test se t  4% of the time, 
compared t o  2% for the neural net pitch tracker. Although the results are  not directly 
comparable because of differences in training procedures and design philosophies in the 
two algorithms, they do  indicate t h a t  the neural net pitch tracker performs competi- 
tively. 

VI. Conclusions and Summary 
We have found t h a t  both the waveform-based and the peak-based feature sets  

lead to good discrimination of pitch peaks. The best peak-based feature se t  leads t o  a n  
error r a t e  t h a t  is significantly lower than t h a t  of the best waveform set; 2.0% us. 
2.596, a 20% difference in the error ra te .  This implies t h a t  the invariance properties of 
the former features are  fairly useful, though not vital,  for this task.  

It is  somewhat surprising t h a t  including more samples or peaks does not lead t o  
improved performance. This is probably due to the relative scarcity of training samples 
which require the additional information for successful classification. We have noticed 
t h a t  BP is not successful in learning properties of samples with low a-priori probability, 
since the  more likely cases tend t o  dominate the learning procedure. Several solutions 
(such a s  not learning on samples which are classified correctly by a sufficient margin, or 
subdividing the various classes) have been tried, but none has  improved the perfor- 
mance of our pitch tracker.  Further research concerning the relationship between BP 
training and a-priori probabilities might lead to better solutions of this  problem. 



One important  lesson t h a t  this research has emphasized is the ability of neural 
nets  t o  find simple pat terns  which describe large fractions of the da ta .  Thus, around 
96.5% of all peaks can be classified correctly by a net with no hidden neurons, and 
around 97.3% of all peaks are  classified correctly by a classifier which has  access t o  no 
more than one pitch peak t o  either side of the candidate peak. Addition of the  ext ra  
machinery for more powerful classification improves mat ters  by no more than 1% 
(although this does represent a 30% reduction in the error rate.)  

To understand this phenomenon better, we have analyzed the weights occurring in 
the neural net after  training. I t  turns out  t h a t  the pat terns  extracted by the neural net 
are not the pat terns  we expected a t  all. For instance, since an  approximately linear 
increase in the time-difference features (of the peak-based set) is a good indication of 
voicing, we expected at least some weights from the neurons representing these features 
t o  be tuned for such a pattern.  In practice, no such behavior was seen. Consider also 
the weights occurring in the net with no hidden layer when the waveform features were 
used (Fig. 10): ra ther  than  representing a "typical pitch period" - which would occur if 
the net instantiated a "matched filter" for pitch - the net has  discovered a n  asymmetry 
between the samples following a pitch peak and those prior to the pitch peak. This 
discovery enables the net t o  perform reasonably well (96.5% success) despite variations 
in pitch frequency, which would drastically degrade the performance of a matched filter. 

*Finally, we would like t o  stress the applicability of neural-net subsystems such as  the 
one we have described within larger speech-recognition systems. Because of the wide 
range of applications for neural nets, the next few years will see the commercial intro- 
duction of architectures which implement neural nets with a high degree of parallelism. 
Many feature-based neural net recognizers, performing various tasks such a s  pitch 
detection, formant estimation, segmentation, phoneme classification, etc., can be imple- 
mented in parallel on such architectures, leading t o  very efficient systems for speech 
recognition. 

-40 -20 0 20 40 
sample number 

Fig. 10: Weight set for linear classifier produced by training with waveform features. 
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