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Abstract 
We present a new algorithm for relational equi-join. The algorithm is a modification of 

merge join but  promises superior performance for medium-size relations. In many cases, it even 
compares favorably with hybrid hash join. 

1. Intrbduction 

While there seems to be an  abundance of relational join algorithms, some cases still allow 

improvements. In this technical note, we present a new algorithm which is a variant of the 

well-known merge join algorithm. In essence, it avoids merging sorted runs of the outer relation 

and merges them directly with the inner relation. This method avoids an substantial amount of 

I/O for sorting, a t  the  expense of increased 1 / 0  for the inner relation. 

In the  following section, we discuss known algorithms, in particular merge join and hybrid 

hash join, and derive their cost formulas. The new algorithm, called heap-filter merge join, is 

described in Section 3. In Section 4, we provide an  analytical performance comparison of merge 

join, two variants of heapfilter merge join, and hybrid hash join. Section 5 contains a summary 

and our conclusions from this effort. 

2. Competitive Join Algorithms 

In this section, we discuss two known join algorithms and their cost formulas. We have 

chosen merge join because heapfilter merge join is a derivative of i t ,  and hybrid hash join 

because i t  was shown t o  be a very efficient join algorithm [I]. 



Please note t h a t  in all our cost formulas, we omit the cost of creating unsorted streams of 

input tuples and any cost associated with storing the output tuples, since these costs a re  com- 

mon to and equal for all the algorithms. 

2.1. Merge Join 

Merge join has been one of the first join algorithms t o  be published and analyzed, e.g. in 

[2], and is the  algorithm of choice for large relations in almost all commercial database systems. 

The idea is quite simple and well-known: Sort both relations on the join attribute', and merge 

them advancing a scan pointer in each relation. If both relations contain duplicate join attri-  

bute values, the scan pointer in the inner relation sometimes has t o  be backed up. We leave the 

exact scan logic t o  the reader a s  exercise or t o  look i t  up in a database text. 

The major cost is for the sort step. For simplicity, we only concern ourselves with 1/0 

costs, even though we realize t h a t  the CPU cost is non-trivial. The 1/0 during sorting consists 

of sequential write operations while writing initial runs, and random read operations while read- 

ing and merging these runs. We assume t h a t  the memory size is a reasonable fraction of the 

input relation sizes; therefore we calculate the  cost for only one merge level. For sorting the 

inner relation, using the cost parameters in Table 1 the cost is 

aorti := (scg + rnd )  inner. 

If we assume t h a t  the  output of both sort operations is immediately passed t o  the  merge join 

operator, i.e., without additional I/O, the  total  1 / 0  cost for the merge join is 

inner size of inner relation in pages 
outer size of outer relation in pages 
memory memory size in pages 
Seq sequential I/O, lOms 
rnd random I/O, 30ms 

Table 1. Cost components. 

We assume without loss of generality that there is only one join attribute Our discussion is equally 
valid for multi-attribute equi-joins. 



( seq  + m d )  outer + sorti 

We will come back t o  this formula in Section 4. 

2.2. Hybrid Hash Join 

Hashing is a very fast method t o  find equality matches and a number of hash-based join 

algorithms have been proposed, e.g., 131. A memory-resident hash table is built with the first 

input, called the build input, and then probed with the other input, called the probe input. This 

algorithm is simple and fast if the build input fits into main memory. A number of strategies 

have been proposed t o  deal with the case when the build input is larger than memory [4, 5, 61. 

In a recent comparison of several algorithms, hybrid hash join was found t o  provide superior 

performance over a wide range of parameters [I] .  

Hybrid hash join is an  optimistic hash join algorithm; we call i t  optimistic since i t  starts 

out with the  assumption t h a t  the  hash table overflow will fit into memory. When hash table 

overflow will occurs, a portion of the hash buckets are  dumped from main memory to  a build 

ouerjlow file on disk. Further tuples from the build input are first checked whether they belong 

t o  a hash bucket still in memory or t o  one on disk; in the latter case, they are not kept in 

memory but  immediately added t o  the overflow file. If the remaining hash buckets overflow 

again, another portion is dumped, etc. Thus multiple overflow files can be created and added to  

while building the hash table. Notice tha t  if multiple overflows are dealt with more efficiently if 

multiple overflow files are  used. 

After the build input is exhausted, the probe input is consumed. If a probe input tuple 

matches with a hash bucket in memory, the join is performed immediately. Otherwise, it is 

added to a probe overflow file. It makes good sense t o  build multiple probe overflow files using 

the same partitioning rule used for the  build overflow files. After both inputs a re  consumed, the 

overflow files are  joined using the same algorithm. For our analysis, we assume t h a t  a sufficient 

number of overflow files has been built such tha t  no further overflow occurs, i.e., both inputs 

have been partitioned into small enough disjoint subsets. 



The 1 / 0  cost for the overflow files depends on what fraction of these files has t o  be written 

t o  disk; we use the formula 

F := (inner - memory) / inner 

Writing t o  overflow files is sequential if there is only one such file, otherwise i t  uses random 

writes. Reading overflow files always uses sequential I/O. Thus, if inner > 2 memory, the  1 / 0  

cost is 

(rnd + seq) F (inner + outer), 

otherwise, i t  is 

(2 seq) F (inner + outer) 

3. Heap-Filter Merge Join 

Merge join uses two sorted inputs and computes their (equi-) join by maintaining scan 

pointers in each, advancing them based on comparisons of join attributes and resetting them 

sometimes in the presence of duplicate join attribute values. The cost of the  actual merge join 

algorithm is relatively small compared t o  the cost of sorting the input relations. Our  effort was 

inspired by the desire t o  reduce the sorting costs. We assume in the sequel t h a t  both relations 

are  originally unsorted. 

We assume t h a t  the  outer relation is the larger of the two relations. Almost all a l p  

rithms perform very well if the  inner relation fits in main memory; therefore we will not concern 

ourselves with this case. Let us assume t h a t  the inner relation's size is a moderate multiple of 

the  memory size, say twice t o  ten times the  size of memory, and t h a t  the outer relation is quite 

large. 

The new algorithm, which we call heap-filter merge join, avoids sorting the outer relation 

completely (which is different than  completely avoiding the sort!) and instead joins the  initial 

sorted runs immediately with the  inner relation. Thus, such runs do not need to be written t o  

disk or read for merging. The  1/0 savings compared t o  merge join are  substantial - the  outer 

relation is never written t o  temporary files and therefore does not incur any 1/0 costs. 



These saving, however, do not come without a cost, namely scanning the sorted inner rela- 

tion repeatedly. If a heap is used for run generation, i.e., if all tuples from the outer relations 

have t o  travel through a sorting heap which gives this join algorithm its name, the  number of 

runs can be expected t o  be the size of the outer relation divided by twice the  memory size 171. 

The inner relation must be joined with each of these runs. Using the assumption tha t  the inner 

relation is larger than memory, the inner relation must be retrieved repeatedly from disk, once 

for each run of the outer relation. 

While this algorithm seems reminiscent of nested loops join and therefore very expensive, 

i t  does warrant  a closer examination. Let us develop this algorithm's cost formula. First, we 

need t o  sort the inner relation, a t  cost sorti developed above. Second, we need t o  scan the 

sorted inner relation once for each run from the outer relation. The number of these runs is 

equal to  

R := outer / (2 memory) 

The cost for each scan over the inner relation is 

eeq inner 

Thus, the  total  1 /0  cost for heapfilter merge join is 

R inner seq + sorti 

3.1. Alternating HeapFilter Merge Join 

I t  would be desirable t o  leverage a t  least some of the 1/0 performed during a scan over 

the inner relation for the next scan. Fortunately, this can easily be done by creating alternating 

runs from the outer relation. This means t h a t  the first run is ascending, the  next one descend- 

ing, the  third one ascending again, etc. For these runs, the sorted inner relation can be scanned 

forward, backward, forward, backward, etc., using the last page of one scan a s  the  first of the 

next, without I/O. Careful analysis will show t h a t  only one page should be used; using more 

memory pages will decrease the size of runs from the outer relation but increase the number of 

scans over the  inner. For this alternating heap-filter merge join, the  1 / 0  cost is 



( R  (inner - 1) + 1) seq + sorti 

3.2. Complex Queries 

We would like t o  point out tha t  the heapfilter merge join algorithms not only have good 

performance (as we will see in the next section), they also allow dataflow between operators in a 

complex query. For example, a s  soon as  the first tuple from the outer input has traveled 

through the heap, i t  can be joined with the inner relation and an  output tuple produced. Note 

tha t  all algorithms discussed here consume one relation completely before starting t o  consume 

the other, and therefore before producing results. 

4. Analytical Performance Comparison 

In this section, we will compare merge join, heapfilter merge join, alternating heap-filter 

I 
merge join, and hybrid hash join. As mentioned before, we assume tha t  both input relations ori- 

ginally are  not sorted. We omit the cost of reading the unsorted relations and writing the out- 

put t o  disk since these costs are equal for all algorithms. We only show the cost for the alter- 

nating variant of heapfilter merge join. The difference between heapfilter merge join and 

alternating heap-filter merge join is minimal since the crucial factor in the formula is 249 vs. 

250, respectively. 

Figure 1 shows the join cost for the four algorithms discussed here for a memory size of 

100 pages and inner relation size of 250 pages. The outer relation sizes varies from 0 t o  10,000 

pages. All four algorithms hawe linear cost functions because we assumed a single level merge 

for all sort operations. I t  is obvious tha t  merge join is inferior t o  hybrid hash join. However, 

the difference between heapfilter merge join and hybrid hash is probably surprising for most 

readers. The reason, as pointed out above, is tha t  no part  of the larger, outer relation is ever 

written to temporary disk files. 

We have t o  admit t ha t  we selected the inner-tememory ratio carefully for this graph. If 

the ratio is below two, the cost of hybrid hash join is much less because only sequential 1/0 is 

necessary to write the overflow file. If the ratio is too high, the cost of repetitive scans becomes 
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Figure 1. Join Costs depending on Outer Relation Size. 

dominating. In fact, if this ratio is above four, the number of 110s for merge join is less than 

for heapfilter merge join. Considering tha t  we estimate triple the cost of sequential 1/0 for 

random I/O, the break-even point between these two algorithms is characterized by an inner 

relations eight times the size of memory. 

To  get a more realistic view of heapfilter merge join, we fixed the outer relation and 

memory sizes and varied the inner relation size. Figure 2 shows the join costs for the four algo- 

rithms depending on the inner relation size. Merge join is most expensive over the entire range 

shown, dominated by the sort cost for the large outer relation. The break-even point between 

merge join and heapfilter merge join is around 800 pages for the inner relation, eight times the 

memory size. 

The cost curve for hybrid hash join is most interesting: This algorithm is superior if there 

is little overflow, but the cost is substantial if the large outer relation must be partitioned into 

multiple overflow files using random I/O. Only when the inner relation size is a large multiple 

of the memory size, hybrid hash join becomes superior t o  heapfilter merge join. Clearly, the 
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Figure 2. Join Cost depending on Inner Relation Size. 

asymptotic cost of hybrid hash join is superior to any of the other algorithms, but there seems 

t o  be a substantial window in which heapfilter merge join outperforms hybrid hash. 

T o  illustrate this window, we fixed the memory size and varied both inner and outer rela- 

tion sizes. In Figure 3, we shaded the area in which alternating heapfilter merge join outper- 

forms hybrid hash join. As can be seen from the figure, this area is substantial for medium-size 

relations, i.e., where the inner relation size is a small multiple of the outer relation size. 

5. Summary and Conclusions 

We have described a new equi-join algorithm based on the well-known merge join a l g e  

rithm, which we call heap-filter merge-join. For moderately large relations, i t  outperforms 

merge join by a significant margin. When compared t o  hybrid hash join, commonly regarded as  

a very efficient algorithm, heapfilter merge join is superior in some parameter ranges, namely if 

the inner relation size is a small multiple of the memory size. 

The results of this study have surprised us; we expected t o  heapfilter merge join t o  be 

inferior for all relation sizes, t o  be marginally superior is a very narrow range. While we believe 
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Figure 3. Region where Alternating Heap-Filter dominates Hybrid 

we used reasonably realistic cost functions, we intend t o  verify this study by implementing and 

comparing these algorithms in the framework of the Volcano query processing system [8]. 
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