
Heap-Filter Merge Join:
A New Algorithm for Joining Medium-Size Relations

Goetz Graeje

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 89-012

Heap-Filter Merge Join:

A New Algorithm for Joining Medium-Size Relations

Goetz Graefe

Oregon Graduate Center
Beaverton, Oregon 910061999

graefe@cse.ogc .edu

Abstract
We present a new algorithm for relational equi-join. The algorithm is a modification of

merge join but promises superior performance for medium-size relations. In many cases, it even
compares favorably with hybrid hash join.

1. Intrbduction

While there seems to be an abundance of relational join algorithms, some cases still allow

improvements. In this technical note, we present a new algorithm which is a variant of the

well-known merge join algorithm. In essence, it avoids merging sorted runs of the outer relation

and merges them directly with the inner relation. This method avoids an substantial amount of

I/O for sorting, a t the expense of increased 1 / 0 for the inner relation.

In the following section, we discuss known algorithms, in particular merge join and hybrid

hash join, and derive their cost formulas. The new algorithm, called heap-filter merge join, is

described in Section 3. In Section 4, we provide an analytical performance comparison of merge

join, two variants of heapfilter merge join, and hybrid hash join. Section 5 contains a summary

and our conclusions from this effort.

2. Competitive Join Algorithms

In this section, we discuss two known join algorithms and their cost formulas. We have

chosen merge join because heapfilter merge join is a derivative of i t , and hybrid hash join

because i t was shown t o be a very efficient join algorithm [I].

Please note t h a t in all our cost formulas, we omit the cost of creating unsorted streams of

input tuples and any cost associated with storing the output tuples, since these costs a re com-

mon to and equal for all the algorithms.

2.1. Merge Join

Merge join has been one of the first join algorithms t o be published and analyzed, e.g. in

[2], and is the algorithm of choice for large relations in almost all commercial database systems.

The idea is quite simple and well-known: Sort both relations on the join attribute', and merge

them advancing a scan pointer in each relation. If both relations contain duplicate join attri-

bute values, the scan pointer in the inner relation sometimes has t o be backed up. We leave the

exact scan logic t o the reader a s exercise or t o look i t up in a database text.

The major cost is for the sort step. For simplicity, we only concern ourselves with 1/0

costs, even though we realize t h a t the CPU cost is non-trivial. The 1/0 during sorting consists

of sequential write operations while writing initial runs, and random read operations while read-

ing and merging these runs. We assume t h a t the memory size is a reasonable fraction of the

input relation sizes; therefore we calculate the cost for only one merge level. For sorting the

inner relation, using the cost parameters in Table 1 the cost is

aorti := (scg + rnd) inner.

If we assume t h a t the output of both sort operations is immediately passed t o the merge join

operator, i.e., without additional I/O, the total 1 / 0 cost for the merge join is

inner size of inner relation in pages
outer size of outer relation in pages
memory memory size in pages
Seq sequential I/O, lOms
rnd random I/O, 30ms

Table 1. Cost components.

We assume without loss of generality that there is only one join attribute Our discussion is equally
valid for multi-attribute equi-joins.

(seq + m d) outer + sorti

We will come back t o this formula in Section 4.

2.2. Hybrid Hash Join

Hashing is a very fast method t o find equality matches and a number of hash-based join

algorithms have been proposed, e.g., 131. A memory-resident hash table is built with the first

input, called the build input, and then probed with the other input, called the probe input. This

algorithm is simple and fast if the build input fits into main memory. A number of strategies

have been proposed t o deal with the case when the build input is larger than memory [4, 5, 61.

In a recent comparison of several algorithms, hybrid hash join was found t o provide superior

performance over a wide range of parameters [I] .

Hybrid hash join is an optimistic hash join algorithm; we call i t optimistic since i t starts

out with the assumption t h a t the hash table overflow will fit into memory. When hash table

overflow will occurs, a portion of the hash buckets are dumped from main memory to a build

ouerjlow file on disk. Further tuples from the build input are first checked whether they belong

t o a hash bucket still in memory or t o one on disk; in the latter case, they are not kept in

memory but immediately added t o the overflow file. If the remaining hash buckets overflow

again, another portion is dumped, etc. Thus multiple overflow files can be created and added to

while building the hash table. Notice tha t if multiple overflows are dealt with more efficiently if

multiple overflow files are used.

After the build input is exhausted, the probe input is consumed. If a probe input tuple

matches with a hash bucket in memory, the join is performed immediately. Otherwise, it is

added to a probe overflow file. It makes good sense t o build multiple probe overflow files using

the same partitioning rule used for the build overflow files. After both inputs a re consumed, the

overflow files are joined using the same algorithm. For our analysis, we assume t h a t a sufficient

number of overflow files has been built such tha t no further overflow occurs, i.e., both inputs

have been partitioned into small enough disjoint subsets.

The 1 / 0 cost for the overflow files depends on what fraction of these files has t o be written

t o disk; we use the formula

F := (inner - memory) / inner

Writing t o overflow files is sequential if there is only one such file, otherwise i t uses random

writes. Reading overflow files always uses sequential I/O. Thus, if inner > 2 memory, the 1 / 0

cost is

(rnd + seq) F (inner + outer),

otherwise, i t is

(2 seq) F (inner + outer)

3. Heap-Filter Merge Join

Merge join uses two sorted inputs and computes their (equi-) join by maintaining scan

pointers in each, advancing them based on comparisons of join attributes and resetting them

sometimes in the presence of duplicate join attribute values. The cost of the actual merge join

algorithm is relatively small compared t o the cost of sorting the input relations. Our effort was

inspired by the desire t o reduce the sorting costs. We assume in the sequel t h a t both relations

are originally unsorted.

We assume t h a t the outer relation is the larger of the two relations. Almost all a l p

rithms perform very well if the inner relation fits in main memory; therefore we will not concern

ourselves with this case. Let us assume t h a t the inner relation's size is a moderate multiple of

the memory size, say twice t o ten times the size of memory, and t h a t the outer relation is quite

large.

The new algorithm, which we call heap-filter merge join, avoids sorting the outer relation

completely (which is different than completely avoiding the sort!) and instead joins the initial

sorted runs immediately with the inner relation. Thus, such runs do not need to be written t o

disk or read for merging. The 1/0 savings compared t o merge join are substantial - the outer

relation is never written t o temporary files and therefore does not incur any 1/0 costs.

These saving, however, do not come without a cost, namely scanning the sorted inner rela-

tion repeatedly. If a heap is used for run generation, i.e., if all tuples from the outer relations

have t o travel through a sorting heap which gives this join algorithm its name, the number of

runs can be expected t o be the size of the outer relation divided by twice the memory size 171.

The inner relation must be joined with each of these runs. Using the assumption tha t the inner

relation is larger than memory, the inner relation must be retrieved repeatedly from disk, once

for each run of the outer relation.

While this algorithm seems reminiscent of nested loops join and therefore very expensive,

i t does warrant a closer examination. Let us develop this algorithm's cost formula. First, we

need t o sort the inner relation, a t cost sorti developed above. Second, we need t o scan the

sorted inner relation once for each run from the outer relation. The number of these runs is

equal to

R := outer / (2 memory)

The cost for each scan over the inner relation is

eeq inner

Thus, the total 1 /0 cost for heapfilter merge join is

R inner seq + sorti

3.1. Alternating HeapFilter Merge Join

I t would be desirable t o leverage a t least some of the 1/0 performed during a scan over

the inner relation for the next scan. Fortunately, this can easily be done by creating alternating

runs from the outer relation. This means t h a t the first run is ascending, the next one descend-

ing, the third one ascending again, etc. For these runs, the sorted inner relation can be scanned

forward, backward, forward, backward, etc., using the last page of one scan a s the first of the

next, without I/O. Careful analysis will show t h a t only one page should be used; using more

memory pages will decrease the size of runs from the outer relation but increase the number of

scans over the inner. For this alternating heap-filter merge join, the 1 / 0 cost is

(R (inner - 1) + 1) seq + sorti

3.2. Complex Queries

We would like t o point out tha t the heapfilter merge join algorithms not only have good

performance (as we will see in the next section), they also allow dataflow between operators in a

complex query. For example, a s soon as the first tuple from the outer input has traveled

through the heap, i t can be joined with the inner relation and an output tuple produced. Note

tha t all algorithms discussed here consume one relation completely before starting t o consume

the other, and therefore before producing results.

4. Analytical Performance Comparison

In this section, we will compare merge join, heapfilter merge join, alternating heap-filter

I
merge join, and hybrid hash join. As mentioned before, we assume tha t both input relations ori-

ginally are not sorted. We omit the cost of reading the unsorted relations and writing the out-

put t o disk since these costs are equal for all algorithms. We only show the cost for the alter-

nating variant of heapfilter merge join. The difference between heapfilter merge join and

alternating heap-filter merge join is minimal since the crucial factor in the formula is 249 vs.

250, respectively.

Figure 1 shows the join cost for the four algorithms discussed here for a memory size of

100 pages and inner relation size of 250 pages. The outer relation sizes varies from 0 t o 10,000

pages. All four algorithms hawe linear cost functions because we assumed a single level merge

for all sort operations. I t is obvious tha t merge join is inferior t o hybrid hash join. However,

the difference between heapfilter merge join and hybrid hash is probably surprising for most

readers. The reason, as pointed out above, is tha t no part of the larger, outer relation is ever

written to temporary disk files.

We have t o admit t ha t we selected the inner-tememory ratio carefully for this graph. If

the ratio is below two, the cost of hybrid hash join is much less because only sequential 1/0 is

necessary to write the overflow file. If the ratio is too high, the cost of repetitive scans becomes

Memory Size 100, Inner Size 250, Outer Size &10,000

Time
in Seconds
Hybrid A 200
Merge

Alt. Heap-F x

I
5000

Outer Size

Figure 1. Join Costs depending on Outer Relation Size.

dominating. In fact, if this ratio is above four, the number of 110s for merge join is less than

for heapfilter merge join. Considering tha t we estimate triple the cost of sequential 1/0 for

random I/O, the break-even point between these two algorithms is characterized by an inner

relations eight times the size of memory.

To get a more realistic view of heapfilter merge join, we fixed the outer relation and

memory sizes and varied the inner relation size. Figure 2 shows the join costs for the four algo-

rithms depending on the inner relation size. Merge join is most expensive over the entire range

shown, dominated by the sort cost for the large outer relation. The break-even point between

merge join and heapfilter merge join is around 800 pages for the inner relation, eight times the

memory size.

The cost curve for hybrid hash join is most interesting: This algorithm is superior if there

is little overflow, but the cost is substantial if the large outer relation must be partitioned into

multiple overflow files using random I/O. Only when the inner relation size is a large multiple

of the memory size, hybrid hash join becomes superior t o heapfilter merge join. Clearly, the

Memory Size 100, Inner Size 0-800, Outer Size 10,000

Hybrid A
Merge 0

Alt. ~ e i p - ~ x I

04
I I 1 I I
0 200 400 600 800

Inner Size

Figure 2. Join Cost depending on Inner Relation Size.

asymptotic cost of hybrid hash join is superior to any of the other algorithms, but there seems

t o be a substantial window in which heapfilter merge join outperforms hybrid hash.

T o illustrate this window, we fixed the memory size and varied both inner and outer rela-

tion sizes. In Figure 3, we shaded the area in which alternating heapfilter merge join outper-

forms hybrid hash join. As can be seen from the figure, this area is substantial for medium-size

relations, i.e., where the inner relation size is a small multiple of the outer relation size.

5. Summary and Conclusions

We have described a new equi-join algorithm based on the well-known merge join a l g e

rithm, which we call heap-filter merge-join. For moderately large relations, i t outperforms

merge join by a significant margin. When compared t o hybrid hash join, commonly regarded as

a very efficient algorithm, heapfilter merge join is superior in some parameter ranges, namely if

the inner relation size is a small multiple of the memory size.

The results of this study have surprised us; we expected t o heapfilter merge join t o be

inferior for all relation sizes, t o be marginally superior is a very narrow range. While we believe

800

600

Inner Size 400

200

0

Memory Size 100, Inner Size CL800, Outer Size (F10,000

5000
Outer Size

Figure 3. Region where Alternating Heap-Filter dominates Hybrid

we used reasonably realistic cost functions, we intend t o verify this study by implementing and

comparing these algorithms in the framework of the Volcano query processing system [8].

References
1 D. DeWitt and D. Schneider, "A Performance Evaluation of Four Parallel Join Algorithms

in a Shared-Nothing Multiprocessor Environment," Proceedings of the ACM SIGMOD
Confercncc, p. 110 (May-June 1989).

2. M. Blasgen and K. Eswaran, "Storage and Access in Relational Databases," IBM Syatema
Journal 16(4)(1977).

3. K. Bratbergsengen, "Hashing Methods and Relational Algebra Operations," Proeccdings of
the Conference on Very Larpe Data Bases, pp. 323-333 (August 1984).

4. D.J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood, "Implementa-
tion Techniques for Main Memory Database Systems," Proceeding8 of the ACM SIGMOD
Conference, pp. 1-8 (June 1984).

5. LD. Shapiro, "Join Processing in Database Systems with Large Main Memories," ACM
Transactions on Database Systems l l (3) pp. 239264 (September 1986).

6 . S . Fushimi. M . Kitsuregawa. and H . Tanaka. "An Overview of The System Software of A
Parallel Relational Database Machine GRACE. " Proceeding of the Conference o n Very
Large Data Bases. pp . 209-219 (August 1986) .

7 . D . Knuth. The A r t of Computer Programming. Addison-Wesley. Reading. MA . (1973) .
8 . G . Graefe. "Volcano: An Extensible and Parallel Dataflow Query Processing System. " O r e -

gon Graduate Center . Computer Science Technical Report . (89-006)(June 1989) .

Abstract ..
1 . Introduction ...
2 . Competitive Join Algorithms ..
2.1. Merge Join ...
2.2. Hybrid Hash Join ..
3 . HeapFilter Merge Join ...
3.1. Alternating HeapFilter Merge Join ...
3.2. Complex Queries ...
4 . Analytical Performance Comparison ...

.. 5 . Summary and Conclusions

