
HAS USER MANUAL

Kevin N. Jagla

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 89-016

HAS USER MANUAL

Kevin N. Jagla
Oregon Graduate Center

Dept. of Computer Science & Engineering
Beaverton, Oregon 97006-1999

(503) 690-1151

HAS
USER MANUAL

Version 1.0
May 1,1989

User Manual for
HAS - Hierarchical Architecture Simulator

A program to simulate a proposed architecture

1, General Description of Usage

HAS is a simulator used to asses the performance of

different neural networks mapped onto the Broadcast Hierarchy

simulation system [Bai88]. It is built to operate within a neural

network development environment developed at Oregon Graduate

Center by the CAP (Cognitive Architecture Project). 1n this

environment the neural network itself is built, mapped to the

target simulation system, and debugged, using other tools. When

the network arrives at this simulator it is operational. This

simulator measures its performance on the proposed simulation

system. A good explanation of the steps used to build a neural

network is contained in the "User's Manual for ANNE" by Casey

Bahr [Bah88 1 .
To proceed the following pieces of the puzzle must be at

hand :

A. A BIF file of the network to be simulated. [Bah881

B. A user function procedure written in c.

C. A set of files used by the HAS simulator. One is an input file

containing the initial inputs to the network, another is a

configuration file called "setupfile".

The next sections will deal with how to construct these pieces.

2. BIF Network File

A BIF file contains information about the neural network

being simulated [Bah88] and also some information on the mapping

of the neural network onto the target architecture. A model of a

connection node for the simulator can be seen in Figure 1. In

this model there are four main areas. The first is the input

links, these are used to describe the connections between the

connection nodes. The second is the site areas. These allow

different functions to be initiated based on the site. For

instance one site could be for negative inputs and a site

function could be developed to reflect this. The third area is

the activation function. This can be any function desired and can

include a threshold value that determines if output will be

initiated. Last is the output link. The output link directs the

output to the proper hierarchy.

The original network is developed using the NDL design tool. For

a complete explanation of NDL see reference [Jon88al. A file that

has been developed using NDL should then be mapped to the intel

hypercube using the MAPPER [Bai881. The most important difference

between a BIF file mapped to the HAS simulator and preceding BIF

files is the transformation that occurs when the initial BIF file

is mapped to the Broadcast Hierarchy. Most importantly the number

of output links in the file drop dramatically, and most

connection nodes have only one output link, or at most four. The

four possible output links have in the cn field a number between

0-4.

Figure 1

A Connection Node

w Input Links

V/////% site

b 'Output Links

Once the BIF file is ready for use it is included in the

directory where the simulation will be running, and is input by

the cube manager process and read down into the cube processors.

3. User Code

In the final design the set of functions that will be used

in the processors will be downloaded as a separate file into a

memory area. These downloaded functions will be written by the

designers of the neural network. HAS node images e1.o need to be

linked with a C procedure called user-fx.0 to create a complete

node process. User-fx.o is the section of code developed to

emulate the connection node processing steps. To do this, use the

makefile supplied with the code.

3.1 Example of a user-fx.

An example of the necessary structure for the user function

is included in Appendix A. The example controls a feed forward

neural network with no learning step included. This would be

emulating a neural network part that had been trained on ANNE or

another network emulator, then downloaded onto the Broadcast

Hierarchy. The most important point is to notice that several

modes are used to specify which type of function is to be called.

The user-fx is called four times during the simulator's cycle.

During each pass, the function's parameter list contains the

start addresses for the appropriate CN record and its Site being

addressed and the Link being used. The values of these records

are used along with some temporary variables. The results are

evaluated and the changes stored back in the database.

3.2 Constructing the executable image

The system has its own makefile available. The user develops

a user-fx similar to the one above, then using make creates and

object file user-fx.0. Issue the command make user-fx and the

compiler will be invoked with the proper switches creating the

object image. Or Issue command make e10, and the makefile will

create the executable image and automatically compile the new

user-fx.c file.

4. HAS simulator support files

The first file that needs to be built is the file containing

the input vector. This is done by feeding standard output

messages into the system from the cube manager. The file is

constructed using an editor. For each input node a record is

created. A record appears as such: "-1 500 0". The -1 refers to

the connection node address in an input link. The 500 is the

value actually multiplied by the weight of the link. The final

field is the time stamp. Since this is the input vector it is

arbitrarily assigned a time stamp of 0.

The second file constructed is the configuration file or

"setupfile". The configuration file contains two different types

of records. The first record is designated with an "Xu. It

carries information concerning the size BIF file that is to be

read into the simulator:

4.1 Memory Allocation Record

Record Layout
Fields 1 2 3 4 5 6 7 8

0 X 4 24 48 1200 0 0

Field 1 Value shown 0

This field is the HN destination. In this case this record

will go the processor node 0.

Fiald 2 Value shown X

This is used in the node to designate this is a record for

allocating memory for the network database.

Field 3 Value shown 4

This is how many Types of Connection nodes there will be.

Each node may store only those types it needs. Currently since

there have been only four or so types of nodes, each node was

sent all of the potential types.

Field 4 Value shown 24

The number of connection nodes to be stored.

Field 5 Value shown 48

The number of sites to be stored.

Field 6 Value shown 1200

The number of links to store.

Fialdm 7 and 8

Padding in this record.

4.2 Parameter Setting Record

The second record sets parameters within the simulator. It has

the following layout:
Record Layout

Fields 1 2 3 4 5 6 7 8
0 Y 16 4000 4 0 2 2

Field 1 Value shown 0

The HN destination for this record. In this case the record

will be shipped to processor 0.

Field 2 Value shown Y

This field is used to designate that this record will be

setting parameters for the simulator.

Fie ld 3 Value shown 16

This field is used to specify how many HN's will be used in

the simulation. In this case a 16 processor hypercube will be

used for processing.

Fie ld 4 Value shown 4000

This field is used to specify how many loops the timing

procedure will do before setting a flag "no new messages".

As part of the timing mechanizm for determining if it is ready

for the next cycle, the process will loop in a read procedure

probing for messages 4000 times then go increment a variable "no

new message". The routine was originally expected to use a timing

interrupt for this portion, but no timing signal was available on

the node processor.

Fie ld 5 Value shown 4

This field is used to specify how many times the "no new

messages" flag will be set before the HN signals to the cube

manager it is ready for the next step. Along with the preceding

timing loop the limit for "no new message" is 4. Using the last

two variables the simulator will wait in a timing loop 4000

cycles long 4 times before deciding that no new message are going

to arrive during the current simulator cycle.

Fie ld 6 Value shown 0

This field set the time stamp of the node processors. Most

would be set to 0.

Fie ld 7 Value shown 2

This field sets how late a time stamp is acceptable for

processing. So if you are on step 11 and a message comes in with

step 8, it is not processed. If a message with the time stamp 9

comes in it is acceptable.

Fiold 8 Value shown 2

This field determines how early a time stamp is acceptable
for

processing. So if you are on step 11 and a message comes in with

time stamp 14, it is not processed. If a message with the time

stamp 13 comes in it is acceptable.

5. Starting the Simulator

A script file has been constructed to aid in the starting of

the simulator. The name of the file is starthas. The user needs

to have the executable image for the nodes, pnO created by the

make file. There needs to be a copy of the cmgrl executable in

the directory also. The inputfil and the setupfile need to be in

the directory with the simulator, and a copy of a BIF file to be

simulated. The user then types "starthas". The script file first

reloads a copy of the operating system into all of the nodes.

This is a mild type of initialization. It usually works. If

nothing happens, then perhaps you have forgotten to issue the

"getcube" command. If the cube is unable to initialize it will

return with a message that says "unable to initialize cube".

Other possible messages are: "node X does not respond", or

"checksum error in node 10". All of these messages mean that the

cube was unable to get off the ground. The best thing to try at

this point is a "load -R". This issues a hard reset to the

machine. Usually this will be successful. If it is not, try

again. If after a few times nothing seems to be working, your

only option is to notify the systems administration. Usually they

can re-initialize the cube and get it working again.

If the script file does work it will say "load successful" three

times as it loads in copies of the executable code into the

nodes. Then the cmgrl will be started. After this it will ask for

the name of the BIF file. You enter the name of your BIF file and

the simulator will immediately begin to load the file.

Appendix A

The following is an example of userfx.~. It uses a summation of

the inputs followed by the use of a sigmoid function to generate

the next cycle's outputs. All of the code within each mode step

may be changed by the user to suit their particular need.

/ * */
I* userfunction - This is supplied by the user and * /
/* calculates the needs of the network node. It gives the*/
/ * user a full copy of the connection node, and also a */
/* copy of the input message is available to the user in */
I* the global buffer buf. */
I* all changes to the connection node record occur here. */
..

void user-function(C,T,S,L,buf)
struct CNode *C;
struct CNtype *T;
struct sitemem *S;
struct linkmern *L;
char *buf;

extern struct step-variables step;
extern int apid;
extern int userfx-mode;
extern char cmgr-buf [2561;
extern void send-output (1 ;
extern void main0;
extern int send-cmgr0;

#if CUBE
extern int sprintf (1 ;

#endif
int mes-cnx, mes-value, mes-time;
int siteval, current-inval;
int cn-index;
double dblval;
float wt, inval;
int output-value, outgid;

I* This section is used in debug to insure the records are */

I* properly retrieved from the database. * /

if (apid == 100

/*sprintf(cmgr-buf,llApid %d Cn type 4d Cn index %d cn state
Sd \nW,apid,C->type,C->index,C->state);*/

/*send-cmgr (0) ; */
/*sprintf(cmgr-buf,llApid %d typeindex Sd Type-name %s

Initpot %d \nl1,apid,T->index,T->name,T->initpot);*/
/*send-cmgr(O);*/
/*sprintf(cmgr-buf,"Apid %d Site name Sd Site iotype %d

Site value %d \nU,apid,S->name,S->iotype,S->value);*/
/*send-cmgr (0) ; */
/*sprintf(cmgr-buf,"Apid bd Link index %d Link cnx 8d Link

weight Sf \nl',apid,L->index,L->cnx,L-)weight);*/
/*send-cmgr (0) ;*/
1

I* A variable userfx-mode is used to identify which stage of the */
/* processing is occuring. node == 1 is the stage where messages */
I* are begin received. At this point in time the inputs are begin*/
I* stored in their input links. Hode 1 continues until all of the*/
I* inputs are received, and the node has let the cube manager * /
/ * know that it is ready to proceed. Hode == 2 begins when the * /
I* cube manager signals for the beginning of next cycle. The node*/
/ * then begins by summing all of the inputs from the Links into *I
I* the S->siteval. Next Hode == 3 occurs in which the activation */
/* function is performed on the stored S->siteval. Since this */
/* network has only one input site, only one is processed. * /
/* The result of the activation function is stored in the * /
I* C->output field. When this is completed, the next step is * /
I* node == 4. In node 4 the Activation values are formatted into * /
/ * a message and the message is output to The Broadcast Hierarchy*/
/* These messages become the messages recieved in Hode == 1, and */
I* the cycle continues. */
if (userfx-mode == 1)

I
sscanf(buf,"%d 4d %d",&mes-cnx, bes-value, &mes-time);
/*sprintf(cmgr-buf,llapid %d mes-cnx %d mes-value bd mes-time %d

\nl', apid,mes~cnx,mes~value ,mes-time) ;*I
/*send-cmgr (0) ;*I

L-)inval = mes-value;
/*sprintf(cmgr-buf,llApid %d mode %d C->index Sd L->inval %d

L-)weight 8f \n",apid,userfx~mode,C-,index,L-~inval,L-~weight~;*/
/*send-cmgr(O);*/

1
else if (userfx-mode == 2)

I
/*sprintf(cmgr-buf,"apid Sd S->siteval %dl',apid,S->siteval);*/
/*send-cmgr (0) ;*I

siteval = S->siteval;
wt = L->weight/1000;
current-inval = L->inval;

/*sprintf(cmgr-buf,"Apid Sd mode %d L->index Sd siteval td wt %f
current-inval
%d",apid,userfx~mode,~->index,siteval,wt,current~inval~;*/

/*send-cngr(0) ; */
inval = (int) ((float)current_inval)*wt;
/*sprintf(cmgr-buf,"apid Zd Cnode: td inval tf

\nN,apid,C->index,inval);*/
/*send-cmgr (0) ; * /
siteval +=inval;
S->siteval = siteval;
/*sprintf (cmgr-buf , "apid, td mode %d S->siteval %d

\nW,apid,userfx-mode,S->siteval);*/
/*send-cmgr (0) ;*/

I
else if(userfx-mode == 3)

1
siteval = S->siteval;
/*sprintf(cmgr~buf,"userfx_mode 4d S->siteval Zd C->index bd

\n",userfx-mode,siteval,C->index);*/
/*send-cmgr (0) ; * /
/* Here for the 8x8 it is necessary to distinguish */
/ * between the first set of nodes and all others. * /
if (C->index < 8)

1.
C->output = siteval;

1
else

I

dblval = ((double) (siteval/lOOO.O));
dblval = (1.0/(1.0 + exp(-1.0 *dblval)));
C->output = (int) (dblval*1000);

1
/*sprintf(cmgr-buf,"Apid bd userfx-mode bd C->index %d

C->output %d \n",apid,userfx-rnode,C->index,C->output);*/
/*send-cmgr(O);*/

t
else if(userfx-mode == 4)

if(C->output != 0)

sprintf(buf,"Sd Zd %dW,C->index,C->output,step.time-stamp);
send-output (L->cnx) ;
/*sprintf (cmgr-buf , "Apid %d L->cnx %d outbuf Ss

\nN,apid,L->cnx,L->neight,buf);*/
/*send-cmgr (0) ;*I

I
1

else

/*sprintf(cmgr-buf,"Apid t d incorrect userfx-mode %d
\nM,apid,userfx-mode);*/

/*send-cmgr(O);*/
1

References

iBah881 Bahr , C . , "ANNE User Manual, " Tech. Report CS/E-88-029,
Dept. of Computer Science/Engineering, Oregon Graduate Center,
Beaverton, OR, 1988.

CBai881 Bailey, J., "A VLSI Interconnect Structure for Neural
Networks," Ph.D. Dissertation, Dept. of Computer Science &
Engineering, OGC, 1988. In preparation.

[Joh88a] Johnson, H. A., "NDL User's Manual," CSE Technical
Report, Oregon Graduate Center, Department of Computer Science/
Engineering, Beaverton, OR, July 1988. In preperation.

