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1. Introduction 

SARA (Single Assignment Register Assembler) is an extended form of CAL (Cray 

Assembly Language) meant for obtaining near optimal performance from 

relatively short (100's of instruction) Cray X-MP basic block code sequences. The 

SARA Optimizing Preprocessor (informally referred to also as "SARA") converts 

SARA source files into a form that is acceptable as input to standard Cray Research 

Inc. CAL Assemblers. The SARA Optimizing Preprocessor can greatly speed up the 

job of CAL coding by automating the difficult, tedious, and error-prone tasks of 

assigning registers and ordering instruction sequences to take maximum 

advantage of the Cray X-MP architecture. 

Several years ago, while working as a consultant for one of the first commercial 

customers for the Cray X-MP, I was asked to attempt to "speed up" their computing 

throughput by coding lower precision (16 bit) scalar and vector "VFUNCTION" 

versions of x**y and l/sqrt(x) in CAL, for specified ranges of values of x and y. I 

accomplished this task manually (achieving speedups ranging from 1 . 7 ~  to 2 . 3 ~  

for scalar and vector versions over the standard Fortran library functions), but 

found the job of scheduling instruction sequences for optimal performance on the 

X-MP to be very difficult. The complex timing and conflict characteristics for 

Cray-style architectures makes it difficult to remember them all, and people are 

not very good at producing optimum schedules for instruction streams of this type. 

The job of scheduling instructions and assigning registers is handled fairly well 



by the latest generation of Fortran compilers for Crays, but when coding in Cray 

Assembly Language, programmers still can not benefit from this capability. 

SARA was created to help with this problem. 

3. Language Svntax 

3.1 SARA ONIOFF Blocks 

SARA source files consist of alternating "SARA ON" and "SARA OFF" sections. CAL 

statements in SARA OFF sections are copied unchanged. However, as discussed 

later, SARA-assigned register values can be referenced symbolically in 

subsequent SARA OFF code sections. The currently implemented versions of SARA 

are basic block schedulers only. Branch instructions must occur only in SARA OFF 

code sections. Within SARA ON blocks, CAL macros or pseudo-ops for storage 

definition are also diagnosed as unrecognized. 

3.2 Pseudoregisters and Single Assignment 

Since SARA is an extended form of CAL, SARA input source lines generally follow 

standard CAL formats, with the addition of "* : " control lines and a notation for 

"pseudoregisters". In SARA, data dependencies between machine instructions are 

specified explicitly via the use of pseudoregister identifiers. For example, the 

SARA form of the CAL scalar floating point add instruction 

S1 S2+FS3 

could be represented in SARA as 

S.X S.Y+FS.Z 

A pseudoregister is like a variable that can be assigned a value only once (hence 

"single assignment"), but whose value (once assigned) can be referenced as many 

times as necessary. Each SARA instruction therefore typically puts its result into a 

new pseudoregister. SARA allows a CAL programmer to pretend that the machine 

has an infinite supply of scalar (s), vector (v), and address (A) registers available. 

Obviously, many different pseudoregisters will be used in a typical basic block. 

One result of the operation of the SARA Optimizing Preprocessor is a mapping 

from pseudoregister identifiers (x ,  Y, and z in the example above) to actual 

registers. Pseudoregister identifiers can consist of any combination of upper case 

letters and numeric digits. Identifiers beginning with a letter can be up to 8 



characters long, identifiers beginning with a digit can be up to seven characters 

long, and are prefixed automatically with a " % "  character.* l 

Register assignments in the SARA output file are specified via CAL "SET" 

statements. For the example above, if SARA assigned the registers s I, s 2, and s 3 to 

pseudoregisters s . x,  s . Y and s . z, the SARA output would look like: 

*: SARA OFF 
X SET 0'1 
Y SET 0' 2 
Z SET 0'3 

SARA programmers can either let the SARA preprocessor assign specific registers, 

or  they can "pre-assign" specific register numbers. In the example above, 

suppose that s 2  and s 3 had been assigned values corresponding to Y and z outside 

this SARA ON block. Then the example could be modified to look like: 

to force the correct register assignments. 

SARA assigns registers automatically only for the s, v, and A registers. All other 

register designators (such as T , B, s B, SM, and s T) must have a number pre-assigned 

by the programmer ( ~ 7  0. X Y  z for example). A tag on a T register corresponds to a T 

register load "lifetime". For most registers the pseudoregister to actual register 

binding need not be explicitly expressed. The exceptions to this rule are the 

special registers A 0, s 0, V L  and VM. These registers must always be specified as 

'sreg.pregt where sreg is AO, S0,VL OrVM, for example: SO.100,AO.FINAL,VL.O0, and 

VM . LEFT. 

* There are a few other minor restrictions on pseudoregister identifiers. They can 
not duplicate a symbol (such as a location label) in the same program. SARA does 
not check for this. If the identifier corresponds to one of the reserved Cray 
register names: 

AO-7, BOO-B77, SO-7, TOO-T77, VO-V7, SBO-7, SM00-37, STO-7, CA, CE, CI, CL, 
MC, RT, SM, VL, VM, Or XA 

SARA will prefix the name with a " % "  character. 



3.3 Input Declarations 

All pseudoregister operand identifiers used in a SARA ON block must be defined 

previously in the file. This can occur in one of three ways: 

1) defined as a result in a previous instruction in the same block 

2) declared explicitIy as a "* : IN" input value 

3) declared automatically as a * : I N  value passed in from a previous SARA ON 

block. 

In case I), a previously unencountered pseudoregister is automatically defined by 

its appearance on the left (result) side of a CAL operation instruction. In case 2), a 

* : I N  declaration is used to specify pseudoregister identifiers for previously 

computed register values that exist at the point that a SARA ON block is entered. In 

the example above, to specify that Y and z have been previously computed, the 

SARA input would look like: 

Note that this floating point add statement could also have been written: 

S . X  S.Y+FS.Z 

since specification of pre-assigned register numbers, once defined in either an 

assignment statement or a declaration statement, is optional. 

The third possibility will be discussed below as part of the explanation of the 

" * : P A S  S" and "* : SAVE"  SARA directives. Note that it is an error for a pseudoregister 

identifier to make its first appearance in a SARA source file on the right 

(operand) side of a CAL instruction, unless it has been declared via a * : I N 

s ta tement .  

3.4 Unites 

Although SARA uses the single-assignment paradigm as a basis for its syntax, the 

"unite" operation allows specifying that two different pseudoregisters be assigned 

to the same actual register. The unite operation has the form: 

r.preg1-preg2 <right-hand-side> 

where :  

lr' is S, V, or A 

is the unite operator, 



' p reg  1' is a "new" pseudoregister identifier, and 

'p reg2 '  is a previously defined pseudoregister. 

The unite operator forces the SARA Optimizing Preprocessor to assign the same 

actual register to different pseudoregisters. A unite is necessary, for example, 

when multiple execution paths exist. The single assignment rule prohibits one 

pseudoregister from being used for both result value names. However, subsequent 

statements need to be able to refer to the result of either computation. Uniting the 

two pseudoregister identifiers allows either name to be used to refer to the result. 

This mechanism must also be used whenever the effect of an "update in place" is 

desired, such as within the body of a loop. The simplest example where a unite is 

required is the scalar shift operation, which must be specified using a unite, 

because of a restriction of the Cray instruction set, as in: 

S.19 0'40060 
S.FXR-19 S.19<0160 

3.5 Output Declarations 

In order to schedule instructions within SARA ON blocks, the SARA optimizer needs 

to know which instructions compute results that are "outputs" of the SARA block. 

The "* : ou T " declaration is used to accomplish this. The * : ou T statement must be 

placed immediately before the statement that computes the result that is to be an 

output of the block. If the output is a memory store operation (which does not 

have a register as a result), the convention is to specify "MEM" as the output. For 

example: 

*:OUT V.XYZ 
V.XYZ S.ONE!V.24&VM.23 

*:OUT MEM 
,AO. 35,l v. 39 

*:OUT A1.00 
A1.00 A2.ANMlX+A.KK 

Every instruction in a SARA ON block must either be used to compute a register 

value that is an output of the block, or a value that is stored as a M E M  output. 

Otherwise, the SARA Optimizing Preprocessor report that one or more instructions 

are "unconnected". 

3.6 PAS s and SAVE Declarations 

A programmer who desires to pass a pseudoregister identifierlregister number 

association across a SARA OFF section, can substitute "* : P A  S S" for "* : OUT ". An 

appropriate * : I N  statement will be automatically generated when the next * : S A R A  



ON statement is encountered. The "* : SAVE " declaration is like the * : OUT declaration 

except that the former is used when to continue a previously P A  s s e d 

pseudoregister definition to the next SARA ON block. The SAVE declaration can 

occur anywhere in the block and can be continued across more than one block. 

An example of a (non-useful) sequence of SARA blocks illustrating use of * :OUT, 
* :PASS, and * : SAVE follows: 
-------------- -------------- 
INPUT TO SARA: 
-------------- -------------- 

* : SARA ON 
*:IN A1.OO 
*:IN A2.01 
*:OUT A3.02 

~3.02 A1.00+A2.01 
*:PASS A.03 

A. 03 A. 02 
*:PASS A4.XYZ 

A4 .XYZ A. 02*A. 00 
*:SARA OFF 

*:SARA ON 
*:IN A5.ST 

A0 .XX A.03+A.XYZ 
* : OUT MEM 

, A0 . XX A. 03 
*:SAVE A.XYZ 
*:SARA OFF 

*: SARA ON 
A0 . YY A.XYZ 

* :OUT MEM 
, A0 . YY A.XYZ 

*:SARA OFF 

----------- ----------- 
SARA OUTPUT 
----------- ----------- 

*:SARA ON 
* pOOa: SARA source: 
* 
* 1. *:IN A1.OO 



* 2. *:IN A2.01 
* 3. *:OUT A3.02 
* 4. A3.02 A1.00+A2.01 
* 5. *:PASS A.03 
* 6. A.  03 A. 02 
* 7. *:PASS A4.XYZ 
* 8. A4. XYZ A. 02*A. 00 
*: SARA OFF 
% 0 0 SET 0' 1 
%01 SET 0' 2 
%02 SET 0' 3 
XYZ SET 0' 4 
%03 SET 0' 1 
* p26a: SARA CAL - CRAY-XMP 1.6bf5 FBCON=l 
x SN FRT FIT PLAIN CAL 

A.%02 A.%OO+A.%Ol 4. 2 6 A3 A1+A2 
A.XYZ A.%02*A.%00 8. 4 4 A4 A3*A1 
A.%03 A.%02 6. 2 2 A1 A3 

* : SARA ON 
* pOOa: SARA source: 
* 

** PASSED IN ** 
** PASSED IN ** 

* 1. *:IN A1.%03 
* 2. *:IN A4.XYZ 
* 3. *:IN A5.ST 
* 4. A0 . XX 
* 5.*:OUTMEM 
* 6. , A0 . XX 
* 7. *:SAVE A.XYZ 
* : SARA OFF 
%03 SET 0' 1 
XYZ SET 0' 4 
XX SET 0' 0 
ST SET 0' 5 
* p26a: SARA CAL - CRAY-XMP 1.6bf5 FBCON=l 
* SN FRT FIT PLAIN CAL 

A.XX A.%03+A.XYZ 4. 2 2 A0 Al+A4 
,A.XX A.%03 6. -1 0 ,A0 A1 

** SAVED IN **  
A-XYZ 

*: SARA ON 
* pOOa: SARA source: 
* 
* I. *:IN A4.XYZ 
* 2. AO.YY 
* 3.*:OUTMEM 
* 4. , A0 . YY 
*:SARA OFF 
XYZ SET 0'4 
YY SET 0' 0 
* p26a: SARA CAL - CRAY-XMP 1.6bf5 FBCON=l 
* SN FRT FIT PLAIN CAL 

A.YY A.XYZ 2. 2 2 A0 A4 



In SARA output, such as that shown above, the SARA ON blocks are listed twice-- 

first with comment asterisks (reflecting the original input order), then, following 

the "S E T s", re-ordered and with diagnostic information appended. Any original 

comment fields are not shown in the re-ordered output CAL code. 

Following the transformed and re-ordered CAL instruction are a series of comment 

fields: 

- -  The " S N "  column gives the SARA input statement number (before 

r eo rde r ing ) .  

- - " F R T "  stands for First Result Time. This corresponds to the number of clocks 

after issue that a computational result is available for scalar instructions, or 

the time the first in a stream of vector result values should be available. 

- - " F I T "  stands for Forward Issue Time. An estimate of the latest time that the 

corresponding instruction could issue (in clocks before the end, or T=O) and 

still have all computational work completed. (This estimate is not always 

exact, since SARA views time as running backwards!) While some 

instructions will issue earlier than SARA predicts, the largest (first) F I T 

gives a good estimate of the running time of overall sequences from 

beginning to end since instructions on the critical path will issue at the 

intervals predicted. 

- -  The column headed "PLAIN C A L "  shows the equivalent simple CAL 

instruction with assigned register numbers filled in. 

4.0 Outline of the SARA O~timization Stratem 

Scheduling and register assignment by the SARA Optimizing Preprocessor are 

done in reverse time order (backward in time), in the following steps: 

1. Determine the "latest forward issue times" for all instruction trees based 

only on "binary conflicts". (It is possible to determine for any two Cray X- 

MP instructions the closest they could issue based on the resources they 

r equ i r e ) .  

2. Working backwards in time, "bubble" instructions (and their predecessors) 

in order to account for: 

--function unit reservations/conflicts 

--operand register reservations/conflicts 



--issue time conflicts 

--register assignment conflicts 

The last item is treated as co-equal to the other conflicts, and corresponds to 

exhausting available register "bandwidth". 

3. Choose an instruction to schedule based on a combination of global and local 

criteria. "Local" means that instructions are chosen as candidates for 

scheduling from among the set of all mutually conflicting instructions 

whose issue could tie up a resource at a particular issue time slot. The global 

criteria is that we bubble the instructions which would have the least worst 

effect on the resulting set of changes to earliest forward issue times. The 

remaining instruction is "frozen" (scheduled). 

SARA does not guarantee that the resulting schedules are optimal (this is an NP- 

complete problem [ I ]  ) but has performed very well against good hand-coded CAL, 

and does better than most production compilers. For other studies of various 

aspects of the instruction scheduling problem for Cray architectures, see [2], [3], 

and [4]. 

5.1 Scalar Code Example 

SARA preprocessing for scalar code sequences tends to result in an instruction 

stream that is "issue-time limited". This means that a new instruction will issue at 

(almost) every available clock tick. Some Cray instructions take more than one 

clock to issue. An example, taken from an experiment to see whether SARA could 

be used to automatically improve the output of a compiler, is shown below: 

* :SARA ON 
* pOOa: SARA source: 
* 
* 1. S.WO 
* 2. A. JO 
* 3. S.Wl-WO 
* 4. S .M07 
* 5. S.KO 
* 6 . * : O U T M E M  
* 7 .  K, 
* 8. A.AK 
* 9. s.co 
* 10. S.MO1 
* 11. s.c1 
* 12. A. AK2 
* 13. *:OUT MEM 
* 1 4 .  CrA.AK2 



* 15. S.J1 J r  

* 16. S.MMO1 <01 
* 17. S.J2 S.MMOl+S.Jl 
* 18. *:OUT MEM AFTER: S.J1 
* 19. Jr S.J2 
* 20. S.C57 57 
* 21. *:OUT SO.TEST 
* 22. SO.TEST S.C57-S.J2 
*:SARA OFF 
WO SET 0' 3 
JO SET 0' 3 
J1 SET 0' 1 
W1 SET 0' 3 
M0 7 SET 0' 5 
KO SET 0'2 
AK SET 0'2 
C 0 SET 0' 4 
MMO 1 SET 0'7 
C57 SET 0' 6 
52 SET 0' 5 
M0 1 SET 0' 3 
TEST SET 0' 0 
C1 SET 0' 1 
AK2 SET 0' 1 
* p26a: SARA CAL - CRAY-XMP 1.6bf5 FBCON=l 
* 
* 

s.wo W, 
A.JO J, 
S. J1 J, 
S.W1 S.WO>A.JO 
S.MO7 <07 
S.KO S.Wl&S.M07 
A.AK S.KO 
S.CO C,A.AK 
S.MMO1 <01 
S.C57 57 
K, S.KO 
S.J2 S.MMOl+S. J1 
S.MO1 <01 
S.TEST S.C57-S.J2 
J, S.J2 
S.C1 S.MOl+S.CO 
A.AK2 S.KO 
CIA.AK2 S.C1 

In this case, the speedup (measured with Cray 

over the original compiler code was 2 . 3 ~ .  

SN FRT FIT PLAIN CAL 

1. 14 3 9 53 W, 
2. 14 37 A3 J, 
15. 14 2 4 S1 J, 
3. 3 23 S3 S3>A3 
4. 1 2 1 S5 <07 
5. 1 2 0 S2 S3&S5 
8. 1 19 A2S2 
9. 14 17 S4 C,A2 
16. 1 14 S7 <01 
20. 1 12 S6 57 
7. -1 10 K, S2 
17. 3 9 S5 S7+S1 
10. 1 7 S3 <01 
22. 3 6 SO S6-S5 
19. -1 4 J, 55 
11. 3 3 S1 S3+S4 
12. 1 2 A1 S2 
14. -1 0 C,A1 S1 

X-MP performance monitor [ 5 ] )  

5.2 Vector Code Example 

Optimum instruction schedules for the Cray X-MP typically depend upon vector 

length. Unless directed otherwise (through a * : V L  directive), SARA schedules for 

VL 32. (The directive was put in for this example, even though unnecessary, to 



allow direct comparison of statement numbers with the next example after this 

one) .  

* SARA version 1.6bf5 CRAY-XMP. FBCON=l 
* Mandelbrot Set Test Case 

IDENT BEN01 T 
BENOIT PROGRAM 

A2 32 
VL A2 

*:SARA ON 
* pOOa: SARA source: 
* 
* 1. *:VL 3 2 
* 2. *:IN A7.00 CURRENT VECTOR START ADDRESS FOR Z 
* 3. *:IN A6.01 11 11 11 11 " LAMBDA 

* 4. *:IN AS. 02 II 11 11 11 " ITER 

* 5. *:IN T70.04 - BOXSIZE PARAMETER 
* 
* 6. AO.11 A7.00 BASE FOR Z 
* 7. A2.12 2 STRIDE FOR COMPLEX 
* 8. V.XP ,AO.llIA2.12 XP IS REAL(Z) 
* 9. A0.13 A7.00+1 
* lo. V. YP ,A0.13,A2.12 YP IS AIMAG (2) 
* 11. A0.15 A6.01 
* 12. V.RL ,A0.15,A2.12 RLISREAL(LAMBDA1 
* 13. A0.17 A6.01+1 
* 14. V.RM ,A0.17,A2.12 RMISAIMAG(LAMBDA) 
* 15. V.20 V.RLkRV.XP 
* 16. V.21 V. RM*RV. YP 
* 17. V.SUBX1 V.20-FV.21 
* 18. V. 22 V.RLkRV.YP 
* 19. V.23 V.RM*RV.XP 
* 20. V.SUBX2 V.22-t-FV.23 
* 21. S.30 1. 
* 22. V. 31 S.30-FV.XP 
* 23. V. 32 V. 31*RV. SUBX1 
* 24. V. 33 V.YP*RV.SUBX2 
* 25. V.XN V.32+FV.33 
* 26. V. 34 V.31*RV.SUBX2 
* 27. V. 35 V.YP*RV.SUBXl 
* 28. V. YN V.34-FV.35 
* 29. A0.40 A5.02 BASE FOR ITER 
* 30. V-ITERI ,A0.40,1 
* 31. S.41 1 
* 32. V.ITERN S.41+V.ITERI 
* 33. V. 42 -FV . XP 
* 34. VM. 43 V.XP,M 
* 35. V. 44 V.42!V.XP&VM.43 
* 36. S. 45 T70.04 
* 37. V. 46 S.45+FV.44 
* 38. VM. 47 V.46,M 
* 39. S. 48 VM. 47 
* 40. V. 52 -FV. YP 
* 41. VM. 53 V.YP,M 
* 42. V. 54 V.52!V.YP&VM.53 
* 43. V. 56 S.45+FV.54 



* 44. VM. 57 V.56,M 
* 45. S.58 VM. 57 
* 46. 5.59 S.48tiS.58 
* 47. VM. 60 S.59 
* 48. V.XF V.XN!V.XP&VM.60 
* 49. V. YF V.YN!V.YP&VM.GO 
* 50. V. 70 V.ITERN!V.ITERI&VM.60 
* 51. *:OUT MEM 
* 52. ,A0.40,1 V. 70 
* 53. A0.71 A7.00 
* 54. *:OUT MEM 
* 55. ,A0.71,A2.12 V.XF 
* 56. A0.72 A7.00+1 
* 57. *:OUT MEM 
* 58. ,A0.72,A2.12 V.YF 
*:SARA OFF 
%oo SET 0' 7 
311 SET 0' 0 
312 SET 0' 2 

%34 SET 0' 3 
YN SET 0' 1 
YF SET 0' 0 
%72 SET 0' 0 
* p26a: SARA CAL - CRAY-XMP 1.6bf5 FBCON=l 
* 

A.%11 A.%OO 
A.%12 2 
V.XP ,A. %ll,A. $12 
VM V.XP,M 
V.%42 -FV.XP 
V.%44 V.%42!V.XP&VM 
A.%13 A.%00+1 
V.YP ,A.%13,A.%12 
VM V.YP,M 
V.%52 -FV.YP 
V.%54 V.%52!V.YP&VM 
S.%45 T.%04 
V.%46 S.%45+FV.%44 
VM V.%46,M 
A.%40 A.%02 
V. ITERI ,A. %40,1 
V.%56 S.%45+FV.%54 
S.%48 VM 
VM V. %56,M 
S.%41 1 
V.ITERN S.%41+V.ITERI 
S.%58 VM 
S.%59 S.%48&S.%58 
VM S.%59 
V.%70 V.ITERN!V.ITERI&VM 
,A. %40,1 V. %70 
A.%15 A.301 

SN FRT FIT PLAIN CAL 



For comparison, shown below is the result schedule for the same test case but 

with v L set to 2 : 

* p26a: SARA CAL - CRAY-XMP 1.6bf5 FBCON=l 
* SN FRT F I T  PLAIN CAL 



It is interesting to note that the Mandelbrot set example can be speeded up further 

by a d d i n g  read statements. Many vector code sequences are limited (as far as 

SARA optimization is concerned) by the number of vector registers available. 

Since there are two vectors of values that are read once at the beginning of the 

Mandelbrot example (v . V Y  and v . v x )  and then used several times, adding re-reads 

of these values can have the effect of freeing up vector registers for intermediate 

results. The speedup in this case from adding the re-reads is about 1 . 0 8 ~  for vector 

length 3 2 .  This is an example of the kind of experimental code tuning that is 

possible with the aid of SARA, but which would be very tedious otherwise. 

5.3 The SARA Coloring Game 

One way of checking whether the (latest possible) issue times predicted by SARA 

make sense is to find the conflict (or other timing rule) that explains why each 

instruction is scheduled at the clock specified. For example, if two vector 

instructions both use the floating point adder, they must be scheduled at least V L +  4 

apart. If the instruction sequence shows them further apart, then there must be 

another explanation for their separation, such as a vector register reservation 

conflict. The SARA coloring game consists of using a variety of colored pens to 

code the various explanations, and diagramming these effects. The resulting 

patterns can form not only interesting artistic designs, but can also give a global 

idea of what resources are in short supply at which points in the execution 



sequence. Such analysis frequently leads to ideas for speeding up the sequence 

still further. 

6.1 Limitations 

SARA currently does not recognize data dependences through memory. Hence, 

results may be incorrect if a value is stored and then read from memory within 

the same SARA block, since SARA may schedule the read before the write! 

Another limitation of the current version of SARA (September 1989) is the 

problem of "runaways". Runaways occur when SARA attempts to evaluate too 

many overlapping expression trees in parallel. When a runaway occurs, a gap 

arises in the predicted instruction schedule that is larger than the largest possible 

interval between instructions for a Cray X-MP. SARA recognizes runaways, but 

currently does not have the ability to fix the problem automatically because SARA 

uses a "persistent" scheduling strategy. The SARA programmer must manually 

force the completion time of one or more trees backward in time from the end 

(T=O) by assigning a minimum separation in clocks as a M I  NSEP parameter on the 

appropriate * : OUT declarations. 

6.2 Results 

SARA is written in Fortran for portability. It runs on a wide variety of UNIX and 

non-UNIX machines, including Crays under CTSS and COS, as well as DEC VAX 

computers under VMS. The speed at which scheduling and register assignment 

can be accomplished is somewhat problem dependent, but ranges from 20-30 

statements a second on a SUN 3/80 to hundreds of statements a second on a Cray X- 

MP. The performance of the SARA Optimizing Preprocessor could be greatly 

improved without affecting its functionality. 

6.3 Future Work 

Although SARA was originally designed to function as a CAL programmer's 

assistant, we are also investigating the possibility of using the technology to 

improve the performance of existing production Cray higher level language 

compilers. In its original mode, in addition to its use for squeezing that last bit of 

performance out of computationally intensive kernels, it could also serve as a 



library maintenance and portability aid for Cray-like architectures, since 

optimum schedules for mathematical library routines are often invalidated by 

different instruction timings in newer machines, even if the instruction set is 

upward-compatible.  

We plan to enhance SARA in the near future to include the ability to accept raw 

CAL as an input language (by generating appropriate internal pseudoregister 

identifiers), to add the ability to breakup runaways automatically, and to support 

other Cray X-MP-like architectures. SARA currently supports both the X-MP and 

the Scientific Computer Systems SCS-40. We are currently adding support for the 

Cray Y-MP and may also add support for the Cray 2. 
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