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Abstract: We present the object model of TED#, a d a t a  model devised 
using concepts from both object-oriented systems and deductive reasoning 
systems. Each of of following topics is briefly discussed in this paper: 1) basic 
concepts of the model, 2) its complex object space, 3) i ts  extension with 
abstract  objects t o  the object space, 4) i ts  d a t a  manipulation facilities, 5) its 
notion of rules and deductive reasoning on complex objects, 6) i ts  approach t o  
object representation of types and commands, and 7) i ts  idea of dynamic con- 
struction of database programs. 

Keywords: Object-oriented d a t a  models, Complex objects, Complex object 
logics, Rules, Deductive reasoning. 

1. Introduction and Motivation 

The need for complex objects in database applications has  prompted new interests 
in searching for logic systems capable of automated deductions with complex objects. 
Two typical approaches are a)  transformational, in which a complex object logic system 
is first mapped into a first-order logic system, or i ts  weaker form the horn clause logic, 
and the method of the lat ter  is then applied, and b) aziomatic, in which axioms and 
inference rules are  established for a system of logic for complex objects and a proof 
theory within the logic system is then used [Beeri87, ChenW89, Kifer89, Kuper84, 
Maier86al. This paper presents many interesting features of TEDM, a d a t a  model with 
a foundation in both the object-oriented paradigm and the logic programming para- 
digm. We take the axiomatic approach for formal investigation, while the transforma- 
tional approach is employed as the primary implementation strategy. 

The primary motivation behind our research is due t o  the growing need of apply- 
ing database technologies t o  areas other than traditional business-type d a t a  processing. 
Many researchers proposed many d a t a  models during the past decade IAbiteboul87, 
Abrie174, Chen76, Codd79, Copeland84, Ecklund87, Hammer81, Katz83, Maier86, 
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Mylopoulos80, Shipman81, Stonebraker87, Stonebraker88, Su83, Vbase861. T h a t  clearly 
indicates large amount of effort spent in this area  and i ts  significance. But there is still 
no single d a t a  model t h a t  stands ou t  and receives wide acceptance. 

Nevertheless, there has been consensus on what i t  is tha t  the conventional d a t a  
models are  lacking, and what i t  is t h a t  the new applications are  seeking IMaier86, 
Maier87, Maier88, Sidle80, Rosenberg801. In the mean time, different methodologies for 
at tacking the problem have also been investigated, some of which have been shown t o  
be very promising, especially in the area of integrating the logic paradigm and the 
object paradigm [Emden76, Gallaire84, Goldberg83, Kowalski78, Lloyd84, Maier84a, 
Stroustrup86]. The  approach of TEDM, in particular, is based on prominent features 
from object-oriented systems and logic programming systems. 

The organization of the paper is as  follows. Basic concepts of TEDM are listed in 
the next section, and are elaborated in subsequent sections. In particular, Section 3 
defines a n  object space and the notion of well-formed-object-terms. Section 4 extends 
the object space with the notion of abstract objects. Section 5 explains the model's d a t a  
manipulation facilities and their core concept - pattern-matching. Section 6 describes 
rules and deductive aspects of T m  Section 7 discusses two more extensions t o  the 
d a t a  model with the use of abstract  objects. Section 8 illustrates the idea of dynamic 
program construction using an example. Finally, a summary and some concluding 
remarks are  given in Section 9. 

2. TEDM Overview 

TEDM stands for Tektronix f igineering LAta f i d e l ,  a d a t a  model originally 
described in [Maier85]. More recent work related t o  this d a t a  model can be found in 
jAnderson86, Anderson89, Ohkawa87, Zhu86, Zhu881. We should point out  t h a t  TEDM 
is a Structural object-oriented d a t a  model. Therefore, we are not concerned with issues 
related t o  methods, such as  method inheritance, method combination and method over- 
loading. However, i t  is not difficult t o  extend TEDM into a fully behavioral object- 
oriented model, and we have done some work along this direction IZhu89). 

The goal of TmM is t o  provide flexible modeling tools and expressive d a t a  
languages t o  engineering database applications. The model bears features whose origins 
can be distinctively traced to  two important research areas  of software systems and 
programming methodologies, namely, object-oriented systems and logic programming 
languages. In particular, the following adaptations are  made in TEDM. From the 
object-oriented world, i t  acquires a notion of object identities, complex objects, a 
mechanism for object classification and a structure for property inheritance. From the 
logic programming world, i t  absorbs the concepts of unification (actually a special form 
called pattern-matching) and answer substitution, and a strategy for deductive query 
processing. TEDM also has a handful of innovative features t h a t  distinguishes it from 
other similar approaches, including the notion of abstract objects, object representation 
of types and commands, and support for dynamic command construction. 

Much good work is being done in the area of object logic t o  provide a formal foun- 
dation for object-oriented systems, such as Ait-Kaci and Nasr's LOGIN [Ait-Kaci861, 
Bancilhon and Khoshafian's Complex Object Calculus [Bancilhon86], Chen and Warren's 
GLogic (Chen891 and Kifer and Lausen's F-Logic [Kifer89JJ t o  just list a few. Our 
treatment of TEDM model has many similarities with the above-mentioned work, for 
example, our object language is a n  extension of the *-terms of LOGIN, and the idea of 
using skolem functions as object identities is originated in [Chen89] and IKifer89, 89a]. 
Nevertheless, the TEDM model has many distinctive features t h a t  the others do not 



have, such as the notion of abstract  objects, the clear separation between intention and 
extension of database schemas, and the way i ts  type system is formulated. 

2.1. Object and Object Identities 
Just  like any other object-oriented systems, the basic modeling construct in TEDM 

is a n  object. Each object has an  object identity and may also have internal structure, a s  
a result of composing "smaller" objects. An object without internal structure is said to  
be a simple object; otherwise, it is a complex object. Notice t h a t  complex objects are  
always constructed from "smaller" objects by a finite number of compositions, s tart ing 
from simple objects. 

Intuitively, simple objects are  the formal counterparts of well understood primitive 
abstract  notions, such a s  integers and character strings. Complex objects model real 
world entities t h a t  inherently have internal structure and properties. For example, 
associated with a person there are properties such a s  the name of the person and his or 
her da te  of birth, etc. For the most par t ,  the distinction between simple objects and 
complex objects is a conceptual one. Thus, simple objects are  structureless, atomic and 
therefore immutable. On the other hand, complex objects are composite, decomposable 
and modifiable. Nevertheless, there is still an  intimate connection between the 
simple/complex distinction and the objects' physical representations in hardware. Typi- 
cally, simple objects are directly representable by the underlying hardware. The physi- 
cal representation of complex objects, on the other hand, must rely on certain types of 
encoding. We point out  t h a t  the distinction t h a t  we make between simple objects and 
complex objects is based on objects' conceptual immutability, which happens t o  coincide 
with the direct representability of the underlying hardware. An alternative way t o  
draw the line is t o  view simple objects as those t h a t  don't have any associated proper- 
ties, for example, a car about which we have nothing t o  say. However, there is nothing 
t o  prevent simple objects of this kind from evolving into complex ones. We prefer the 
former taxonomy because whether an  object is simple or complex, in our view, is a 
s ta t ic  property. 

The notion of object identity has its value both in conceptual modeling and in phy- 
sical implementation. Each object has a unique object identity, which distinguishes the 
object itself from any other objects. The identity of an  object is independent of the 
structure of the object. Thus it is possible to  discern two objects t h a t  would otherwise 
be identical, which is useful, say, in a typical design of an  electronic device, where 
several IC chips with identical physical and electrical parameters may be needed. In 
this case, any two chips can be interchanged without affecting the behavior the circuit, 
none of them is distinguishable from the other by i ts  own properties. But when the 
design is stored by a database, i t  is necessary t o  distinguish the ICs for purposes of 
simulation and manufacturing. From the viewpoint of physical representation, the fact 
t h a t  object identities are not disk pointers but rather logical surrogate values makes i t  
easy to reorganize databases, where large numbers of objects need be moved around. 

2.2. Types and Object Conformity 
Types are  the classification mechanism in TEDM. Each type has two aspects, an  

intentional aspect and an extemional aspect. The extension of a type is a collection of 
objects of the type, and the intention of a type is a structure prescription t h a t  it 
expects i ts  members t o  satisfy. The system actually does not explicitly maintain exten- 
sions of types. There may be multiple collections of objects t o  materialize a type exten- 
sion. 



The  interaction between types and objects is modeled using two relations (in the 
mathematical sense). First, a conformsTo relation s ta tes  t h a t  if a n  object possesses the 
structure t h a t  a type expects i ts  elements t o  have, then the object conforms t o  the 
type. The  condition for conformity only bounds the object structure from below. I t  is 
prescriptive: a n  object can have more structure than the type specifies, and still con- 
forms to the type. 

The  second relation, hasType, captures the declarational imperative nature of 
TEDh4's type system. I t  s ta tes  a stronger condition t h a t  not only a n  object conforms t o  
a type, but also the fact t h a t  the object is ezplicitly declared t o  be a member of the 
type's extension. Thus  the following relationship (with o being an object, and A being a 
ty  pel: 

o hasType A o conjormsTo A 

Notice t h a t  the conjormsTo relation is a structural characterization of objects. 
For example, an  object with an "x" field and a "y" field conjormsTo the type Point 
(defined shortly), because i t  has all the fields required by the type definition. On  the 
other hand, the object may not necessarily have the type Point: I t  may well be an  
object constructed a s  a solution t o  a system of linear equations with variables "x" and 
"y", namely, i t  is of type LinearEquationSolution2 t h a t  happens t o  have the same 
structure a s  the type Point. These choices in conceptual modeling is quite arbitrary. 
The system has no way to control nor should the system have control over these alter- 
natives. The relation hasType is intended t o  give this high level control t o  the user: I t  
is up t o  the user to decide on the intended conceptual constraints. On the other hand, 
the system is equipped with the conformsTo relation t o  guard against obvious incon- 
sistencies, for example, assigning types t o  objects t h a t  are incompatible with the type 
definitions. 

Notice also t h a t  a n  object can conform to and have multiple types. Types are 
defined using type definitions. A few examples are: 

1) Point = (x -+ Integer, y -+ Integer) 
2) Rectangle = (origin -+ Point, corner + Point) 
3) RectSelect = (rect -+ Rectangle, cursor -+ Point) 

Thus  we define a type, Point, t o  model twedimensional points, by an "x" coordi- 
nate  and a "y" coordinate, as in 1). The type definition in 2), Rectangle, captures a 
rectangle by i ts  upper-left "origin" point and its lower-right "corner" point. Similarly, 
3) defines a RectSelect type as having a rectangle and a point, presumably modeling a 
rectangular region on a screen with a mouse point. 

TEDMtype system has benefited from known work on types in database program- 
ming languages. In particular, the conjormsTo relation of this section and the special- 
izes relation of the next section are  very similar to the type system of Galileo 
(Albano851 and of Amber [Cardelli86]. However, the decision to have separate relations 
for capturing the structural compatibility and the declarational aspects is a novel 
feature and the separation is useful for conceptual modeling and is practical for imple- 
mentation. 

2.3. Type Hierarchy and Inheritance 
Types are  also involved in relations among themselves. A type hierarchy (actually 

a semilattice) is used t o  bind all the types together. Based on relative positions of types 
in this type hierarchy, supertypes and subtypes are recognized. 



This type hierarchy affects both intentional as well as extensional aspects of types. 
The  former is manifested in the form of inheritance: subtypes inherits structures from 
their supertypes. (TEDM is a structural model, namely, objects do not have associated 
behaviors. Hence, the term inheritance only refers t o  structural inheritance.) The lat ter  
takes the form of subset inclusion, the collection of objects having a certain type is 
included by the collection of objects for i ts  supertypes. 

Two relations are defined t o  formally back up this type hierarchy. First, a special- 
izes relation holds from type A t o  type B, A specializes B, if the intentional structure of 
B is a included by tha t  of A. O r  equivalently, A specializes B, if for any object o, 

o conformsTo A o conjormsTo B. 

Similarly, a stronger relation, issubtypeof, forms the formal counterpart of the type 
hierarchy, type A is situated below type B in the type hierarchy if A isSubtypeOj B. 
T h a t  is, A issubtypeof B, if for any object o, 

o hasType A o hasType B. 
This relation, again, must be explicitly declared. We also require 

A issubtypeof B A specializes B 

Subtypes are also defined using type definitions. A type definition of the form 

Point3D = Point:(z -+ Integer) 

declares a new type, PointBD, as  a subtype of the Point type. The same effect is also 
achieved by the following two definitions. 

1) Point3D = (x -+ Integer, y + Integer, z + Integer) 
2) Point3D < Point 

Notice tha t ,  with the first type definition by itself, the type Point3D only specializes the 
type Point, but would not be a subtype. 

2.4. Commands, Rules and Query Processing 

Like traditional database management systems, TEDM provides d a t a  languages 
for accessing and manipulating database objects. In TEDM, commands are the primary 
means by which databases are accessed and manipulated. A command consists of a 
pattern, the body of the command, and an action, the head of the command, a s  is d e p  
icted using the following general form. 

Action[Y1, ..., Ym] <= Pattern[X1, ..., Xn] 

The  pattern denotes a matching function with an  abstraction on XI, ..., Xn. The action 
denotes an  imperative operation with an abstraction on Y1, ..., Ym. For now, we 
assume 

{ Yll 1 ym 1 c { xl, -.., xn ) 
The semantics of such a command is realized by a two-phase procedure: 

(1) applying a matching function using the pattern on the database, t o  yield a set  of 
bindings for XI, ..., Xn, and 

(2) applying the imperative operation on the bound objects, passed t o  i t  via Y1, ..., 
Ym. Notice tha t  the parameters, Y1, ..., Ym, obtain their values from the active 
set of bindings for XI, ..., Xn. 



Rules almost have the same form as tha t  of commands, as shown below. 

Essentially, rules assert logical consequences based on known structures, or introduce 
virtual d a t a  based on stored data .  

Query processing in the presence of rules becomes a deductive process. Pattern- 
matching has t o  take into consideration of virtual da ta .  In other words, a database 
should now be viewed as  a closure of physical d a t a  plus virtual d a t a  derivable by data- 
base rules, or logical consequences. Alternatively, database rules can be viewed as  dor- 
mant  database commands with transient results. They execute on demand, produce 
temporary da ta ,  and go back t o  sleep afterwards. 

3. Object Terms and An Object Space 
This section defines object terms and an intended object space of interpretation. 

We construct the object space in such a way tha t  it admits encoded complex objects. 
We use an extended first-order language t o  describe objects. We s ta r t  off by introduc- 
ing the notion of well-jormed-object-terms (WFOTs). WFOT is constructed using sym- 
bols from the following denumerable sets: 

1) constant symbols DS 
2) placeholder symbols P S  
3) type symbols T S  
4) field label symbols LS 

In addition, we also use, among others, the following auxiliary symbols: 

1) the colon ":" t o  indicate type symbols 
2) the caret " ^ "  t o  indicate placeholder symbols 
3) the question mark "?" t o  indicate object t ag  symbols (in next section) 

The set WFOT is defined as  follows. 

1) if ds  E DS, ts E TS, then ts:ds E WFOT 
2) if ps E PS, ts E TS, Isi E LS and fi E WFOT, 

then ts:psA(lsl --+ fl, ..., Isn -, fn) E WFOT 
3) if ts E T S  and f E WFOT, then ts:f E WFOT 

We construct an object space, OS, in which members of WFOT are interpreted. 
The following semantic entities are assumed: 

1) a set of constants D 
2) a set  of object identities I 
3) a set of binary relations R, one ri (E R) C I X (I U D) for each field label li 
4) a set of subsets T, one ti (E T) C (I U D) for each type symbol tsi 

The  construction of OS proceeds as follows: 

1) if d E D, then d E OS 
2) if id f I, osi E OS, and (id, osi) E ri, then (id, { id rl osl, ..., id rn osn )) E OS 

The cryptic form of (id, { id r l  osl, ..., id rn  osn )) is an encoding for a complex 
object with identity id tha t  is related t o  "smaller" objects osi via ri. An element of OS 
is said t o  be an  object. The type of an object is determined by the type of i ts  identities. 
(Constants are a special kind of identities.) In implementation, i t  is acceptable t o  
equate the set of constant symbols, DS, with the set of constants themselves, D. The 
object identities for complex objects are uniquely generated by the system. The users 



do not know of their existence, nor do they have access t o  such identities. 

The interpretation of a term in WFOT, s ,  into an object in OS, p I[ s 1 ,  under a 
given mapping m from P S  t o  I, is as follows. 

1) p I s 1 = dl  if s E ts:ds, ds  E DS and d E t for ts 
(meaning t is a set denoted by symbol ts), 
2) p s ] = (id, { id r l  osl, ..., id rn osn )), if s ts:psA(lsl --t fl, ..., Isn --+ fn), 

p I fi 1 = osi, and id E t for ts 
3 ) p a  s ] = p [  f ] , i f s ~ t s : f a n d p [  f ] f t f o r t s  

Item 2) above assumes tha t  the placeholder symbol ps is mapped (bound) t o  the object 
identity id: m(ps) = id. 

Not all objects in OS are true objects. Two possible sources of problems come 
from 1) type violation, where an object may be in a type t o  which i t  does not conform; 
and 2) unique identity violation, where two different objects are assigned the same 
object id. We constrain OS not t o  have these violations, but do not give formal seman- 
tics here. 

A valuation function (with a range of { t ,  f ), say) on WFOT can be established 
from the notion of true objects, in conjunction with the interpretation, p ,  in a straight- 
forward way. Neither is it difficult to  define well-formed-object-formulas (WFOFs), and 
obtain soundness and completeness results relating the provability and validity of 
WFOFs similar t o  those in first-order logic. We will touch this issue again later in the 
context of query processing. 

From a system viewpoint, terms in WFOT are typically used as  object construc- 
tors, each generating a new instance in the database, or object space. Some examples 
are: 

2) Rectangle:RA(origin + Point:PIA(x + Integer:O, y + Integer:O), 
corner + Point:P2*(x + Integer:5, y -+ Integers))  

3) RectSe1ect:S *(rect -* Rec tang1e:R ^(origin -+ 

Point:PIA(x 4 Integer:O, y 4 Integer:O), 
corner -+ 

Point:P2^(x + Integer:6, y -+ Integer:6)), 
cursor -+ Point:PA(x -+ Integer:3, y -+ Integer:3)) 

Figure l (a)  provides an illustration for the object created by the last example. 
Figure l(b) shows tha t  subobject sharing can be described by duplicating placeholders: 

4) RectSe1ect:S ^(rect -+ Rectangle:RA(origin -* 
Point:PIA(x + Integer:O, y + Integer:O), 

corner -+ 

Point:P2*(x -+ Integer:6, y + Integer:6)), 
cursor -* Point:PIA(x + Integer:O, y -* 1nteger:O)) 



..._____..____..___ ..................................................................................................................................................................... ......... 

I- 

(b) (a) 
Figure 1. Shared and  Nonshared Objects .__..........._..._ .............................................................................................................................................................................. 

4. An Extended Object Space 
An extended object space, EOS, is formed by adding abstract objects, a class of 

objects with special interpretation requirements. The construction of EOS is similar t o  
tha t  of 0s. We postulate a new set of semantic entities, A, the set of abstract object 
identities. In addition, the meaning of the set T is changed accordingly to  take ele- 
ments of A into consideration, namely, ti  (E T )  C (I U A U D) for each type symbol tsi. 

1) if d E D, then d E EOS 
2) if a € A ,  then a E E O S  
3) if id E (I U A), osi E EOS, and (id, osi) E ri, 

then (id, { id r l  osl, ..., id rn  osn )) E EOS 

Assuming an additional symbol set, SS, the set of object tag symbols, the following 
modified version of WFOT, EWFOT, makes abstract objects accessible a t  the syntax 
level. 

1) if ss E SS, then ss? E EWFOT 
2) if ds E DS, ts E TS, then ts:ds E EWFOT 
3) if ps E PS, ts E TS, Isi E LS and fi E EWFOT, 

then ts:psA(lsl 4 fl, ..., Isn 4 fo) E EWFOT 
4) if ps E PS, ss E SS, ts  E TS, Isi E LS and fi E EWFOT, 

then ts:ss?psA(lsl 4 fl, ..., Is,, + fn) E EWFOT 
5) if t s  E T S  and f E EWFOT, then ts:f E EWFOT 

The extension t o  the interpretation function, p,  is t o  make sure tha t  object tags 
get mapped t o  abstract objects. We may assume tha t  there is a 1-1 correspondence 
(denoted using L) from the set of object tags, SS, t o  the set of abstract  objects, A. The 
extended version of p, ji, is the following: 

1) ji [ s 1 = a, if s G ss?, a E A and ~ ( s s )  = a 
2) ji [ s ] = d,  if s ts:ds, ds E DS and d E t for ts 
3) f i  I[ s ] = (id, { id r l  osl, ..., id rn osn )), if s r ts:psA(lsl 4 fl, ..., 1s" -+ fn), 
p I fi ] = osi, and id E t for t s  



4) fi [ s ] = (a, { a rl osl, ..., a rn oso )), if s = ts:ss?psA(lsl --+ fl,  ..., ls,, --, fn), 
fi [ fi ] = osi, ~ ( s s )  = a and a E t for ts 

5 ) f i I  s ] = f i [  f ] , i f s = t s : f a n d f i I  f ] E t f o r t s  

Several examples of object terms in EWFOT are  provided below. 

1) Point:P?QA(x -* 0) 
2) Point:P?QA(y + Y?) 
3) Rectangle:R?SA(origin -+ Point:P?QA(x 0,  y -, Y?) 

Item 3) describes an  abstract  "Rectangle" object, which consists of a n  abstract  
"Point" object, a constant "0" and another abstract  object. Intuitively, we use this 
abstract  object t o  represent a pattern t h a t  can match "Rectangle" objects whose "ori- 
gin" point has an  x-coordinate of "0". Moreover, the pattern would also return the 
"origin" point object and the y-coordinate of the "origin" point of the matched object. 

Some remarks on the motivation of extending the object space with abstract  
objects before leaving this section. Our ultimate goal is t o  support dynamic database 
program construction, which is predicated on being able t o  store program pieces a s  
da ta ,  thus manipulable using ordinary commands. As alluded t o  earlier, a database 
command is a juxtaposition of two pieces of code, a pattern routine and a n  action rou- 
tine. Either the pattern or  the action may contain "free" variable symbols. These 
"free" variables are  not really free in the sense they cannot just be bound t o  any 
objects. Rather,  the pattern code dictates how these variables can be bound and the 
action code dictates how the binding objects can be used. In other words, these vari- 
ables carry with them a binding environment and a use environment, which more or less 
resemble internal structures in objects. Introducing abstract  objects and associating 
them with "free" variables in patterns and actions make i t  possible t o  have pattern 
objects and action objects, and hence command objects even program objects. The com- 
ments above shall be substantiated throughout the rest of the paper. 

Lomet [Lomet731 discussed similar ideas about program constructions in an  opera- 
tor  driven model for program execution. 

5. Data Manipulation Facilities 
The command language provided by TEDM for d a t a  manipulation purposes is 

described in this section. In particular, the central idea of the command language, 
pattern-matching, is explained. 

5.1. Patterns and Pattern-matching 
The syntax for patterns is a slight variation of t h a t  of WFOT, and they are con- 

structed using the same sets  of symbols. The set  of well-formed-object-patterns, WFOP, 
is obtained a s  follows. First, we need t o  define an  auxiliary notion, well-jormed-object- 
literal, or WFOL. 

1) if ds  E DS, then ds E WFOL 
2) if Isi E LS and fi f WFOL, then (Isl -+ f,, ..., Isn --c fn)E WFOL 

Now the set  W F O P  is: 

1) if ps E P S  and ts E TS, then ts:ps E WFOP 
2) if ps E PS, ts E TS, Isi E LS and fi E WFOP or fi E WFOL, 

then ts:psA(lsl -+ fl, ..., Isn + fn) E WFOP 
3) if ts E T S  and f f WFOP, then ts:f E WFOP 



Notice tha t  the only difference between this construction and the one for WFOT lies in 
the treatment on the roles of constants and placeholders. An element of WFOT must 
bottom-out a t  some constants. On the contrary, an element of WFOP must not be 
fully instantiated. TEDMsupports the notion of negative patterns but we do not cover 
them in this paper. 

These are some example instances of WFOP: 

1) Point:QA(x 4 0) 
2) Point:QA(y 4 1nteger:Y) 
3) Rectangle:SA(origin -+ Point:Qa(x -+ 0, y -+ 1nteger:Y) 

In TEDM, pattern-matching, referring t o  matching a formula in WFOP against an 
object in EOS, is an important concept. We distinguish two kinds of pattern-matching, 
t h a t  on concrete (non-abstract) objects and tha t  on abstract objects, and discuss each 
of them in turn. 

The meaning of concrete-match is stated a s  follows, given a formula f E WFOP 
and an  object o f 0s. 

1) For f -= ts:ps, f matches o if 

a )  o = d E D and d E t for ts, or 
b) o (id, { id rl osl, ..., id rn osn )) E OS, and id E t for ts 

2) For f E ts:psA(Isl + fll ..., Isn -C fn), f matches o if 

a )  o E (id, { id rl osl, ..., id rn a n ,  ..., id rm osm )), 
b) id E t for ts, and 
c) for each i, fi matches osi 

3) For f r ts:g, f matches o if 

a) g matches o, and 
b) o E t for ts 

This definition needs extension in one case. In 2.c) above, an  fi can come from 
WFOL instead of WFOP, and the definition does not cover t h a t  case. We remedy the 
flaw by a supplementary notion of 1-match, which is stated as follows (assuming 1 E 
WFOL and o E 0 s ) .  

4) For 1 r ds, 1 I-matches o if o I d f D and ds represents d 

5) For 1 I (Isl -+ 11, ..., Isn -+ l,), 1 1-matches o if 

a). o = (id, { id r, osl, ..., id rn osn, ..., id r,,, am I), and 
b). for each i, li I-matches osi 

Notice the difference between a match and an  I-match. A match is a structure 
preserving mapping from a pattern formula into a database object, and retains a bind- 
ing of placeholders t o  objects as  i ts  result. On the other hand, object literals do not 
contain placeholders, so an 1-match is only a correspondence without bindings. 

We also need a notion of the result of pattern-matching. The result of a match is 
a binding (or assignment) of placeholders t o  database objects. We use the following 



form t o  denote such a binding: 

[ P1:ol, ..., Pn:on ] 

meaning placeholder Pi is bound t o  object oi. Then, in case l.a), the placeholder ps is 
bound t o  d l  and the result of the match is [ps:d]. Similarly, in case l.b), ps is bound t o  
id, and the result is [ps:id]. In case 2), the placeholder ps is also bound t o  id. The result 
in this case [ps:id] + B1 + ... + Bn, where Bi is the result of matching fi on osi, and 

Each successful match of a formula on a database object produces a binding: 

[ P1:ol, ..., Pn:on ] 

Since the formula can match more than one object in the database, the general form 
for the result of pattern-matching is a set of bindings: 

While in concrete-match the targets of match are restricted t o  concrete objects, 
abstract-match removes this restriction. Before discussing abstract-match, An extension 
t o  WFOP is in order, t o  obtain eztended-well-formed-object-patterns, EWFOPs. 

1) if ps E PS and ts  E TS, then ts:ps E EWFOP 
2) if ps E P S  and ts  E TS, then ts:ps? E EWFOP 
3) if ps E PS, t s  E TS, Isi E LS and fi E EWFOP or  fi E WFOL, 

then ts:ps ̂ (Isl -+ fll ..., Isn -+ fn) E EWFOP 
4) if ps E PS, ts E TS, Isi E LS and fi E EWFOP or fi E WFOL, 

then ts:ps?(lsl + fl, ..., Isn + fn) E EWFOP 
5) if ts E T S  and f E EWFOP, then ts:f E EWFOP 

The definition simply extends WFOP with formulas with placeholders tha t  must be 
bound t o  abstract  objects in a successful match, which is indicated using a question 
mark "?". The meaning of abstract-match, then, is t o  match a formula f E EWFOP 
against an object o E EOS. The precise definition of this match operation parallels 
tha t  of concrete-match. The difference is tha t  placeholders with question marks must 
be bound t o  abstract objects in pattern-matching. 

If we put together the two sets, WFOT and WFOP, we obtain essentially what are 
usually called well-jormed-formulas (WFFs), or more appropriately in our case, well- 
formed-object-jormulas (WFOF). Thus, we say a pattern is satisfiable if, after assign- 
ment of object identities t o  placeholders in the pattern,  it gets interpreted into a true 
object or an initial portion IZhu88) of a true object, by some interpretation function ji. 
This true object is said t o  be a model of the pattern. From this point of view, matching 
a pattern with a database is effectively a model discovery process for the pattern, 
which happens t o  keep a record of assignments of the placeholders leading t o  models. 

Abstract-match is a vehicle for accessing and manipulating abstract  objects with 
commands. Such an  example will be provided later in the paper. 



5.2. Actions in Commands 
The second component of a command, the head of the command, denotes an  

operation, with an  abstraction on free variables occurring in the head. Thus,  we had 
the following general abstract  form (Section 2): 

Action [Y ..., Y,], 
which is effectively an  n-nary operator, except we t rea t  i t  as an operator over a set of 
n-tuples. The operator operates on sets  and is highly polymorphic. I t  accepts the 
results of pattern-matching, a set  of bindings, each providing an operand for each of the 
m variables. 

The next a few subsections elaborate this abstract  operator. 

5.2.1. Object Evolution: I (Changing Type Membership) 
One aspect of object evolution is t h a t  objects may gain or  lose type memberships 

during their lifetime. The syntax form for denoting such changes is the simplest among 
all the actions. 

The following syntax scheme expresses an  membershipadding operation: 

ts:ps, t s  E T S  and ps E P S  

Notice, ps is a placeholder whose instantiation relies on bindings of pattern-matching. 
Thus, for command 

Ernp1oyee:P <= Person:P *(name + "John"), 

suppose t h a t  the result of pattern-matching is 

[P:p,I 
[P:p21 
[P:p,I 

where pl, pa and p3 are objects of type "Person", then the effect of this command is 
t h a t  p,, p2 and p3 each acquire a membership in the type "Employee" (and i ts  super- 

types). 
The syntax scheme for objects t o  be removed from a type is the following: 

ts-ps, t s  E T S  and ps E P S  

5.2.2. Object Evolution: I1 (Changing Field Structure) 
Objects can also evolve along another dimension - they can acquire new fields, 

lose old fields, a s  well a s  update existing fields. 

The following is the syntax scheme for adding new fields t o  an  object, given tha t  
ps E PS, Isi E LS and fi f DS or fi f PS. 

The  effect of this operation is tha t  if the object does not have field "lsi, then field 
"lsin is added; otherwise the existing field is updated. TEDM also supports multaple- 
occurrence field. We need separate syntax for field-add operation and for field-update 
operation in the case of multiple-occurrence field, since there is a difference between 
changing an existing field and adding a new occurrence of the field. 



The following syntax is used t o  denote objects losing fields: 

ps-(lSl --, fl, ...) lsn -, f") 

One way t o  achieve update operation is t o  use a delete operation followed by an 
add operation. Notice tha t  objects do not lose their object identifiers when their fields 
are deleted, which is an important precondition tha t  makes this alternative for update 
feasible. However, we do need t o  make sure tha t  in the simulated update (delete fol- 
lowed by add), pattern matching provides the same set of objects t o  operate on, which 
can be guaranteed by either enclosing the delete operation and the add operation in a 
compound command (see below), or extending the command language t o  allow multiple 
heads. 

5.2.3. Object Creation 
The general syntax scheme for object creation is the following: 

ts*(lsl -+ fl, ..., IS" -+ fn) 

where t s  E TS, 1s E LS, and fi is either a constant, a placeholder or  another object crea- 
tion scheme. 

The asterisk "*" in this form dictates a new object identity be generated for each 
of the bindings from pattern-matching. 

5.2.4. Compound Commands 
One last kind of command action is a compound command invocation. T o  describe 

it,  we introduce an  additional symbol set, CS, a set of command symbols. The general 
syntax form, then, is the following: 

cs[ps,, ..., psk], cs E CS and ps E P S  

The operation performed by this command invocation is determined by the definition of 
the compound command, which will not be discussed in this paper. An example com- 
pound command definition is: 

HireEmployee[argl -+ Person:P, arg2 -+ Dept:D] 

{ 

P(dept -+ Dept:D) <= HireEmployee(arg1 -+ P ,  arg2 4 D); 
Emp1oyee:P <= HireEmployee(arg1 -+ P); 

1 

6. Rules and Deductions 
Rules are a special kind of well-formed-object-formula. They are made up of an 

antecedent and a consequent. The abstract  form of a rule is (Section 2): 

VirtualData[Y1, ..., Ym] t P a t t e r n p l ,  ..., X,,], 

where the par t  t o  the right of t is the antecedent (an element of WFOP), and the part  
t o  the left of t is the consequent. The syntax schemes for the consequent are similar 
t o  those for actions in commands - not only is the former a subset of the lat ter ,  but 
also they have closely related semantics. The intuitive connection between the two is 
tha t  rules can be viewed as deferred updates. 



T h e  deductive component is built into the query processor for pa t te rn  matching, 
which is similar t o  but  more powerful t han  a Prolog interpreter,  since i t  needs t o  deal  
with rules t h a t  cannot  be t ranslated into Horn clauses. In fac t ,  we built the deduction 
component on top  of C-Prolog in a n  earlier T m M  prototype implementation. T h e  
interaction between the deductive component and  the imperative component is res- 
tricted in the following sense: Within a command, the  imperative action cannot  s t a r t  
until t he  deduction is completed. 

6.1. Virtual Memberehips 
T h e  following syntax  scheme is used t o  express a vir tual  type membership for 

objects. 

ts:ps, ts f TS and ps E PS, 

which is the  same syntax  as t h a t  for objects acquiring type memberships. This  pa r t  of 
the rule s t a t e s  t h a t ,  given the result of a pattern-matching, the  objects bound t o  the 
placeholder ps a re  t o  be vir tual  members of the type denoted by ts. This  is not a 
stored fact ,  but is always derivable as long as the  relevant rule exists. 

These vir tual  d a t a  asserted by rules affect the  pat tern-matching phase during a 
command execution. They are  not substant iated with physical d a t a  nevertheless. 
Hence, the  meaning of rules of this kind is just like t h a t  of membershipadd operations 
in commands, except the former are  executed only on demand,  and the consequence of 
the execution has  a rather  short  lifetime: af ter  the  command execution, no physical 
d a t a  a re  altered with respect t o  the virtual membership. 

6.2. Virtual Fields 
Similarly, rules for virtual fields a re  like operations for objects acquiring new fields. 

Their  consequent uses the  following syntax scheme: 

ps  (Is1 + fl, ..., IS" -, fn), 

where ps  E PS,  Isi E LS and fi E DS or  fi E PS. 

T h e  remarks made in the  previous subsection also hold here. We also point ou t  
t h a t  since the  rules presented so far  only reference existing da tabase  objects, they are  
safe in the sense they will not introduce infinite loops in to  the  deduction engine, even 
when recursions a re  involved. Alternatively, we can consider the closure of the da t a -  
base under the rules. I t  is clear t h a t  with the  rules discussed, the  closure of a finite 
da tabase  is always finite. 

6.3. Virtual Objects 
T h e  general syntax  form for rules asserting virtual objects resembles t h a t  for 

object creation, as shown below. 

ts*(lsl + fl, ..., lsn -* fn)  

where ts E TS,  1s E LS, and  fi is either a constant ,  a placeholder o r  another  virtual 
object scheme. Similarly, the  asterisk "*" in this  form indicates a temporary object 
identity is t o  be used for each vir tual  object derived. 

There  a re  two  technical difficulties related t o  rules for vir tual  objects. First ,  they 
might lead t o  unsafe computations, since vir tual  objects amounts  t o  temporary object 
creation. Therefore, a recursive rule might potentially lead t o  creation of infinitely 



many temporary objects. T o  avoid this problem, we restrict our rules for virtual 
objects t o  nonrecursive ones. Note tha t  other types of rules can be recursive, so we can 
do, for example, transitive closures. 

A second problem is t h a t  virtual object identities may violate the assumption t h a t  
each object is uniquely identifiable by its identity, since virtual objects use temporary 
identities. In particular, given the same set  of bindings from pattern-matching, 
different invocation of the same rule should conceptually derive the same set  of virtual 
objects. But unless we cache these virtual objects, i t  is a difficult task to guard against 
using different object identities for different rule invocations. 

One way t o  get around this identity consistency maintenance problem on virtual 
objects is t o  encapsulate the temporary object identities using skolem functions. In 
other words, a new style is adopted for temporary object identities, or function object 
identities. Thus, each virtual object has a n  identity t h a t  is functionally dependent on a 
specific binding t h a t  leads t o  the derivation of the virtual object, which remains fixed as  
long as the binding does not change. The idea of using skolem functions a s  object iden- 
tities is originated in the work by Chen and Warren [ChenWSg] and in the work by 
Kifer and Wu [KiferSg]. 

7. Object Representation of Types and Commands 
This section demonstrate the uses of abstract  objects. We describe two extensions 

t o  the d a t a  model itself with the use of abstract  objects. In the first case, type 
definitions are represented as database objects. Due t o  limited space, our discussion 
will be restricted t o  an  interesting aspect of this representation scheme, where abstract  
objects are  used t o  capture the structure information of type definitions. In the second 
case, we discuss object representation of database commands. Again, the exposition 
will be restricted, t o  a subproblem - pattern representations. 

7.1. Type Defining Objects 
In TEDM type definitions are stored a s  database objects of type "Typedef". 

Objects of type "Typedef" are called type-defining-objects. In the center of a type- 
defining-object is a n  abstract  object of the type tha t  is being defined by the type 
definition itself. The abstract  object represents the structure of the type. We use a few 
examples t o  explain the idea. Consider the type definition for type "Point": 

Point = (x -+ Integer, y -+ Integer) 

In the type-defining-object for "Point", an  abstract  object is described by 

Point:Pl?P2^(x -, Integer:X?, y -+ Integer:Y?) 

where "Pl", "Xu and "Y" are object t a g  symbols, and "P2" is a placeholder symbol. 
The presence of "PI" dictates tha t  the object constructed is a n  abstract  "Point" 
object. The placeholder symbol "P2" is only a syntactical requirement and does not 
have semantic significance. Similarly, for the type definition 

Rectangle = (origin -+ Point, corner -+ Point) 

the following abstract  object can be used as its structure representation: 

Rectangle:Rl?R2^(origin -+ Point :PI?, corner -+ Point:P2?) 



7.2. Command Defining Objects 

We provide an abstract object representation scheme for patterns, according t o  
the construction of WFOP. First,  for a pattern of the form 

ts:ps, 
i ts  representation is denoted by the following object term 

ts:ps? 
Second, a pattern of the form 

ts:ps*(lsl -C fl' ..., Isn -, f") 
can be represented using the object described by 

ts:o?psA(lsl -C ol, ..., Isn 4 on) 
where oi is an object representation for fi. Third, an object denoted using 

ts:o 
can be used t o  represent a pattern of the form 

ts:f 
where o is an object representation of f. 

8. Dynamic Constructions of Database Programs 
We illustrate the idea of dynamic construction of database programs by showing 

how we can construct a more complex pattern from two simpler ones. Consider the fol- 
lowing two patterns: 

From the previous section, we can use the two abstract  objects denoted by 

1). Point :P?Q *(x -+ 0) 
2). Rectangle:R? 

t o  represent the two patterns respectively. The following command 

R(origin + P )  <= Rectangle:R?, Point:P?(x + 0) 

then, will among others create an object described by 

Rectangle:S?RA(origin -+ Point:Q?P *(x + 0)) 

which in turn is a representation for the following pattern: 

Rectangle:Re(origin -+ Point:PA(x -* 0)) 

9. Summary and Concluding Remarks 

We have shown in this paper a number of interesting ideas in our approach t o  
combining the power of object-oriented systems and logic programming systems. An 
overview is provided for a d a t a  model (TEDM) tha t  is designed based on those concepts. 
A key extension in our approach is the notion of abstract objects, which breaks up vari- 
ables in traditional logic systems into two parts. The first pa r t  in this partition 
preserves the meaning of variables as  pure placeholders, while the second par t  contains 
"free" symbols tha t  can directly be interpreted by a semantical function as abstract 
objects. We have shown several uses of abstract objects, and the possibility of con- 
structing dynamic database programs with them. 

There are other features of TEDM left uncoverid by this paper. One of them is 
the notion of ordered field, a special kind of multiple-occurrence field in which the order 
of field values is significant. Ordered fields are needed in design applications. For 



example, in VLSI design, a larger module may consist of several smaller ones. This fact 
can be stored using a multiple-occurrence field. For the purpose of simulation, we need 
t o  determine an order t o  excite the modules, according t o  i ts  relative d a t a  path from 
the input (levelization). Ordered fields would be most ideal in this situation. 

Finally, object representation of commands is an  important concept. With com- 
mand objects, command syntax is not an important issue any more, and we can always 
define different kinds of surface syntax for users' convenience. 

Our effort is an indication tha t  the deductive object-oriented approach t o  data- 
base systems is a promising direction for extending the database technologies t o  wider 
application domains. Many applications such as CAD/CAM require d a t a  models t o  
have sophisticated modeling tools as well a s  powerful and flexible manipulation tools. 
Object-oriented systems are at their best in terms of modeling capabilities; and logic 
deductions are a natural extension t o  currently available query languages, such as  rela- 
tional algebra or calculus. 
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