
FEATURES OF T H E TEDM OBJECT MODEL

David Maier, Jianhua Zhu, Hitomi Ohkawa

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 89-018

December, 1989

FEATURES OF THE TEDM OBJECT MODELt

David Maier
Jianhua Zhu$

Hitomi Ohkawa

Department of Computer Science/Engineering
Oregon Graduate Center
Beaverton, Oregon 97006

Abstract: We present the object model of TED#, a d a t a model devised
using concepts from both object-oriented systems and deductive reasoning
systems. Each of of following topics is briefly discussed in this paper: 1) basic
concepts of the model, 2) its complex object space, 3) i ts extension with
abstract objects t o the object space, 4) i ts d a t a manipulation facilities, 5) its
notion of rules and deductive reasoning on complex objects, 6) i ts approach t o
object representation of types and commands, and 7) i ts idea of dynamic con-
struction of database programs.

Keywords: Object-oriented d a t a models, Complex objects, Complex object
logics, Rules, Deductive reasoning.

1. Introduction and Motivation

The need for complex objects in database applications has prompted new interests
in searching for logic systems capable of automated deductions with complex objects.
Two typical approaches are a) transformational, in which a complex object logic system
is first mapped into a first-order logic system, or i ts weaker form the horn clause logic,
and the method of the lat ter is then applied, and b) aziomatic, in which axioms and
inference rules are established for a system of logic for complex objects and a proof
theory within the logic system is then used [Beeri87, ChenW89, Kifer89, Kuper84,
Maier86al. This paper presents many interesting features of TEDM, a d a t a model with
a foundation in both the object-oriented paradigm and the logic programming para-
digm. We take the axiomatic approach for formal investigation, while the transforma-
tional approach is employed as the primary implementation strategy.

The primary motivation behind our research is due t o the growing need of apply-
ing database technologies t o areas other than traditional business-type d a t a processing.
Many researchers proposed many d a t a models during the past decade IAbiteboul87,
Abrie174, Chen76, Codd79, Copeland84, Ecklund87, Hammer81, Katz83, Maier86,

f Work supported by NSF grant IST-83-51730, cosponsored by Tektronix Foundation, Intel, Mentor Graphics,
DEC, Servio Logic Corp., Xerox and Beaverton Chamber of Commerce. The second author is also supported by a Gra-
duate Research Fellowship from Apple Computer Corp.

Current address: U S WEST Advanced Technologies, Advanced Sottware Technology, 6200 South Quebec Street,
Suite 420, Englewood, Colorado 80122

Proceedings o f DOOD '89,
Kyoto, Japan, December 1 989

Mylopoulos80, Shipman81, Stonebraker87, Stonebraker88, Su83, Vbase861. T h a t clearly
indicates large amount of effort spent in this area and i ts significance. But there is still
no single d a t a model t h a t stands ou t and receives wide acceptance.

Nevertheless, there has been consensus on what i t is tha t the conventional d a t a
models are lacking, and what i t is t h a t the new applications are seeking IMaier86,
Maier87, Maier88, Sidle80, Rosenberg801. In the mean time, different methodologies for
at tacking the problem have also been investigated, some of which have been shown t o
be very promising, especially in the area of integrating the logic paradigm and the
object paradigm [Emden76, Gallaire84, Goldberg83, Kowalski78, Lloyd84, Maier84a,
Stroustrup86]. The approach of TEDM, in particular, is based on prominent features
from object-oriented systems and logic programming systems.

The organization of the paper is as follows. Basic concepts of TEDM are listed in
the next section, and are elaborated in subsequent sections. In particular, Section 3
defines a n object space and the notion of well-formed-object-terms. Section 4 extends
the object space with the notion of abstract objects. Section 5 explains the model's d a t a
manipulation facilities and their core concept - pattern-matching. Section 6 describes
rules and deductive aspects of T m Section 7 discusses two more extensions t o the
d a t a model with the use of abstract objects. Section 8 illustrates the idea of dynamic
program construction using an example. Finally, a summary and some concluding
remarks are given in Section 9.

2. TEDM Overview

TEDM stands for Tektronix f igineering LAta f i d e l , a d a t a model originally
described in [Maier85]. More recent work related t o this d a t a model can be found in
jAnderson86, Anderson89, Ohkawa87, Zhu86, Zhu881. We should point out t h a t TEDM
is a Structural object-oriented d a t a model. Therefore, we are not concerned with issues
related t o methods, such as method inheritance, method combination and method over-
loading. However, i t is not difficult t o extend TEDM into a fully behavioral object-
oriented model, and we have done some work along this direction IZhu89).

The goal of TmM is t o provide flexible modeling tools and expressive d a t a
languages t o engineering database applications. The model bears features whose origins
can be distinctively traced to two important research areas of software systems and
programming methodologies, namely, object-oriented systems and logic programming
languages. In particular, the following adaptations are made in TEDM. From the
object-oriented world, i t acquires a notion of object identities, complex objects, a
mechanism for object classification and a structure for property inheritance. From the
logic programming world, i t absorbs the concepts of unification (actually a special form
called pattern-matching) and answer substitution, and a strategy for deductive query
processing. TEDM also has a handful of innovative features t h a t distinguishes it from
other similar approaches, including the notion of abstract objects, object representation
of types and commands, and support for dynamic command construction.

Much good work is being done in the area of object logic t o provide a formal foun-
dation for object-oriented systems, such as Ait-Kaci and Nasr's LOGIN [Ait-Kaci861,
Bancilhon and Khoshafian's Complex Object Calculus [Bancilhon86], Chen and Warren's
GLogic (Chen891 and Kifer and Lausen's F-Logic [Kifer89JJ t o just list a few. Our
treatment of TEDM model has many similarities with the above-mentioned work, for
example, our object language is a n extension of the *-terms of LOGIN, and the idea of
using skolem functions as object identities is originated in [Chen89] and IKifer89, 89a].
Nevertheless, the TEDM model has many distinctive features t h a t the others do not

have, such as the notion of abstract objects, the clear separation between intention and
extension of database schemas, and the way i ts type system is formulated.

2.1. Object and Object Identities
Just like any other object-oriented systems, the basic modeling construct in TEDM

is a n object. Each object has an object identity and may also have internal structure, a s
a result of composing "smaller" objects. An object without internal structure is said to
be a simple object; otherwise, it is a complex object. Notice t h a t complex objects are
always constructed from "smaller" objects by a finite number of compositions, s tart ing
from simple objects.

Intuitively, simple objects are the formal counterparts of well understood primitive
abstract notions, such a s integers and character strings. Complex objects model real
world entities t h a t inherently have internal structure and properties. For example,
associated with a person there are properties such a s the name of the person and his or
her da te of birth, etc. For the most par t , the distinction between simple objects and
complex objects is a conceptual one. Thus, simple objects are structureless, atomic and
therefore immutable. On the other hand, complex objects are composite, decomposable
and modifiable. Nevertheless, there is still an intimate connection between the
simple/complex distinction and the objects' physical representations in hardware. Typi-
cally, simple objects are directly representable by the underlying hardware. The physi-
cal representation of complex objects, on the other hand, must rely on certain types of
encoding. We point out t h a t the distinction t h a t we make between simple objects and
complex objects is based on objects' conceptual immutability, which happens t o coincide
with the direct representability of the underlying hardware. An alternative way t o
draw the line is t o view simple objects as those t h a t don't have any associated proper-
ties, for example, a car about which we have nothing t o say. However, there is nothing
t o prevent simple objects of this kind from evolving into complex ones. We prefer the
former taxonomy because whether an object is simple or complex, in our view, is a
s ta t ic property.

The notion of object identity has its value both in conceptual modeling and in phy-
sical implementation. Each object has a unique object identity, which distinguishes the
object itself from any other objects. The identity of an object is independent of the
structure of the object. Thus it is possible to discern two objects t h a t would otherwise
be identical, which is useful, say, in a typical design of an electronic device, where
several IC chips with identical physical and electrical parameters may be needed. In
this case, any two chips can be interchanged without affecting the behavior the circuit,
none of them is distinguishable from the other by i ts own properties. But when the
design is stored by a database, i t is necessary t o distinguish the ICs for purposes of
simulation and manufacturing. From the viewpoint of physical representation, the fact
t h a t object identities are not disk pointers but rather logical surrogate values makes i t
easy to reorganize databases, where large numbers of objects need be moved around.

2.2. Types and Object Conformity
Types are the classification mechanism in TEDM. Each type has two aspects, an

intentional aspect and an extemional aspect. The extension of a type is a collection of
objects of the type, and the intention of a type is a structure prescription t h a t it
expects i ts members t o satisfy. The system actually does not explicitly maintain exten-
sions of types. There may be multiple collections of objects t o materialize a type exten-
sion.

The interaction between types and objects is modeled using two relations (in the
mathematical sense). First, a conformsTo relation s ta tes t h a t if a n object possesses the
structure t h a t a type expects i ts elements t o have, then the object conforms t o the
type. The condition for conformity only bounds the object structure from below. I t is
prescriptive: a n object can have more structure than the type specifies, and still con-
forms to the type.

The second relation, hasType, captures the declarational imperative nature of
TEDh4's type system. I t s ta tes a stronger condition t h a t not only a n object conforms t o
a type, but also the fact t h a t the object is ezplicitly declared t o be a member of the
type's extension. Thus the following relationship (with o being an object, and A being a
ty pel:

o hasType A o conjormsTo A

Notice t h a t the conjormsTo relation is a structural characterization of objects.
For example, an object with an "x" field and a "y" field conjormsTo the type Point
(defined shortly), because i t has all the fields required by the type definition. On the
other hand, the object may not necessarily have the type Point: I t may well be an
object constructed a s a solution t o a system of linear equations with variables "x" and
"y", namely, i t is of type LinearEquationSolution2 t h a t happens t o have the same
structure a s the type Point. These choices in conceptual modeling is quite arbitrary.
The system has no way to control nor should the system have control over these alter-
natives. The relation hasType is intended t o give this high level control t o the user: I t
is up t o the user to decide on the intended conceptual constraints. On the other hand,
the system is equipped with the conformsTo relation t o guard against obvious incon-
sistencies, for example, assigning types t o objects t h a t are incompatible with the type
definitions.

Notice also t h a t a n object can conform to and have multiple types. Types are
defined using type definitions. A few examples are:

1) Point = (x -+ Integer, y -+ Integer)
2) Rectangle = (origin -+ Point, corner + Point)
3) RectSelect = (rect -+ Rectangle, cursor -+ Point)

Thus we define a type, Point, t o model twedimensional points, by an "x" coordi-
nate and a "y" coordinate, as in 1). The type definition in 2), Rectangle, captures a
rectangle by i ts upper-left "origin" point and its lower-right "corner" point. Similarly,
3) defines a RectSelect type as having a rectangle and a point, presumably modeling a
rectangular region on a screen with a mouse point.

TEDMtype system has benefited from known work on types in database program-
ming languages. In particular, the conjormsTo relation of this section and the special-
izes relation of the next section are very similar to the type system of Galileo
(Albano851 and of Amber [Cardelli86]. However, the decision to have separate relations
for capturing the structural compatibility and the declarational aspects is a novel
feature and the separation is useful for conceptual modeling and is practical for imple-
mentation.

2.3. Type Hierarchy and Inheritance
Types are also involved in relations among themselves. A type hierarchy (actually

a semilattice) is used t o bind all the types together. Based on relative positions of types
in this type hierarchy, supertypes and subtypes are recognized.

This type hierarchy affects both intentional as well as extensional aspects of types.
The former is manifested in the form of inheritance: subtypes inherits structures from
their supertypes. (TEDM is a structural model, namely, objects do not have associated
behaviors. Hence, the term inheritance only refers t o structural inheritance.) The lat ter
takes the form of subset inclusion, the collection of objects having a certain type is
included by the collection of objects for i ts supertypes.

Two relations are defined t o formally back up this type hierarchy. First, a special-
izes relation holds from type A t o type B, A specializes B, if the intentional structure of
B is a included by tha t of A. O r equivalently, A specializes B, if for any object o,

o conformsTo A o conjormsTo B.

Similarly, a stronger relation, issubtypeof, forms the formal counterpart of the type
hierarchy, type A is situated below type B in the type hierarchy if A isSubtypeOj B.
T h a t is, A issubtypeof B, if for any object o,

o hasType A o hasType B.
This relation, again, must be explicitly declared. We also require

A issubtypeof B A specializes B

Subtypes are also defined using type definitions. A type definition of the form

Point3D = Point:(z -+ Integer)

declares a new type, PointBD, as a subtype of the Point type. The same effect is also
achieved by the following two definitions.

1) Point3D = (x -+ Integer, y + Integer, z + Integer)
2) Point3D < Point

Notice tha t , with the first type definition by itself, the type Point3D only specializes the
type Point, but would not be a subtype.

2.4. Commands, Rules and Query Processing

Like traditional database management systems, TEDM provides d a t a languages
for accessing and manipulating database objects. In TEDM, commands are the primary
means by which databases are accessed and manipulated. A command consists of a
pattern, the body of the command, and an action, the head of the command, a s is d e p
icted using the following general form.

Action[Y1, ..., Ym] <= Pattern[X1, ..., Xn]

The pattern denotes a matching function with an abstraction on XI, ..., Xn. The action
denotes an imperative operation with an abstraction on Y1, ..., Ym. For now, we
assume

{ Yll 1 ym 1 c { xl, -.., xn)
The semantics of such a command is realized by a two-phase procedure:

(1) applying a matching function using the pattern on the database, t o yield a set of
bindings for XI, ..., Xn, and

(2) applying the imperative operation on the bound objects, passed t o i t via Y1, ...,
Ym. Notice tha t the parameters, Y1, ..., Ym, obtain their values from the active
set of bindings for XI, ..., Xn.

Rules almost have the same form as tha t of commands, as shown below.

Essentially, rules assert logical consequences based on known structures, or introduce
virtual d a t a based on stored data .

Query processing in the presence of rules becomes a deductive process. Pattern-
matching has t o take into consideration of virtual da ta . In other words, a database
should now be viewed as a closure of physical d a t a plus virtual d a t a derivable by data-
base rules, or logical consequences. Alternatively, database rules can be viewed as dor-
mant database commands with transient results. They execute on demand, produce
temporary da ta , and go back t o sleep afterwards.

3. Object Terms and An Object Space
This section defines object terms and an intended object space of interpretation.

We construct the object space in such a way tha t it admits encoded complex objects.
We use an extended first-order language t o describe objects. We s ta r t off by introduc-
ing the notion of well-jormed-object-terms (WFOTs). WFOT is constructed using sym-
bols from the following denumerable sets:

1) constant symbols DS
2) placeholder symbols P S
3) type symbols T S
4) field label symbols LS

In addition, we also use, among others, the following auxiliary symbols:

1) the colon ":" t o indicate type symbols
2) the caret " ^ " t o indicate placeholder symbols
3) the question mark "?" t o indicate object t ag symbols (in next section)

The set WFOT is defined as follows.

1) if ds E DS, ts E TS, then ts:ds E WFOT
2) if ps E PS, ts E TS, Isi E LS and fi E WFOT,

then ts:psA(lsl --+ fl, ..., Isn -, fn) E WFOT
3) if ts E T S and f E WFOT, then ts:f E WFOT

We construct an object space, OS, in which members of WFOT are interpreted.
The following semantic entities are assumed:

1) a set of constants D
2) a set of object identities I
3) a set of binary relations R, one ri (E R) C I X (I U D) for each field label li
4) a set of subsets T, one ti (E T) C (I U D) for each type symbol tsi

The construction of OS proceeds as follows:

1) if d E D, then d E OS
2) if id f I, osi E OS, and (id, osi) E ri, then (id, { id rl osl, ..., id rn osn)) E OS

The cryptic form of (id, { id r l osl, ..., id rn osn)) is an encoding for a complex
object with identity id tha t is related t o "smaller" objects osi via ri. An element of OS
is said t o be an object. The type of an object is determined by the type of i ts identities.
(Constants are a special kind of identities.) In implementation, i t is acceptable t o
equate the set of constant symbols, DS, with the set of constants themselves, D. The
object identities for complex objects are uniquely generated by the system. The users

do not know of their existence, nor do they have access t o such identities.

The interpretation of a term in WFOT, s , into an object in OS, p I[s 1 , under a
given mapping m from P S t o I, is as follows.

1) p I s 1 = dl if s E ts:ds, ds E DS and d E t for ts
(meaning t is a set denoted by symbol ts),
2) p s] = (id, { id r l osl, ..., id rn osn)), if s ts:psA(lsl --t fl, ..., Isn --+ fn),

p I fi 1 = osi, and id E t for ts
3) p a s] = p [f] , i f s ~ t s : f a n d p [f] f t f o r t s

Item 2) above assumes tha t the placeholder symbol ps is mapped (bound) t o the object
identity id: m(ps) = id.

Not all objects in OS are true objects. Two possible sources of problems come
from 1) type violation, where an object may be in a type t o which i t does not conform;
and 2) unique identity violation, where two different objects are assigned the same
object id. We constrain OS not t o have these violations, but do not give formal seman-
tics here.

A valuation function (with a range of { t , f), say) on WFOT can be established
from the notion of true objects, in conjunction with the interpretation, p , in a straight-
forward way. Neither is it difficult to define well-formed-object-formulas (WFOFs), and
obtain soundness and completeness results relating the provability and validity of
WFOFs similar t o those in first-order logic. We will touch this issue again later in the
context of query processing.

From a system viewpoint, terms in WFOT are typically used as object construc-
tors, each generating a new instance in the database, or object space. Some examples
are:

2) Rectangle:RA(origin + Point:PIA(x + Integer:O, y + Integer:O),
corner + Point:P2*(x + Integer:5, y -+ Integers))

3) RectSe1ect:S *(rect -* Rec tang1e:R ^(origin -+

Point:PIA(x 4 Integer:O, y 4 Integer:O),
corner -+

Point:P2^(x + Integer:6, y -+ Integer:6)),
cursor -+ Point:PA(x -+ Integer:3, y -+ Integer:3))

Figure l (a) provides an illustration for the object created by the last example.
Figure l(b) shows tha t subobject sharing can be described by duplicating placeholders:

4) RectSe1ect:S ^(rect -+ Rectangle:RA(origin -*
Point:PIA(x + Integer:O, y + Integer:O),

corner -+

Point:P2*(x -+ Integer:6, y + Integer:6)),
cursor -* Point:PIA(x + Integer:O, y -* 1nteger:O))

..._____..____..___

I-

(b) (a)
Figure 1. Shared and Nonshared Objects .__..........._..._ ..

4. An Extended Object Space
An extended object space, EOS, is formed by adding abstract objects, a class of

objects with special interpretation requirements. The construction of EOS is similar t o
tha t of 0s. We postulate a new set of semantic entities, A, the set of abstract object
identities. In addition, the meaning of the set T is changed accordingly to take ele-
ments of A into consideration, namely, ti (E T) C (I U A U D) for each type symbol tsi.

1) if d E D, then d E EOS
2) if a € A , then a E E O S
3) if id E (I U A), osi E EOS, and (id, osi) E ri,

then (id, { id r l osl, ..., id rn osn)) E EOS

Assuming an additional symbol set, SS, the set of object tag symbols, the following
modified version of WFOT, EWFOT, makes abstract objects accessible a t the syntax
level.

1) if ss E SS, then ss? E EWFOT
2) if ds E DS, ts E TS, then ts:ds E EWFOT
3) if ps E PS, ts E TS, Isi E LS and fi E EWFOT,

then ts:psA(lsl 4 fl, ..., Isn 4 fo) E EWFOT
4) if ps E PS, ss E SS, ts E TS, Isi E LS and fi E EWFOT,

then ts:ss?psA(lsl 4 fl, ..., Is,, + fn) E EWFOT
5) if t s E T S and f E EWFOT, then ts:f E EWFOT

The extension t o the interpretation function, p, is t o make sure tha t object tags
get mapped t o abstract objects. We may assume tha t there is a 1-1 correspondence
(denoted using L) from the set of object tags, SS, t o the set of abstract objects, A. The
extended version of p, ji, is the following:

1) ji [s 1 = a, if s G ss?, a E A and ~ (s s) = a
2) ji [s] = d, if s ts:ds, ds E DS and d E t for ts
3) f i I[s] = (id, { id r l osl, ..., id rn osn)), if s r ts:psA(lsl 4 fl, ..., 1s" -+ fn),
p I fi] = osi, and id E t for t s

4) fi [s] = (a, { a rl osl, ..., a rn oso)), if s = ts:ss?psA(lsl --+ fl, ..., ls,, --, fn),
fi [fi] = osi, ~ (s s) = a and a E t for ts

5) f i I s] = f i [f] , i f s = t s : f a n d f i I f] E t f o r t s

Several examples of object terms in EWFOT are provided below.

1) Point:P?QA(x -* 0)
2) Point:P?QA(y + Y?)
3) Rectangle:R?SA(origin -+ Point:P?QA(x 0, y -, Y?)

Item 3) describes an abstract "Rectangle" object, which consists of a n abstract
"Point" object, a constant "0" and another abstract object. Intuitively, we use this
abstract object t o represent a pattern t h a t can match "Rectangle" objects whose "ori-
gin" point has an x-coordinate of "0". Moreover, the pattern would also return the
"origin" point object and the y-coordinate of the "origin" point of the matched object.

Some remarks on the motivation of extending the object space with abstract
objects before leaving this section. Our ultimate goal is t o support dynamic database
program construction, which is predicated on being able t o store program pieces a s
da ta , thus manipulable using ordinary commands. As alluded t o earlier, a database
command is a juxtaposition of two pieces of code, a pattern routine and a n action rou-
tine. Either the pattern or the action may contain "free" variable symbols. These
"free" variables are not really free in the sense they cannot just be bound t o any
objects. Rather, the pattern code dictates how these variables can be bound and the
action code dictates how the binding objects can be used. In other words, these vari-
ables carry with them a binding environment and a use environment, which more or less
resemble internal structures in objects. Introducing abstract objects and associating
them with "free" variables in patterns and actions make i t possible t o have pattern
objects and action objects, and hence command objects even program objects. The com-
ments above shall be substantiated throughout the rest of the paper.

Lomet [Lomet731 discussed similar ideas about program constructions in an opera-
tor driven model for program execution.

5. Data Manipulation Facilities
The command language provided by TEDM for d a t a manipulation purposes is

described in this section. In particular, the central idea of the command language,
pattern-matching, is explained.

5.1. Patterns and Pattern-matching
The syntax for patterns is a slight variation of t h a t of WFOT, and they are con-

structed using the same sets of symbols. The set of well-formed-object-patterns, WFOP,
is obtained a s follows. First, we need t o define an auxiliary notion, well-jormed-object-
literal, or WFOL.

1) if ds E DS, then ds E WFOL
2) if Isi E LS and fi f WFOL, then (Isl -+ f,, ..., Isn --c fn)E WFOL

Now the set W F O P is:

1) if ps E P S and ts E TS, then ts:ps E WFOP
2) if ps E PS, ts E TS, Isi E LS and fi E WFOP or fi E WFOL,

then ts:psA(lsl -+ fl, ..., Isn + fn) E WFOP
3) if ts E T S and f f WFOP, then ts:f E WFOP

Notice tha t the only difference between this construction and the one for WFOT lies in
the treatment on the roles of constants and placeholders. An element of WFOT must
bottom-out a t some constants. On the contrary, an element of WFOP must not be
fully instantiated. TEDMsupports the notion of negative patterns but we do not cover
them in this paper.

These are some example instances of WFOP:

1) Point:QA(x 4 0)
2) Point:QA(y 4 1nteger:Y)
3) Rectangle:SA(origin -+ Point:Qa(x -+ 0, y -+ 1nteger:Y)

In TEDM, pattern-matching, referring t o matching a formula in WFOP against an
object in EOS, is an important concept. We distinguish two kinds of pattern-matching,
t h a t on concrete (non-abstract) objects and tha t on abstract objects, and discuss each
of them in turn.

The meaning of concrete-match is stated a s follows, given a formula f E WFOP
and an object o f 0s.

1) For f -= ts:ps, f matches o if

a) o = d E D and d E t for ts, or
b) o (id, { id rl osl, ..., id rn osn)) E OS, and id E t for ts

2) For f E ts:psA(Isl + fll ..., Isn -C fn), f matches o if

a) o E (id, { id rl osl, ..., id rn a n , ..., id rm osm)),
b) id E t for ts, and
c) for each i, fi matches osi

3) For f r ts:g, f matches o if

a) g matches o, and
b) o E t for ts

This definition needs extension in one case. In 2.c) above, an fi can come from
WFOL instead of WFOP, and the definition does not cover t h a t case. We remedy the
flaw by a supplementary notion of 1-match, which is stated as follows (assuming 1 E
WFOL and o E 0 s) .

4) For 1 r ds, 1 I-matches o if o I d f D and ds represents d

5) For 1 I (Isl -+ 11, ..., Isn -+ l,), 1 1-matches o if

a). o = (id, { id r, osl, ..., id rn osn, ..., id r,,, am I), and
b). for each i, li I-matches osi

Notice the difference between a match and an I-match. A match is a structure
preserving mapping from a pattern formula into a database object, and retains a bind-
ing of placeholders t o objects as i ts result. On the other hand, object literals do not
contain placeholders, so an 1-match is only a correspondence without bindings.

We also need a notion of the result of pattern-matching. The result of a match is
a binding (or assignment) of placeholders t o database objects. We use the following

form t o denote such a binding:

[P1:ol, ..., Pn:on]

meaning placeholder Pi is bound t o object oi. Then, in case l.a), the placeholder ps is
bound t o d l and the result of the match is [ps:d]. Similarly, in case l.b), ps is bound t o
id, and the result is [ps:id]. In case 2), the placeholder ps is also bound t o id. The result
in this case [ps:id] + B1 + ... + Bn, where Bi is the result of matching fi on osi, and

Each successful match of a formula on a database object produces a binding:

[P1:ol, ..., Pn:on]

Since the formula can match more than one object in the database, the general form
for the result of pattern-matching is a set of bindings:

While in concrete-match the targets of match are restricted t o concrete objects,
abstract-match removes this restriction. Before discussing abstract-match, An extension
t o WFOP is in order, t o obtain eztended-well-formed-object-patterns, EWFOPs.

1) if ps E PS and ts E TS, then ts:ps E EWFOP
2) if ps E P S and ts E TS, then ts:ps? E EWFOP
3) if ps E PS, t s E TS, Isi E LS and fi E EWFOP or fi E WFOL,

then ts:ps ̂ (Isl -+ fll ..., Isn -+ fn) E EWFOP
4) if ps E PS, ts E TS, Isi E LS and fi E EWFOP or fi E WFOL,

then ts:ps?(lsl + fl, ..., Isn + fn) E EWFOP
5) if ts E T S and f E EWFOP, then ts:f E EWFOP

The definition simply extends WFOP with formulas with placeholders tha t must be
bound t o abstract objects in a successful match, which is indicated using a question
mark "?". The meaning of abstract-match, then, is t o match a formula f E EWFOP
against an object o E EOS. The precise definition of this match operation parallels
tha t of concrete-match. The difference is tha t placeholders with question marks must
be bound t o abstract objects in pattern-matching.

If we put together the two sets, WFOT and WFOP, we obtain essentially what are
usually called well-jormed-formulas (WFFs), or more appropriately in our case, well-
formed-object-jormulas (WFOF). Thus, we say a pattern is satisfiable if, after assign-
ment of object identities t o placeholders in the pattern, it gets interpreted into a true
object or an initial portion IZhu88) of a true object, by some interpretation function ji.
This true object is said t o be a model of the pattern. From this point of view, matching
a pattern with a database is effectively a model discovery process for the pattern,
which happens t o keep a record of assignments of the placeholders leading t o models.

Abstract-match is a vehicle for accessing and manipulating abstract objects with
commands. Such an example will be provided later in the paper.

5.2. Actions in Commands
The second component of a command, the head of the command, denotes an

operation, with an abstraction on free variables occurring in the head. Thus, we had
the following general abstract form (Section 2):

Action [Y ..., Y,],
which is effectively an n-nary operator, except we t rea t i t as an operator over a set of
n-tuples. The operator operates on sets and is highly polymorphic. I t accepts the
results of pattern-matching, a set of bindings, each providing an operand for each of the
m variables.

The next a few subsections elaborate this abstract operator.

5.2.1. Object Evolution: I (Changing Type Membership)
One aspect of object evolution is t h a t objects may gain or lose type memberships

during their lifetime. The syntax form for denoting such changes is the simplest among
all the actions.

The following syntax scheme expresses an membershipadding operation:

ts:ps, t s E T S and ps E P S

Notice, ps is a placeholder whose instantiation relies on bindings of pattern-matching.
Thus, for command

Ernp1oyee:P <= Person:P *(name + "John"),

suppose t h a t the result of pattern-matching is

[P:p,I
[P:p21
[P:p,I

where pl, pa and p3 are objects of type "Person", then the effect of this command is
t h a t p,, p2 and p3 each acquire a membership in the type "Employee" (and i ts super-

types).
The syntax scheme for objects t o be removed from a type is the following:

ts-ps, t s E T S and ps E P S

5.2.2. Object Evolution: I1 (Changing Field Structure)
Objects can also evolve along another dimension - they can acquire new fields,

lose old fields, a s well a s update existing fields.

The following is the syntax scheme for adding new fields t o an object, given tha t
ps E PS, Isi E LS and fi f DS or fi f PS.

The effect of this operation is tha t if the object does not have field "lsi, then field
"lsin is added; otherwise the existing field is updated. TEDM also supports multaple-
occurrence field. We need separate syntax for field-add operation and for field-update
operation in the case of multiple-occurrence field, since there is a difference between
changing an existing field and adding a new occurrence of the field.

The following syntax is used t o denote objects losing fields:

ps-(lSl --, fl, ...) lsn -, f")

One way t o achieve update operation is t o use a delete operation followed by an
add operation. Notice tha t objects do not lose their object identifiers when their fields
are deleted, which is an important precondition tha t makes this alternative for update
feasible. However, we do need t o make sure tha t in the simulated update (delete fol-
lowed by add), pattern matching provides the same set of objects t o operate on, which
can be guaranteed by either enclosing the delete operation and the add operation in a
compound command (see below), or extending the command language t o allow multiple
heads.

5.2.3. Object Creation
The general syntax scheme for object creation is the following:

ts*(lsl -+ fl, ..., IS" -+ fn)

where t s E TS, 1s E LS, and fi is either a constant, a placeholder or another object crea-
tion scheme.

The asterisk "*" in this form dictates a new object identity be generated for each
of the bindings from pattern-matching.

5.2.4. Compound Commands
One last kind of command action is a compound command invocation. T o describe

it, we introduce an additional symbol set, CS, a set of command symbols. The general
syntax form, then, is the following:

cs[ps,, ..., psk], cs E CS and ps E P S

The operation performed by this command invocation is determined by the definition of
the compound command, which will not be discussed in this paper. An example com-
pound command definition is:

HireEmployee[argl -+ Person:P, arg2 -+ Dept:D]

{

P(dept -+ Dept:D) <= HireEmployee(arg1 -+ P , arg2 4 D);
Emp1oyee:P <= HireEmployee(arg1 -+ P);

1

6. Rules and Deductions
Rules are a special kind of well-formed-object-formula. They are made up of an

antecedent and a consequent. The abstract form of a rule is (Section 2):

VirtualData[Y1, ..., Ym] t P a t t e r n p l , ..., X,,],

where the par t t o the right of t is the antecedent (an element of WFOP), and the part
t o the left of t is the consequent. The syntax schemes for the consequent are similar
t o those for actions in commands - not only is the former a subset of the lat ter , but
also they have closely related semantics. The intuitive connection between the two is
tha t rules can be viewed as deferred updates.

T h e deductive component is built into the query processor for pa t te rn matching,
which is similar t o but more powerful t han a Prolog interpreter, since i t needs t o deal
with rules t h a t cannot be t ranslated into Horn clauses. In fac t , we built the deduction
component on top of C-Prolog in a n earlier T m M prototype implementation. T h e
interaction between the deductive component and the imperative component is res-
tricted in the following sense: Within a command, the imperative action cannot s t a r t
until t he deduction is completed.

6.1. Virtual Memberehips
T h e following syntax scheme is used t o express a vir tual type membership for

objects.

ts:ps, ts f TS and ps E PS,

which is the same syntax as t h a t for objects acquiring type memberships. This pa r t of
the rule s t a t e s t h a t , given the result of a pattern-matching, the objects bound t o the
placeholder ps a re t o be vir tual members of the type denoted by ts. This is not a
stored fact , but is always derivable as long as the relevant rule exists.

These vir tual d a t a asserted by rules affect the pat tern-matching phase during a
command execution. They are not substant iated with physical d a t a nevertheless.
Hence, the meaning of rules of this kind is just like t h a t of membershipadd operations
in commands, except the former are executed only on demand, and the consequence of
the execution has a rather short lifetime: af ter the command execution, no physical
d a t a a re altered with respect t o the virtual membership.

6.2. Virtual Fields
Similarly, rules for virtual fields a re like operations for objects acquiring new fields.

Their consequent uses the following syntax scheme:

ps (Is1 + fl, ..., IS" -, fn),

where ps E PS, Isi E LS and fi E DS or fi E PS.

T h e remarks made in the previous subsection also hold here. We also point ou t
t h a t since the rules presented so far only reference existing da tabase objects, they are
safe in the sense they will not introduce infinite loops in to the deduction engine, even
when recursions a re involved. Alternatively, we can consider the closure of the da t a -
base under the rules. I t is clear t h a t with the rules discussed, the closure of a finite
da tabase is always finite.

6.3. Virtual Objects
T h e general syntax form for rules asserting virtual objects resembles t h a t for

object creation, as shown below.

ts*(lsl + fl, ..., lsn -* fn)

where ts E TS, 1s E LS, and fi is either a constant , a placeholder o r another virtual
object scheme. Similarly, the asterisk "*" in this form indicates a temporary object
identity is t o be used for each vir tual object derived.

There a re two technical difficulties related t o rules for vir tual objects. First , they
might lead t o unsafe computations, since vir tual objects amounts t o temporary object
creation. Therefore, a recursive rule might potentially lead t o creation of infinitely

many temporary objects. T o avoid this problem, we restrict our rules for virtual
objects t o nonrecursive ones. Note tha t other types of rules can be recursive, so we can
do, for example, transitive closures.

A second problem is t h a t virtual object identities may violate the assumption t h a t
each object is uniquely identifiable by its identity, since virtual objects use temporary
identities. In particular, given the same set of bindings from pattern-matching,
different invocation of the same rule should conceptually derive the same set of virtual
objects. But unless we cache these virtual objects, i t is a difficult task to guard against
using different object identities for different rule invocations.

One way t o get around this identity consistency maintenance problem on virtual
objects is t o encapsulate the temporary object identities using skolem functions. In
other words, a new style is adopted for temporary object identities, or function object
identities. Thus, each virtual object has a n identity t h a t is functionally dependent on a
specific binding t h a t leads t o the derivation of the virtual object, which remains fixed as
long as the binding does not change. The idea of using skolem functions a s object iden-
tities is originated in the work by Chen and Warren [ChenWSg] and in the work by
Kifer and Wu [KiferSg].

7. Object Representation of Types and Commands
This section demonstrate the uses of abstract objects. We describe two extensions

t o the d a t a model itself with the use of abstract objects. In the first case, type
definitions are represented as database objects. Due t o limited space, our discussion
will be restricted t o an interesting aspect of this representation scheme, where abstract
objects are used t o capture the structure information of type definitions. In the second
case, we discuss object representation of database commands. Again, the exposition
will be restricted, t o a subproblem - pattern representations.

7.1. Type Defining Objects
In TEDM type definitions are stored a s database objects of type "Typedef".

Objects of type "Typedef" are called type-defining-objects. In the center of a type-
defining-object is a n abstract object of the type tha t is being defined by the type
definition itself. The abstract object represents the structure of the type. We use a few
examples t o explain the idea. Consider the type definition for type "Point":

Point = (x -+ Integer, y -+ Integer)

In the type-defining-object for "Point", an abstract object is described by

Point:Pl?P2^(x -, Integer:X?, y -+ Integer:Y?)

where "Pl", "Xu and "Y" are object t a g symbols, and "P2" is a placeholder symbol.
The presence of "PI" dictates tha t the object constructed is a n abstract "Point"
object. The placeholder symbol "P2" is only a syntactical requirement and does not
have semantic significance. Similarly, for the type definition

Rectangle = (origin -+ Point, corner -+ Point)

the following abstract object can be used as its structure representation:

Rectangle:Rl?R2^(origin -+ Point :PI?, corner -+ Point:P2?)

7.2. Command Defining Objects

We provide an abstract object representation scheme for patterns, according t o
the construction of WFOP. First, for a pattern of the form

ts:ps,
i ts representation is denoted by the following object term

ts:ps?
Second, a pattern of the form

ts:ps*(lsl -C fl' ..., Isn -, f")
can be represented using the object described by

ts:o?psA(lsl -C ol, ..., Isn 4 on)
where oi is an object representation for fi. Third, an object denoted using

ts:o
can be used t o represent a pattern of the form

ts:f
where o is an object representation of f.

8. Dynamic Constructions of Database Programs
We illustrate the idea of dynamic construction of database programs by showing

how we can construct a more complex pattern from two simpler ones. Consider the fol-
lowing two patterns:

From the previous section, we can use the two abstract objects denoted by

1). Point :P?Q *(x -+ 0)
2). Rectangle:R?

t o represent the two patterns respectively. The following command

R(origin + P) <= Rectangle:R?, Point:P?(x + 0)

then, will among others create an object described by

Rectangle:S?RA(origin -+ Point:Q?P *(x + 0))

which in turn is a representation for the following pattern:

Rectangle:Re(origin -+ Point:PA(x -* 0))

9. Summary and Concluding Remarks

We have shown in this paper a number of interesting ideas in our approach t o
combining the power of object-oriented systems and logic programming systems. An
overview is provided for a d a t a model (TEDM) tha t is designed based on those concepts.
A key extension in our approach is the notion of abstract objects, which breaks up vari-
ables in traditional logic systems into two parts. The first pa r t in this partition
preserves the meaning of variables as pure placeholders, while the second par t contains
"free" symbols tha t can directly be interpreted by a semantical function as abstract
objects. We have shown several uses of abstract objects, and the possibility of con-
structing dynamic database programs with them.

There are other features of TEDM left uncoverid by this paper. One of them is
the notion of ordered field, a special kind of multiple-occurrence field in which the order
of field values is significant. Ordered fields are needed in design applications. For

example, in VLSI design, a larger module may consist of several smaller ones. This fact
can be stored using a multiple-occurrence field. For the purpose of simulation, we need
t o determine an order t o excite the modules, according t o i ts relative d a t a path from
the input (levelization). Ordered fields would be most ideal in this situation.

Finally, object representation of commands is an important concept. With com-
mand objects, command syntax is not an important issue any more, and we can always
define different kinds of surface syntax for users' convenience.

Our effort is an indication tha t the deductive object-oriented approach t o data-
base systems is a promising direction for extending the database technologies t o wider
application domains. Many applications such as CAD/CAM require d a t a models t o
have sophisticated modeling tools as well a s powerful and flexible manipulation tools.
Object-oriented systems are at their best in terms of modeling capabilities; and logic
deductions are a natural extension t o currently available query languages, such as rela-
tional algebra or calculus.

References

[Abiteboul87] "IFO: A Formal Semantic Database Model," Abiteboul, S. and Hull, R.,
ACM Transactions On Database Systems, Vo1.12, No.4, 1987.

[Abrie174] "Data Semantics," Abriel, J. R., Data Base Management Systems, 1974.

[Ait-Kaci861 "LOGIN: A A Logic Programming Language with Built-in Inheritance,"
Ait-Kaci, H. and Nasr R., Journal o j Logic Programming, Vo1.3,
PP185-215, 1986.

[Albano85] "Galilee: A Strongly-Typed Interactive Conceptual Language," Albano,
A. and Cardelli L., ACM Transactions on Database Systems, Vol.10,
No.2, 1985.

[Anderson861 "PROTEUS: Objectifying the DBMS User Interface," Anderson, T. L.,
Ecklund, E. F. Jr . and Maier, D., Proceedings of the International
Workshop on Object-Oriented Database Systems, 1986.

[Anderson89] "Representing CSG Solids Using a Logic-Based Object Da ta Model,"
Anderson, T. L., Ohkawa, H., Gjovaag, J., Maier, D. and Shulman, S.,
Proceedings o j the International Workshop on Object-Oriented Database
Systems, 1989.

jBancilhon861 "A Calculus for Complex Objects," Bancilhon, F and Khoshafian, S. N.,
Proc. of the ACM Symposium on Principles of Database Systems, 1986.

[Beerit371 "On Combining Object Orientation and Logic Programming," Beeri,
C., XP8.5i Workshop, Oregon Graduate Center, 1987.

[Cardelli86] "Amber," Cardelli, L., Combinators and Functional Programming
Languages, Cousineau, G., Curien, P. and Robinet, B. (eds.), Springer-
Verlag, NY, 1986.

IChen76) "The Entity-Relationship Model: Toward a Unified View of Data,"
Chen, P., ACM Transactions On Database Systems, Vol,l, No.1, 1976.

[ChenW89] "GLogic of Complex Objects," Chen, W. D. and Warren, D. S., Proc. of
the ACM Symp. on Principles of Database Systems, 1989.

[Codd79] "Extending the Database Relational Model t o Capture More Mean-
ings," Codd, E. F., ACM Transactions on Database Systems, Vo1.4,
No.4, 1979.

[Copeland841 "Making Smalltalk a Database System," Copeland, G. and Maier, D.,
Proceedings of the ACM SIGMOD, 1984.

[Ecklund87] "DVSS: A Distributed Version Storage Server for CAD Applications,"
Ecklund, D. J., Ecklund, E. F. Jr., Eifrig, B. 0 . and Tonge, F . M.,
Proceedings of International Conference on VLDB, 1987.

[Emden761 "The Semantics of Predicate Logic as a Programming Language," van
Emden, M. and Kowalski, R., Journal of the ACM, Vo1.23, No.4, 1976.

[Gallaire841 "Logic and Databases: a Deductive Approach," Gallaire, H., Minker, J.
and Nicolas, J. M., ACM Computing Surveys, Vo1.16, No.2, 1984.

[Goldberg831 Smalltalk-80, The Language and its Implementation, Gold berg, A. and
Robson, D., Addison-Wesley , 1983.

[Hammer811 "Database Description with SDM: A Semantic Database Model," Ham-
mer, M. and Mcleod, D., ACM Transaction on Database Systems, Vo1.6,
No.3, 1981.

[Katz83] "Managing the Chip Design Database," Katz, R. H., IEEE Computer,
Vo116, No.12, 1983.

[Kifer89] "Maier's Logic Revisited," Kifer, M. and Wu, J., Proc. of the ACM
Symp. on Principles of Database Systems, 1989.

[Kifer89a] "F-Logic: A Higher-Order Languages for Reasoning about Objects,
Inheritance and Scheme," Kifer, M. and Lausen, G., Proc. of the ACM
SIGMOD International Conference on the Management of Data, 1989.

[Kowalski78] "Logic for Da ta Description," Kowalski, R., Logic and Databases, N i c e
las, J. M., Gallaire, H. and Minker, J . (eds.), Plenum Press, New York,
1978.

IKuper84) "A New Approach t o Database Logic," Kuper, G.M. and Vardi, M.Y.,
Proceedings of the 8rd ACM Symposium on Principles of Database Sys-
tems, 1984.

[Lloyd841 Foundation of Logic Programming, Lloyd, J. W., Springer-Verlag, Ber-
lin, 1984.

[Lome t731 "An Operator Driven Model of Program Execution," Lomet, D. B., RC
4444, IBM Thomas J. Watson Research Center, 1973.

[Maie r84] "Data Model Requirements for Engineering Applications," D. Maier
and D. Price., Proceedings of IEEE 1st International Workshop on
Ezpert Database Systems, 1984.

[Maier84a] "Databases in the Fifth Generation: Is PROLOG a Database
Language?" Maier, D., Proceedings o j NYU Symposium on New Direc-
tions jor Database Systems, 1984.

[MaierSS] "TEDM Data Model," Maier, D., Unpublished Manuscript, 1985.

[Maier86] "Development of an Object-Oriented DBMS," Maier, D., Stein, J., Otis
A. and Purdy, A., Proceedings of OOPSLA-86 Conference, 1986.

[Maier86a] "A Logic for Objects," Maier, D., Proceedings of the Workshop on
Deductive Databases and Logic Programming, 1986.

[Maier87] "Why Database Languages Are A Bad Idea?" Maier, D., Workshop on
Database Programming Languages, Roscoff, France, 1987.

[Maier88] 'Making Database System Fast Enough t o Support CAD Applications,"
Maier, D., Object-Oriented Concepts, Applications and Databases, Kim,
W. and Lochovsky, F. (eds.), 1988 (to appear).

[Mylopoulos80] "A language Facility for Designing Database-Intensive Applications,"
Mylopoulos, J., Bernstein, P. A. and Wong, C. K. T., ACM Transac-
tions on Database Systems, Vo1.5, No.2, 1980.

(Ohkawa871 "Mapping an Engineering Data Model t o a Distributed Storage Sys-
tem," Ohkawa, H., Research Paper, Oregon Graduate Center, 1987.

[Rosenberg80] "The Evolution of Design Automation t o Meet the Challenges of VLSI,"
Rosenberg, L. M., Proceedings of 17th Design Automation Conference,
1980.

(Shipman811 T h e Functional Data Model and the Data Language DAPLEX," Ship-
man, D. W., Transactions On Database Systems, Vo1.6, No.1, 1981.

[Sidle801 "Weakness of Commercial Database Management Systems in Engineer-
ing Applications," Sidle, T. W., Proceedings of 17th Design Automation
Conference, 1980.

[Stonebraker86] "Inclusion of New Types In Relational Data Base Systems," Stone-
braker, M., Proceedings o j IEEE Data Engineering, 1986.

[Stonebraker87] 'The Design of POSTGRES Rules System," Stonebraker, M., Proceed-
ings o/ IEEE Data Engineering, 1987.

[Stroustrup86] The C4t- Programming Language, Stroustrup, B., Addison-Wesley, New
York, 1986.

(Su831 "SAM*: A Semantic Association Model for Corporate and Scientific-
Statistical Databases," Su, S. Y. W., Injormation Sciences, 1983.

(Vbase861 Vbase Users Manual, Ontologic Inc., 1986.

[Zhu86] "Prototype Implementation and Storage Design for An Engineering
Data Model," Zhu, J., Research Paper, Oregon Graduate Center, 1986.

(Zhu881 "Abstract Objects In An Object-Oriented Data Model," Zhu, J. and
Maier, D., Proceedings o j 2nd International Conjerence of Expert Data-
base Systems, 1988.

(Zhu891 "Computational Objects In Object-Oriented Data Models," Zhu, J. and
Maier, D., Proceedings of 2nd International Workshop on Database Pro-
gramming Languages, 1989.

