
Experiences with Belinda: A Synthetic Linda 
Benchmark for Parallel Computer Platforms 

Srikanth Kanabhatla, Jon Inouye, Jonathan Walpole 

Oregon Graduate Institute 
Department of Computer Science 

and Engineering 
19600 N.W. von Neumann Drive 

Beaverton, OR 97006-1999 USA 

Technical Report No. CS/E 90-003 

January, 1990 



EXPERIENCES WITH BELINDA: A SYNTHETIC LINDA 
BENCHMARK FOR PARALLEL COMPUTING PLATFORMS 

Srikanth Kambhatla, Jon Inouye and Jonathan Walpole 

Department of Computer Science and Engineering 
Oregon Graduate Institute of Science and Technology 

19600 NW von Neumann Drive 
Beavenon, OR 97006- 1999 

A b s t r a c t  - Recent advances in the field of paral- 
lel processing have produced a diverse selection of archi- 
tectures and programming styles. Such diversity presents 
significant problems for tasks such as program portabil- 
ity and performance evaluation. We argue that  the 
issues of portability and performance evaluation are 
related, and that  benchmarks for parallel machines 
should be easily portable. To this end, we have 
developed a benchmark for a portable software architec- 
ture based on Linda tuple space. Our benchmark is 
called BeLinda. 

In this paper we ovewiew the design of BeLinda, we 
present the results of running BeLinda on three radically 
different architectures, and we discuss our experiences 
with taking this particular approach to benchmarking 
parallel architectures. We identify some primitives that  
are generally used in parallel applications, perform our 
evaluation with respect t o  these primitives and attempt 
t o  combine the results t o  a single number. In combining 
the results, we are faced with the problems of assigning 
suitable weights to  the different programs. These prob- 
lems include the identification of a typical workload, 
determination of the frequency of occurrence of the 
primitives in the workload, and conversion of results into 
the same units. Our approach allows a quick and easy 
evaluation of the strengths and weaknesses of the 
machine being evaluated, but we conclude that  it is not 
a realistic idea to  attempt to  reduce the results to a sin- 
gle overall number. 

1. Int roduct ion 
Recent advances in the field of parallel processing 

have produced a diverse selection of architectures and 
programming styles. At the architectural level a broad 
distinction can be made between parallel machines that  
execute in single instruction stream, multiple data 
stream (SIMD) mode (an example is the Thinking 
Machines CM-2 (11 ), and those which execute in multi- 
ple instruction stream, multiple data stream (MIMD) 
mode (examples are the Sequent Symmetry (21 and Intel 
iPSC/2 [3] ). A further distinction can be made within 
the MIMD category based on the characteristics of the 
machine's address space(s). If the address space consists 
of a set of disjoint address spaces the machine is 
categorized as a distributed memory distributed address 
space machine (an example is the Intel iPSC/2). If on 

the other hand the machine has a common global 
address space i t  is categorized as a distributed memory 
shared address space machine (an example is the BBN 
Butterfly (41 ). The above architectural categories have 
also been defined as Uniform Memory Access (UMA), 
Non-Uniform Memory Access (NUMA) and No Remote 
Memory Access (NORMA) 15). Further architectural dis- 
tinctions can be made within the NUMA category 
according to  the degree of uniformity of a machine's 
memory access times. 

Such diversity in architecture induces a diversity in 
programming styles, since mast architectures have their 
own associated paradigm for parallel computation. This 
diversity is most apparent with respect to  the issues of 
synchronization, communication and location. 

The diversity in architectures and programming 
styles is a result of broad and varied research in the 
area of parallel processing. However, it also has several 
consequences. Among the most significant of these are 
the lack of portability of parallel programs, and the 
difficulty of making comparative performance evalua- 
tions between different machines and programming 
environments. 

, To satisfy the requirement for portability, a pro- 
gramming model must span the barriers of architectural 
diversity and present a uniform model of parallel compu- 
tation t o  the programmer. Such a model must present 
parallel programming constructs a t  a sufficiently high 
level of abstraction and must be easy to  implement 
efficiently. A number of programming languages have 
attempted to meet these demands, including: CSP (61, 
Concurrent Prolog (71, Strand 181, and Linda (9, lo]. 

The requirement for easy performance evaluation of 
different machines and programming environments is 
clearly related to  the issue of portability. A benchmark 
for parallel architectures must also evaluate features a t  
an appropriate level of abstraction and must be easy to 
implement. However, previous work in the area of 
benchmarking parallel architectures has either: 
1. compared different implementations within the 

same architectural category. This approach was 
taken by Bomans Ill], Kolawa (121, and Grunwald 
(131 to evaluate different versions of iPSC hyper- 
cube, W K  I1 and the NCube. 



2. evaluated performance with respect to  a specific 
application program. This is the approach followed 
by Martin 1141, Fraboul [IS], and Gustafson [16]. 

3. performed analytical studies [17]. 

Each method has problems of its own: the first is 
only applicable to  machines which fall into the same 
architectural category. The second does not facilitate an  
analysis of the strengths and weaknesses of the machine 
under study. Further, the direct relevance of the results 
to applications in domains other than the one to  which 
the benchmark program belongs is limited. The third 
does not provide any information on the performance of 
any specific implementation. I t  is often the case that  
users want to gain insight into the cost of running vari- 
ous distinct types of application programs either on a 
particular architecture or on a number of perhaps radi- 
cally different architectures. 

In this paper we present a benchmark that  is port- 
able, easy t o  implement and reflects performance meas- 
ures for different primitives of parallel computation 
across several different machine types. The benchmark, 
called BeLinda, is based on Linda tuple space which we 
believe defines an appropriate level of abstraction for 
comparing different parallel computing platforms. An 
advantage of using a Linda based benchmark is that  it 
is easily portable over a wide variety of hardware archi- 
tectures. However, the results of a benchmark a t  this 
level of abstraction are influenced not only by the per- 
formance of the underlying architecture, but also by the 
implementation of Linda on that architecture. Conse- 
quently, a good figure indicates that  the combination of 
the implementation and the underlying architecture is 
good for a particular prograrn(s). However, a bad figure 
does not necessarily distinguish between a bad architec- 
ture, a bad Linda implementation or both. The experi- 
ences we had in building and using this benchmark are 
discussed later in the paper. 

Our use of Linda is also based on the notion that  
Linda provides a software architecture not unlike the 
instruction set architecture of a sequential machine. In 
both cases there is a distinction between the architec- 
ture that  is visible to  the programmer and the lower 
level implementation of the machine. In a sequential 
machine the lower level details include features such as 
the presence of a cache, pipelines etc, which improve 
performance but are not visible t o  the programmer. In 
parallel architectures the lower level details include 
additional issues relating to the communication network, 
processor and memory configuration of the machine. In 
either case, however, a benchmark must provide insight 
into the performance of the architecture a t  a level which 
is visible to  the programmer. 

While high level languages like FORTRAN, and C 
are supported on a variety of architectures, the pro- 
grammers see the underlying architecture and have t o  
explicitly introduce code for message passing or shared 
data. Therefore the code written for a hypercube is no 
longer suitable for a shared memory machine like the 
Sequent Symmetry. Linda however defines its own 

software architecture which masks out the native 
machine architecture and makes its code highly port- 
able. Thus, we were able to  use the same benchmark 
.suite, which has been written in C-Linda, on the iPSC/2 
and the Sequent Symmetry with only minimal changes 
in the code (due t o  the minor differences in the imple- 
mentation of Linda on these machines). 

The BeLinda suite can be used in two ways. It can 
be used to  generate a database of results indicative of 
the performance of the machines under study. This facil- 
itates cornparision of different machines with respect to 
specific parameters of interest. In many cases though, 
the user is interested in the performance of the machines 
in some particular application domain. For those cases, 
specific weights which are appropriate for the domain 
need to be chosen. Applications differ in issues like the 
amount of communication, amount of parallelism, 
granularity of tasks, communication patterns, and the 
amount of computation. This diversity prohibits the 
presence of a set of general purpose weights suitable for 
all applications. 

In the following section we discuss the design of 
BeLinda, we define our choice of performance measures 
for parallel computation, and we give an outline 
specification for the individual benchmarks which 
together comprise BeLinda. Section 3 presents the 
results which we obtained by running BeLinda on three 
radically different parallel architectures. In section 4 we 
discuss our experiences with taking this approach. In 
section 5 we overview related work, and finally we con- 
clude the paper in section 6. 

2. Overview of BeLinda 
The overall design and goals of BeLinda were 

influenced by the following characteristics listed by Gus- 
tafson 116). A benchmark should: 

1. be representative of actual applications. 
2. not artificially exclude a particular architec- 

ture or configuration. 
3. reduce to a single number to  permit one- 

dimensional ranking. 
4. report enough details t o  be reproducible by an 

independent investigator. 
5. permit simple verification of correctness of 

results. 

6. use simple algorithms to  fit into one page. 
In order to  meet requirement "1" BeLinda identifies 

a set of work primitives, or constructs, which are com- 
mon across various parallel applications. The perfor- 
mance figures associated with these primitives can then 
be used as performance indicators for different parallel 
applications. 

Requirement "2" is concerned with the issue of por- 
tability. The use of Linda as a basis for BeLinda ensures 
that  BeLinda shares the same high degree of portability 
as Linda. 



Requirement "3" is largely a matter of convenience 
since a one dimensional ranking allows straight-forward 
comparisons between architectures. BeLinda provides a 
statistical base of data, however, this data can be 
weighted and combined to  produce a single performance 
figure. The issue of assignment of weights to  the various 
results produced by BeLinda is discussed in a later sec- 
tion. It has been our experience that  reducing the results 
to  a single number is unrealistic. 

The remaining requirements are concerned with the 
ease of implementation and verification of the bench- 
mark. Most of our algorithms indeed fit into one page. 
We hope that  the details provided herein, and in the 
accompanying paper [18] are sufficient for reproducibility 
of results. Although "5" is desirable, it is, in general, 
difficult t o  obtain. 

Identification of work primitives 
The work primitives identified within BeLinda fall 

into a number of general categories: the basic Linda 
primitives; constructs for communication and synchroni- 
zation; primitives for computation; evaluation of overlap 
of computation and communication; and others. Each of 
these is discussed in more detail in the following sec- 
tions. 

Basic Linda primitives: Linda defines four primi- 
tive operations: in(), out(), rd() and eval(). The 
efficiency of Linda on any architecture depends to  a 
large extent on the implementation of these primitives. 
Therefore, these are included in the first set of BeLinda 
work primitives. 

A second issue which must be addressed in this 
category is the use of Linda's features for content 
addressability, The important factors here include the 
number of fields in a tuple and the number of actuals in 
these fields. It is expected that  as the number of fields in 
a tuple increases, so will the time required to  perform 
the match. However, several Linda compilers optimize 
tuple references and reduce the time for matching by 
performing tuple analysis. Tuple analysis has an effect on 
the overall time only in the case of shared memory 
machines. In distributed memory machines the time for 
Linda operations are dominated by the communication 
costs between the processors. Thus the improvements 
resulting from optimizations of match operations are not 
as dramatic. 

Communication and synchronization: In Linda 
based systems synchronization is no longer a primitive 
operation of the native architecture: rather, it is 
achieved through the tuple space by means of a single 
field tuple exchange between two processes. In order to  
ensure correctness, the single field in the tuple is an  
actual. 

Similarly, communication also takes place via the 
Linda tuple space. Programmers regard their machine 
as a large tuple space in which parallel processes crawl 
over distributed data  structures. BeLinda considers the 
following work primitives for communication: 

Latency: is a measure of the time required to  send 
a zero length message between two nodes in the 
architecture. In a distributed memory machine this 
requires the transmission of data  between two nodes 
over a communication network, whereas for shared 
memory systems it reduces to  the cost of copying or 
mapping between memory locations. 
Contention: is a measure of the overhead caused 
by interference between concurrent messages. This 
is highly dependent on the number of redundant 
paths and on the presence of full duplex communi- 
cation in the interconnection network. 
Multicast: is the cost of sending a message from 
one node to  k other nodes. In the degenerate case k 
may be the number of nodes in the network in 
which case the operation becomes a broadcast. 

Reverse Multicast: is the cost associated with 
sending a message from each of k-1 nodes to a sin- 
gle node. This is intended to model operations such 
as a process waiting on a barrier. 
Message Size: is a measure of the effect on 
transmission time of increasing message length. In 
some shared memory systems, message passing may 
be implemented via memory mapping in which case 
message length does not affect transmission time. 

The work primitives listed above are intended to  
model typical operations in parallel applications. In 
BeLinda these primitive operations are defined in terms 
of sets of Linda operations. Several other communication 
and synchronization parameters are also of interest in 
the context of parallel machines, for example the use of 
blocking or non-blocking message exchange and the 
design of the routing algorithm in the interconnection 
network. However, these are not immediately relevant 
for a benchmark a t  this level of abstraction. 

Computation: Despite the fact that  Linda is now 
being used in a variety of application domains, including 
systems programming 1191, the majority of applications 
continue to  be in the scientific computation domain. Fre- 
quently reported work primitives for computation in this 
domain are: the add and multiply times for integers, 
floats and double precision jloats. BeLinda also makes 
use of these computation based work primitives. 

The overlap of computation and communica- 
tion: In some parallel architectures communication 
between non-neighboring nodes is handled by separate 
communications controllers in the sender, receiver and 
intermediate nodes. In this case the node processors of 
the intermediate nodes should not be affected by the 
passing traffic. In order to  measure the interference 
between computation and communication we consider 
both the effect of communication on the computation of 
other processors, and the effect of computation of other 
processors on the communication between two cooperat- 
mg processes. 

Others: A number of other significant issues that  
do not fit well into any of the above categories are also 
considered in BeLinda: 



Scaling-Effect: is a measure of the scalability and 
performance characteristics of a system. BeLinda 
calculates this factor by measuring the time 
required to perform a constant workload using an  
increasing number of eval()s. 

Blocked in()s: is intended to  determine whether 
processes block or spin when waiting on an in(). 
Spinning may or may not cause a degradation in 
performance depending on the average amount of 
time processes spend waiting on in() operations and 
the amount of processing required to manage a 
queue of blocked processes. The goal for BeLinda is 
t o  determine the level of degradation associated 
with blocked in()s. 

T h e  BeLinda Specification 

BeLinda consists of a set of eleven individual 
that  evaluate the various characteristics dis- 

cussed above. A brief description of each of the BeLinda 
programs is given below: 

pr imi t ives1 evaluates the cost of doing the Linda 
out(), in(), rd(), and eval() operations by perform- 
ing n primitive operations of each type(b). The time 
is then divided by n t o  obtain the average time for 
each individual operation. In the case of eval(), a 
null eval which does no processing is performed. 

actuals.1 evaluates the cost of executing a primi- 
tive operation with a varying number of actuals in 
the tuple. This is achieved by varying the number 
of actuals and timing rd()  and in() operations. 
formals.1 evaluates the cost of executing a primi- 
tive operation with a varying number of formals in 
the tuple. This is achieved by varying the number 
of formals in the tuple and timing rd()  and in() 
operations. 

spin.1 checks whether processes spin during in() or 
rd()  operations by timing the execution of a task 
using four workers on a single processor. The task is 
then rerun with one of the workers blocked on an  
in  (1. 
ecale.1 determines how the time required to execute 
a constant amount of work varies as the number of 
eval()sk) is increased. 

latency.1 measures the latency involved in com- 
munication between processes by bouncing the same 
message (with one actual field) back and forth 
between two processes. After N iterations, the 
elapsed time is divided by 2N t o  obtain a figure for 
latency. 

contention.1 measures the degradation in perfor- 
mance due t o  contention for channels by simultane- 
ously exchanging tuples in opposite directions 
between two processes. The number of such 
interacting pairs is varied. To ensure tha t  messages 
are indeed transmitted simultaneously we transmit 
many messages in succession (this increases the pro- 

(a) The programs total about 800 lines of GLinda code. (b) Where n is 
large enough to ensure that the overall time is discernible. 

(c) The number of eval()s is guaranteed to be higher than the number of 
processors 

bability of overlap but does not guarantee that  
every pair will overlap). 

size.1 measures the time to  send messages of 
different sizes. 

broadcast.1 measures the time required to  perform 
both multicast and reverse multicast communica- 
tions. In both cases M processes are eval()ed from 
the main one in order to execute the required in()s 
and out()s. M is varied. 

overlap.1 checks the effect of computation on com- 
munication and vice-versa. This is determined by: 
measuring the time required t o  eval() a 
computation-bound process; measuring the time 
required to  send a message between two other 
processes (involving no computation); and then by 
measuring the time required for each when they are 
both run together. 

arithmetic.1 Measures the basic arithmetic capa- 
bility of the processors by measuring the time for 
integer, double, and floating point addition, multi- 
plication and a+b*c operations. 

Combining t h e  BeLinda p r o g r a m s  
In order to  generate a single benchmark figure for 

the BeLinda it is necessary to  combine the results 
obtained from the above programs. The motivation is 
that  a single performance figure facilitates one- 
dimensional ranking among the machines being 
evaluated. The general approach is to  assign weights to  
each program based on the frequency of occurrence of 
the primitives and to  perform a weighted sum of the 
results to  get a single figure. However there are several 
problems here. 

The importance of each particular benchmark is 
largely determined by the type of application to  be run 
on the architecture in question. This makes the set of 
weights specific to the application domain. However, to 
obtain an overall generic performance indicator we col- 
lected data  from different applications and used the 
average occurrence of the work primitives in question to 
weigh the results produced by the BeLinda benchmarks(d). 
The significant information for BeLinda is the ratio of 
the number of occurrences of each of the work primitives 
relative to  the others. 

I t  is interesting t o  note that  we had considerable 
difficulty arriving a t  weights for some of the work primi- 
tives. This was due either to the fact that  the primitives 
were non-tangible (e.g. scalability and blocking in()s), or 
it was due to  the difficulty of analyzing the sample 
applications for certain features. These problems will be 
addressed in more detail in section 4. 

3. A BeLinda Based Evaluat ion 
We have used BeLinda to  evaluate three different 

parallel architectures: the Sequent Symmetry, the Intel 
iPSC/2, and the Cogent Research XTM. The architec- 
tures used in the evaluation included the following 
features: 

(d) The data was collected from the set of ten programs which are included 
with the SCA Linda package. 



Sequent Symmetry 
The architecture consists of a shared memory, 8 
80386 processors each with 32KBytes of writeback 
cache, 53MBytes/sec pipelined bus, 32MJ3ytes of 
main memory, a Wietek floating point accelerator 
and an SCA Linda compiler. The Linda implemen- 
tation contained a number of performance optimi- 
zations. 

Intel iPSC/2 
The architecture consists of a distributed memory, 
32 80386 processon in a 4 cube configuration, an  
additional 80387 numeric coprocessor, 8MBytes of 
local memory per node, a Direct Connect Module 
per node to  improve communication, 2.8 Mbyteslsec 
communication rate and an  SCA Linda compiler. 

Cogent Research XTM 
Our configuration included two Cogent Research 
XTM workstations each containing two Inmos T800 
processors, connected t o  a resource server contain- 
ing 8 T800 processors each with 4 MBytes of 
memory. The processors in the resource server use a 
hybrid network of a shared bus and a crossbar (the 
bus is used for short messages, while a crossbar con- 
nection is used for heavy communication between 
two processors). The Linda implementation used in 
this case was Cogent Research's Kernel-Linda [20]. 

Resul ts  

We ran the Belinda benchmarks on each of the 
above three architectures, and combined the weighted 
results to  produce a single figure for ease of comparison. 
In this section some of the more interesting results are 
discussed. For a more complete description of the bench- 
mark and the results obtained see [18]. 

One effect of using a shared memory machine is 
immediately apparent in the results of the benchmark 
for the basic Linda primitives (see Table 1). For all the 
Linda primitives the shared memory architecture of the 
Sequent Symmetry exhibits significantly better perfor- 
mance than the distributed memory architectures. 

significant problem encountered in all these tests how- 
ever, was the construction of the equivalent of a null 
message transfer. In Linda the degenerate case for com- 
munication must involve the transfer of a tuple contain- 
ing a t  least one field. 

The benchmark to  test the effect of message size 
reveals an  interesting characteristic of the Sequent 
Linda implementation (see figure 4). In the case of the 
iPSC/2 and XTM architectures the cost of transferring 
varying sized messages remains fairly constant, whereas 
the Sequent implementation demonstrates a linear 
increase in cost with increasing message size. We suspect 
that this is due to  the cost of copying tuples- between 
applications. A better approach might be to  implement 
large tuple exchanges in shared memory using memory 
mapping rather than copying. 

The test for interference between computation and 
communication again showed the Sequent architecture 
coming out on top (see table 7). The Sequent demon- 
strated virtually no interference, whereas the XTM 
machine showed a definite degradation in computation 
times in the presence of communication. This was true 
to a lesser extent on the iPSC/2. 

An area in which we expected the distributed 
memory machines to  demonstrate an advantage was in 
the effect of scalability (see figure 1). The iPSC/2 did in 
fact come out ahead in this benchmark, however the 
Sequent was second and the XTM third. A close exami- 
nation of the results and the various Linda implementa- 
tions has led us to  believe that  our results are com- 
pletely dominated by the effects of the Linda implemen- 
tation rather than the underlying hardware architec- 
tures: the ipSC/2 implementation uses its own distri- 
buted virtual memory system to  optimize the perfor- 
mance of eval; the Sequent implementation builds eval 
on top of a fork() system call; and since the current 
Cogent Kernel Linda implementation doesn't have an 
eval(), the underlying operating system mechanism for 
process creation must be used. 

Another area in which the Sequent machine "wins" 
is in the benchmark which tests the effect of the number 
of fields in a tuple (see tables 2 and 3 and figures 3, 5 
and 6). Surprisingly, the number of fields does not affect 
the cost of an  in() or a rd() on the Sequent. However, 
in this case the improvement is due to  analysis a t  com- 
pile time rather than architectural advantages. A pecu- 
liarity of the XTM Linda implementation causes the cost 
of doing in() and rd() operations t o  increase linearly 
with the number of fields in the tuple(e). 

The benchmark of primitives for communication 
and synchronization again demonstrated an advantage 
of using a shared memory architecture such as the 
Sequent. The shared memory architecture exhibited con- 
siderably better figures for both latency and the two 
types of multi-cast tested (see tables 4 and 6). In all 
cases the cost of communication dominated the final 
figures. The only system which demonstrated any con- 
tention problems was the iPSC/2 (see tables 4 and 5). A 

(e) In Cogent Linda, tuples with multiple fields must be supported using 
multiple tuple spaces since individual tuples can only contain two fields. 
Consequently, as the number of actuals (or formals) increases a correspond- 
ingly deeper level of nesting of tuple spaces is required. 

The only system which causes processes to  spin 
when they are blocked on in()s is the Sequent (see table 
8)- 

Combinat ion of t h e  r e su l t s  

The final BeLinda figures for the three implementa- 
tions show a clear "win" for the Sequent, with the 
iPSC/2 second and the XTM third. A large part of the 
overall result can be attributed to the relative costs for 
communication in the various architectures since the 
basic costs of communication underly many of the work 
primitives tha t  were tested in the benchmarks. Another 
very significant factor in the overall result is the choice 
of weights for conveying the relative importance of the 
figures that  were produced by each benchmark. It was 
particularly difficult to arrive a t  a suitable weight for 
the figures generated by benchmarks such as the one for 
scalability. A final issue which confuses the results some- 
what is the effect of different levels of optimization in 
the Linda compilers of the various architectures. These 
issues will now be discussed. 



4. ,Experiences wi th  BeLinda 
Our experiences with designing and using BeLinda 

fall into two general categories: good and bad. On the 
positive side, we were pleasantly surprised by the small 
amount of time and effort required to  implement and 
run BeLinda on three radically different parallel archi- 
tectures. We believe that  this success is largely due to  
the approach of using a portable software architecture 
as the basis for the benchmark. In addition, the genera- 
tion of a single overall performance measure facilitates 
quick comparisons. Consequently, BeLinda provides a 
fast and efficient method for comparing different parallel 
computing platforms. 

However, we encountered several problems during 
our research. Firstly, the use of a software architecture 
means that  the effectiveness of evaluation depends on 
both the implementation of that  software architecture 
(Linda) and on the underlying hardware architecture. In 
several cases it was not pwible  to  determine whether a 
particular performance measurement was due to  the 
hardware architecture or the Linda implementation. 
This means that  the results must be interpreted as 
representative of the combination of architecture and 
implementation. The usefulness of the results for 
evaluating the underlying hardware architecture alone 
depends on the degree of optimization in the associated 
Linda implementations. This argument is also true for 
many sequential machine benchmarks, the results of 
which are generally dependent on compiler optimiza- 
tions. 

A second problem encountered because of the use of 
Linda was that  it hides certain architectural features 
tha t  are required for benchmarking some of the work 
primitives we identified. In particular, Linda does not 
allow the identification of specific nodes for running 
eval()s. This increased the difficulty of measuring 
features like latency and contention. 

The choice of software architecture is also very 
important. It should not be biased towards any particu- 
lar architecture. We chose Linda as our software archi- 
tecture because it is a fairly simple, low level paradigm 
for parallel programming and it is easily portable across 
most available hardware architectures. 

The identification of work primitives is crucial t o  a 
synthetic benchmark. In the ideal case the set of work 
primitives partitions the typical workload. We found 
this particularly hard to  achieve. Firstly, the granularity 
of any particular work primitive is restricted by the con- 
structs of the language or software architecture (Linda). 
Secondly, i t  is difficult to avoid overlaps between the 
work primitives. This can skew the results by allowing 
some characteristics to  be measured more often than 
others. 

There are also difFicult issues associated with 
assigning weights to  the results of the benchmarks in 
order to  produce a single figure for comparison. Firstly, 
there is the problem of combining the results of 
benchmarks which generate measurements in incompar- 
able units. This is a major difficulty in incorporating the 
benchmark for scalability into the overall result. 

Secondly, the measurements produced by comparable 
benchmarks must be weighted according to  the fre- 
quency of occurrence of the associated work primitives 
in a typical work load. For some primitives this requires 
a complicated analysis of different application programs. 
In the absence of such analysis we were forced to  make 
estimates of the appropriate weighting factor for some of 
the benchmarks. We believe that  the problems associ- 
ated with assigning appropriate weights to the various 
benchmark results probably outweigh the benefits of 
having a single overall performance figure for com- 
parison. The real benefit of running the BeLinda bench- 
mark set is that  it produces a database of results which 
can be used to  identify specific problems and areas for 
improvement. 

5. Rela ted  W o r k  

Work reported in the area of performance evalua- 
tion of parallel machines can be divided into three gen- 
eral categories. The first approach is to benchmarked 
different versions of the same architectural model: 
Bomans and Roose 1111 compare different versions of the 
Intel iPSC; Kolawa and Otto [12] compare the Mark I1 
with the Intel Hypercube; and Grunwald and Reed 113) 
compare the NCube and the iPSC. The second approach 
is to  do benchmarking by timing of application pro- 
grams. This approach has been followed by Martin [14] 
to  compare different supercomputers, and by Fraboul 
115) and Gustafson and Hawkinson [16] to benchmark 
different parallel machines. The third approach to  
benchmarking is to use analytical tools. This approach is 
taken by Flatt  and Kennedy [17]. We are not aware of 
any other work that  uses a portable software architec- 
ture such as Linda tuple space to  benchmark different 
parallel architectures. 

Work has also been reported in the area of instru- 
menting parallel programs [21,22]. Miller and Yang [23] 
discuss interactive performance tools, while, Guarna et 
01. (241 describe an  integrated environment for the 
development of parallel programs. Such tools are of 
considerable benefit in building benchmarks. 

8. Conclusions 
In this paper we have introduced a new approach 

to  benchmarking parallel computing platforms based on 
the use of a suite of Linda programs. Our experiences 
with designing the BeLinda benchmark and using it on 
three radically different architectures have been mixed. 
We are encouraged by the speed and efficiency with 
which the benchmark can be implemented and run on 
new architectures. This factor is particularly important 
given the absence of any other readily available, port- 
able benchmarks for measuring the performance of 
different parallel architectures. 

An alternative which has comparable portability 
and ease of implementation to  BeLinda is to time the 
execution of a specific application program on different 
architectures. This approach would solve many of the 
problems that  we mentioned in section 4 concerning the 



choice of work primitives and their associated weights. 
However, such an  approach would not produce the 
detailed analysis of the strengths and weaknesses of the 
architectures in question that  is available using BeLinda. 
A major conclusion of the paper therefore is that  the 
BeLinda approach to  benchmarking parallel architec- 
tures is useful, but that  it is not a realistic idea to 
attempt to reduce the results of such a benchmark set 
to a single overall figure. 

Acknowledgements 
The paper was improved by comments from the 

anonymous referees. We would like to  thank Tony Capi- 
tan0 of OACIS for allowing us to  use their iPSC/2, and 

H. Flatt and K. Kennedy, "Performance of parallel proces 
sors," ParaNel Computing, vol. 1, no. 12, pp. 1-20, 1989. 

S. Kambhatla, J. Inouye, and J. Walpole, "Benchmarking 
Parallel Machines via a Software Architecture," Technical 
Report W002, Oregon Graduate Institute , 1990. 

W. Leler, "Linda meets UNIX," IEEE Computer, pp. 43-55, 
February 1990. 

Cogent Research Inc., "Kernal-Linda Specification 4.0," 
Technical Report, March 1989. 

Y. Gaur, V. A. Guarna, Jr., and D. Jablonowski, "An Environ- 
ment for performance experimentation on multiprocessors," 
CSRD Rpt No 865, University of Illinois, April 89. 

2. Segall and L. Rudolph, "Pie: a programming and instru- 
mentation environment for parallel processing," IEEE 
Software, pp. 22-37, November 1985. 

to the system staff a t  OGI who gave us an  exclusive 
access to  the Sequent Symmetry to  run our benchmarks. 

References 

1. W. D. Hillis, The Connection Machine, MIT Press, 1985. 

2. T .  Lovett and S. S. Thakkar, "The Symmetry Multiprocessor 
System," International Confirence on Parallel Processing, pp. 
303-310, 1988. 

3. S. Arlauskas, "iPSC/2 system : a second generation hyper- 
cube," in Proceedings of 3rd conference on Hypercube Con- 
current eomputers and applications, ed. G. C. Fox, pp. 38-42, 
A M ,  1988. 

4. W. Crowther et  al., "Performance Measurements on a 128 
Node Butterfly Parallel Processor," Proceedings oJ the 1985 
International Conjerence on Parallel Processing, pp. 531-540, 
August 1985. 

5. R. F. Rashid, "Designs for Parallel Architectures," UNIX 
Review, April 87. 

6. C A R .  Hoare, "Communicating Sequential Processes," Com- 
munications of the A C M ,  vol. 21, pp. 666-677, August 1978. 

7. E. Shapiro, "Concurrent Prolog: A Progress Report," I E E E  
Computer, pp. 44-58, August 1986. 

8. Strand Software Technologies, STRAND88 Technical Descrip- 
tion, August 1989. 

9. N. Carriero, D. Gelernter, and Jerrold Leichter, 'Wistributed 
Data Structures in Linda," Proceedings of the thirteenth A C M  
Symp. on Principles of Prog. Lang., January 1986. 

10. R. Bjornson, N. Carriero, D. Gelernter, and Jerrold Leichter, 
"Linda, the Portable Parallel," Yale Univ. Dept. Comp. Sci. 
RR-520, January 1988. 

11. L. Bomans and D. Roose, "Benchmarking the iPSC/2 hyper- 
cube multiprocessor," Concurrency: Practice and Ezperience, 
vol. 1, no. 1, pp. 3-18, September 1989. 

12. A. Kolawa and S. W. Otto, "Performance of the Mark II and 
Intel Hypercube," Technical Report 254, Caltech Concurrent 
Computation Program, February 86. 

13. D. C. Grunwald and D. A. Reed, "Benchmarking Hypercube 
hardware and software," Technical Report, University Of Illi- 
nois, November 86. 

14. J. Martin, "Performance Evaluation of Supercomputers and 
Their Applications," in Parallel Systems and Computations, ed. 
G. Paul and G.S. Almasi, pp. 221-235, Elsevier Science, 1988. 

15. C. Fraboul, ''MIMD parallelism expression, exploitation and 
evaluation," in Supercompating, ed. A. Lichnewsky and C. 
Saguez, pp. 155-170, Elsevier Science, 1987. 

16. J. L. Gustafson and S. Hawkinson, "A Language-Independent 
Set of Benchmarks for Parallel Procesors," Technical Report, 
Floating Point Systems, April 1986. 

B. P. Miller and C. Q. Yang, "Ips: an interactive and 
automatic tool for parallel and distributed programs," 
Proceedings of the seventh International Conference on Distri- 
buted Computing Systems, pp. 482-489, September 1987. 

V. A. Guarna Jr., D. Gannon, D. Jablonowski, A. D. Malony, 
and Y. Gaur, "Faust: an integrated environment for develop 
ment of parallel programs," IEEE SoJtware, pp. 20-28, July 89. 

Appendix 

Table 1. Time for primitives 
- -- 

Linda Primitives 
System 

in() rd[) out() eval() - 
Sequent 15us 14us 14us 29111s 
iPSC2 1025us 1163us 358us 1.7ms 

, XTM 46711s 43711s 4 6 0 ~ s  2.12s 

Table 2. Time to rd() actuals 

Actuals rd 
System 

iPSC2 104611s 1038us 104811s 1038us 
XTM 437us 80811s 1551us 

Table 3. Time to in() actuals 

Actuals(in(]) 
System 

1 2 4 8 16 

Table 4. Latency Table 5. Contention 

Table 6. Multicast 

Multicast 
System 



Table 7. Reverse multicast 

System 

Table 9. Time for computation in the presence of blocked workers 

891ms 

Table 8. Interference time 

' 4 20 32 
Number of processes 
Fig 1. Scaling effect 

' 4 8 12 16 20 24 28 32 
Number of evals() 

comptn & comn 
0.22s 
1.815s 
0.124s 

Fig 2. Cost of computation 

comptn 
0.22 
0.752 

0.0874 

Number of formal fields 
Comn & comptn 

0.27 
21.244 
4.94 

System 
Sequent 
iPSC2 
XTM Fig 3. Time for formals 

Comn 
0.27 

21.134 
4.67 

I 100 500 loo0 
Size of message (in long) 

Fig 4. Transmission time 

Time for rd()s 

900 Time for in()s 

Fig 5. time for primitives (iPSC2) 

300 -- 

7 formals (rd) 

3~ 

Time for out& 

2 4 6 8 10 12 14 16 
* 

Number of nodes used 

Fig 6. formals (iPSC2) 

3 formals (rd) 

1 formal(rd) 
1 - 

I I I I *  i h 6 k io i2 14 16 
Number of nodes 


