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Preface 

This report is primarily pedagogical in purpose and content (there are 
even a few exercises included). Although a few novel derivations and points 
of view are developed, the report is essentially an exposition of ideas which 
have already appeared in the literature. The notes contained here first 
appeared as a set of lectures on feature detection given as part of a graduate 
course on the mathematics of neural, networks taught at OGI during the 
fall of 1989. 

I offer thanks to my students for their questions, which helped to clarify 
the exposition, and to Mr. Vince Weatherill for turning my handwritten 
lecture notes and diagrams into a readable monograph. 



Abstract 

Real-world pattern recognition problems often involve data spaces of 
exceedingly large dimension. In order to ease the computational burden 
on pattern-classifier algorithms, the naive, high-dimensional features can be 
encoded in a lower dimensional set. 

Principal component analysis (PCA) provides a means for this encod- 
ing. More importantly, PCA can be implemented in neural networks that 
use local, Hebbian learning rules to  change synaptic strengths. Thus, data 
encoding can be accomplished in the same environment that serves the com- 
putational needs of the classifier. This report discusses PCA from statistical 
and geometric points of view, and its implementation in neural networks. 



1 Feature Discovery by Hebbian Learning 

1.1 Introduction 

Data spaces can often be described by feature spaces which are more com- 
pact than a naive representation. Put another way, feature spaces can often 
be more compact than the data that they describe. For example, in speech 
recognition one may calculate, from a digitized signal, 256 Fourier coeffi- 
cients for a signal window of 10 ms. Retaining only the power coefficients 
leaves over 12000 spectral features for one second of speech. Examining a 
much smaller problem - three spectral slices of 64 coefficients each may 
serve to describe a vowel extracted from continuous speech. A backpropa- 
gation network trained to  distinguish 12 different vowel sounds using these 
192 spectral coefficients may reasonably require on the order of a dozen hid- 
den nodes. This results in a network with over 2400 weights to  be trained. 
Since supervised learning algorithms can be slow to train it is worthwhile to 
consider compact data representations. 

Training time is only one of the motivations. Hardware implementation 
costs are known to scale cubically with node fan-in [I], and recent results in 
the theory of learning indicate that the number of training examples required 
for accurate generalization can scale approximately linearly in the number of 
connections [2]. Thus learning time, hardware implementation costs and the 
number of training examples required for accurate generalization, increase 
polynomially with the number of network connections. This constitutes a 
scaling catastrophe which prohibits the solution of large, complex perceptual 
and cognitive problems with homogeneous networks driven with raw data. 

All three of these problems can be alleviated by reducing the size of 
the input layer i.e., the dimension of the input space. One would like to 
develop representations that capture the information in the original data in 
an economical fashion. These lectures describe one class of techniques which 
map naturally to  neural networks, have a strong theoretical foundation, and 
may be related to  biological feature encoding. 

1.2 Dimension Reduction and Linear Mappings 

Our discussion will be limited to linear networks. We consider a single layer 
of feedforward weights with N inputs x, M outputs y and a weight matrix 
w as shown in Fig. 1. The input and output, are vectors in RN and R~ 
respectively, with N > M. The weight matrix w is an M row by N column 
matrix. The input vectors are taken to be random variables drawn from 



Figure 1: Single layer of feedforward weights. 

some probability distribution which is presumed to be stationary [3]. (Each 
input vector is considered to be a pattern in the input space, drawn from an 
ensemble of patterns arising from the probability distribution). The output 
vector is given by 

y = wx 

or in component notation 

We want to construct w to build up as faithful a representation as possi- 
ble, given the constraints imposed by the dimension reduction. Specifically, 
w : RN -+ RM maps an N dimensional space into an M dimensional space 
with N > M. Thus the rowspace of w spans at most R ~ ,  and w has a 
null space or kernal. The dimension of this null space is at  least N - M. 
This is depicted schematically in Fig. 2. The trick then is to design the 
null space of w so that the directions spanning NuIISp(w) are unimportant 
for distinguishing between vectors in the input ensemble. Suppose that the 
input space is R3 and the output space is R2 as in Fig. 2. If the data lie on 
a plane in R3 (Fig. 3), then it is clear that we really need only 2 numbers to 
specify each point - the third coordinate is highly correlated with the 1st 
two. Given the cloud of data points, we want to find this plane, and choose 
a set of coordinate axes on it. With a properly chosen w, the components 
along the axes in the plane will be given by the output nodes in the network 
y = wx. 

This geometric construction provides a hint: design w so that its null 
space is spanned by directions in RN along which the scatter of the data is 



Null (W) 

Figure 2: Dimension reduction 

Figure 3: Data constrained to a plane in R3 



minimal. We need some statistical apparatus to  develop this notion more 
completely. 

2 Continuous Probability Distributions 

2.1 Moments 

Let x E RN be a random variable with the probability density p(x). This 
density is taken to  be normalized 

corresponding to the certainty that x takes on some value in RN 
Associated wih p(x) are a set of moments: 

oth moment 1 = / dxNp(x) 

1'' moment E(x) = < x > = / dxN xp(x) 

2nd moment Qij = E(x;xj) =< xixj >= dxN xixjp(x) 

The first moment is called the mean, the second is the correlation matrix 
(or the auto-correlation matrix) [3]. Notice that the auto-correlation is a 
symmetric, real N x N matrix. Consequently, its eigenvalues are all real, 
and the eigenvectors form an orthonormal basis spanning R~ . Higher order 
moments are similarly defined, however we will only require up to  the 2nd 
moment in what follows. Associated with the correlation matrix, is the 
covariance matrix, defined as 

The correlation and covariance matrices are related by: 

Finally, the correlation matrix can be represented as an outer product, in 
the form 

Q = / dxNp(x)xxT 



where sT denotes the transpose of the column vector x. The covariance 
matrix C can be similarly represented. 

Definition 2.1 Two random variables, xl and 2 2 ,  are said to be indepen- 
dent if their joint probability density factors into a product of two probability 
density functions, one for each of the two variables; 

Claim: Let 21,. . . , X N  be independent, zero-mean random variables. Then 
the correlation, Q, is diagonal with the variances of each of the xi along the 
diagonal. 

Proof 2.1 

While for i = j we have: 

If the random variables do not have zero mean, then a similar statement 
holds with the covariance matrix substituted for the correlation (the reader 
should verify this). Notice that the converse is not true i.e., diagonal Q 
does not imply statistical independence. Random variables for which the 
correlation matrix is diagonal are called un-correlated. 



2.2 Multivariate Gaussian Distribution 

For N-dimensional data with zero mean l ,  the Gaussian probability density 
function is 

1 1 
p(x) = (23f)N/2 (det Q)l/2 exp - I ( x T ~ - l x )  . 

(See 2.2 which represents graphically the contours and p(x) for Q-I in 1 ). 
The argument of the exponential 

xTQ-'x 

is a non-negative quadratic form. 

Example 2.1 For 

the argument of the exponential is 

The eigenvabues of Q are given by solving the characteristic equation 

The density p(x) is constant along surfaces for which 

x T ~ - l x  = C (const.>O) (2) 

Since any real quadratic form can be diagonalized by an orthogonal trans- 
formation, there is a set of coordinates for which (2) reads: 

f T Q-1 2 = q 1  2; f A;1 z:, . . . , A % ~ Z &  = c 
'If the data has mean zo, the analagous form is 

4 x 1  = (* exp -3% - zo)= C--'(z - zo) 



Figure 4: Constant-density ellipsoid. 

where A;', . . . , A;' are the (positive) eigenvalues of Q-'. This last equation 
describes an ellipsoid (shown in Fig. 4) on which the density p(x) is constant. 
The eigenvalues A; are proportional to the square of the lengths of the semi- 
major axes of this ellipsoid. 

Note: There is a family of such ellipsoids, one for each 
value of C, in (2). Furthermore, the eigenvectors of Q-l 
are along the principal axes of these ellipsoids. 

Exercise 2.1 Show that if T is an eigenvector of Q-' with eigenvalue A-', 
then T is an eigenvector of Q with eigenvalue A. 

Summary: 

1. The surfaces of constant density of (1) are ellipsoids. 

2. The eigenvectors of Q-I (and of Q) are along the principal axes of the 
constant-densit y ellipsoids. 

3. The corresponding eigenvalues of Q, XI,  X2, . . . , AN > 0 are propor- 
tional to  the squared lengths of the principal axes of the constant- 
density ellipsoids. 



Figure 5: Contours (A) and 3D plot (B) of p(x) (not properly normalized 
here) for Q-I of example 1. 



What follows is independent of the underlying probability density ( p.d.f.) 
- but we will use Q, C and their estimates based on samples from the 
population. 

Suppose we have a p.d.f., p(x) with zero mean and known correlation Q. 
What is the variance of x  along a particular unit direction v  ? 

To find the variance of x  along v l ,  project x  onto v  and and compute 
the variance of the resulting scalar: 

u: E [ ( v .  x ) ( v  x ) ]  = ~ [ ( v ~ x ) ( x ~ v ) ]  

= E [ v ~ ( x x ~ ) v ]  = V ~ E ( X X ~ ) V  

where the last equality follows because v is not a random vector. Since 
xo = 0, by assumption: 

I f  vTv # 1,  then: 
vTCv 

u,, = - 
vTv 

If v  is a unit eigenvector of C  with eigenvalues A@, then vTCv = Xv. Thus, 
the eigenvalues of C  give the variance along the eigenvectors. 

2.3 Estimating C and Q from a Sample 

The sample mean is given by 

1 
p = - C xz ( M  sample vectors x z )  . 

M 
z=1 

As M + oo, p + x, the population mean. 
The sample covariance is given by 

or in components 



AS M -t 00, Rjj + Cij = E([xi - X ~ ~ ] [ X ~  - xjo]). 
The sample correlation matrix is given by 

or in components . M 

As M -t co, the sample correlation approaches the population correlation 
M -+ oo, Q -+ E(xxT). 

Notice that the sample covariance and correlation are formed by a sum 
of projection operators - thus for x E RN with M < N samples, Q or 
R will be singular (this is likely to occur in image processing). Similarly, 
if the sample consists of very many vectors, but only M < N are linearly 
independent, then Q or R will be singular. 

Exercise 2.2 Show that for X E R ~  with M < N linearly independent sum- 
ples, Q as estimated by 6 has an ( N  - M )  dimensional null space. 



3 Principal Components 

3.1 Maximum Variance Directions 

As per our geometric intuition from 1.2, let us construct 
w : RN -+ RM, so that its null space is spanned by vectors in RN along 
which the scatter of the data is minimal. We need to locate these directions. 

We start by finding the directions #, along which a: has extrema. To 
find these directions, expand 8 in the orthonormal basis of eigenvectors e;. 
of C ( C c  = A;, a5i . = S i j ) .  

Then, from 3, 

To find the critical points of a," set all of its partial derivatives with respect 
to a; equal to zero, 

The solutions of (8) are given by 



Figure 6: The new coordinates on R3 

where C is a nonzero constant. Since we need to satisfy (8) for all possible 
values of i, it is clear that the solutions are obtained for exactly one of the 
a; nonzero. Consequently, a: has its critical points at  

In these critical directions, the variance is given by 

Thus, the variance of the data along a critical direction is given by the 
corresponding eigenvalue of the covariance. 

According to (lo), the variance will be least along the eigenvectors of 
the covariance corresponding to the smallest eigenvalues. Thus, we should 
choose w so that its null space is spanned by the eigenvectors corresponding 
to the smallest eigenvalues. This is shown schematically in Fig. 6. 

The simplest construction is to take the M rows of w to be the eigen- 
vectors of C corresponding to M largest eigenvalaues. If we order the eigen- 
values 

XI > A2 > X3, .  . . , > AN 



and pick 

Then the components of y  = w x ,  i.e. 

y ,  = S . e;n 

are the first m principal components of x .  

Claim: The principal components are uncorrelated. 

Proof 3.1 

Note: Regarding y  as a vector given b y  y  = w x ,  the covariance matrix for 
y is 

xy - E [ ( ( Y  - Y O ) ( Y  - = E [ ( w ( x  - x o ) ) ( ( x  - x O ) ~ W ) ~ ]  

= w C z w T  . 
Thus, under a change of basis, one has 

x' G A x  

and the covariance matrix transforms as 

E1 r E [ ( X I  - xb) (x l  - x ~ ) ~ ]  

T T  = E [ ~ ( z  - x o ) ( x  - 30) A ] 
= A C A ~ .  ( 1 2 )  

This is not a similarity transformation! The reader can verify that the 
correlation matrix E ( X X ~ )  transforms the same way. 



3.2 Least Mean Square Error 

Principal components calculated with the correlation matrix have the prop- 
erty of minimizing the mean square error of the representation. For XCR* 
a random vector, which M dimensional approximation to  x (M < N) mini- 
mizes the mean square error of estimating x ? Again, pick a basis of eigen- 
vectors of Q for R ~ .  Then, an M dimensional estimation o f f  is 

while the original N dimensional vector is given by 

The square error in the estimate Z of f is 

The expected value (ensemble average) of r2 is given by 

Since Qei = X;e;. , and e; . Ej = bj j  , 



Clearly E(c2) will be minimized if the terms summed in 13 are the N - M 
smallest eigenvalues of C. 

Thus, we come to the following conclusion - we will minimize the mean 
square error in estimating 3cRM by 2cRN if we form 2 by projecting 5 
onto the M eigenvectors of Q corresponding to  the M largest eigenvalues A.  
Equation 13 gives the MSE resulting from estimating f by 2.  

Consequently, if we know the maximum tolerable error in the estimate 
2, and the eigenvalue spectrum of Q, we can determine how large a repre- 
sentation (M) is needed (i.e. pick M such that A; < tolerable error 
where X1 > A2 >, . . .,AN). 

Claim: It is not necessary to choose the basis vectors for RM along the 
M leading eigenvectors - any orthogonal set of basis vectors spanned by 
(e;, . . . , e;) will do as well. 

Proof 3.2 Let a; = RjiEj be a basis for RM formed from the first M 
eigenvectors of Q (those with the largest eigenvalues). Then, 

so ii; - i i j  = 6;j =r> RTR = 1 (fi; an orthonoma2 basis). 
Let the M-dim estimation of fcRN be 

Then for f write 

[i.e. fi; . e; = 01 
Then, the square error is 



And the mean square error is 

in agreement with (13). 



Figure 7: Two-layer, feed-forward network. 

4 Neural Network Implementations 

4.1 Self-supervised Back-propagation 

We saw in the last section that to minimize the mean square error in an M- 
dimensional estimate of an N-dimensional vector, we should choose the basis 
on R~ to span the subspace spanned by the first M principal eigenvectors 
(those with the largest eigenvalues) of the data's correlation matrix. 

Backpropagation is an algorithm designed to minimize mean square error 
in the input-output pairs xz, zz for a network. There is a variant of stan- 
dard backpropagation which accomplishes exactly the principal subspace 
projection we have been discussing. 

Suppose we configure a network as in Fig. 7 and train the network to 
perform the IDENTITY transformation. That is, train the network with 
input/output patterns 

{xZ, zz = xZ} 

over the ensemble of data points xr E R ~ .  
The network is trained to minimize the mean square error 

and will produce an encoding of the data {xz) on its hidden layer. In gen- 
eral, with non-linear activation functions on the hidden and output layers, 
the encoding will not be a simple projection onto the M-dim principal sub- 
space of Q. However, if we constrain the weights, and use linear activation 
functions then we do get a PCA out of the network. 

In Fig. 7, we take y = wx and r = wTy. Suppose we train the net to 
perform the identity map on some ensemble of zero mean vectors {XI) using 
the LMS algorithm [back-prop]. 



The mean square error 

E(c2) = E [(z - x)'] 

will be minimized by the back-prop (there are no local minima for this prob- 
lem) [4]. This mean square error can be written as 

~ ( c ' )  = Trace [wTwQwTw + Q - 2 ~ w ~ w  1 
where Q is the input ensemble's correlation matrix. To see this, first notice 
that the inner product can be represented as  

Expand the outer product and compute the trace, 

~ r a c e [ x z ~ ]  = Trace (( ) (212  ) )  

X l Z l  x1z2 2.. 

= f iace[x2? x 2 . 1  = x l z l + x ; - +  z x s z .  

Then the square error for one pattern pair is given by 

c2 = (z - x) . (z - x) = Trace[(z - x)(z - x ) ~ ]  

= Trace [{(wTw - l)r){(wTw - l)x)'] 

T T  = ~race [{ (w~w - l)x){x (w w - 1)) . 
The expectation of value c2 is 

E(r2) = Trace [(wTw - l)Q(wTw - 1)] 

Thus 
~ ( c ' )  = Trace [wTw~wTw - 2QwTw f Q] . (14) 

First, we will show that E(c2) is minimized when the rows of w are the 
principal M eigenvectors of C, and then show that orthogonal combinations 
also minimize E(c2). 



where QE; = X;E;  and 
X i  > X2 > , . . . , A N .  

Then, since the t7i are eigenvectors of Q 

and 

Finally, completing the first term in 14, 

The second term in 14 is 

And the last term is 
N 

Trace(Q) = E X i  . 
i=l 

Putting them together leaves in place of 14 , 



Thus E(c2) will be minimized if the sum in 15 is over the smallest eigenval- 
ues. Thus, E(e2) is minimized when the M rows of w are the principal M 
eigenvectors of Q . 

Next, we show that E(c2) is unchanged by rotating the rows of w within 
the M-dimensional PCA subspace. To see this, make an orthogonal trans- 
formation of the columns of wT 

where R : RM -+ RM, RRT = 1, then 

Trace [wtTw'QwtTwt] = T r a c e [ ~ w ~ w ~ ~ Q ~ w ~ w ~ ~ ]  

= Trace [ ( R R ~ ) w ~ w Q w ~ w ( R R ~ ) ]  

= Trace [wTwQwTw] 

and 

Trace [wt& wfl] = Trace [ W R ~ Q  RwT] 

= Trace [ R R T w ~ w T ]  

= Trace [WQ wT] 

Thus, E(c2) is invariant under orthogonal transformations of the rows of w 
that leave the M-dim principal subspace unchanged. 

E(c2) is minimized when the rows of w form an orthonormal 
basis for the M-dim principal subspace. 

4.2 Feature Discovery by Hebbian Learning 

In a classic paper, Oja [5] draws the connection between Hebbian learning 
and principal component analysis. We will review both Oja's original formu- 
lation and extensions that perform complete principal component analysis. 

Consider a single linear neuron with output activity y = w - 5. The input 
patterns 5 are assumed to be random vectors drawn from an unknown, but 
stationary, probability distribution. As each new pattern is presented, the 
vector of synaptic weights 8 is updated according to the Hebbian learning 
rule 

Sw = cry5 (16) 



Figure 8: Oja's single, linear neuron. 

where a is the learning rate. 
We will assume that a is small enough so that the change in w is adi- 

abatic (i.e., slow) with respect to the changes in 3 . Given this adiabatic 
assumption, we can average 6ti1 over the entire ensemble of input patterns 

Thus, on the average, the weight changes are driven by 

What does (17) produce? Expand in eigenvectors of Q 

Then the weight change is given by 

Or, for the change in the ith component of w, 



If we apply 19 iteratively, then after the nth iteration we find 

which diverges as n -+ oo . However, examine the ratio 

Clearly if A; > Aj then w;(n) / w j ( n )  + oo as n + oo . But if 
A j  > A; ,then w;(n) / w j ( n )  -+ 0 as n + oo . Thus, after many 
applications of (19),  the projection of .lii onto the eigenvector of Q with 
largest eigenvalue dominates, and  ti^ diverges in the direction of E;.  That is 

where CN -+ oo as n -+ oo. 
This divergent behavior for Hebbian learning laws has been known for 

a long time, and the learning rule in (16) needs to be augmented with a 
"forgetting" term to bound w. 

If suitable forgetting terms can be devised, then the neuron is useful as 
a principal component analyzer. Various bounding terms are appropriate. 
We will consider two. 



To summarize, if we average the Hebbian learning rule 

6a = [yz] (20 )  

over the ensemble of input patterns, the weight changes are driven by the 
correlation matrix, 

6 8  = aQw, (21) 

where Q = ~ ( x x ~ ) .  Repeated application of (21) gives 

and leads to a weight vector which diverges in magnitude, but points in the 
direction of the principal eigenvector of Q. 

Exercise 4.1 Let the input ensemble be formed from a fixed N-Dim vector 
ZO by adding independently distributed zero mean noise to each component. 
Thus 

X i  = ( X ~ + [ I ,  ~ : + [ 2 ,  . . . , x  % + [ N )  

where 
E ( [ j )  = 0  (zero mean) 

and E (titj) = u26;j (independently, identically distributed noise with vari- 
ance a2 ): 

(a) Show that the correlation matrix Q j j  = ( x i s j )  = (xzT) ; j  is given by 

(b)  Find the eigenvectors of Q and their associated eigenvalues. 

In order to  bound the weight vectors, a suitable term must be added to  
(20 ) .  The form suggested by Oja reads 

When averaged over an ensemble of input vectors, (23 )  becomes 



or, in matrix notation 

Under suitable conditions (the subject of stochastic approximation theory) 
the discrete update rule of (24) is equivalent to the differential equation 

The behavior of the solutions to (25) can be examined by expanding w in 
the basis of eigenvectors of Q, 

and substituting in (25) to obtain 

Take the inner product of this last expression with ik to recover 

Now, if (26) is to converge to a static equilibrium, we must have $f = 0 . 
So as t -t oo, we must have 

One possible solution to (27) is 

in which case w = f E l .  We need to show that this is, in fact, the solution 
that evolves from (26). 



The trick to  solving (26 )  is to examine the time course of the ratio of 
coefficients 2. Examine 

Thus the ratio evolves according to - 

which is a simple linear diflerential equation with constant coefficients. The 
solution of (28 )  is 

Clearly, if k > I then ak / a,  diverges at t --t oo (recall X 1  > X 2  > . . . > A N ) .  
Thus a1 dominates as t -+ m. We need to show that ( a l (  is bounded for 
t -t oo. Returning to (26 )  with k = 1, 

Since for large t ,  a1 dominates, we can approximate (30) by 

d 
-a1 dt - Xl(1 -  a:)al for t >> 0. (31 )  

Now we're really interested in &(a1)2 = 2 a1 % , so using (31)  

Equation (32 )  is seperable so we can integrate it in closed form 



Performing the integration leaves 

a: 
In(- ) = 2 ~ ~ t  + const. 

The last form can be rewritten as 

Thus as t + oo 
a l - t f l  
a ; + O ,  i f 1  

and so w + f El the principal eigenvector of Q .  

Exercise 4.2  The form of the update rule in (24) is not unique for our 
purpose (bounding lw l 2  ). A similar form 

also bounds Iwl2 . Following the derivation from (25) - (34), show that 
the continuous limit of (35), namely   ti^ = Qw -  ti^ - G)'LSI, converges to 
w = &fie l  . 

The form of (35) is also interesting since it can be derived from a potential. 
Let 

Then the gradient of V with respect to w is given by 



Thus (35) can be cast in the form 

the continuous form of which is 

Equations (37) or (38 tell us that w evolves by gradient descent on the 
potential surface of (36). 

Exercise 4.3 Show that the potential function 

( a )  has critical points at .cii = f AZ;, ~i an  eigenvector of Q ,  

(b) has a minimum at d = * f i ~ ~  X 1  > X 2  > . . . > AN and saddle 
points at all other critical points i n  (a), 

(c) has a local maximum at w = 0. 

(d) Sketch V(w) for w E R2. 

4.3 Capturing Higher-Order Eigenvectors 

An array of cells developing according to (23) or (35) would all converge to 
the principal eigenvector of Q = ~ ( x x ~ ) .  In order to retreive more of the 
eigenvectors, some additional interactions need to be added. There are at 
least two ways of accomplishing this: 

1. Feedback from the array to the input; 

2. Lateral connections between the output cells of the array. 

Lateral connections are quite involved, so we will look a t  a feedback-like 
scheme. The scheme was developed by Sanger [6]. The idea is to use the 
basic scheme of (23) to train the weight vector to the first node 



where yl = w 1  . S .  The first output node is trained according to (39) and 
converges to  the leading eigenvector, El . The weight vector to the second 
node is trained according to 

6tD2 = ( Y [ Y ~ ( z  - y l w l )  - Y;62] ( 4 0 )  

where y2 = tB2 ' 3 .  Notice that in the first term on the right-hand side of 
( 4 0 ) ,  the usual Hebbian rule has been modified. Rather than updating the 
weight vector in proportion to y25, the update is proportional to  y2 times 

z2 5 -  y l a l  = 5 -  (a1 . ? ) a 1  ( 4 1 )  

We can interprete ( 4 1 )  in several ways. The first equality tells us to 
calculate 3 2  by subtracting from the input 3, the output of the first node 
fed back to  the input through the weights w l ,  i.e. ylwl  . This may he 
interpreted as an inhibitory projection back to  the input plane. 

Suppose that w l  has converged to E l .  Then the output of the first node 
is yl = El - 3  and ( 4 0 )  becomes 

6tZ2 = C X [ Y ~ ( Z  - E l ( ~ l  - 5 ) )  - y ; ~ 2 ]  ( 4 2 )  

Averaging ( 4 2 )  and passing to the continuous time limit leaves the differen- 
tial equation 

Now the evolution of the component of w 2  along E l  is given by taking the 
inner product of ( 4 3 )  with El, 

Recalling that Q is positive definite, ( 4 4 )  says that 6 2  . E l  decays exponen- 
tially. We can determine the behavior of the solution of ( 4 3 )  by taking the 
inner product with Er, and using the same argument used to discuss Oja's 
formulation in 4.2.  Using a more direct approach, we define the projection 
operator 

T n1 5 1  - e le l  . ( 4 5 )  
This operator satisfies 

a. IIT = 111 

b. n 1 e l  = 0  

c. IIf = IIle for any 5 E R~ 
d. El (U1.ii) = 0  



and acts to  project vectors orthogonal to El. 
Apply 111 to  both sides of (43) and use (46) to obtain 

We know from (44) that at  late times g2 .El t 0, and so by the definition 
in (45), 111 a2 = w2. Furthermore, by (46a) and (46c), IITIII a;, = Using 
these last results, we can rewrite (47) as 

= ( n l ~ n r ) w 2  - [w2. ( n 1 ~ n T ) a 2 1 ~ 2  

for t >> 0. (48) 

Equation (48) says that at late times, changes in w2 are driven by 

Q = nl&nT . (49) 

In analogy with the development in Section 4.2, w2 will converge to the 
leading eigenvector of 0. It is straightforward to  show that 

and 
QE; = A & ,  i # 1 .  

Thus, E2 is the eigenvector of 0 with the largest eigenvalue. Hence, tijz 

converges to  kE2. 
The scheme extends to arbitrarily many output nodes (with the restric- 

tion that the number of nodes M is less than or equal to the dimension 
of the input space). The weight vector to the ith output node is adapted 
according to 

This scheme is very robust with respect to convergence, however the 
complexity involved in the feedback projections is high. Properly designed 
lateral connections between the output cells can achieve the same results, 
although such schemes are inherently less stable. 
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