
Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 1

A B S T R A C T
Many nearest neighbor data parallel

problems share a similar domain
decomposition strategy for hypercube
architectures. That strategy is to map sub-
blocks, or grains, of each array variable to the
available nodes in a manner that matches the
hypercube topology to the geometry of the
underlying problem, maximizing locality of
reference and minimizing message passing
overhead. Each node then applies the same
algorithm used in the original sequential code
to its subset of the data, synchronizing with its
neighbors as necessary.

This paper describes a domain
decomposition tool that accepts a sequential C
program with comment directives as input, and
produces a new SPMD (Single Program
Multiple Data) C program which can be run on
a hypercube of any size. Directives allow the
user to mark certain arrays to become
distributed memory virtual arrays, to limit
loops to indices that refer to the local sub-block
of an array, and to cause exchanges of boundary
values to occur between nodes.

The preprocessor approach maintains code
portability and is similar to some techniques
used on shared memory machines.

Introduction
Data parallel applications are often

considered the easiest to implement on
distributed memory architectures. Their
decomposition is relatively straightforward and
good speed-ups are usually obtained. Almost
anywhere problems are approached by grid-
point approximations, finite difference methods
or PDEs, hypercubes can be put to good use.
Other problems involving matrix mathematics
can also utilize distributed memory machines
well.

The mechanics of multidimensional array
decomposition onto hypercube or mesh
topologies of computing nodes is relatively
intuitive and straightforward. Various
languages and language extensions have been
proposed [CK 88] and implemented [KM 87,
KMV 87, Meh 89, RP 89, RS 89, Tse 89] to
address the issue of automatic and semi-
automatic domain decomposition, but most of
them require the programmer to rewrite code in
new languages, or to add new statements that
can compromise the code’s portability.

The domain decomposition tool described
in this paper operates on comment-directives
inserted into ordinary C source code. The
approach is equally applicable to FORTRAN

 Hypertasking:

 Automatic Data Parallel Domain Decomposition

on the Intel Parallel Supercomputer

Marc Baber
Dept. of Compter Science and Engineering

Oregon Graduate Institute of Science and Technology
 Intel Scientific Computers

Email: marc@isc.intel.com

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 2 June 1, 1990 Marc Baber

programs. The tool is called hypertasking
because its user interface was influenced by the
design of Cray Research’s microtasking
parallelization tool [Cra 85], and because it
provides loop-level parallelism for hypercube
distributed memory architectures. It is not
concerned with operating systems or
scheduling multiple processes or threads, as the
name might imply to some readers.
Hypertasking is intended to make it easy for
software developers to port their existing data
parallel applications to the hypercube without
making their code hardware specific.

In hypertasking, arrays can be decomposed
in any and all dimensions, but the number of
nodes allocated in any given dimension is
controlled by the underlying libraries, and is
always a power of two to preserve locality of
reference within the logical node mesh. All
arrays are decomposed into regular rectangular
sub-blocks. Guard rings [Fox+88] for each sub-
block are provided. The term “guard ring”
tends to imply a 2-D problem decomposed in
both dimensions, but the concept is extended in
this implementation to multiple dimensions.
This paper proposes guard wrapper as a
general term encompassing guard rings in 2-D
decompositions, guard shells in 3-D, guard
hypershells in 4-D, and so on. A guard wrapper
could be one array element thick for 2-D 5-
point stencils, or two elements thick for 2-D 9-
point stencils, for example. Guard wrappers
can be as thick as the user wishes, but not larger
than the sub-block itself. For example, if each
node’s sub-block of a two-dimensional array is
two elements by six elements, then the wrapper
thickness cannot be more than two or it would
contain the entire neighboring sub-block, plus
elements owned by a third node.

Each element is stored on one or more
nodes, though it is only owned by one node.
Any node can read or write any element in the
distributed virtual array, but communication
costs make non-local reads and writes
expensive. Application algorithms should
exhibit good locality of reference to make

hypertasking worthwhile.
To optimize performance for non-local

operations, several efficiency features,
discussed in the section on domain
decomposition, have been implemented,
including the combination of local sub-blocks
with their guard wrappers in the same oversized
array, and array base-shifting. Two modes of
implicit message passing are currently offered,
including a global exchange of all boundary
values to update guard wrappers, and probes
for single array elements when non-local
elements are referenced.

This paper will begin by discussing the
advantages and disadvantages of a
preprocessor approach to parallel programming
compared to other approaches. Further sections
will describe the hypertasking user interface
with examples and outline hypertasking’s
internal algorithms for decomposing arrays.
Finally, performance benchmarks will be
discussed, along with plans for future research
and development.

Rationale and Related Work

It seems inevitable that distributed memory
computers will be based on mass-produced
general purpose microprocessors for the
foreseeable future. With general purpose
processors come general purpose compilers. It
is unlikely that compiler vendors will support
distributed memory extensions while
distributed memory computers represent a
small fraction of their market. Since it is
desirable to leverage the general purpose
compilers, rather than write completely new
compilers, the remaining choices are to
enhance the general purpose compiler or to use
a preprocessor or pre-compiler. Enhancement
requires compiler source code (often
expensive), and learning time to understand the
internals of the compiler. Other problems with
the compiler extension approach include how
to merge new releases of the compiler source
with the distributed memory extensions

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 3

efficiently and correctly, and how to port the
extensions to compilers targeted for different
processors and architectures.

The most practical approaches,
preprocessors and pre-compilers, are both built
upon existing sequential compilers. This paper
proposes paracompiler as a term for the class
of source code transformers that accept either a
parallel language or an augmented sequential
language as input and produce sequential
source code (typically C or Fortran) as output.
The term suggests both the parallel nature of
these software tools and the fact that they are
not true compilers in the same sense that
“paramedics” are not true doctors. A
paracompiler may be a simple preprocessor
[Cra 85], performing only direct textual
substitutions, or it may be a pre-compiler [KM
87, KMV 87, QHJ 88, ZBG 88, Meh 89, RP 89,
RS 89, Tse 89], utilizing an intermediate
structure of tokens to represent the program
during the transformation process. Pre-
compilers may also be interactive-- suggesting
transformations to the user and soliciting
approval or guidance.

One advantage of hypertasking is that it
produces executables that can be run on any
size hypercube from one node up to any power
of two. Some other paracompilers [CK 88, RS
89] produce cube size dependent and/or fixed
grain size executables. As hypercubes are used
more in production environments, users may
often not know at compile time what size
subcube will be available to them at run time,
so cube size flexibility may grow in
importance.

The guard wrapper provided by
hypertasking is ideal for most data parallel
applications, and single element polling
provides access to elements not stored locally,
but intermediate granularities, such as non-
local row references, or optimized combined
references to the same non-local node [KMV
87] are not yet implemented.

New or extended programming languages,
implemented as pre-compilers [QHJ 88, ZBG

88, Meh 89, RP 89, RS 89], produce a high-
level language as their target, and can approach
stand-alone compilers in sophistication of their
analysis and optimization heuristics.
Unfortunately, the parallel language can
become a barrier for programmers if it is too
unfamiliar or cumbersome. Pre-compilers,
based on sequential languages, but providing a
small and powerful set of extensions, may be
the best overall solution. They require minimal
retraining for the programmer; they can
perform quite sophisticated code
transformations, and users can easily hand tune
the generated code.

Paracompilers which have the same
language as their source input and target output
[Cra 85, ACK 87] are usually easy to learn and
use. This approach is best for preserving
portability.

Hypertasking is currently implemented
with a preprocessor. Future versions will
employ pre-compilers, perform dependency
analysis and handle more sophisticated implicit
message passing while requiring fewer
directives from the user.

The Hypertasking User Interface
Hypertasking directives appear as

comments in C, so the source can be compiled
with or without hypertasking, depending on
whether or not the source is preprocessed by
hype. The un-hypertasked program can only
run on one node, of course, but this feature
allows hypertasking to be added to a program
in a non-intrusive manner, preserving
portability while making speed-up
measurements relatively easy.

Hypertasking Directives
The hypertasking technique relies on the

user to insert comment directives into C code
which is then rewritten by a preprocessor. The
three main directives are ARRAY, BRACKET and
EXCHANGE.

The ARRAY Directive

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 4 June 1, 1990 Marc Baber

The ARRAY directive is inserted in the user’s
code before a standard array declaration.
Arguments for the ARRAY directive specify
guard wrapper thickness, and which
dimensions of the array are to be distributed.

 The general ARRAY directive syntax is:

 /* iSC ARRAY <thick> <Y|N> ... */

“Y” and “N” are used as distribution flags
and indicate, for each dimension, whether or
not the array may be distributed in that
dimension. The ARRAY directive in Example 1
sets the guard wrapper thickness to one, and
distributes a 3-D array in the first two
dimensions.

Guard wrappers store values of array
elements that are adjacent to local elements in
the virtual array, but are owned by a neighbor
node. One or more elements outside of the local
sub-block’s boundaries are stored in every
direction, including diagonals. The thickness of
the guard wrapper is controlled by the <thick>

. . .
/* iSC ARRAY 1 Y Y N */
float pixels[1000][1000][2];
. . .
new = 0 ; old = 1 ;
for (i = 0 ; i < smooth_iterations ; i++) {
 /* iSC EXCHANGE pixels */
 /* iSC BRACKET pixels 1*/
 for (x = 0 ; x < 1000 ; x++) {
 /* iSC BRACKET pixels 2 */
 for (y = 0 ; y < 1000 ; y++) {
 pixels[x][y][new] = weighted_average(pixels[x+1][y-1][old],

pixels[x+1][y][old],
pixels[x+1][y+1][old],

 pixels[x][y-1][old],
pixels[x][y][old],
pixels[x][y+1][old],
pixels[x-1][y-1][old],
pixels[x-1][y][old],
pixels[x-1][y+1][old]);

 }
}

new = (new+1)%2; old =(old+1)%2;
}

Example 1: An image processing application

argument to the ARRAY directive. Guard
wrapper updating is controlled by the
EXCHANGE directive, discussed in the next
section.

The EXCHANGE Directive
Guard wrappers of the specified array are

updated between neighboring nodes each time
the code from an EXCHANGE directive is
executed.

The general EXCHANGE directive syntax is:

/* iSC EXCHANGE <array-name> */

Generally, the EXCHANGE directive is used at
the beginning of the outermost loop in an array
processing section , as in the pixel processing
code shown in Example 1. If multiple arrays are
modified in the loop, multiple EXCHANGE
directives must be used.

The user is responsible for inserting the
EXCHANGE directive at appropriate points in his
or her program to make sure the algorithm uses

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 5

current values.

The BRACKET Directive
The BRACKET directive syntax is:

/* iSC BRACKET <array> <dim> */

The BRACKET directive has two arguments,
array name and dimension number. It precedes
a C for-loop whose local iterations are to be
limited to values that are valid local indices for
the specified array in the specified dimension.

The user is responsible for determining
whether the iterations of a loop are
independent. Fortunately, for many problems
such as CFD and reservoir modelling,
iterations are inherently parallel, and the
problem reduces to detecting implementations
that impose restrictions in the algorithm that do
not exist in the actual physical problem.

Example 1 demonstrates a technique used
in Jacobi algorithms to avoid copying the new
array into the old array at the end of each
iteration. Two variable indices to the third
dimension are toggled between 0 and 1 and, in
effect, swap old and new values. Only the first
two dimensions are distributed and BRACKETed.
By not distributing the third dimension of the
pixels array, it is guaranteed that each old
element will be stored on the same node as its
corresponding new element.

The LOCAL Directive
Array references and assignments can be

either global or local. Global references are the
default generated by hypertasking, and
represent the general case for distributed
memory virtual arrays. A global array reference
can access any element anywhere in the
hypercube. Global references and assignments
are implemented with conditional expressions
that are resolved without subroutine calls for
elements in the local sub-block, but which
require a subroutine call, and usually message
passing, to return or update the values of
elements owned by other nodes.

If the user knows that a given array
reference or assignment can be satisfied locally,
it can be declared local by inserting the
string, /*LOCAL*/ between the array name
and its indices, as shown in the example in the
next section. A local array reference saves the
cost of evaluating the conditional expression to
determine if the element is local, and should
only be used if the user knows that the
algorithm will only reference values that are
local or at least are contained in the local guard
wrapper and are current.

Example: Gauss-Siedel/Jacobi Problem
Example 2 is an implementation of a

Gauss-Siedel/Jacobi hybrid algorithm for
thermal problems. This particular code solves a
two-dimensional 32-by-32 floating point array
representing a square thermal plane with four
constant edge temperatures. The convergence
test and output of the final results did not
convert cleanly, so conditional code was added.

To run the above program with
hypertasking, the user runs the source through
the hype preprocessor, which changes array
references to macros, modifies for loops, and
adds calls to hypertasking library routines. The
resulting C program is then compiled and
linked with the hypertasking libraries.

Once the program is compiled and linked,
the user need only allocate a cube of any size,
and load the executable.

Domain Decomposition
This section describes the algorithm used

by hypertasking to determine how a given array
is decomposed onto the available nodes. An
initialization routine (ht_init) is called at the
beginning of program execution to determine
what section of the array is local. Each node
uses the current cube dimension, its own
unique node identifier, the global dimensions of
the virtual array and the user’s directives
(specifying which dimensions to decompose)
to calculate the size of one sub-block and which
sub-block it owns.

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 6 June 1, 1990 Marc Baber

Example 2: Gauss-Seidel Thermal Problem
#define SIZE 32
#include <stdio.h>
/* iSC ARRAY 1 Y Y */
float ii[SIZE][SIZE];
/* iSC ROUTINE */
main() {
int i,j,k,l,m,n,o,p;
float q,r,s,t,u,v;
char density[11];

/* iSC INIT */
strcpy(density,” .:!-=*%#@E”);
/* initialization of constant temperatures */
/* iSC BRACKET ii 1 */
for (j = 0 ; j <= SIZE-1 ; j++) {

/* iSC BRACKET ii 2 */
for (k = 0 ; k <= SIZE-1 ; k++) {
ii/*LOCAL*/[j][k] = (((k==SIZE-1)&&(j>0)&&(j<SIZE-1))*100.0 +
(j==SIZE-1)*1000.0 + (j==0)*500.0);

};
};

r = (float)(SIZE*SIZE+1);
i = 0;
o = mclock();

/* repeat until convergence criterion is met */

while (r > (SIZE)) {

i++;
r = 0;
/* iSC EXCHANGE ii */
/* iSC BRACKET ii 1 */
for (k = 1 ; k <= (SIZE-2) ; k++) {

* iSC BRACKET ii 2 */
for (l = 1 ; l <= (SIZE-2) ; l++) {
 q = ii/*LOCAL*/[k][l];
 ii[k][l]/*LOCAL*/= (ii/*LOCAL*/[k-1][l] + ii/*LOCAL*/[k+1][l] +

ii/*LOCAL*/[k][l-1] + ii/*LOCAL*/[k][l+1])/4.0;
q = q - ii/*LOCAL*/[k][l];
if (q < 0) { q = -q; };
r = r + q;

}
}
#ifdef hypertasking
gssum(&r,1,&s);
#endif

} ;
p = mclock() - o;
#ifdef hypertasking
if (mynode() == 0) {

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 7

Example 2 (Continued):
#endif

for (k=0;k<SIZE;k++) {
for (l=0;l<SIZE;l++) {

n = (int)(ii[k][l])/100;
putchar(density[n]);

};
putchar(‘\n’);

};
printf(“SIZE=%d NUMNODES=%d\n”,SIZE,numnodes());
printf(“TIME=%d milliseconds\n”,p);
printf(“ITERATIONS=%d\n”,i);
o = (SIZE-2)*(SIZE-2)*4*i;
t = (float)o/(float)p;
u = t/(float)numnodes();
printf(“OPERATIONS=%d\n”,o);
printf(“Kflops/sec=%f\n”,t);
printf(“Kflops/sec/processor=%f\n”,u);
#ifdef hypertasking
};
gsync();
#endif
}

Mapping the Hypercube to Array Dimensions
First, ht_init divides the cube dimensions

among the array dimensions which are eligible
for decomposition, according to the user’s
directives. Undecomposed dimensions of the
array are assigned zero.

The goal of cube dimension mapping is to
minimize the ratio of exterior elements to
interior elements, without sacrificing locality of
reference. The mapping algorithm assigns each
cube dimension to the array dimension that will
result in the smallest increase in cross-sectional
area, taking the previous cube dimension
assignments into account.

Another way to look at this problem is that
each assignment of a cube dimension to an
array dimension halves the size of every sub-
block. In this view, the goal is to reduce the
maximum boundary value message size. Since
all messages can be sent in all dimensions/
directions nearly simultaneously in
hypertasking, the largest boundary value
message is the critical limitation to speed-up.

An algorithm, based on this view, finds the
largest “side” (edge in 2-D, face in 3-D, etc.)
and assigns the next cube dimension in an
orthogonal array dimension to split the largest
“side” of the sub-block.

Both goals are achieved by the same
algorithm, demonstrated below, which is based
on the former abstraction, and is simpler.

As an example, consider a 3-D array
A(2,4,16) decomposed on a 6-D hypercube (64
nodes) (Fig. 1). The cost of dividing A in each
of its three dimensions is initially:

 c = 2n * s/k

where:
c = cost of further decomposition of the

current dimension
n = how many cube dimensions have

already been assigned to the current dimension
s = size of the array (total number of

elements)
k = declared array size in the current

dimension

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 8 June 1, 1990 Marc Baber

.

.

.

Figure 1: Stepwise 3-D domain decomposition

A(2,4,16)

Step 1:
Divide third dimension.
Cost = 1 x 8 = 8

Step 2:
Divide third dimension.
Cost = 2 x 8 = 16

Step 3:
Divide second dimension.
Cost = 1 x 32 = 32

Step 4:
Divide third dimension.
Cost = 4 x 8 = 32

Step 5:
Divide first dimension.
Cost = 1 x 64 = 64

Step 6:
Divide second dimension.
Cost = 2 x 32 = 64

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 9

c1 = 20 * 128/2 = 64
c2 = 20 * 128/4 = 32
c3 = 20 * 128/16 = 8

The first dimension of the cube is mapped
to dimension 3 of the array, incurring the
minimum cost of 8 elements of the array being
exposed to inter-nodal communication
overhead by “slicing” the array once. Actually,
16 elements are exposed, since two surfaces are
created, but since the exchange can happen in
parallel and the extra factor of two would only
complicate matters unnecessarily, we will
count only the cross-sectional area, or eight
units, in this case. One dimension of the
available cube has now been assigned and five
remain. The cost of further decomposition of
dimension three doubles and the relative costs
of assigning the next cube dimension become:

c1 = 20 * 128/2 = 64
c2 = 20 * 128/4 = 32
c3 = 21 * 128/16 = 16

The second dimension of the cube is also
assigned to dimension 3 of the array, for a cost
of 16 units. On the next iteration the updated
costs are:

c1 = 20 * 128/2 = 64
c2 = 20 * 128/4 = 32
c3 = 22 * 128/16 = 32

The algorithm arbitrarily selects the lower
dimension number when costs are equal. The
third cube dimension is assigned to dimension
two of the array, and its cost is updated to 64.
The fourth assignment goes to dimension three
again, and its cost doubles to 64 also. The fifth
and sixth assignments would go to dimensions
one and two, respectively, leaving the final cost
list as follows:

c1 = 21 * 128/2 = 128
c2 = 22 * 128/4 = 128

c3 = 23 * 128/16 = 64

 Notice that the number of cube dimensions
mapped to array dimensions one and three
differ by two. In extreme cases, say
B(2,2,128), all the cube dimensions may map
to a single array dimension, even if all the array
dimensions were eligible for decomposition,
according to the user’s directives.

Through out the rest of this paper, the
notation A.dims(n) will be used to refer to the
number of cube dimensions that were mapped
to the nth dimension of an array A.

Interpreting Node ID Bits
For each decomposed array, hypertasking

maps or “unfolds” the hypercube into an n-
dimensional logical mesh, where n is either the
dimension of the hypercube or the number of
array dimensions decomposed, whichever is
the lesser.

The ht_init routine partitions the Node ID
into bit strings with lengths corresponding to
the values of A.dims(k) where k is a series
1..n for an n-dimensional array.
Undecomposed dimensions get zero-length bit
strings, and are, in effect, ignored for the
purposes of defining the logical node mesh.

For mesh-interconnected architectures,
hypertasking would use each bit string as a
simple binary number, indicating which sub-
block, in the given dimension, the current node
owns. For example, consider a 2-D array
B(0..79,0..79) decomposed in both
dimensions on a 64-node system, connected as
an eight-by-eight 2-D mesh (Fig 2a). Node 29
would have 011-101 as its binary node
identifier (divided into two three-bit strings).
Thus, node 29 would be in the third sub-block
in the first dimension, the fifth sub-block in the
second dimension, and would contain
B(20..29,40..49).

 The simple use of bit strings as binary
counters is unsatisfactory for hypercube
architecures. In the above example, element
B(0,19) would map to node id 000-001,

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 10 June 1, 1990 Marc Baber

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

000-000 000-001 000-010 000-011 000-100 000-101 000-110 000-111

001-000 001-001 001-010 001-011 001-100 001-101 001-110 001-111

010-000 010-001 010-010 010-011 010-100 010-101 010-110 010-111

011-000 011-001 011-010 011-011 011-100 011-101 011-110 011-111

100-000 100-001 100-010 100-011 100-100 100-101 100-110 100-111

101-000 101-001 101-010 101-011 101-100 101-101 101-110 101-111

110-000 110-001 110-010 110-011 110-100 110-101 110-110 110-111

111-000 111-001 111-010 111-011 111-100 111-101 111-110 111-111

0

0

79

79

0 1 3 2 6 7 5 4

8 9 11 10 14 15 13 12

24 25 27 26 30 31 29 28

16 17 19 18 22 23 21 20

48 49 51 50 54 55 53 52

56 57 59 58 62 63 61 60

40 41 43 42 46 47 45 44

32 33 35 34 38 39 37 36

000-000 000-001 000-011 000-010 000-110 000-111 000-101 000-100

001-000 001-001 001-011 001-010 001-110 001-111 001-101 001-100

011-000 011-001 011-011 011-010 011-110 011-111 011-101 011-100

010-000 010-001 010-011 010-010 010-110 010-111 010-101 010-100

110-000 110-001 110-011 110-010 110-110 110-111 110-101 110-100

111-000 111-001 111-011 111-010 111-110 111-111 111-101 111-100

101-000 101-001 101-011 101-010 101-110 101-111 101-101 101-100

100-000 100-001 100-011 100-010 100-110 100-111 100-101 100-100

0

0

79

79

B(0,19) B(0,20)

B(0,19) B(0,20)

Figure 2a: Simple Array Decomposition for Mesh Architectures

Figure 2b: Array Decomposition with BRGCs for Hypercube Architectures

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 11

whereas B(0,20) would map to node id 000-
010. Since the two node ids differ by two bits,
the two nodes are not directly connected.

Therefore, for hypercubes, each bit string is
seen as the binary reflected gray code (BRGC)
of the sub-block’s position in a given
dimension (Fig. 2b). The algorithm applies a
BRGC inverse function to the bit string to
determine its node’s actual position in the
logical node mesh. For mesh-interconnected
architectures, an element’s home node would
be determined by concatenating bit strings
which are calculated by dividing the element’s
index in the corresponding dimension by the
size of the sub-block in that dimension and
truncating. To use BRGC in the logical node
mesh, an additional step of converting each bit
string to its gray code is performed before
concatenation.

This method guarantees that locality of
reference within an array is preserved within
the logical node mesh, and that global
boundary value exchanges can occur

simultaneously for all nodes in all dimensions
without any contention for channels, except in
the case of diagonal boundary-values.

Guard Wrappers
After the ht_init routine determines the

size of one sub-block, it allocates a continuous
segment of memory large enough to contain the
sub-block plus a guard wrapper of a user-
specified thickness, usually one or two
elements. The sub-block is managed in
memory like a multidimensional C array that
encompasses both the sub-block and the guard
wrapper. As a result, both internal and external
elements access their neighbors, both local (in
the sub-block) and non-local (in the guard
wrapper) using the same addressing (Fig 3).
Thus, if no guard wrapper updating is

Figure 3:
Since sub-blocks and guard wrappers are
stored in the same array, every element in
the local sub-block calculates the addresses
of its neighbors identically.

0 1 2

8

16 17 18

Node 9 10

 (8,8)

 (7,7)

 (8,15)

 (7,15)

 (8,15) (8,16)

Offset = -77 Offset =
 -85

Original Sub-Block Pointer

Figure 4:
The pointer to the sub-block on node 9 is off-
set by (7 x 10 + 7) = 77, to simplify (speed up)
address calculations. Note that with offsets,
the address for element (8,15) is 95 on both
nodes 9 and 10.

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 12 June 1, 1990 Marc Baber

necessary during an iteration, processing of the
local sub-block can be vectorized as a single
loop (or nested loop set); the loop(s) would not
have to be split to accommodate different array
addressing modes.

Array Base Shifting
In order to avoid the cost of subtracting the

lowest local indices from the indices of a
desired array element each time an element is
referenced, ht_init subtracts from the sub-
block pointer a value equal to the calculated
relative address of the local element with
minimum indices in all dimensions.

For example, consider a 2-D 64-by-64 array
decomposed on a 64-node (6-D) hypercube
mapped into an eight-by-eight logical node
mesh (Fig. 4). In this example, we will ignore
gray codes for simplicity, and assume that
nodes in the same dimension are numbered
sequentially. Node nine (001-001 node
identifier) would contain the sub-block
A(8..15,8..15), or A(7..16,7..16)
counting the guard wrapper. With the guard
wrapper one element thick, the local sub-block
is a ten-by-ten array. Originally, the sub-block
pointer points to A(7,7). To get A(9,9), you
would have to calculate the offset as follows:

(9-7)*10 + (9-7)*1 = 22

The offset for A(7,7) is initially zero. If we
did not subtract the local minimums from the
indices, the address of A(7,7) would be

 7*10+7 = 77

 ht_init, in this case, would subtract 77
from the address stored in the sub-block
pointer, so that all offsets could be calculated
without subtracting. As one might expect, no
array bounds checking is provided.

A major advantage of base shifting is that a
given element in the global virtual array has the
same offset on its home node as it does on every
node where it appears in a guard wrapper.

Performance Results
Figure 5a is a 3-D graph showing the

relations between hypercube size (or number of
processors), problem size and individual
processor efficiency for a hypertasked program
running on an iPSC/2 witout SX acceleration.
Figure 5b shows the same information for the
iPSC/860. Efficiency is not sacrificed
significantly (linear speed-up is approached)
for large problems or small cube sizes, but the
combination of large numbers of processors
and small problem sizes yields very poor
efficiency.

For comparison, a flat surface level with the
single node unhypertasked performance would
indicate perfect, linear speed-ups for any
number of processors. A binary logarithmic
decay (running down from left to right) would
define a break even surface, where a problem of
a given size would run in the same wall clock
time on any size hypercube.

The benchmark problem was a Gauss-
Seidel/Jacobi hybrid algorithm finding a
thermal equilibrium for a 2-D, homogeneous,
square material with constant temperatures at
the edges, using a five point stencil and simply
averaging neighbor values to obtain each
element’s value. The algorithm is a hybrid
because boundary values are not updated
during each iteration, so at the edges of each
sub-block the algorithm uses some old values
from the previous iteration (Jacobi) whereas a
pure Gauss-Seidel algorithm would always use
current iteration values for the north and west
neighbors. In the interior of each sub-block, the
algorithm is entirely Gauss-Seidel.

The performance graphs in Figure 5
represent typical speed-ups for parallel
algorithms, and do not reflect the slight
degradation of the Gauss-Seidel/Jacobi hybrid
algorithm as more processors are used. If a pure
Jacobi algorithm were used, no such
degradation would occur, since the Jacobi
algorithm is completely parallelizable. The
efficiency graph would then exactly match the
graphs in Figure 5.

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 13

1 2 4 8 16 32

0

20

40

60

80

100

8

128

16
32

48
64

Problem Size

Kflops
per
Proc.

Figure 5a: Performance Results for the iPSC/2

8 16
1 2 4

8
16

32
48

64
96

128
256

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Problem Size

Mflops

per

Proc.

Figure 5b: Performance Results for the iPSC/860

Number of Processors

Number of Processors

86.4 Kflops = 100% efficiency

2.65 Mflops = 100% efficiency

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 14 June 1, 1990 Marc Baber

The following table shows the number of
iterations required to converge for various
problem sizes and algorithms (G-S indicates
Gauss-Seidel and G-S/J-n. is the G-S/Jacobi
hybrid running on an n-node cube). The
percentage of degradation from pure Gauss-
Seidel performance is shown in parentheses.
Interestingly, the degradation is minimal for
larger problems and small cube sizes-- its main
impact is on cube and problem size
combinations that would not yield good speed-
ups anyway.

Algorithm Problem Size
162 322 642 1282

==============================
G-S 118(0) 431(0) 1495(0) 4929(0)
G-S/J-2 123(4) 440(2) 1509(1) 4948(0)
G-S/J-4 129(9) 450(4) 1525(2) 4972(1)
G-S/J-8 135(14) 461(7) 1544(3) 5001(1)
G-S/J-16140(19) 471(9) 1561(4) 5028(2)
G-S/J-32151(28) 491(14) 1594(7) 5080(3)

==============================
Jacobi 200(69) 720(67) 2420(62) 7569(54)

The temperatures were stored as C float
types (single precision). The hypertasking
libraries and the hypertasked version of the
main program were compiled with the
Greenhill C compiler using the -OLM
optimization switches, without any attempts to
use vectorization.

These benchmarks were measured before
BRGC node mapping was completed. With
BRGC logical node mesh-mapping, there
should be no degradation in performance if the
problem size and the cube size both grow
proportionally.

Future Plans
Since hypertasking can be adapted to mesh-

topology architectures as well as hypercubes, it
will be a valuable tool for comparing the
efficiency and speed of various connection
topologies and technologies which may be
investigated in the future.

Combining vectorization (pipelined
execution) with automatic decomposition on

the Intel/860 will probably exhibit aggregate
calculation rates in the Gigaflop range or more
for sufficiently large problems. To get the same
efficiencies found in the previous section, the
required problem sizes will likely be larger. I
would like to quantify, experimentally, how
much larger problems must grow to preserve
efficiency.

The ability to deallocate, reallocate, grow
and shrink virtual arrays can be added to
hypertasking fairly easily. Such a feature would
allow the user to easily employ multigrid
methods, or to change the decomposition
strategy for performance gains in different
sections of an algorithm. Dynamic arrays
would also require sequential versions of the
new routines to be implemented in order to
preserve the goal that hypertasked programs
should run with essentially the same
capabilities as the sequential versions.

A Fortran version of hypertasking would
greatly increase the technique’s usefulness,
since many, if not most, of the applications that
would most benefit from hypertasking are
written in Fortran. The difficulty of
implementing a Fortran version stems from
Fortran’s inability to support POINTER types
which are useful for dynamic memory
management. A Fortran version can be
implemented easily if POINTER type
extensions are provided in the underlying
Fortran compiler similar to Cray Research’s
CFT extension. If not, a Fortran program can be
encased in C code above and below it in the
calling hierarchy. The new main program,
written in C, would allocate space for sub-
blocks in the normal way, and then pass the
sub-block’s dimensions to the Fortran main
program, converted to subroutine form. Within
the Fortran program, only standard array syntax
would be used, but the order of subscripts
would be reversed to account for the
differences in array allocation in C and Fortran.

A more robust preprocessor, based on lex
and yacc, will allow some directives to be
eliminated and provide the programmer greater

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Marc Baber June 1, 1990 Page 15

latitude. Dependency analysis could generate
or replace LOCAL directives and determine
proper guard wrapper thickness.

Ideally, the preprocessor would divide the
source program into sequential and parallel
sections that would be compiled and run on the
cube host and cube nodes respectively, in a
manner similar to how Cray microtasking
delineates sequential and parallel routines.
When the main program, running on the host,
reaches a call to a hypertasked routine, it will
allocate a cube of an appropriate or available
size, load the hypertasked routine onto the
nodes, pass parameters and global variables as
host-to-node messages, and wait for cube
execution to complete. This approach improves
cube utilization in a multi-user environment,
because cubes are only allocated for parallel
work. Sequential sections of other programs
can run on the host while the first program
waits for its node part to complete, and the
hypercube resource itself can go from one
parallel code to another, executing a minimum
of scalar code.

A more intelligent preprocessor, or pre-
compiler, would probably evolve from the
current level to an interactive precompiler first,
and then, gradually to a non-interactive
precompiler, as more heuristics are
encompassed within the program.

Conclusions
Hypertasking represents an approach to

data parallel programming that requires
minimal source code changes in the user’s
application, and can be expected to deliver
optimum performance on either hypercube or
mesh topology architectures for a large class of
grid point applications. The technique currently
requires the user to have a clear understanding
of the hypercube architecture and when array
elements should be processed in parallel.
Future versions may go beyond the current
preprocessor front-end and provide
dependency analysis and other features to
further free the parallel programmer from the

details of porting applications to distributed
memory architectures.

References
 [ACK 87] Allen, R., Callahan, D., Kennedy, K., “Auto-

matic Decomposition of Scientific Programs for
Parallel Execution,” Conference Record of the Four-
teenth Annual ACM Symposium on Principles of
Programming Languages, Published by the Associ-
ation for Computing Machinery, (1987).

[CK 88] Callahan, D., Kennedy, K., “Compiling Pro-
grams for Distributed-Memory Multiprocessors,”
The Journal of Supercomputing, 2, (1988), 151.

[Cra 85] Cray Research, Inc., 1985, “Multitasking User
Guide,” CRI internal technical note, SN-0222.

[Fox+88] Fox, G., Johnson, M., Lyzenga, G., Otto, S.,
Salmon, J., Walker, D., Solving Problems on Con-
current Processors, Vol. 1, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1988).

[KM 87] Koelbel, C., Mehrotra, P., “Semi-Automatic
Domain Decomposition in BLAZE,” in Proceedings
of the 1987 International Conference on Parallel
Processing, Published by the Pennsylvania State
University Press, University Park, Penn. (1987).

[KMV 87] Koelbel, C., Mehrotra, P., Van Rosendale, J.,
“Semi-automatic Process Partitioning for Parallel
Computation,” International Journal of Parallel
Programming, 5, (1987), 365.

[Meh 89] Mehrotra, P., “Programming Parallel Architec-
tures: The BLAZE Family of Languages,” in Pro-
ceedings of the Third SIAM Conference on Parallel
Processing for Scientific Computing, Published by
the Society for Industrial and Applied Mathematics,
Philadelphia, Penn. (1989).

[QHJ 88] Quinn, M., Hatcher, P., Jourdenais, K., “Com-
piling C* Programs for a Hypercube Multicomput-
er,” Proceedings of the ACM/SIGPLAN Parallel
Programming: Experience with Applications, Lan-
guages and Systems, New Haven, Connecticut, July
19-21, 1988. Published by the Association for Com-
puting Machinery.

[RP 89] Rogers, A., Pingali, K., “Process Decomposition
Through Locality of Reference” in Proceedings of
the SIGPLAN ‘89 Conference on Programming
Language Design and Implementation, Published
by Association for Computing Machinery Special
Interest Group on Programming Languages, Port-
land, Ore. (1989).

[RS 89] Rosing, M., Schnabel, R., “An Overview of
Dino -- A New Language for Numerical Computa-
tion on Distributed Memory Multiprocessors,” in
.Proceedings of the Third SIAM Conference on Par-
allel Processing for Scientific Computing, Published

Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 16 June 1, 1990 Marc Baber

by the Society for Industrial and Applied Mathemat-
ics, Philadelphia, Penn. (1989).

[RSW 88] Rosing, M., Schnabel, R., Weaver, R., “Dino:
Summary and Examples,” Unpublished University
of Colorado at Boulder technical report CU-CS-
386-88, (1988).

[Tse 89] Tseng, P., “A Parallelizing Compiler For Dis-
tributed Memory Parallel Computers,” Carnegie
Mellon University Ph.D. dissertation (1989).

[ZBG 88] Zima, H., Bast H., Gerndt, M., “SUPERB: A
tool for semi-automatic MIMD/SIMD paralleliza-
tion,” Parallel Computing, 6, (1988), 1.

