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A B S T R A C T
Many nearest neighbor data parallel 

problems share a similar domain 
decomposition strategy for hypercube 
architectures. That strategy is to map sub-
blocks, or grains, of each array variable to the 
available nodes in a manner that matches the 
hypercube topology to the geometry of the 
underlying problem, maximizing locality of 
reference and minimizing message passing 
overhead. Each node then applies the same 
algorithm used in the original sequential code 
to its subset of the data, synchronizing with its 
neighbors as necessary.

This paper describes a domain 
decomposition tool that accepts a sequential C 
program with comment directives as input, and 
produces a new SPMD (Single Program 
Multiple Data) C program which can be run on 
a hypercube of any size. Directives allow the 
user to mark certain arrays to become 
distributed memory virtual arrays, to limit 
loops to indices that refer to the local sub-block 
of an array, and to cause exchanges of boundary 
values to occur between nodes.

The preprocessor approach maintains code 
portability and is similar to some techniques 
used on shared memory machines. 

Introduction
Data parallel applications are often 

considered the easiest to implement on 
distributed memory architectures. Their 
decomposition is relatively straightforward and 
good speed-ups are usually obtained. Almost 
anywhere problems are approached by grid-
point approximations, finite difference methods 
or PDEs, hypercubes can be put to good use. 
Other problems involving matrix mathematics 
can also utilize distributed memory machines 
well.

The mechanics of multidimensional array 
decomposition onto hypercube or mesh 
topologies of computing nodes is relatively 
intuitive and straightforward. Various 
languages and language extensions have been 
proposed [CK 88] and implemented [KM 87, 
KMV 87, Meh 89, RP 89, RS 89, Tse 89] to 
address the issue of automatic and semi-
automatic domain decomposition, but most of 
them require the programmer to rewrite code in 
new languages, or to add new statements that 
can compromise the code’s portability.

The domain decomposition tool described 
in this paper operates on comment-directives 
inserted into ordinary C source code. The 
approach is equally applicable to FORTRAN 
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programs. The tool is called hypertasking 
because its user interface was influenced by the 
design of Cray Research’s microtasking 
parallelization tool [Cra 85], and because it 
provides loop-level parallelism for hypercube 
distributed memory architectures. It is not 
concerned with operating systems or 
scheduling multiple processes or threads, as the 
name might imply to some readers. 
Hypertasking is intended to make it easy for 
software developers to port their existing data 
parallel applications to the hypercube without 
making their code hardware specific.

In hypertasking, arrays can be decomposed 
in any and all dimensions, but the number of 
nodes allocated in any given dimension is 
controlled by the underlying libraries, and is 
always a power of two to preserve locality of 
reference within the logical node mesh. All 
arrays are decomposed into regular rectangular 
sub-blocks. Guard rings [Fox+88] for each sub-
block are provided. The term “guard ring” 
tends to imply a 2-D problem decomposed in 
both dimensions, but the concept is extended in 
this implementation to multiple dimensions. 
This paper proposes guard wrapper as a 
general term encompassing guard rings in 2-D 
decompositions, guard shells in 3-D, guard 
hypershells in 4-D, and so on. A guard wrapper 
could be one array element thick for 2-D 5-
point stencils, or two elements thick for 2-D 9-
point stencils, for example. Guard wrappers 
can be as thick as the user wishes, but not larger 
than the sub-block itself. For example, if each 
node’s sub-block of a two-dimensional array is 
two elements by six elements, then the wrapper 
thickness cannot be more than two or it would 
contain the entire neighboring sub-block, plus 
elements owned by a third node.

Each element is stored on one or more 
nodes, though it is only owned by one node. 
Any node can read or write any element in the 
distributed virtual array, but communication 
costs make non-local reads and writes 
expensive. Application algorithms should 
exhibit good locality of reference to make 

hypertasking worthwhile.
To optimize performance for non-local 

operations, several efficiency features, 
discussed in the section on domain 
decomposition, have been implemented, 
including the combination of local sub-blocks 
with their guard wrappers in the same oversized 
array, and array base-shifting. Two modes of 
implicit message passing are currently offered, 
including a global exchange of all boundary 
values to update guard wrappers, and probes 
for single array elements when non-local 
elements are referenced.

This paper will begin by discussing the 
advantages and disadvantages of a 
preprocessor approach to parallel programming 
compared to other approaches. Further sections 
will describe the hypertasking user interface 
with examples and outline hypertasking’s 
internal algorithms for decomposing arrays. 
Finally, performance benchmarks will be 
discussed, along with plans for future research 
and development.

Rationale and Related Work

It seems inevitable that distributed memory 
computers will be based on mass-produced 
general purpose microprocessors for the 
foreseeable future. With general purpose 
processors come general purpose compilers. It 
is unlikely that compiler vendors will support 
distributed memory extensions while 
distributed memory computers represent a 
small fraction of their market. Since it is 
desirable to leverage the general purpose 
compilers, rather than write completely new 
compilers, the remaining choices are to 
enhance the general purpose compiler or to use 
a preprocessor or pre-compiler. Enhancement 
requires compiler source code (often 
expensive), and learning time to understand the 
internals of the compiler. Other problems with 
the compiler extension approach include how 
to merge new releases of the compiler source 
with the distributed memory extensions 
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efficiently and correctly, and how to port the 
extensions to compilers targeted for different 
processors and architectures. 

The most practical approaches, 
preprocessors and pre-compilers, are both built 
upon existing sequential compilers. This paper 
proposes paracompiler as a term for the class 
of source code transformers that accept either a 
parallel language or an augmented sequential 
language as input and produce sequential 
source code (typically C or Fortran) as output. 
The term suggests both the parallel nature of 
these software tools and the fact that they are 
not true compilers in the same sense that 
“paramedics” are not true doctors. A 
paracompiler may be a simple preprocessor 
[Cra 85], performing only direct textual 
substitutions, or it may be a pre-compiler [KM 
87, KMV 87, QHJ 88, ZBG 88, Meh 89, RP 89, 
RS 89, Tse 89], utilizing an intermediate 
structure of tokens to represent the program 
during the transformation process. Pre-
compilers may also be interactive-- suggesting 
transformations to the user and soliciting 
approval or guidance.

One advantage of hypertasking is that it 
produces executables that can be run on any 
size hypercube from one node up to any power 
of two. Some other paracompilers [CK 88, RS 
89] produce cube size dependent and/or fixed 
grain size executables. As hypercubes are used 
more in production environments, users may 
often not know at compile time what size 
subcube will be available to them at run time, 
so cube size flexibility may grow in 
importance.

The guard wrapper provided by 
hypertasking is ideal for most data parallel 
applications, and single element polling 
provides access to elements not stored locally, 
but intermediate granularities, such as non-
local row references, or optimized combined 
references to the same non-local node [KMV 
87] are not yet implemented.

New or extended programming languages, 
implemented as pre-compilers [QHJ 88, ZBG 

88, Meh 89, RP 89, RS 89], produce a high-
level language as their target, and can approach 
stand-alone compilers in sophistication of their 
analysis and optimization heuristics. 
Unfortunately, the parallel language can 
become a barrier for programmers if it is too 
unfamiliar or cumbersome. Pre-compilers, 
based on sequential languages, but providing a 
small and powerful set of extensions, may be 
the best overall solution. They require minimal 
retraining for the programmer; they can 
perform quite sophisticated code 
transformations, and users can easily hand tune 
the generated code.

Paracompilers which have the same 
language as their source input and target output 
[Cra 85, ACK 87] are usually easy to learn and 
use. This approach is best for preserving 
portability.

Hypertasking is currently implemented 
with a preprocessor. Future versions will 
employ pre-compilers, perform dependency 
analysis and handle more sophisticated implicit 
message passing while requiring fewer 
directives from the user.

The Hypertasking User Interface
Hypertasking directives appear as 

comments in C, so the source can be compiled 
with or without hypertasking, depending on 
whether or not the source is preprocessed by 
hype. The un-hypertasked program can only 
run on one node, of course, but this feature 
allows hypertasking to be added to a program 
in a non-intrusive manner, preserving 
portability while making speed-up 
measurements relatively easy.

Hypertasking Directives
The hypertasking technique relies on the 

user to insert comment directives into C code 
which is then rewritten by a preprocessor. The 
three main directives are ARRAY, BRACKET and 
EXCHANGE.

The ARRAY Directive



Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 4 June 1, 1990 Marc Baber

The ARRAY directive is inserted in the user’s 
code before a standard array declaration. 
Arguments for the ARRAY directive specify 
guard wrapper thickness, and which 
dimensions of the array are to be distributed.

 The general ARRAY directive syntax is:

 /* iSC ARRAY <thick> <Y|N> ... */ 

“Y” and “N” are used as distribution flags 
and indicate, for each dimension, whether or 
not the array may be distributed in that 
dimension. The ARRAY directive in Example 1 
sets the guard wrapper thickness to one, and 
distributes a 3-D array in the first two 
dimensions.

Guard wrappers store values of array 
elements that are adjacent to local elements in 
the virtual array, but are owned by a neighbor 
node. One or more elements outside of the local 
sub-block’s boundaries are stored in every 
direction, including diagonals. The thickness of 
the guard wrapper is controlled by the <thick> 

. . .
/* iSC ARRAY 1 Y Y N */ 
float pixels[1000][1000][2]; 
. . . 
new = 0 ; old = 1 ;
for ( i = 0 ; i < smooth_iterations ; i++ ) {
  /* iSC EXCHANGE pixels */
  /* iSC BRACKET pixels 1*/
  for ( x = 0 ; x < 1000 ; x++ ) {
  /* iSC BRACKET pixels 2 */
 for ( y = 0 ; y < 1000 ; y++ ) {
 pixels[x][y][new] = weighted_average(pixels[x+1][y-1][old],

pixels[x+1][y ][old],
pixels[x+1][y+1][old],

 pixels[x ][y-1][old],
pixels[x  ][y  ][old],
pixels[x  ][y+1][old],
pixels[x-1][y-1][old],
pixels[x-1][y  ][old],
pixels[x-1][y+1][old]);

 }
}

new = (new+1)%2; old =(old+1)%2;
}

Example 1: An image processing application

argument to the ARRAY directive. Guard 
wrapper updating is controlled by the 
EXCHANGE directive, discussed in the next 
section.

The EXCHANGE Directive
Guard wrappers of the specified array are 

updated between neighboring nodes each time 
the code from an EXCHANGE directive is 
executed.

The general EXCHANGE directive syntax is:

/* iSC EXCHANGE <array-name> */

Generally, the EXCHANGE directive is used at 
the beginning of the outermost loop in an array 
processing section , as in the pixel processing 
code shown in Example 1. If multiple arrays are 
modified in the loop, multiple EXCHANGE 
directives must be used.

The user is responsible for inserting the 
EXCHANGE directive at appropriate points in his 
or her program to make sure the algorithm uses 
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current values. 

The BRACKET Directive
The BRACKET directive syntax is:

/* iSC BRACKET <array> <dim> */

The BRACKET directive has two arguments, 
array name and dimension number. It precedes 
a C for-loop whose local iterations are to be 
limited to values that are valid local indices for 
the specified array in the specified dimension.

The user is responsible for determining 
whether the iterations of a loop are 
independent. Fortunately, for many problems 
such as CFD and reservoir modelling, 
iterations are inherently parallel, and the 
problem reduces to detecting implementations 
that impose restrictions in the algorithm that do 
not exist in the actual physical problem.

Example 1 demonstrates a technique used 
in Jacobi algorithms to avoid copying the new 
array into the old array at the end of each 
iteration. Two variable indices to the third 
dimension are toggled between 0 and 1 and, in 
effect, swap old and new values. Only the first 
two dimensions are distributed and BRACKETed. 
By not distributing the third dimension of the 
pixels array, it is guaranteed that each old 
element will be stored on the same node as its 
corresponding new element.

The LOCAL Directive
Array references and assignments can be 

either global or local. Global references are the 
default generated by hypertasking, and 
represent the general case for distributed 
memory virtual arrays. A global array reference 
can access any element anywhere in the 
hypercube. Global references and assignments 
are implemented with conditional expressions 
that are resolved without subroutine calls for 
elements in the local sub-block, but which 
require a subroutine call, and usually message 
passing, to return or update the values of 
elements owned by other nodes.

If the user knows that a given array 
reference or assignment can be satisfied locally, 
it can be declared local by inserting the 
string,  /*LOCAL*/ between the array name 
and its indices, as shown in the example in the 
next section. A local array reference saves the 
cost of evaluating the conditional expression to 
determine if the element is local, and should 
only be used if the user knows that the 
algorithm will only reference values that are 
local or at least are contained in the local guard 
wrapper and are current.

Example: Gauss-Siedel/Jacobi Problem
Example 2 is an implementation of a 

Gauss-Siedel/Jacobi hybrid algorithm for 
thermal problems. This particular code solves a 
two-dimensional 32-by-32 floating point array 
representing a square thermal plane with four 
constant edge temperatures. The convergence 
test and output of the final results did not 
convert cleanly, so conditional code was added.

To run the above program with 
hypertasking, the user runs the source through 
the hype preprocessor, which changes array 
references to macros, modifies for loops, and 
adds calls to hypertasking library routines. The 
resulting C program is then compiled and 
linked with the hypertasking libraries.

Once the program is compiled and linked, 
the user need only allocate a cube of any size, 
and load the executable.

Domain Decomposition
This section describes the algorithm used 

by hypertasking to determine how a given array 
is decomposed onto the available nodes. An 
initialization routine (ht_init) is called at the 
beginning of program execution to determine 
what section of the array is local. Each node 
uses the current cube dimension, its own 
unique node identifier, the global dimensions of 
the virtual array and the user’s directives 
(specifying which dimensions to decompose) 
to calculate the size of one sub-block and which 
sub-block it owns.
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Example 2: Gauss-Seidel Thermal Problem
#define SIZE 32
#include <stdio.h>
/* iSC ARRAY 1 Y Y */
float ii[SIZE][SIZE];
/* iSC ROUTINE */
main() {
int i,j,k,l,m,n,o,p;
float q,r,s,t,u,v;
char density[11];

/* iSC INIT */
strcpy(density,” .:!-=*%#@E”);
/* initialization of constant temperatures */
/* iSC BRACKET ii 1 */
for ( j = 0 ; j <= SIZE-1 ; j++ ) {

/* iSC BRACKET ii 2 */
for ( k = 0 ; k <= SIZE-1 ; k++ ) {
ii/*LOCAL*/[j][k] = (((k==SIZE-1)&&(j>0)&&(j<SIZE-1))*100.0 +
(j==SIZE-1)*1000.0 + (j==0)*500.0);

};
};

r = (float)(SIZE*SIZE+1);
i = 0;
o = mclock();

/* repeat until convergence criterion is met */

while ( r > (SIZE) ) {

i++;
r = 0;
/* iSC EXCHANGE ii */
/* iSC BRACKET ii 1 */
for ( k = 1 ; k <= (SIZE-2) ; k++ ) {

* iSC BRACKET ii 2 */
for ( l = 1 ; l <= (SIZE-2) ; l++ ) {
 q = ii/*LOCAL*/[k][l];
 ii[k][l]/*LOCAL*/= (ii/*LOCAL*/[k-1][l] + ii/*LOCAL*/[k+1][l] +

ii/*LOCAL*/[k][l-1] + ii/*LOCAL*/[k][l+1])/4.0;
q = q - ii/*LOCAL*/[k][l];
if ( q < 0 ) { q = -q; };
r = r + q;

}
}
#ifdef hypertasking
gssum(&r,1,&s);
#endif

} ; 
p = mclock() - o;
#ifdef hypertasking
if ( mynode() == 0 ) {
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Example 2 (Continued):
#endif

for (k=0;k<SIZE;k++) { 
for (l=0;l<SIZE;l++) { 

n = (int)(ii[k][l])/100;
putchar(density[n]);

}; 
putchar(‘\n’);

};
printf(“SIZE=%d NUMNODES=%d\n”,SIZE,numnodes());
printf(“TIME=%d milliseconds\n”,p);
printf(“ITERATIONS=%d\n”,i);
o = (SIZE-2)*(SIZE-2)*4*i;
t = (float)o/(float)p;
u = t/(float)numnodes();
printf(“OPERATIONS=%d\n”,o);
printf(“Kflops/sec=%f\n”,t);
printf(“Kflops/sec/processor=%f\n”,u);
#ifdef hypertasking
};
gsync();
#endif
}

Mapping the Hypercube to Array Dimensions
First, ht_init divides the cube dimensions 

among the array dimensions which are eligible 
for decomposition, according to the user’s 
directives. Undecomposed dimensions of the 
array are assigned zero. 

The goal of cube dimension mapping is to 
minimize the ratio of exterior elements to 
interior elements, without sacrificing locality of 
reference. The mapping algorithm assigns each 
cube dimension to the array dimension that will 
result in the smallest increase in cross-sectional 
area, taking the previous cube dimension 
assignments into account. 

Another way to look at this problem is that 
each assignment of a cube dimension to an 
array dimension halves the size of every sub-
block. In this view, the goal is to reduce the 
maximum boundary value message size. Since 
all messages can be sent in all dimensions/
directions nearly simultaneously in 
hypertasking, the largest boundary value 
message is the critical limitation to speed-up. 

An algorithm, based on this view, finds the 
largest “side” (edge in 2-D, face in 3-D, etc.) 
and assigns the next cube dimension in an 
orthogonal array dimension to split the largest 
“side” of the sub-block.

Both goals are achieved by the same 
algorithm, demonstrated below, which is based 
on the former abstraction, and is simpler.

As an example, consider a 3-D array 
A(2,4,16) decomposed on a 6-D hypercube (64 
nodes) (Fig. 1). The cost of dividing A in each 
of its three dimensions is initially: 

 c = 2n * s/k

where:
c = cost of further decomposition of the 

current dimension 
n = how many cube dimensions have 

already been assigned to the current dimension
s = size of the array (total number of 

elements)
k = declared array size in the current 

dimension
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. . . . . .

. . . . . .

. . . . . .

Figure 1: Stepwise 3-D domain decomposition

A(2,4,16)

Step 1:
Divide third dimension.
Cost = 1 x 8 = 8

Step 2:
Divide third dimension.
Cost = 2 x 8 = 16

Step 3:
Divide second dimension.
Cost = 1 x 32 = 32

Step 4:
Divide third dimension.
Cost = 4 x 8 = 32

Step 5:
Divide first dimension.
Cost = 1 x 64 = 64

Step 6:
Divide second dimension.
Cost = 2 x 32 = 64
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c1 = 20 * 128/2 = 64 
c2 = 20 * 128/4 = 32 
c3 = 20 * 128/16 = 8 

The first dimension of the cube is mapped 
to dimension 3 of the array, incurring the 
minimum cost of 8 elements of the array being 
exposed to inter-nodal communication 
overhead by “slicing” the array once. Actually, 
16 elements are exposed, since two surfaces are 
created, but since the exchange can happen in 
parallel and the extra factor of two would only 
complicate matters unnecessarily, we will 
count only the cross-sectional area, or eight 
units, in this case. One dimension of the 
available cube has now been assigned and five 
remain. The cost of further decomposition of 
dimension three doubles and the relative costs 
of assigning the next cube dimension become:

c1 = 20 * 128/2 = 64 
c2 = 20 * 128/4 = 32 
c3 = 21 * 128/16 = 16

The second dimension of the cube is also 
assigned to dimension 3 of the array, for a cost 
of 16 units. On the next iteration the updated 
costs are:

c1 = 20 * 128/2 = 64 
c2 = 20 * 128/4 = 32 
c3 = 22 * 128/16 = 32 

The algorithm arbitrarily selects the lower 
dimension number when costs are equal. The 
third cube dimension is assigned to dimension 
two of the array, and its cost is updated to 64. 
The fourth assignment goes to dimension three 
again, and its cost doubles to 64 also. The fifth 
and sixth assignments would go to dimensions 
one and two, respectively, leaving the final cost 
list as follows:

c1 = 21 * 128/2 = 128 
c2 = 22 * 128/4 = 128

c3 = 23 * 128/16 = 64

 Notice that the number of cube dimensions 
mapped to array dimensions one and three 
differ by two. In extreme cases, say 
B(2,2,128), all the cube dimensions may map 
to a single array dimension, even if all the array 
dimensions were eligible for decomposition, 
according to the user’s directives.

Through out the rest of this paper, the 
notation A.dims(n) will be used to refer to the 
number of cube dimensions that were mapped 
to the nth dimension of an array A.

Interpreting Node ID Bits
For each decomposed array, hypertasking 

maps or “unfolds” the hypercube into an n-
dimensional logical mesh, where n is either the 
dimension of the hypercube or the number of 
array dimensions decomposed, whichever is 
the lesser.

The ht_init routine partitions the Node ID 
into bit strings with lengths corresponding to 
the values of A.dims(k) where k is a series 
1..n for an n-dimensional array. 
Undecomposed dimensions get zero-length bit 
strings, and are, in effect, ignored for the 
purposes of defining the logical node mesh.

For mesh-interconnected architectures, 
hypertasking would use each bit string as a 
simple binary number, indicating which sub-
block, in the given dimension, the current node 
owns. For example, consider a 2-D array 
B(0..79,0..79) decomposed in both 
dimensions on a 64-node system, connected as 
an eight-by-eight 2-D mesh (Fig 2a). Node 29 
would have 011-101 as its binary node 
identifier (divided into two three-bit strings). 
Thus, node 29 would be in the third sub-block 
in the first dimension, the fifth sub-block in the 
second dimension, and would contain 
B(20..29,40..49).

 The simple use of bit strings as binary 
counters is unsatisfactory for hypercube 
architecures. In the above example, element 
B(0,19) would map to node id 000-001, 
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0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

000-000 000-001 000-010 000-011 000-100 000-101 000-110 000-111

001-000 001-001 001-010 001-011 001-100 001-101 001-110 001-111

010-000 010-001 010-010 010-011 010-100 010-101 010-110 010-111

011-000 011-001 011-010 011-011 011-100 011-101 011-110 011-111

100-000 100-001 100-010 100-011 100-100 100-101 100-110 100-111

101-000 101-001 101-010 101-011 101-100 101-101 101-110 101-111

110-000 110-001 110-010 110-011 110-100 110-101 110-110 110-111

111-000 111-001 111-010 111-011 111-100 111-101 111-110 111-111

0

0

79

79

0 1 3 2 6 7 5 4

8 9 11 10 14 15 13 12

24 25 27 26 30 31 29 28

16 17 19 18 22 23 21 20

48 49 51 50 54 55 53 52

56 57 59 58 62 63 61 60

40 41 43 42 46 47 45 44

32 33 35 34 38 39 37 36

000-000 000-001 000-011 000-010 000-110 000-111 000-101 000-100

001-000 001-001 001-011 001-010 001-110 001-111 001-101 001-100

011-000 011-001 011-011 011-010 011-110 011-111 011-101 011-100

010-000 010-001 010-011 010-010 010-110 010-111 010-101 010-100

110-000 110-001 110-011 110-010 110-110 110-111 110-101 110-100

111-000 111-001 111-011 111-010 111-110 111-111 111-101 111-100

101-000 101-001 101-011 101-010 101-110 101-111 101-101 101-100

100-000 100-001 100-011 100-010 100-110 100-111 100-101 100-100

0

0

79

79

B(0,19) B(0,20)

B(0,19) B(0,20)

Figure 2a: Simple Array Decomposition for Mesh Architectures

Figure 2b: Array Decomposition with BRGCs for Hypercube Architectures
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whereas B(0,20) would map to node id 000-
010. Since the two node ids differ by two bits, 
the two nodes are not directly connected.

Therefore, for hypercubes, each bit string is 
seen as the binary reflected gray code (BRGC) 
of the sub-block’s position in a given 
dimension (Fig. 2b). The algorithm applies a 
BRGC inverse function to the bit string to 
determine its node’s actual position in the 
logical node mesh. For mesh-interconnected 
architectures, an element’s home node would 
be determined by concatenating bit strings 
which are calculated by dividing the element’s 
index in the corresponding dimension by the 
size of the sub-block in that dimension and 
truncating. To use BRGC in the logical node 
mesh, an additional step of converting each bit 
string to its gray code is performed before 
concatenation.

This method guarantees that locality of 
reference within an array is preserved within 
the logical node mesh, and that global 
boundary value exchanges can occur 

simultaneously for all nodes in all dimensions 
without any contention for channels, except in 
the case of diagonal boundary-values.

Guard Wrappers
After the ht_init routine determines the 

size of one sub-block, it allocates a continuous 
segment of memory large enough to contain the 
sub-block plus a guard wrapper of a user-
specified thickness, usually one or two 
elements. The sub-block is managed in 
memory like a multidimensional C array that 
encompasses both the sub-block and the guard 
wrapper. As a result, both internal and external 
elements access their neighbors, both local (in 
the sub-block) and non-local (in the guard 
wrapper) using the same addressing (Fig 3). 
Thus, if no guard wrapper updating is 

Figure 3:
Since sub-blocks and guard wrappers are 
stored in the same array, every element in 
the local sub-block calculates the addresses 
of its neighbors identically.

0 1 2

8

16 17 18

Node 9 10

 (8,8)

 (7,7)

 (8,15)

 (7,15)

 (8,15) (8,16)

Offset = -77  Offset =
 -85

Original Sub-Block Pointer

Figure 4:
The pointer to the sub-block on node 9 is off-
set by (7 x 10 + 7) = 77, to simplify (speed up) 
address calculations. Note that with offsets, 
the address for element (8,15) is 95 on both 
nodes 9 and 10.



Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Supercomputer

Page 12 June 1, 1990 Marc Baber

necessary during an iteration, processing of the 
local sub-block can be vectorized as a single 
loop (or nested loop set); the loop(s) would not 
have to be split to accommodate different array 
addressing modes.

Array Base Shifting
In order to avoid the cost of subtracting the 

lowest local indices from the indices of a 
desired array element each time an element is 
referenced, ht_init subtracts from the sub-
block pointer a value equal to the calculated 
relative address of the local element with 
minimum indices in all dimensions.

For example, consider a 2-D 64-by-64 array 
decomposed on a 64-node (6-D) hypercube 
mapped into an eight-by-eight logical node 
mesh (Fig. 4). In this example, we will ignore 
gray codes for simplicity, and assume that 
nodes in the same dimension are numbered 
sequentially. Node nine (001-001 node 
identifier) would contain the sub-block 
A(8..15,8..15), or A(7..16,7..16) 
counting the guard wrapper. With the guard 
wrapper one element thick, the local sub-block 
is a ten-by-ten array. Originally, the sub-block 
pointer points to A(7,7). To get A(9,9), you 
would have to calculate the offset as follows:

(9-7)*10 + (9-7)*1 = 22 

The offset for A(7,7) is initially zero. If we 
did not subtract the local minimums from the 
indices, the address of A(7,7) would be

 7*10+7 = 77

 ht_init, in this case, would subtract 77 
from the address stored in the sub-block 
pointer, so that all offsets could be calculated 
without subtracting. As one might expect, no 
array bounds checking is provided.

A major advantage of base shifting is that a 
given element in the global virtual array has the 
same offset on its home node as it does on every 
node where it appears in a guard wrapper.

Performance Results
Figure 5a is a 3-D graph showing the 

relations between hypercube size (or number of 
processors), problem size and individual 
processor efficiency for a hypertasked program 
running on an iPSC/2 witout SX acceleration. 
Figure 5b shows the same information for the 
iPSC/860. Efficiency is not sacrificed 
significantly (linear speed-up is approached) 
for large problems or small cube sizes, but the 
combination of large numbers of processors 
and small problem sizes yields very poor 
efficiency.

For comparison, a flat surface level with the 
single node unhypertasked performance would 
indicate perfect, linear speed-ups for any 
number of processors. A binary logarithmic 
decay (running down from left to right) would 
define a break even surface, where a problem of 
a given size would run in the same wall clock 
time on any size hypercube.

The benchmark problem was a Gauss-
Seidel/Jacobi hybrid algorithm finding a 
thermal equilibrium for a 2-D, homogeneous, 
square material with constant temperatures at 
the edges, using a five point stencil and simply 
averaging neighbor values to obtain each 
element’s value. The algorithm is a hybrid 
because boundary values are not updated 
during each iteration, so at the edges of each 
sub-block the algorithm uses some old values 
from the previous iteration (Jacobi) whereas a 
pure Gauss-Seidel algorithm would always use 
current iteration values for the north and west 
neighbors. In the interior of each sub-block, the 
algorithm is entirely Gauss-Seidel.

The performance graphs in Figure 5 
represent typical speed-ups for parallel 
algorithms, and do not reflect the slight 
degradation of the Gauss-Seidel/Jacobi hybrid 
algorithm as more processors are used. If a pure 
Jacobi algorithm were used, no such 
degradation would occur, since the Jacobi 
algorithm is completely parallelizable. The 
efficiency graph would then exactly match the 
graphs in Figure 5.
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Figure 5a: Performance Results for the iPSC/2
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Figure 5b: Performance Results for the iPSC/860
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The following table shows the number of 
iterations required to converge for various 
problem sizes and algorithms (G-S indicates 
Gauss-Seidel and G-S/J-n. is the G-S/Jacobi 
hybrid running on an n-node cube). The 
percentage of degradation from pure Gauss-
Seidel performance is shown in parentheses. 
Interestingly, the degradation is minimal for 
larger problems and small cube sizes-- its main 
impact is on cube and problem size 
combinations that would not yield good speed-
ups anyway.

Algorithm Problem Size
162 322 642 1282

==============================
G-S 118(0) 431(0) 1495(0) 4929(0)
G-S/J-2 123(4) 440(2) 1509(1) 4948(0)
G-S/J-4 129(9) 450(4) 1525(2) 4972(1)
G-S/J-8 135(14) 461(7) 1544(3) 5001(1)
G-S/J-16140(19) 471(9) 1561(4) 5028(2)
G-S/J-32151(28) 491(14) 1594(7) 5080(3)

==============================
Jacobi 200(69) 720(67) 2420(62) 7569(54)

The temperatures were stored as C float 
types (single precision). The hypertasking 
libraries and the hypertasked version of the 
main program were compiled with the 
Greenhill C compiler using the -OLM 
optimization switches, without any attempts to 
use vectorization.

These benchmarks were measured before 
BRGC node mapping was completed. With 
BRGC logical node mesh-mapping, there 
should be no degradation in performance if the 
problem size and the cube size both grow 
proportionally.

Future Plans
Since hypertasking can be adapted to mesh-

topology architectures as well as hypercubes, it 
will be a valuable tool for comparing the 
efficiency and speed of various connection 
topologies and technologies which may be 
investigated in the future.

Combining vectorization (pipelined 
execution) with automatic decomposition on 

the Intel/860 will probably exhibit aggregate 
calculation rates in the Gigaflop range or more 
for sufficiently large problems. To get the same 
efficiencies found in the previous section, the 
required problem sizes will likely be larger. I 
would like to quantify, experimentally, how 
much larger problems must grow to preserve 
efficiency.

The ability to deallocate, reallocate, grow 
and shrink virtual arrays can be added to 
hypertasking fairly easily. Such a feature would 
allow the user to easily employ multigrid 
methods, or to change the decomposition 
strategy for performance gains in different 
sections of an algorithm. Dynamic arrays 
would also require sequential versions of the 
new routines to be implemented in order to 
preserve the goal that hypertasked programs 
should run with essentially the same 
capabilities as the sequential versions.

A Fortran version of hypertasking would 
greatly increase the technique’s usefulness, 
since many, if not most, of the applications that 
would most benefit from hypertasking are 
written in Fortran. The difficulty of 
implementing a Fortran version stems from 
Fortran’s inability to support POINTER types 
which are useful for dynamic memory 
management. A Fortran version can be 
implemented easily if POINTER type 
extensions are provided in the underlying 
Fortran compiler similar to Cray Research’s 
CFT extension. If not, a Fortran program can be 
encased in C code above and below it in the 
calling hierarchy. The new main program, 
written in C, would allocate space for sub-
blocks in the normal way, and then pass the 
sub-block’s dimensions to the Fortran main 
program, converted to subroutine form. Within 
the Fortran program, only standard array syntax 
would be used, but the order of subscripts 
would be reversed to account for the 
differences in array allocation in C and Fortran.

A more robust preprocessor, based on lex 
and yacc, will allow some directives to be 
eliminated and provide the programmer greater 
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latitude. Dependency analysis could generate 
or replace LOCAL directives and determine 
proper guard wrapper thickness. 

Ideally, the preprocessor would divide the 
source program into sequential and parallel 
sections that would be compiled and run on the 
cube host and cube nodes respectively, in a 
manner similar to how Cray microtasking 
delineates sequential and parallel routines. 
When the main program, running on the host, 
reaches a call to a hypertasked routine, it will 
allocate a cube of an appropriate or available 
size, load the hypertasked routine onto the 
nodes, pass parameters and global variables as 
host-to-node messages, and wait for cube 
execution to complete. This approach improves 
cube utilization in a multi-user environment, 
because cubes are only allocated for parallel 
work. Sequential sections of other programs 
can run on the host while the first program 
waits for its node part to complete, and the 
hypercube resource itself can go from one 
parallel code to another, executing a minimum 
of scalar code. 

A more intelligent preprocessor, or pre-
compiler, would probably evolve from the 
current level to an interactive precompiler first, 
and then, gradually to a non-interactive 
precompiler, as more heuristics are 
encompassed within the program.

Conclusions
Hypertasking represents an approach to 

data parallel programming that requires 
minimal source code changes in the user’s 
application, and can be expected to deliver 
optimum performance on either hypercube or 
mesh topology architectures for a large class of 
grid point applications. The technique currently 
requires the user to have a clear understanding 
of the hypercube architecture and when array 
elements should be processed in parallel. 
Future versions may go beyond the current 
preprocessor front-end and provide 
dependency analysis and other features to 
further free the parallel programmer from the 

details of porting applications to distributed 
memory architectures.
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