
Data Dependence and Program Restructuring

Michael Wolfe

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-007

May, 1990

Data Dependence and Program Restructuring

Michael IVolfe
Oregon Graduate Institute of Science and Technology

19G00 NIV von Neumann Drive
Beaverton, OR 97006

mwolfe@cse.ogi.edu
503-690-1153

Abstract
D a t a dependence concepts are reviewed, concentrating on and extending previ-
ous work on direction vectors. A bit vector representation of direction vectors
is discussed. Various program restructuring transformations, such a s loop circu-
lation (a form of loop interchanging), reversal, skewing, sectioning (strip min-
ing), combing and rotation, are discussed in terms of their effects on the execu-
tion of the program, the required dependence tests for legality, and the effects of
each transformation on the dependence graph. Simple bit vector operations for
the dependence tests and modifying the direction vector are shown. Finally, a
simple method t o interchange complex convex loop limits is given, which is use-
ful when several loop restructuring operations are being applied in sequence.

Keywords: d a t a dependence, direction vector, restructuring, loop interchanging,

loop reversal, loop skewing, loop rotation, sectioning, strip mining

1 Prologue

Analysis of the dependence relations in a program allows the discovery of implicit parallelism in

sequential programs, and is used in compilers for today's vector and parallel computers. This
analysis can also be used t o restructure programs t o take advantage of various architectural

features, such a s local o r cache memory and multicomputer topologies.
In this paper we quickly review d a t a dependence concepts, concentrating on the d a t a

dependence direction vector. We extend direction vectors t o distinguish reduction operations

(such a s sum, product, dot product, etc.) from other dependence relations. We study the use of
a bit vector representation of the direction vector t o implement legality tests for several restruc-
turing transformations, and show how those transformations affect the dependence relations.
The transformations discussed are loop interchanging, loop skewing, loop reversal, loop rotation,
sectioning (strip mining) and combing. Loop interchanging is well known a s a method to
enhance parallelism and t o improve memory hierarchy performance [A11<84, Wo182]; here we dis-
cuss a slightly more powerful formulation than the usual pairwise interchanging, namely loop

circulation (interchanging a given loop inwards or outwards over several loops in a single step)
[Bango]. Loop skewing is a simple transformation t h a t allows a compiler t o implement the
wavefront method, even in n~ultiple dimensions [tVo186b]. Loop reversal was first implemented in
the compilers for the Texas Instruments' ASC [Wed75]. Loop rotation has been introduced as a
method t o map algoritJlms eficiently onto multiprocessors [Wo190]. Sectioning is used to divide

a loop into fixed size sections for vector processing, or into a fixed riumber of sections for con-
current execution [A1183,Lov77]; combing is a variant of sectioning. This paper also discusses

how t o modify loop limits when interchanging loops t h a t traverse certain simple convex jtera-
tion spaces.

2 Overview of Data Dependence

Nested loops define a n iteration space, comprising a finite discrete Cartesian space with dimen-
sionality equal t o the loop nest level. For example, the loop below defines a two-dimensional
5x10 iteration space. In imperative languages, the semantics of a serial loop define the order in
which the points in the iteration space are visited.

j= l
Program 1:

for i = 1 t o 5 i=l
for j = 1 t o 10

A (i , j) = B (i , j) + C (i) * D (j)
endfor 5

endfor u
There is no reason tha t the iteration space need be rectangular; many popular algorithms

have inner loops whose limits depend on the values of outer loop indices. The iteration space
for the loop below is triangular, suggesting the name triangular loop. Other interesting itera-
tion space shapes can be defined by nested loops, such as trapezoids, rhomboids, and so on; some
of these shapes can be generated from each other via loop restructuring.

Program 2:
for i = 1 t o 5

for j = i t o 5
A (i , j) = B (i , j) + C (i) * D (j)

endfor
endfor

Data Dependence. Many compilers available for today's advanced computers can detect vec-
tor or parallel operations from serial loops. Compilers discover the essential d a t a flow (or d a t a

dependence) in the loop and allow vector or parallel execution when the d a t a dependence rela-
tions a re not violated.

Loop restructuring transformations, such a s loop interchanging, are often applied t o

enhance the available parallelism or otherwise optimize performance; d a t a dependence informa-
tion is needed t o test whether restructuring transformations are legal. Here, we say a transfor-

mation is legal if normal sequential execution of the restructured program will produce the same

answer as the original program; in other words, the sequential loops and the statement ordering
must satisfy all dependence relations. When compilers generate code for vector or parallel com-
puters, there may be other means for satisfying dependence relations (such a s interprocessor syn-
chronization) which will allow the use of a n otherwise 'illegal' transformation.

In imperative languages, there are three essential kinds of d a t a dependence. A flow-
dependence relation occurs when the value assigned t o a variable or array element in the execu-

tion of one instance of a statement is used by the subsequent execution of a n instance of the
same or another statement. The loop below has a flow dependence relation from statement S,
t o itself, since the value assigned t o A (i+l) will be used on the next iteration of the loop, writ-
ten s, 6 S1.

for i = 1 t o N-1
S,: A (i + l) = A (i) + B (i)

endfor

An anti-dependence relation occurs when the value read from a variable or array element in
a n instance of some statement is subsequently reassigned. In the loop below there is a n anti-
dependence relation from S1 to S 2 , since B (i , j + I) is used in s, and subsequently reassigned

by S 2 in the next iteration of the j loop, written S1 3 S,.

for i = 1 t o N
for j = 1 t o M-1

S, : A (i , j) = B (i , j + l) + 1
S2 : B (i , j) = C (i) - 1

endfor
endfor

Finally, an outpu t dependence relation occurs when some variable or array element is
assigned in a n instance of a statement and subsequently reassigned. An example of this is
shown below where there is an potential output dependence relation from S, t o S,, since the
variable B (i + l) assigned in S 2 may be reassigned in the next iteration of the loop by S,,

written S 2 6" S,. This also shows tha t compilers must approximate the d a t a dependence rela-

tions in a program; since a compiler can not know the paths t h a t will be taken a t run time, i t
must make conservative assumptions.

for i = 1 t o N-1
S,: i f (A (i) > O) B (i) = C (i) / A (i)
S,: B (i + l) = C (i) / 2

endfor

Distance and Direction Vectors. In order t o apply a wide variety of loop transformations,
da ta dependence relations are annotated with information showing how they are affected by the

enclosing loops. Three such annotations are popular today. Many dependence relations have a
constant distance in each dimension of the iteration space. When this is the case, a distance
vector can be built where each element is a constant integer representing the dependence dis-

tances in the corresponding loop. For example, in the following program there is a d a t a depen-

dence relation in the iteration space as shown; each iteration (i , j) depends on the value com-

puted in iteration (i , j - 1) . The distances for this dependence relation are zero in the i loop
and one in the j loop, written S, 6(,, ,) S,.

Program 3:
for i = 1 to N

for j = 2 to M
S, : A (i , j) = A (i , j - 1) + B (i , j)

endfor
endfor

Each distance vector will have n entries, where n is the nesting level of the loops surrounding
the source and sink of the dependence. Since dependence distances are usually small, short
words or perhaps even signed bytes could be used, reducing the storage requirements.

For many transformations, the actual distance in each loop may not be so important a s

just the sign of the distance in each loop; also, often the distance is not constant in the loop,
even t l~ough i t may always be positive (or always negative). As an example, in the loop:

Program 4:
for i = 1 to N

for j = 1 to N
S, : X (i + l , 2 * j) = X (i , j) + B (i)

endfor
endfor

the assignment t o X (i+l, 2 * j) is used in some subsequent iteration of the i and j loops by
the x (i , j) reference. Some of the dependence relations for this program are given in the
table below:

assigned by used by dependence

element i j i j distance

X (2 , 2) 1 1 2 2 (1 . 1)

X (3 , 4) 2 2 3 4

The distance in the j loop for this dependence is always positive, but is not a constant. A com-
mon method t o represent this is t o save a vector of the signs of the dependence distances, called
a direction vector . Each direction vector element will be one of (+, 0, -) [Ban88]; for historical
reasons, these are usually written (<, =, >) [Wo178,WoB87,Wol89]. In Program 4, the direc-
tion vector associated with the dependence relation is S, 6(,,,) S,; in Program 3, the depen-
dence relation would be written S, 6(=,,) S,.

Another popular d a t a dependence annotation saves only the nest level of the outermost
loop with a non- (=) direction (non-zero distance) [AlK87]. The dependence relation for Pro-
gram 3 has a zero distance in the outer loop, but a non-zero distance in the inner loop, so this

dependence relation is carried by the inner j loop. Some dependence relations may not be car-
ried by any loop, as below:

for i = 1 to N
for j = 2 to M

S, : A (i , j) = B (i , j) + C (i , j)
S, : D (i , j) = A (i , j) + 1

endfor
endfor

Here the references t o A (i , j) produce a dependence relation from S, t o S, with zero dis-
tance in both loops. This is written S, 6(=,=) S 2 or S1 6(,,,) S, . Since i t is carried by neither

of the loops, i t is called a loop independent dependence [A1K87]. This annotation by itself is too
coarse for most applications; we will use the notion of loop-carried dependence in our discussion,

but we show how t o get this information from direction vectors.

3 Direction Vector Extensions and Bit Vectors

Here we extend direction vectors by adding a fourth dependence direction explicitly for reduc-
tions. Take, for example, the program:

for i = 1 to N
Sl: S = S + A (i)

endfor

Previous work in d a t a dependence would classify this program as having the dependence rela-
tion S, 6(,) S1, thus implicitly preventing reordering of the index set. Because some beneficial
transformations change the order of the accumulation, we distinguish associative reductions in

the direction vector by using a reduction direction, written: S1 St,) S,. The difference is more
noticeable with nested reductions:

Program 6:
for i = 1 to N

for j = 1 to M
S1 : S = S + B (i , j)

endfor
endfor

Previous work would say t h a t this loop has the dependence relations Sl 6(,.,) S, a s well a s
S1 6(,,,) S,. The dependence test for loop interchanging, for example, is t h a t there must be no

(<, >) directions; unfortunately, there is a (<, >) implied by the (<, *) . With extended
direction vectors, there is only the dependence relation S1 6(~.~) S1, reduction in both dimen-
sions. A reduction direction essentially corresponds t o a dependence distance of one. Practi-
cally speaking, compiler may only be able t o find reduction directions when all other directions
are (=) , and t h a t is the only case dealt with here.

Reduction dependence relations are carried by all loops with a n R direction. In Program 5,
for instance, the dependence relation is carried by both loops, while in the following program the
dependence relation is carried by the i and k loops, written S, 6 (R , = , ~) S1:

for i = I to N
for j = 1 to M

for k = 1 to L
T (j) = T (j) + B (i , j , k)
endfor

endfor
endfor

Bit Vectors . In previous work, we discussed the potential of using a bit vector t o represent a

direction vector, with one bit for each direction in each loop [Wol89]. With the reduction direc-
tion, a direction vector would use 4 n bits to represent a dependence relation between two state-
ments in n nested loops; if n is limited to a small number (like 7 or 15), then each direction vec-

tor can be stored in a single 32- or 64-bit word.
As mentioned in [Wol89], taking the union of multiple directions ('ORing' the bit vectors)

can save space but with a loss of precision. For instance, ORing the bit vectors for the direction
vectors (<, >) and (=, =) gives the combined bit vector (<,>). The problem is t h a t this is

also the sum of

It thus looks like there is a spurious (<, =) and (=, >) direction; the la t ter direction can be
filtered out by disallowing infeasible directions. However, experience has shown t h a t these
spurious directions do not inhibit transformation of the program; since our goal is restructuring
through transformations, we accept the imprecision.

Another problem is shown by ORing the bit vectors (<, =) + (=, <) -+ (<,I) ; this com-
bined direction could be the sum of

Here there is a spurious (<, <) and (=, =) ; the (<, <) will usually cause no problems. How-
ever the spurious (=,=) does, since i t will prevent reordering of code within the body of the
loop, even within a single iteration. Thus, a s in [Wol89], we add one additional bit in the

direction vector, called the (==) bit, which will be set when the combined direction vector
includes the "all-equals" case. For example:

and

Using bit vectors t o represent dependence direction vectors does not preclude the use of
efficient techniques t o build the direction vector, such as the dependence hierarchy introduced in

[BuC86].
We will show how t o manipulate the bit vector representation of dependence directions for

each program transformation. For instance, the test t o see whether the iterations of a loop a t
nest level k can be executed in parallel is t h a t the loop carries no dependence relations. Using
our bit-vector representation, this test can be done by testing for a loop-carried (<) direction,
or a (R) direction. Testing for a loop-carried (<) direction is done by building a test direc-
tion vector \IIk = (q l , $ a , , qn, $==) where

qj = (=), l < j < k ; $, = {<); $,., = 0, k < h l n ; $,= = 0

Then, for each d a t a dependence relation in the loop, test whether the corresponding direction
vector iP carries a dependence a t nest k with the test:

carries (k) := (3, n @) = \Ilk OR rlrk nCR)#JZI

Loop k carries any dependence relation for which carries is true. This method has the
advantage of building the test vector 3 only once for the loop and using i t many times.

4 Program Restructuring Transformations

The program restructuring transformations we will investigate are

loop interchanging,
loop skewing,
loop reversal,
loop rotation,

loop sectioning and combing.
For each transformation, we will describe the conditions under which i t is legal (testing the d a t a

dependence relations), its effect on d a t a dependence relations, and its effect on the shape of the
iteration space. For the discussion below, assume t h a t there a re n nested loops, and t h a t every
dependence relation is annotated with a direction vector (4,. 4,,4,, #J==), where each
direction vector element 4j {<, =, >, R) and is represented by four bits, except t h a t
4== C (==) and is represented by a single additional bit.

Loop Interchanging. Interchanging nested loops can dramatically change the execution
characteristics of a loop, and can enhance the parallelism available a t the inner or outer loop

levels [A11<84, Wo178,Wo182,Wo180]. In a loop of the following form:

for il = . . .
for i2 =

for ik = . . .
for ik+, = -

for i, = . . .
computat ion

endfor . . .
endfor

the ik and ik+, loops can legally be interchanged only when there is no d a t a dependence rela-
tion in the computation t h a t is carried by the i, loop which also has a (>) direction in the
ik+, loop; this corresponds t o a direction vector of (=, =, . . . , =, =, <, >, *, *, . . .) .

Interchanging adjacent loops essentially transposes a n iteration space about the major
diagonal; thus a 5x10 iteration space (Program 1) becomes a 10x5 space after interchanging,
and a n upper right triangular iteration space (Program 2) becomes a lower left triangle.

A more general form of loop interchanging, called a circulation in [Bango], can interchange
loop ik inwards t o inside any loop (up to in) or outwards t o outside any enclosing loop (down
to i,) in a single step; we will call these in-circulation and out-circulation. A sufficient (but not
necessary) condition t o test whether loop ik can be in-circulated inside of loop i, (assuming
the loops are all tightly nested and m > k), is t h a t for every dependence relation between state-
ments in the loop, any one of the following three conditions hold:
(a) There is no (<) component in the direction vector element for i k ; this is equivalent t o

i.1 n4k=0-
(b) The dependence relation is carried by one of the outer loops; this is equivalent t o

3 j ~ { 1 . k-1) s.t. {=)nQ)j=@.
(c) There is no (>) component in the direction vector element for loops over which ik is

being interchanged; this is equivalent to {>)n4,=0, Vh~{k+l - . m).
Using a bit vector for the direction vector, conditions (a) and (b) can be tested with a single bit

vector test; first, construct a direction bit vector: *= (+, , . - . , $,) where

Then for all direction vectors a, test \Irn@=\k. If the equality does not hold, then either the

dependence relation is carried by an outer loop (test b) or is not carried by the k loop (test a),
and interchanging is legal; otherwise condition (c) must be tested.

Condition (c) can be tested with another bit vector test; construct a second test vector 3
where

$h={>), k<h<m: $,=a, otherwise

Then for any direction vector @, test \Irn@=0. If the equality holds, then there are no (>)
directions t o worry about and in-circulation is legal.

This test is not precise, in the sense t h a t there can be dependence relations t h a t fail both
tests but still allow the circulation. For instance, in 3 nested loops, we might have a depen-
dence relation with a direction vector (<, <, >) ; t o in-circulate the outermost loop il inside of
the innermost loop i 3 , we find tha t the first test fails (since the dependence is in fact carried by
i l) , and the second test also fails (since there is in fact a (>) component in d3 . Yet, in-
circulation is legal in this case [Bango]. A precise dependence test for in-circulation requires

modifying condition (c) above with m-k conditions, of the form:
(c') For each p such t h a t k<p<m, either there is no (>) component in the $p, or there is no

(=) component in some 4 for k ~ q c p ; this is equivalent t o

{=3n4q=@, VqE{k+l . . - p-1) or { > > n 4 p = 0 .

This condition can be tested for some value of p by constructing the test vector Qp where

$q={=), k<q<p: $p={>) : $,=empty, otherwise

Then for any direction vector @, test QPn@=9, for all p such t h a t k<p<m. If the equality

does not hold, then either 4, does not have a (>) component, or if it does, some loop between

ik and i, has a (<) direction t h a t will carry the dependence by the time ik is interchanged
up t o the ip loop; in some sense, a direction of (<) "protects" any (>) directions t o the right
in the direction vector. If the equality holds, then there is a n unprotected (>) direction t o
worry about and in-circulation is illegal. Since this test requires m-k bit vector operations, the
simpler condition (c) should be tested first t o screen the trivial cases.

A necessary and sufficient condition t o test whether loop ik can be out-circulated t o out-
side of loop i, (m < k, again assuming the loops are tightly nested), is t h a t for every depen-
dence relation between statements in the loop, any one of the following three conditions hold:

(a) There is no (>) component in the direction vector element for ik; this is equivalent t o

c > , n ~ = r z r .

(b) The dependence relation is carried by one loops surrounding m; this is equivalent t o

3 jE{1 . m-1) s.t. {=)n4,=0.
(c) There is no (<) component in the direction vector element for loops over which i, is

being interchanged; this is equivalent t o { <) n b h = O , VhE{m . . . k-1) .

Again, conditions (a) and (b) can be tested with a single bit vector test by constructing a direc-
tion bit vector JI where

$j={=), I< j <m: $k={>): gh=@, m<h, hZk: &==@

Then for any direction vector @, test 9n@=9. If the equality does not hold, then either the

dependence relation is carried by a n outer loop (test b) or there is no (>) in the k loop (test

a), and interchanging is legal.
Condition (c) can be tested with another bit vector test; construct the direction bit vector

9 where

$h={<), m<h<k: $~~=$3, otherwise

Then for any direction vector @, test \kn@=@. If the equality holds, then there are no (<)
directions t o worry about and out-circulation is legal. Note t h a t testing for out-circulation can

be done precisely with just two bit vector operations.
In-circulation and out-circulation affect the direction vectors in the obvious manner (mov-

ing 4k t o the m-th position, and shifting 4k+l through 4, or 4, through appropriately);
this can be done on the bit vector representation with a few mask and shift operations.

Notice t h a t since we are allowing the order of reductions t o change, reduction dependences
do not prevent interchanging. The reduction loops in Program 5, for instance, could be inter-
changed in our scheme.

Loop Skewing. Loop skewing was introduced a s a alternate derivation of the wavefront
method [Wo186b]. In the two-nested case below:

for i = 2 to N - 1
for j = 2 to N - 1

computat ion (i , j)
end for

endfor

the j loop can be skewed with respect t o the i loop by adding i t o the upper and lower limits

of the j loop and subtracting i from j within the body of the loop:

for i = 2 to N - 1
for j = i + 2 to i + N - 1

computat ion (i , j - i)
endfor

endfor

In general, a loop can be skewed with respect t o any outer loop in which i t is contained, and the
loop can be skewed with any integer factor. For this paper, the skewing factor is restricted t o

be +I or -1 (the example above uses a factor of +I; a factor of -1 would subtract i from

the loop limits and add i within the body of the loop).
Loop skewing itself is always legal. By itself i t has no effect on the order of execution of

the iterations of the loop. However it has significant impact on the d a t a dependence relations

in the loop. For instance, the following loop:

for i = 2 to N - 1
for j = 2 to N - 1

A (i , j) = A (i - 1 , j) + A (i , j - l)
endfor

endfor

has two flow-dependence relations, with direction vectors (<, =) and (=, <) . The dependence
relations in the iteration space are:

Since each loop carries a dependence relation, neither loop can be executed in parallel. How-

ever, skewing the inner loop by a factor of +1 changes the program to:

for i = 2 to N - 1
for j = i + 2 to i + N - 1

A (i , j - i) = A (i - 1 , j - i) + A (i , j - i - 1)
endfor

endfor

The new iteration space is a parallelogram:

In particular, the dependence relations have direction vectors (<, <) and (=, <). Now con-
sider what happens when the skewed loops are interchanged [Wo186a]:

for j = 2 + 2 to N-1+N-1
for i = m a x (2 , j-N+1) to m i n (N - 1 , j - 2)

A (i , j - i) = A (i - 1 , j - i) + A (i , j - i - 1)
endfor

endfor

Now the dependence direction vectors are (<, <) and (<, =) , meaning t h a t the outer j loop
carries both dependence relations. This means t h a t the inner loop can be executed in parallel,
since i t no longer carries any dependence relations. This is the main effect of which compilers
will take advantage by loop skewing.

As already mentioned, loop skewing is always legal. As with loop interchanging, loop skew-
ing can change the direction vector associated with each dependence relation in the loop. This
paper uses only factors of fl; t o find cases where other factors are useful, dependence distance
vectors are necessary. Skewing the m loop with respect to the k loop by a positive or negative
factor will change direction vector element 4, according t o Table 1. Since a direction vector

has sign but no magnitude information, this table corresponds t o the sign of the result of adding
two numbers of indefinite magnitude (positive skew) or subtracting two numbers of indefinite

magnitude (negative skew). Adding two positive numbers is always positive, bu t adding a posi-

tive and negative number results in a number with indefinite sign; this gives the "*" entries in
the table. The "*" corresponds t o the set {<, =, >).

Table 1. New value of 4, after loop skewing.
Reduction directions require special handling; remember t h a t we allow reduction directions only
when all other directions are (=) . A direction vector with both dk= (R) and &= (R) will
remain unchanged by skewing. However, if (p h i , , 4,) = (R, =) , then we have t o t rea t this like

the case of (p h i , , (6,) = (<, =) , and change 4, t o (<) also. If there a re other reduction direc-

tions in the direction vector, then those must also be appropriately modified.

4rl
< - - > R

* > >

positive
skew

<

4,
< - > R -
< < *

negative

skew

<

Loop skewing can be used t o find additional parallelism when it can change a zero or nega-
tive direction in the inner loop t o a positive direction, thus allowing loop interchanging t o make
that the dependence-carrying loop.

Loop Reversal. Loop reversal is simply running a loop backwards; i t consists of switching the
lower and upper limits and negating the increment of the loop. It has little applicability when

compiling imperative languages, except for the rare cases when it can be used t o change (>)
directions t o (c) directions to allow loop interchanging. It is useful when translating applica-
tive programs to imperative semantics. In particular, when an applicative program requires a
loop t o run backwards, as in the program below:

for i in 1 : N - 1
A (i) = A (i + l) + 1

endfor

reversal is required t o allow normal imperative semantics t o execute the loop sequentially.
Reversing a loop is legal if i t does not carry any dependence relations other than reduction

relations. The legality of reversal of the k loop is tested by finding whether there are any
dependence carrying (c) directions a t nest k. The compiler can build a test vector Ik where

Then for all direction vectors a , test 9n@=q. If the test is true, then loop k carries a da t a

dependence relation t ha t would be violated by reversal.
Reversing the k loop will change the direction vector as:

where -4, is defined by Table 2. This modification can be managed on the bit vector by some
simple masking operations.

Table 2. New value of 4, after loop reversal.

Loop Rotation. Loop rotation is most easily defined when the loops are "normalized", tha t is
have a lower limit of zero and increment of one; unnormalized loops can always be normalized
by a simple program transformation if desired [AlK87,KKP81]. Rotation is much like skewing
[Wo190]; in the two-nested case below:

for i = o to N-I
for j = 0 to M - 1

computation (i , j)
endfor

endfor

rotating the j loop with respect t o the i loop by a factor of +1 changes the computation:

for i = 0 to N-1
for j = 0 to M-1

computation (i , (j -i) mod M)
endfor

endfor

while rotation by a factor of -1 produces:

for i = 0 to N-1
for j = 0 to M-1

computation (i, (j + i) mod M)
endfor

endfor

Loop rotation corresponds t o skewing the loop around a torus; the picture below shows a

rotated iteration space (by factor of -1) where Cij corresponds t o computat ion(i , j) , and

N=3, M=4.

Loop rotation can be applied t o non-adjacent loops, as with loop skewing. Unlike skewing,
rotation has no effect on the shape of the iteration space, since it merely shifts the iteration
space around.

Also unlike skewing, rotation is not always legal. Except for special cases dealing with
reduction directions (as in skewing), rotating the m loop with respect t o the outer k loop will
leave 4k unchanged, since the order of execution of the iterations of the k loop are unchanged.
An entry 4, of (<) or (>) will become (*) however, since any dependence relation can
potentially "wrap around" the iteration space and point in any direction. Thus any (<) depen-
dence carried by the m loop will be violated by loop rotation, the same condition as for loop
reversal. As with loop skewing, handling a direction vector ($*, dm)= (It,=) (reduction direc-
tion in the outer loop, non-reduction in rotated loop), requires treating this like the case
(4,, 4.)= (<, =) ; this is because a reduction direction is only well defined when all other direc-

tions are (=). Except for the cases in Table 3, rotation of i, with respect t o i, will change
direction vector elements (d,, A) t o (dk, *) .

Table 3. New value of 4, after rotation; other cases have "*" value.
I t is also well defined t o rotate a loop with respect t o a n inner loop. The simple two-nested

computation:

for i = 0 to N - 1
for j = 0 to M-1

computation (i, j)
endfor

endfor

4,
- - R

(=,=) (= ,R)
(<. *) (R . R)

(h * 4-1
positive
rotation

dk =
R

would be changed to:

for i = 0 to N - 1
for j = 0 to M-1

computation ((ifj) mod M, j)
endfor

endfor

4 m
- - R

(=,=) (= , R)
(< , * I

As before, after rotating outer loop m with respect t o inner loop k, 4k will remain unchanged
and 4, will become (*) , except the cases shown in Table 4. Again, any non-reduction depen-
dence relation carried by the m loop will be violated by loop rotation.

(h . 4 r)
negative
rotation

(bk =
R

Table 4. New value of 4, after rotation with respect t o inner loop.

(4 m * 4 k)

positive
rotation

h =
R

Sectioning. Sectioning (strip mining) is used by vectorizing compilers t o fix the size of the
innermost vector loop t o the maximum hardware vector length [Al183,Lov77]. I t is also used t o
divide a loop into a fixed number of equal size chunks t o spread the work across multiple proces-
sors. Sectioning corresponds t o simply splitting the a loop into two adjacent nested loops, where
the inner loop (the element loop) iterates along the elements of a single section, and the outer
loop (the section loop) moves t o the next section. Thus the loop:

4k - - R

(=,=) (*,<)

(R , =) (R , R)

for i = 1 to N
computation (i)

endfor

could be sectioned (to a maximum size of 32) by changing the loop to:

ss = 32
for is = 0 to N-1 by ss

for i = is+l to MIN(N,is+ss)
computation (i)

endfor
endfor

or i t could be sectioned into 8 equal size sections by:

ss = (N+7)/8
for is = 0 to N-1 by ss

for i = is+l to MIN (N, is+ss)
computation (i)

endfor
endfor

Sectioning is always legal, since by itself i t has no effect on the order of the execution of the
iterations of the loop. I t does change the number of loops, thus adding a dimension t o the itera-
tion space (though the tota l volume remains the same) and adding a n element t o the direction
vectors. Sectioning the k loop will transform each dependence relation into one or two depen-
dence relations. Sectioning loop k will change the direction vector as:

sect (k)

(4L, 42, . ,4k-l s 4k , 4k+l# • • 4n) * (d1,43, .,4k-l.4;,4;,4k+i, ".#4n)

where ($!, 4;) are defined Table 5.

(m;,~;) I ; (=.=I (>, (=# >) *) (R, R)

Table 5. New value of direction vector after sectioning.
T o see why sectioning a loop with (<) or (>) dependences produces into two different direc-

tions, let us examine the loop:

for I = 2 to N
S1: A(1) = A(1-3) + A(1-4) + A(1-5) + B(1)

endfor

There a r e three flow dependence relations with dependence distances 3, 4 and 5; however, they

would all have the same direction vector Sl S(,) S1. The dependence relations from iteration

1=3 would be:

Sectioning this loop t o a section size of 3 produces the program:

for I s = 4 to N-l by 3
for I = I s + l to MIN(N, I s + 3)

S,: A (1) = A (1 - 3) + A (1 - 4) + A (1 - 5) + B (1)
endfor

endfor

The dependence relations in the iteration space for I = 3 are now:

If the dependence distances are known, then the exact distance or direction after sectioning can
be computed; since our scheme only uses direction vectors, i t must assume the worst case.

Combing. Combing is a modification of sectioning where essentially the section and element
loops are interchanged. After sectioning with a section size of ss, each section loop comprises
ss consecutive iterations of the loop. On the other hand, after combing t o get cc combs, each

comb comprises every ccth iteration. Combing is useful for the same reasons as sectioning, but
especially when assigning iterations t o multiple processors when load balancing or inter-
processor dependence relations must be satisfied. Thus the loop:

for i = 1 to N
computation (i)

endfor

can be combed into 8 equal size combs by:

cc = 8
for ic = 1 to cc

for i = ic to N by cc
computation (i)

endfor
endfor

Whereas sectioning is always legal, combing is not. Like sectioning, combing increases the

number of loops and adds a dimension t o the iteration space and a n element t o the direction
vectors. Combing the k loop will transform each dependence relation into one or two depen-
dence relations. Combing loop k will change the direction vector as:

comb (k)
-* (4 1 , 4 2 , ..., (bk-l ,4;*d:*4k+1e * * - , A - ,) (& , (b 2 , 4 k - 1 . d k , d k + i . dn)

where (4;. 4;) are defined by Table 6. Since combing corresponds t o interchanging the section
and element loops, i t is not surprising t h a t these are simply the same direction vectors for sec-
tioning, with the entries interchanged. Like rotation and reversal, any non-reduction depen-

dence relation carried by the k loop will be violated by combing.

Table 6. New value of direction vector after combing.

5 Loop Interchanging Convex Iteration Spaces

Loop interchanging of triangular and trapezoidal loops is discussed in previous work
[Bango, Wo186a, Wo189]. This section presents a set of general rules for interchanging loops t h a t
traverse simple convex iteration spaces. The convex iteration spaces handled by this methods
are described with the loop limits:

for I 1 = max(Ll,l,o, Ll,a,o, ...) to min(Ul,l,o, Ul,a,o. ...)
for I a = max(La,l,o+La,l,111,..-) to min(Ua,l,o+Ua,i,111,-*.) . . .

k- 1 k-1

for = max(L~,~,O+CL~,~,~I~. .) to min(~ k , ~ . o + C ~ k . l . j1j. .)
j=l j=1

where each max and min has a list of one o r more arguments of the form given, and a max or
min with a single argument returns the value of t h a t single argument. The parameters
and U,,,, are integer constants. The method described here modifies the loop limits when
adjacent loops are interchanged; loop circulation or other multiple loop interchanges can
proceed by multiple applications of this method. These forms of loop limits sometimes arise
when multiple transformations (such a s skewing and interchanging) are applied t o nested loops;
i t is useful t o have a general framework t o deal with these limits.

Assume we are interchanging two adjacent loops in the above program; each loop limit is
a n extremum of a n affine expression of outer loop limits. From the perspective of the inner loop,
the outer loop limit expressions are invariants, while from the perspective of the outer loop, the
inner loop limits are a n invariant expression plus a constant times the outer loop index:

for I = max(L,,,, LIaa, .. .) to min(U I , ~ , .. .)
for J = max (LJ,,+LJ,1,II, LJ,~+LJ,~,II, . - -)

to min (UJ,I+UJ,~,II, U J , ~ + U J , ~ , I I , .
We present this a s a pseudo-algorithm. LI will be a set of expressions, the maximum of which
will represent the lower limit of the 1 loop (inner loop after interchanging), while UI will be a

set of expressions, the minimum of which will be the upper limit; similarly for LJ and UJ (outer
loop after interchanging). The algorithm manages each of these as a set.
1. Initialize by setting

2. For each lower limit expression LJ,,+LJ,,,I 1 in the original J loop, do one of steps 2a, 2b
or 2c depending on the sign of L,,,.,.
2a. If LJ,n,I = 0, set:

2b. If L,,,, I > 0, set:

2c. If LJ , , , ~ < 0, set:

3. For each upper limit expression U J . n + U J , n , I I in the original J loop, do one of steps 3a, 3b
or 3c depending on the sign of UJ,n,I.

3a. If UJSn, I = 0, set:

uJcuJ u CU,,n>

3b. If UJ ,n , I > 0 , set:

UJ+UJ U C U J , , + U J , ~ , I U I , ~ IVk)

3c. If U J a n a I < 0, set:

UJ-UJ U (U ~ , n + U ~ , n , l L 1 , k IVk3

This subsumes all previous work on interchanging triangular or trapezoidal loops. A simple

example follows:

for I = 0 to 4
for J = 0 to m i n (I + l , 7 -1)

The iteration space is:

The interchanged loops have (by the rules above) the limits:

for J = 0 to m i n (5, 7)
for I = m a x (0 , J-1) to m i n (4, 7- J)

The inner loop limits are:

Note t ha t for J = 5, the inner loop executes no iterations. An optimization might notice this
and optimize the outer loop limits down t o J = 0 , 4.

Another example; let's try t o describe the iteration space:

The original loop limits are:

for I = 1 to 7
for J = m a x (6 - 2 * I , 0, 2* I -11) to m i n (3 * 1 + 2 , 9 , 17 -2*1)

Interchanging according t o our rules, in steps:
1. Initialize:

2.1 The first lower limit 6 - 2 * I has a negative factor (-2), so use rule 2c:

2.2 The second lower limit 0 is a constant, so use rule 2a:

2.3 The third lower limit 2 * I - 1 1 has a positive factor, so use rule 2b:

3.1 The first upper limit 3*1+2 has a positive factor, so use rule 3b:

3.2 The second upper limit 9 is constant, so use rule 3a:

3.3 The third upper limit 17-2*I has a negative factor, so use rule 3c:

The final sets are:

corresponding t o the loops:

for J = max(-8, 0 -8) o m e n (23, 9 , 15)

for I = ma.(1, I?], I?) to .in(7 , I?], [?I
or, simplifying the J limits:

for J = 0 to 9

for I = .ax(1 , [?I, to mi.(7 , I?], I?]
Note tha t indeed the inner loop limits are correct:

J=0, I = max(1,
J=1, I = max(1,
J=2, I = rnax (1,
J=3, I = rnax (1,
J=4, I = max(1,
J=5, I = rnax (1,
J=6, I = rnax (1,
J=7, I = rnax (1,
J=8, I = rnax (1,
J=9, I = max(1,

'6-0/21, r0-2/31) to min(7,
'6-1/2],[1-2/31) to rnin (7,
.6-2/21,[2-2/31) to min(7,
'6-3/21,[3-2/31) to min(7,
'6-4/21,14-2/31) to rnin (7,
'6-5/21. r5-2/31) to rnin (7,
'6-6/2],[6-2/31) to rnin (7,
'6-7/21,[7-2/31) to rnin (7,
'6-8121, [8-2/31) to min(7,
'6-9/21, [9-2/31) to rnin (7,

As a final example, let us try t o interchange the I J K loop below to a K J I form:

for I = 1 to 5
for J = 6-1 to 1 0

for K = 1 to 10-1

We proceed by first going t o the JIK form (using rules 2c and 3a):

for J = 6-5 to 1 0
for I = m a x (l , 6 - J) to 5

for K = 1 to 10-1

then t o the J K I form (rules 2a and 3c):

for J = 1 to 10
for K = 1 to m i n (1 0 - 1 , l O - (6 - 5))

for I = m a x (l , 6 - J) to m i n (5 , l O - K)

and finally t o the desired K J I form (rules 2a, 3a and 3b):

for K = 1 to m i n (1 0 - 1 , 4 + 1 0)
for J = m a x (1 , K - 4) to 10

for I = m a x (l , 6 - J) to r n i n (5 , l O - K)

Another way would be t o go from the I J K form first t o the I K J form (rules 2a and 3a):

for I = 1 to 5
for K = 1 to 10-1

for J = 6-1 to 10

then t o the K I J form (rules 2a and 3c):

for K = 1 to 10-1
for I = 1 to m i n (5 , l O - K)

for J = 6-1 to 10

and finally t o the K J I form (rules 2c and 3a):

for K = 1 to 10-1
for J = m a x (6 - 5 , 6 - (1 0 - K)) to 10

for I = max (l , 6 - J) to m i n (5 , l O - K)

We leave i t t o the reader t o show t h a t all these forms traverse the same iteration space.

6 Summary

Program restructuring is an important capability for compilers and programming tools for com-
plex computer architectures. I t is one method to achieve improved performance on advanced
computer architectures. Restructuring can never duplicate or surpass the benefits of finding a n
appropriate algorithm, but the ability t o efficiently test for and perform many restructuring
transformations will allow compilers t o do a better job of mapping programs onto machines.

This paper discusses annotating da ta dependence relations with a bit vector t o represent

the direction vector. A new direction vector element was introduced for reductions. The use of
the bit vector and especially the reduction direction was shown by describing d a t a dependence
tests for several program transformations. This included tests for a particular form of loop

interchanging, loop circulation, using only a few bit vector operations per dependence relation.
We also discuss how t o interchange loops with simple convex loop limits. Some transformations
are useful t o uncover additional parallelism, while others are useful t o optimize performance by
taking advantage of certain architectural features. We believe this work will be useful when
implementing compilers and other programming tools for advanced parallel computers.

References

[All831 J. R. Allen, Dependence Analysis for Subscripted Variables and Its Application t o

Program Transformations, Ph.D. Thesis, Rice University, Houston, TX, April, 1983.

[AlK84] J. R . Allen and K. Kennedy, Automatic Loop Interchange, in Proc. of the SIGPLAN
84 Symposium on Compiler Construction, New York, June 1984, 233-246.

J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs t o Vector

Form, A C M Transactions on Programming Languages and Systems 9, 4 (October

1987), 491-542.

U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Publishers,

Norwell, MA, 1988.

U. Banerjee, A Theory of Loop Permutations, in Languages and Compilere jo t

Parallel Computing, D. Gelernter, A. Nicolau and D. Padua (ed.), Pitman, London,

1990, 54-74.

M. Burke and R. Cytron, Interprocedural Dependence Analysis and Parallelization,

in Proc. of the SIGPLAN Notices 86 Symp. on Compiler Construction, Palo Alto, CA,

June 25-27, 1986, 162-175.

D. J . Kuck, R. H. Kuhn, D. A. Padua, B. Leasure and M. Wolfe, Dependence Graphs

and Compiler Optimizations, in Conf. Record of the 8th ACM Symp. on the Principles

of Programming Languages, Williamsburg, VA, 1981, 207-218.

D. Loveman, Program Improvement by Source-t-Source Transformation, J. of the

A C M 20, 1 (January 1977), 121-145.

D. Wedel, Fortran for the Texas Instruments ASC System, SIGPLAN Notices 10, 3

(March 1975), 119-132.

M. Wolfe, Techniques for Improving the Inherent Parallelism in Programs,

UWCDCS-R-78-929, Univ. of Illinois, July 1978.

M. Wolfe, Optimizing Supercompilers for Supercomputers, Ph.D. Thesis, Univ. of

Illinois UIUCDCS-82-1105, Urbana, IL, October 1982. (UMI 83-03027).

M. Wolfe, Advanced Loop Interchanging, in Proc. of the 1986 Intl Conj. on Parallel

Processing, K. Hwang, S. M. Jacobs and E. E. Swartzlander (ed.), St . Charles, IL,
August 1422 , 1986, 536-543.

M. Wolfe, Loop Skewing: The Wavefront Method Revisited, Intl J. Parallel

Programming 15, 4 (August 1986), 279-294.

M. Wolfe and U. Banerjee, D a t a Dependence and Its Application t o Parallel

Processing, Intl Journal of Parallel Programming 16, 2 (April 1987), 137-178.

M. Wolfe, Optimizing Supercompilers for Supercomputers, Pi tman Publishing,

London, 1989.

M. Wolfe, Loop Rotation, in Languages and Compilers for Parallel Computing, D.

Gelernter, A. Nicolau and D. Padua (ed.), Pitman, London, 1990, 531-553.

This work was supported by NSF Grant CCR-8906909 and DARPA Gran t MDA972-88-J-1004.

