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Abstract 
D a t a  dependence concepts are  reviewed, concentrating on and extending previ- 
ous work on direction vectors. A bit vector representation of direction vectors 
is discussed. Various program restructuring transformations, such a s  loop circu- 
lation (a  form of loop interchanging), reversal, skewing, sectioning (strip min- 
ing), combing and rotation, are discussed in terms of their effects on the execu- 
tion of the program, the required dependence tests for legality, and the effects of 
each transformation on the dependence graph. Simple bit vector operations for 
the dependence tests and modifying the direction vector are shown. Finally, a 
simple method t o  interchange complex convex loop limits is given, which is use- 
ful when several loop restructuring operations are being applied in sequence. 

Keywords: d a t a  dependence, direction vector, restructuring, loop interchanging, 

loop reversal, loop skewing, loop rotation, sectioning, strip mining 

1 Prologue 

Analysis of the  dependence relations in a program allows the discovery of implicit parallelism in 

sequential programs, and is used in compilers for today's vector and parallel computers. This 
analysis can also be used t o  restructure programs t o  take advantage of various architectural 

features, such a s  local o r  cache memory and multicomputer topologies. 
In this paper we quickly review d a t a  dependence concepts, concentrating on the d a t a  

dependence direction vector. We extend direction vectors t o  distinguish reduction operations 

(such a s  sum, product, dot product, etc.) from other dependence relations. We study the use of 
a bit vector  representation of the direction vector t o  implement legality tests for several restruc- 
turing transformations, and show how those transformations affect the dependence relations. 
The transformations discussed are  loop interchanging, loop skewing, loop reversal, loop rotation, 
sectioning (strip mining) and combing. Loop interchanging is well known a s  a method to  
enhance parallelism and t o  improve memory hierarchy performance [A11<84, Wo182]; here we dis- 
cuss a slightly more powerful formulation than the usual pairwise interchanging, namely loop 

circulation (interchanging a given loop inwards or outwards over several loops in a single step) 
[Bango]. Loop skewing is a simple transformation t h a t  allows a compiler t o  implement the 
wavefront method, even in n~ultiple dimensions [tVo186b]. Loop reversal was first implemented in 
the compilers for the Texas Instruments' ASC [Wed75]. Loop rotation has been introduced as  a 
method t o  map algoritJlms eficiently onto multiprocessors [Wo190]. Sectioning is used to  divide 



a loop into fixed size sections for vector processing, or into a fixed riumber of sections for con- 
current execution [A1183,Lov77]; combing is a variant of sectioning. This paper also discusses 

how t o  modify loop limits when interchanging loops t h a t  traverse certain simple convex jtera- 
tion spaces. 

2 Overview of Data Dependence 

Nested loops define a n  iteration space, comprising a finite discrete Cartesian space with dimen- 
sionality equal t o  the loop nest level. For example, the loop below defines a two-dimensional 
5x10 iteration space. In imperative languages, the semantics of a serial loop define the order in 
which the points in the iteration space are visited. 

j= l  
Program 1: 

for i = 1 t o  5 i=l 
for j = 1 t o  10 

A ( i ,  j )  = B ( i ,  j )  + C ( i ) * D ( j )  
endfor 5 

endfor u 
There is no reason tha t  the iteration space need be rectangular; many popular algorithms 

have inner loops whose limits depend on the values of outer loop indices. The iteration space 
for the loop below is triangular, suggesting the name triangular loop. Other interesting itera- 
tion space shapes can be defined by nested loops, such as  trapezoids, rhomboids, and so on; some 
of these shapes can be generated from each other via loop restructuring. 

Program 2: 
for i = 1 t o  5 

for j = i t o  5 
A ( i ,  j) = B ( i ,  j) + C ( i ) * D ( j )  

endfor 
endfor 

Data Dependence. Many compilers available for today's advanced computers can detect vec- 
tor or parallel operations from serial loops. Compilers discover the  essential d a t a  flow (or d a t a  

dependence) in the loop and allow vector or parallel execution when the d a t a  dependence rela- 
tions a re  not violated. 

Loop restructuring transformations, such a s  loop interchanging, are  often applied t o  

enhance the available parallelism or otherwise optimize performance; d a t a  dependence informa- 
tion is needed t o  test whether restructuring transformations are  legal. Here, we say a transfor- 

mation is legal if normal sequential execution of the restructured program will produce the same 

answer as  the original program; in other words, the sequential loops and the statement ordering 
must satisfy all dependence relations. When compilers generate code for vector or parallel com- 
puters, there may be other means for satisfying dependence relations (such a s  interprocessor syn- 
chronization) which will allow the use of a n  otherwise 'illegal' transformation. 

In imperative languages, there are  three essential kinds of d a t a  dependence. A flow- 
dependence relation occurs when the value assigned t o  a variable or array element in the  execu- 

tion of one instance of a statement is used by the subsequent execution of a n  instance of the 
same or another statement. The loop below has a flow dependence relation from statement S, 
t o  itself, since the value assigned t o  A  (i+l) will be used on the next iteration of the loop, writ- 
ten s, 6 S1. 



for i = 1 t o  N-1 
S,: A  ( i + l )  = A  ( i )  + B (i) 

endfor 

An anti-dependence relation occurs when the value read from a variable or array element in 
a n  instance of some statement is subsequently reassigned. In the loop below there is a n  anti- 
dependence relation from S1 to  S 2 ,  since B ( i ,  j + I )  is used in s, and subsequently reassigned 

by S 2  in the next iteration of the j loop, written S1 3 S,. 

for i = 1 t o  N 
for j = 1 t o  M-1 

S, : A ( i ,  j )  = B ( i ,  j + l )  + 1 
S2 : B ( i , j )  = C ( i )  - 1 

endfor 
endfor 

Finally, an  outpu t  dependence relation occurs when some variable or array element is 
assigned in a n  instance of a statement and subsequently reassigned. An example of this is 
shown below where there is an  potential output dependence relation from S, t o  S,, since the 
variable B ( i + l )  assigned in S 2  may be reassigned in the next iteration of the  loop by S,, 

written S 2  6" S,. This also shows tha t  compilers must approximate the  d a t a  dependence rela- 

tions in a program; since a compiler can not know the paths t h a t  will be taken a t  run time, i t  
must make conservative assumptions. 

for i = 1 t o  N-1 
S,: i f ( A ( i )  > O )  B ( i )  = C ( i ) / A ( i )  
S,: B ( i + l )  = C (i) / 2 

endfor 

Distance and Direction Vectors. In order t o  apply a wide variety of loop transformations, 
da ta  dependence relations are  annotated with information showing how they are  affected by the 

enclosing loops. Three such annotations are popular today. Many dependence relations have a 
constant distance in each dimension of the iteration space. When this is the  case, a distance 
vector  can be built where each element is a constant integer representing the dependence dis- 

tances in the corresponding loop. For example, in the  following program there is a d a t a  depen- 

dence relation in the iteration space as  shown; each iteration ( i ,  j )  depends on the value com- 

puted in iteration ( i ,  j - 1 )  . The distances for this dependence relation are  zero in the i loop 
and one in the j loop, written S, 6(,, ,) S,. 

Program 3: 
for i = 1 to  N 

for j = 2 to  M 
S, : A ( i ,  j )  = A ( i ,  j - 1 )  + B ( i ,  j )  

endfor 
endfor 

Each distance vector will have n entries, where n is the  nesting level of the  loops surrounding 
the source and sink of the dependence. Since dependence distances are  usually small, short 
words or perhaps even signed bytes could be used, reducing the storage requirements. 

For many transformations, the actual distance in each loop may not be so important a s  

just the sign of the  distance in each loop; also, often the  distance is not constant in the loop, 
even t l~ough i t  may always be positive (or always negative). As an  example, in the  loop: 



Program 4: 
for i = 1 to N 

for j = 1 to N 
S, : X ( i + l , 2 * j )  = X ( i , j )  + B ( i )  

endfor 
endfor 

the assignment t o  X (i+l, 2  * j ) is used in some subsequent iteration of the i and j loops by 
the x (i ,  j) reference. Some of the dependence relations for this program are  given in the 
table below: 

assigned by used by dependence 

element i j i j distance 

X ( 2 , 2 )  1 1 2  2 ( 1 . 1 )  

X ( 3 , 4 )  2  2  3 4 

The distance in the  j loop for this dependence is always positive, but  is not a constant. A com- 
mon method t o  represent this is t o  save a vector of the signs of the dependence distances, called 
a direction vector .  Each direction vector element will be one of (+, 0, -) [Ban88]; for historical 
reasons, these are usually written (<, =, >) [Wo178,WoB87,Wol89]. In Program 4, the direc- 
tion vector associated with the dependence relation is S, 6(,,,) S,; in Program 3, the depen- 
dence relation would be written S, 6(=,,) S,.  

Another popular d a t a  dependence annotation saves only the  nest level of the outermost 
loop with a non- (=) direction (non-zero distance) [AlK87]. The dependence relation for Pro- 
gram 3 has a zero distance in the outer loop, but a non-zero distance in the inner loop, so this 

dependence relation is carried by the inner j loop. Some dependence relations may not be car- 
ried by any loop, as  below: 

for i = 1 to N 
for j = 2  to M 

S, : A ( i , j )  = B ( i , j )  + C ( i , j )  
S, : D ( i ,  j )  = A ( i ,  j )  + 1 

endfor 
endfor 

Here the references t o  A ( i ,  j )  produce a dependence relation from S, t o  S, with zero dis- 
tance in both loops. This is written S, 6(=,=)  S 2  or S1 6(,,,) S, .  Since i t  is carried by neither 

of the loops, i t  is called a loop independent dependence [A1K87]. This annotation by itself is too 
coarse for most applications; we will use the  notion of loop-carried dependence in our discussion, 

but  we show how t o  get this information from direction vectors. 

3 Direction Vector Extensions and Bit Vectors 

Here we extend direction vectors by adding a fourth dependence direction explicitly for reduc- 
tions. Take,  for example, the  program: 

for i = 1 to N 
Sl: S = S + A ( i )  

endfor 

Previous work in d a t a  dependence would classify this program as  having the dependence rela- 
tion S, 6(,) S1, thus implicitly preventing reordering of the index set. Because some beneficial 
transformations change the order of the accumulation, we distinguish associative reductions in 



the direction vector by using a reduction direction, written: S1 St,) S,. The difference is more 
noticeable with nested reductions: 

Program 6: 
for i = 1 to N 

for j = 1 to M 
S1 : S = S + B ( i , j )  

endfor 
endfor 

Previous work would say t h a t  this loop has the dependence relations Sl 6(,.,) S, a s  well a s  
S1 6(,,,) S,. The dependence test for loop interchanging, for example, is t h a t  there must be no 

(<, >) directions; unfortunately, there is a (<, >) implied by the (<, * )  . With extended 
direction vectors, there is only the dependence relation S1 6(~.~) S1, reduction in both dimen- 
sions. A reduction direction essentially corresponds t o  a dependence distance of one. Practi- 
cally speaking, compiler may only be able t o  find reduction directions when all other directions 
are (=) , and t h a t  is the only case dealt with here. 

Reduction dependence relations are  carried by all loops with a n  R direction. In Program 5, 
for instance, the  dependence relation is carried by both loops, while in the following program the 
dependence relation is carried by the i and k  loops, written S, 6 ( R , = , ~ )  S1: 

for i = I to N 
for j = 1 to M 

for k = 1 to L 
T ( j )  = T ( j )  + B ( i , j , k )  
endfor 

endfor 
endfor 

Bit Vectors .  In previous work, we discussed the potential of using a bit vector t o  represent a 

direction vector, with one bit for each direction in each loop [Wol89]. With the  reduction direc- 
tion, a direction vector would use 4 n  bits to  represent a dependence relation between two state- 
ments in n nested loops; if n is limited to  a small number (like 7 or 15), then each direction vec- 

tor can be stored in a single 32- or 64-bit word. 
As mentioned in [Wol89], taking the union of multiple directions ('ORing' the  bit vectors) 

can save space but with a loss of precision. For instance, ORing the bit vectors for the  direction 
vectors (<, >) and (=, =) gives the combined bit vector (<,>). The problem is t h a t  this is 

also the  sum of 

It thus looks like there is a spurious (<, =) and (=, >) direction; the  la t ter  direction can be 
filtered out by disallowing infeasible directions. However, experience has shown t h a t  these 
spurious directions do not inhibit transformation of the program; since our goal is restructuring 
through transformations, we accept the imprecision. 

Another problem is shown by ORing the bit vectors (<, =) + (=, <) -+ (<,I) ; this com- 
bined direction could be the sum of 

Here there is a spurious (<, <) and (=, =) ; the  (<, <) will usually cause no problems. How- 
ever the  spurious (=,=) does, since i t  will prevent reordering of code within the body of the 
loop, even within a single iteration. Thus, a s  in [Wol89], we add one additional bit in the 



direction vector, called the (==) bit, which will be set when the combined direction vector 
includes the  "all-equals" case. For example: 

and 

Using bit vectors t o  represent dependence direction vectors does not preclude the use of 
efficient techniques t o  build the direction vector, such as  the dependence hierarchy introduced in 

[BuC86]. 
We will show how t o  manipulate the bit vector representation of dependence directions for 

each program transformation. For instance, the test t o  see whether the iterations of a loop a t  
nest level k  can be executed in parallel is t h a t  the  loop carries no dependence relations. Using 
our bit-vector representation, this test can be done by testing for a loop-carried (<) direction, 
or a (R) direction. Testing for a loop-carried (<) direction is done by building a test direc- 
tion vector \IIk = ( q l ,  $ a ,  , qn, $==) where 

qj = (=), l < j < k ;  $, = {<); $,., = 0, k < h l n ;  $,= = 0 

Then, for each d a t a  dependence relation in the loop, test whether the corresponding direction 
vector iP carries a dependence a t  nest k  with the test: 

carries (k) := (3, n @) = \Ilk OR rlrk nCR)#JZI 

Loop k  carries any dependence relation for which carries is true. This method has  the 
advantage of building the test vector 3 only once for the loop and using i t  many times. 

4 Program Restructuring Transformations 

The program restructuring transformations we will investigate are  

loop interchanging, 
loop skewing, 
loop reversal, 
loop rotation, 

loop sectioning and combing. 
For each transformation, we will describe the conditions under which i t  is legal (testing the d a t a  

dependence relations), its effect on d a t a  dependence relations, and its effect on the shape of the 
iteration space. For the discussion below, assume t h a t  there a re  n nested loops, and t h a t  every 
dependence relation is annotated with a direction vector (4,. 4,, . . . .4,, #J==), where each 
direction vector element 4j {<, =, >, R) and is represented by four bits, except t h a t  
4== C (==) and is represented by a single additional bit. 

Loop Interchanging. Interchanging nested loops can dramatically change the execution 
characteristics of a loop, and can enhance the parallelism available a t  the inner or outer loop 

levels [A11<84, Wo178,Wo182,Wo180]. In a loop of the following form: 



for il = . . . 
for i2 = ... . . .  

for ik = . . . 
for ik+, = - . . . . 

for i, = . . . 
computat ion 

endfor . . .  
endfor 

the ik and ik+, loops can legally be interchanged only when there is no d a t a  dependence rela- 
tion in the computation t h a t  is carried by the i, loop which also has a (>) direction in the 
ik+, loop; this corresponds t o  a direction vector of (=, =, . . . , =, =, <, >, *, *, . . .) . 

Interchanging adjacent loops essentially transposes a n  iteration space about the  major 
diagonal; thus a 5x10 iteration space (Program 1) becomes a 10x5 space after interchanging, 
and a n  upper right triangular iteration space (Program 2) becomes a lower left triangle. 

A more general form of loop interchanging, called a circulation in [Bango], can interchange 
loop ik inwards t o  inside any loop (up to  in) or outwards t o  outside any enclosing loop (down 
to  i,) in a single step; we will call these in-circulation and out-circulation. A sufficient (but not 
necessary) condition t o  test whether loop ik can be in-circulated inside of loop i, (assuming 
the loops are all tightly nested and m > k), is t h a t  for every dependence relation between state- 
ments in the  loop, any one of the following three conditions hold: 
(a)  There is no (<) component in the direction vector element for i k ;  this is equivalent t o  

i.1 n4k=0- 
(b) The dependence relation is carried by one of the  outer loops; this is equivalent t o  

3 j ~ { 1  . k-1) s.t. {=)nQ)j=@. 
(c) There is no (>) component in the direction vector element for loops over which ik is 

being interchanged; this is equivalent to  {>)n4,=0, Vh~{k+l - . m). 
Using a bit vector for the direction vector, conditions (a)  and (b) can be tested with a single bit 

vector test; first, construct a direction bit vector: *= (+, , . - . , $,) where 

Then for all direction vectors a, test \Irn@=\k. If the equality does not hold, then either the  

dependence relation is carried by an  outer loop (test b) or is not carried by the k loop (test a),  
and interchanging is legal; otherwise condition (c) must be tested. 

Condition (c) can be tested with another bit vector test; construct a second test vector 3 
where 

$h={>), k<h<m: $,=a, otherwise 

Then for any direction vector @, test \Irn@=0. If the  equality holds, then there are no (>) 
directions t o  worry about and in-circulation is legal. 

This test is not precise, in the sense t h a t  there can be dependence relations t h a t  fail both 
tests but  still allow the circulation. For instance, in 3 nested loops, we might have a depen- 
dence relation with a direction vector (<, <, >) ; t o  in-circulate the outermost loop il inside of 
the innermost loop i 3 ,  we find tha t  the first test fails (since the  dependence is in fact carried by 
i l ) ,  and the second test also fails (since there is in fact a (>) component in d3 .  Yet,  in- 
circulation is legal in this case [Bango]. A precise dependence test for in-circulation requires 



modifying condition (c) above with m-k conditions, of the form: 
(c') For each p such t h a t  k<p<m, either there is no (>) component in the $p, or  there is no 

(=) component in some 4 for k ~ q c p ;  this is equivalent t o  

{=3n4q=@, VqE{k+l . . - p-1)  or { > > n 4 p = 0 .  

This condition can be tested for some value of p by constructing the test vector Qp where 

$q={=), k<q<p: $p={>) : $,=empty, otherwise 

Then for any direction vector @, test QPn@=9,  for all p such t h a t  k<p<m. If the  equality 

does not hold, then either 4, does not have a (>) component, or if it does, some loop between 

ik and i, has a (<) direction t h a t  will carry the dependence by the time ik is interchanged 
up t o  the ip loop; in some sense, a direction of (<) "protects" any (>) directions t o  the right 
in the direction vector. If the equality holds, then there is a n  unprotected (>) direction t o  
worry about and in-circulation is illegal. Since this test requires m-k bit vector operations, the  
simpler condition (c) should be tested first t o  screen the trivial cases. 

A necessary and sufficient condition t o  test whether loop ik can be out-circulated t o  out- 
side of loop i, (m < k,  again assuming the loops are tightly nested), is t h a t  for every depen- 
dence relation between statements in the loop, any one of the following three conditions hold: 

(a) There is no  (>) component in the  direction vector element for ik; this is equivalent t o  

c > , n ~ = r z r .  

(b) The dependence relation is carried by one loops surrounding m; this is equivalent t o  

3 jE{1  . m-1) s.t. {=)n4,=0. 
(c) There is no (<) component in the direction vector element for loops over which i, is 

being interchanged; this is equivalent t o  { < ) n b h = O ,  VhE{m . . . k-1) .  

Again, conditions (a)  and (b) can be tested with a single bit vector test by constructing a direc- 
tion bit vector JI  where 

$j={=), I< j <m: $k={>): gh=@, m<h, hZk: &==@ 

Then for any direction vector @, test 9n@=9. If the  equality does not hold, then either the  

dependence relation is carried by a n  outer loop (test b) or there is no (>) in the  k loop (test 

a), and interchanging is legal. 
Condition (c) can be tested with another bit vector test; construct the direction bit vector 

9 where 

$h={<), m<h<k: $~~=$3, otherwise 

Then for any direction vector @, test \kn@=@. If the equality holds, then there are  no (<) 
directions t o  worry about and out-circulation is legal. Note t h a t  testing for out-circulation can 

be done precisely with just two bit vector operations. 
In-circulation and out-circulation affect the direction vectors in the obvious manner (mov- 

ing 4k t o  the m-th position, and shifting 4k+l through 4, or 4, through appropriately); 
this can be done on the bit vector representation with a few mask and shift operations. 

Notice t h a t  since we are allowing the order of reductions t o  change, reduction dependences 
do not prevent interchanging. The reduction loops in Program 5, for instance, could be inter- 
changed in our scheme. 

Loop Skewing. Loop skewing was introduced a s  a alternate derivation of the wavefront 
method [Wo186b]. In the two-nested case below: 



for i = 2  to N - 1  
for j = 2 to N - 1  

computat ion ( i ,  j) 
end for 

endfor 

the j loop can be skewed with respect t o  the i loop by adding i t o  the upper and lower limits 

of the j loop and subtracting i from j within the body of the loop: 

for i = 2 to N - 1  
for j = i + 2  to i + N - 1  

computat ion ( i ,  j - i )  
endfor 

endfor 

In general, a loop can be skewed with respect t o  any outer loop in which i t  is contained, and the 
loop can be skewed with any integer factor. For this paper, the skewing factor is restricted t o  

be +I or -1 (the example above uses a factor of +I; a factor of -1 would subtract i from 

the loop limits and add i within the body of the  loop). 
Loop skewing itself is always legal. By itself i t  has no effect on the order of execution of 

the iterations of the loop. However it has significant impact on the d a t a  dependence relations 

in the loop. For instance, the  following loop: 

for i = 2 to N - 1  
for j = 2 to N - 1  

A ( i ,  j )  = A ( i - 1 ,  j) + A ( i , j - l )  
endfor 

endfor 

has two flow-dependence relations, with direction vectors (<, =) and (=, <) . The dependence 
relations in the iteration space are: 

Since each loop carries a dependence relation, neither loop can be executed in parallel. How- 

ever, skewing the inner loop by a factor of +1 changes the program to: 

for i = 2  to N - 1  
for j = i + 2  to i + N - 1  

A ( i ,  j - i )  = A ( i - 1 ,  j - i )  + A ( i ,  j - i - 1 )  
endfor 

endfor 



The new iteration space is a parallelogram: 

In particular, the dependence relations have direction vectors (<, <) and (=, <).  Now con- 
sider what  happens when the skewed loops are  interchanged [Wo186a]: 

for j = 2 + 2  to N-1+N-1 
for i = m a x ( 2 ,  j-N+1) to m i n ( N - 1 , j - 2 )  

A ( i ,  j - i)  = A ( i - 1 ,  j - i )  + A ( i ,  j - i - 1 )  
endfor 

endfor 

Now the dependence direction vectors are (<, <) and (<, =) , meaning t h a t  the  outer j loop 
carries both dependence relations. This means t h a t  the inner loop can be executed in parallel, 
since i t  no longer carries any dependence relations. This is the  main effect of which compilers 
will take advantage by loop skewing. 

As already mentioned, loop skewing is always legal. As with loop interchanging, loop skew- 
ing can change the direction vector associated with each dependence relation in the loop. This 
paper uses only factors of fl; t o  find cases where other factors are useful, dependence distance 
vectors are  necessary. Skewing the m loop with respect to the k loop by a positive or negative 
factor will change direction vector element 4, according t o  Table 1. Since a direction vector 

has sign but  no magnitude information, this table corresponds t o  the sign of the  result of adding 
two numbers of indefinite magnitude (positive skew) or subtracting two numbers of indefinite 

magnitude (negative skew). Adding two positive numbers is always positive, bu t  adding a posi- 

tive and negative number results in a number with indefinite sign; this gives the  "*" entries in 
the table. The "*" corresponds t o  the set {<, =, >). 

Table 1. New value of 4, after loop skewing. 
Reduction directions require special handling; remember t h a t  we allow reduction directions only 
when all other directions are (=) . A direction vector with both dk= (R) and &= (R)  will 
remain unchanged by skewing. However, if ( p h i , ,  4,) = (R, =) , then we have t o  t rea t  this like 

the case of ( p h i , ,  (6,) = (<, =) , and change 4, t o  (<) also. If there a re  other reduction direc- 

tions in the direction vector, then those must also be appropriately modified. 

4rl 
< - - > R 

* > > 

positive 
skew 

< 

4, 
< - > R  - 
< < * 

negative 

skew 

< 



Loop skewing can be used t o  find additional parallelism when it  can change a zero or  nega- 
tive direction in the inner loop t o  a positive direction, thus allowing loop interchanging t o  make 
that  the dependence-carrying loop. 

Loop Reversal. Loop reversal is simply running a loop backwards; i t  consists of switching the 
lower and upper limits and negating the increment of the loop. It has little applicability when 

compiling imperative languages, except for the rare cases when it  can be used t o  change (>) 
directions t o  ( c )  directions to  allow loop interchanging. It is useful when translating applica- 
tive programs to  imperative semantics. In particular, when an applicative program requires a 
loop t o  run backwards, as in the program below: 

for i in 1 : N - 1  
A ( i )  = A ( i + l )  + 1 

endfor 

reversal is required t o  allow normal imperative semantics t o  execute the loop sequentially. 
Reversing a loop is legal if i t  does not carry any dependence relations other than reduction 

relations. The legality of reversal of the k loop is tested by finding whether there are  any 
dependence carrying (c)  directions a t  nest k.  The compiler can build a test vector Ik where 

Then for all direction vectors a ,  test 9n@=q. If the test is true, then loop k carries a da t a  

dependence relation t ha t  would be violated by reversal. 
Reversing the k loop will change the direction vector as: 

where -4, is defined by Table 2. This modification can be managed on the bit vector by some 
simple masking operations. 

Table 2. New value of 4, after loop reversal. 

Loop Rotation. Loop rotation is most easily defined when the loops are "normalized", tha t  is 
have a lower limit of zero and increment of one; unnormalized loops can always be normalized 
by a simple program transformation if desired [AlK87,KKP81]. Rotation is much like skewing 
[Wo190]; in the two-nested case below: 

for i = o to N-I 
for j = 0 to  M - 1  

computation ( i  , j) 
endfor 

endfor 

rotating the j loop with respect t o  the i loop by a factor of +1 changes the computation: 



for i = 0 to N-1 
for j = 0 to M-1 

computation (i , ( j  -i) mod M) 
endfor 

endfor 

while rotation by a factor of -1 produces: 

for i = 0 to N-1 
for j = 0 to M-1 

computation (i, ( j  + i) mod M )  
endfor 

endfor 

Loop rotation corresponds t o  skewing the loop around a torus; the picture below shows a 

rotated iteration space (by factor of -1) where Cij corresponds t o  computat ion( i ,  j ) ,  and 

N=3, M=4. 

Loop rotation can be applied t o  non-adjacent loops, as  with loop skewing. Unlike skewing, 
rotation has no effect on the shape of the iteration space, since it  merely shifts the iteration 
space around. 

Also unlike skewing, rotation is not always legal. Except for special cases dealing with 
reduction directions (as in skewing), rotating the m loop with respect t o  the outer k loop will 
leave 4k unchanged, since the order of execution of the iterations of the k loop are  unchanged. 
An entry 4, of (<) or (>) will become ( * )  however, since any dependence relation can 
potentially "wrap around" the iteration space and point in any direction. Thus any (<) depen- 
dence carried by the m loop will be violated by loop rotation, the same condition as  for loop 
reversal. As with loop skewing, handling a direction vector ($*, dm)= (It,=) (reduction direc- 
tion in the outer loop, non-reduction in rotated loop), requires treating this like the case 
(4,, 4.)= (<, =) ; this is because a reduction direction is only well defined when all other direc- 

tions are (=). Except for the cases in Table 3, rotation of i, with respect t o  i, will change 
direction vector elements (d,, A )  t o  (dk, *) . 



Table 3. New value of 4, after rotation; other cases have "*" value. 
I t  is also well defined t o  rotate a loop with respect t o  a n  inner loop. The simple two-nested 

computation: 

for i = 0 to N - 1  
for j = 0 to M-1 

computation (i, j) 
endfor 

endfor 

4, 
- - R 

(=,=) (= ,R)  
(<. * )  ( R . R )  

(h * 4-1  
positive 
rotation 

dk = 
R 

would be changed to: 

for i = 0 to N - 1  
for j = 0 to M-1 

computation ( (ifj)  mod M, j) 
endfor 

endfor 

4 m  
- - R 

(=,=) ( = , R )  
( < , * I  

As before, after rotating outer loop m with respect t o  inner loop k,  4k will remain unchanged 
and 4, will become ( * ) ,  except the  cases shown in Table 4. Again, any  non-reduction depen- 
dence relation carried by the m loop will be violated by loop rotation. 

( h . 4 r )  
negative 
rotation 

(bk = 
R 

Table 4. New value of 4, after rotation with respect t o  inner loop. 

( 4 m  * 4 k )  

positive 
rotation 

h = 
R 

Sectioning. Sectioning (strip mining) is used by vectorizing compilers t o  fix the  size of the  
innermost vector loop t o  the  maximum hardware vector length [Al183,Lov77]. I t  is also used t o  
divide a loop into a fixed number of equal size chunks t o  spread the work across multiple proces- 
sors. Sectioning corresponds t o  simply splitting the a loop into two adjacent nested loops, where 
the inner loop (the element loop) iterates along the elements of a single section, and the outer 
loop (the section loop) moves t o  the  next section. Thus the loop: 

4k - - R 

(=,=) (*,<) 

( R , = )  ( R ,  R )  

for i = 1 to N  
computation (i) 

endfor 

could be sectioned ( to  a maximum size of 32) by changing the loop to: 



ss = 32 
for is = 0 to N-1 by ss 

for i = is+l to MIN(N,is+ss) 
computation (i) 

endfor 
endfor 

or  i t  could be sectioned into 8 equal size sections by: 

ss = (N+7)/8 
for is = 0 to N-1 by ss 

for i = is+l to MIN (N, is+ss) 
computation (i) 

endfor 
endfor 

Sectioning is always legal, since by itself i t  has no effect on the order of the execution of the  
iterations of the loop. I t  does change the number of loops, thus adding a dimension t o  the itera- 
tion space (though the tota l  volume remains the same) and adding a n  element t o  the direction 
vectors. Sectioning the k loop will transform each dependence relation into one or two depen- 
dence relations. Sectioning loop k will change the direction vector as: 

sect (k) 

(4L, 42, . ,4k-l s 4k , 4k+l# • • 4n) * (d1,43, .,4k-l.4;,4;,4k+i, ".#4n) 

where ($!, 4;) are  defined Table 5. 

(m;,~;) I ; (=.=I (>, (=# >) * )  (R, R) 

Table 5. New value of direction vector after sectioning. 
T o  see why sectioning a loop with (<) or (>) dependences produces into two different direc- 

tions, let us examine the loop: 

for I = 2 to N 
S1: A(1) = A(1-3)  + A(1-4) + A(1-5) + B(1) 

endfor 

There a r e  three flow dependence relations with dependence distances 3, 4 and 5; however, they 

would all have the same direction vector Sl S(,) S1. The dependence relations from iteration 

1=3 would be: 

Sectioning this loop t o  a section size of 3 produces the program: 



for I s  = 4 to N-l by 3  
for I  = I s + l  to MIN(N, I s + 3 )  

S,: A ( 1 )  = A ( 1 - 3 )  + A ( 1 - 4 )  + A ( 1 - 5 )  + B ( 1 )  
endfor 

endfor 

The dependence relations in the iteration space for I = 3  are now: 

If the dependence distances are known, then the exact distance or direction after sectioning can 
be computed; since our scheme only uses direction vectors, i t  must assume the worst case. 

Combing. Combing is a modification of sectioning where essentially the section and element 
loops are  interchanged. After sectioning with a section size of ss, each section loop comprises 
ss consecutive iterations of the loop. On the other hand, after combing t o  get cc combs, each 

comb comprises every ccth iteration. Combing is useful for the  same reasons as  sectioning, but  
especially when assigning iterations t o  multiple processors when load balancing or inter- 
processor dependence relations must be satisfied. Thus the loop: 

for i = 1 to N 
computation (i) 

endfor 

can be combed into 8 equal size combs by: 

cc = 8 
for ic = 1 to cc 

for i = ic to N by cc 
computation (i) 

endfor 
endfor 

Whereas sectioning is always legal, combing is not. Like sectioning, combing increases the 

number of loops and adds a dimension t o  the iteration space and a n  element t o  the direction 
vectors. Combing the k loop will transform each dependence relation into one or two depen- 
dence relations. Combing loop k will change the direction vector as: 

comb (k) 
-* ( 4 1 , 4 2 ,  ..., (bk-l ,4;*d:*4k+1e * * - , A - , )  ( & ,  ( b 2 ,  . . . . 4 k - 1 .  d k ,  d k + i  . dn) 

where (4;. 4;) are  defined by Table 6. Since combing corresponds t o  interchanging the section 
and element loops, i t  is not surprising t h a t  these are  simply the same direction vectors for sec- 
tioning, with the entries interchanged. Like rotation and reversal, any non-reduction depen- 

dence relation carried by the k loop will be violated by combing. 



Table 6. New value of direction vector after combing. 

5 Loop Interchanging Convex Iteration Spaces 

Loop interchanging of triangular and trapezoidal loops is discussed in previous work 
[Bango, Wo186a, Wo189]. This section presents a set of general rules for interchanging loops t h a t  
traverse simple convex iteration spaces. The convex iteration spaces handled by this methods 
are  described with the loop limits: 

for I 1  = max( Ll,l,o, Ll,a,o, ... ) to min( Ul,l,o, Ul,a,o. ... ) 
for I a  = max( La,l,o+La,l,111,..- ) to min( Ua,l,o+Ua,i,111,-*. ) . . .  

k- 1 k-1 

for = max( L~,~,O+CL~,~,~I~. . ) to min( ~ k , ~ . o + C ~ k . l .  j1j. . ) 
j=l j=1 

where each max and min has a list of one o r  more arguments of the form given, and a max or 
min with a single argument returns the value of t h a t  single argument. The parameters 
and U,,,, are integer constants. The method described here modifies the loop limits when 
adjacent loops are interchanged; loop circulation or other multiple loop interchanges can 
proceed by multiple applications of this method. These forms of loop limits sometimes arise 
when multiple transformations (such a s  skewing and interchanging) are  applied t o  nested loops; 
i t  is useful t o  have a general framework t o  deal with these limits. 

Assume we are interchanging two adjacent loops in the above program; each loop limit is 
a n  extremum of a n  affine expression of outer loop limits. From the perspective of the  inner loop, 
the outer loop limit expressions are  invariants, while from the perspective of the outer loop, the  
inner loop limits are  a n  invariant expression plus a constant times the outer loop index: 

for I = max( L,,,, LIaa, .. . ) to min( U I , ~ ,  .. . ) 
for J = max ( LJ,,+LJ,1,II, LJ,~+LJ,~,II, . - - ) 

to min ( UJ,I+UJ,~,II, U J , ~ + U J , ~ , I I ,  . 
We present this a s  a pseudo-algorithm. LI will be a set  of expressions, the maximum of which 
will represent the lower limit of the 1 loop (inner loop after interchanging), while UI will be a 

set of expressions, the  minimum of which will be the upper limit; similarly for LJ and UJ (outer 
loop after interchanging). The algorithm manages each of these as  a set. 
1. Initialize by setting 

2. For each lower limit expression LJ,,+LJ,,,I 1 in the original J loop, do  one of steps 2a, 2b 
or 2c depending on the sign of L,,,.,. 
2a. If LJ,n,I = 0, set: 



2b. If L,,,, I > 0, set: 

2c. If LJ , , , ~  < 0, set: 

3. For each upper limit expression U J . n + U J , n , I I  in the original J loop, do one of steps 3a, 3b 
or 3c depending on the sign of UJ,n,I. 

3a. If UJSn, I = 0, set: 

uJcuJ u CU,,n> 

3b. If UJ ,n , I  > 0 ,  set: 

UJ+UJ U C U J , , + U J , ~ , I U I , ~  IVk) 

3c. If U J a n a I  < 0, set: 

UJ-UJ U ( U ~ , n + U ~ , n , l L 1 , k  IVk3 

This subsumes all previous work on interchanging triangular or trapezoidal loops. A simple 

example follows: 

for I = 0 to 4 
for J = 0 to m i n ( I + l ,  7 -1 )  

The iteration space is: 

The interchanged loops have (by the rules above) the limits: 

for J = 0 to m i n  (5, 7) 
for I = m a x  ( 0 ,  J-1) to m i n  (4, 7-  J) 

The inner loop limits are: 



Note t ha t  for J = 5, the inner loop executes no iterations. An optimization might notice this 
and optimize the outer loop limits down t o  J = 0 ,  4. 

Another example; let's try t o  describe the iteration space: 

The original loop limits are: 

for I = 1 to 7 
for J = m a x ( 6 - 2 * I ,  0, 2* I -11 )  to m i n ( 3 * 1 + 2 ,  9 ,  17 -2*1 )  

Interchanging according t o  our rules, in steps: 
1. Initialize: 

2.1 The first lower limit 6 - 2 * I  has a negative factor (-2), so use rule 2c: 

2.2 The second lower limit 0 is a constant, so use rule 2a: 

2.3 The third lower limit 2 * I - 1 1  has a positive factor, so use rule 2b: 

3.1 The first upper limit 3*1+2 has a positive factor, so use rule 3b: 



3.2 The second upper limit 9 is constant, so use rule 3a: 

3.3 The third upper limit 17-2*I has a negative factor, so use rule 3c: 

The final sets are: 

corresponding t o  the loops: 

for J = max( -8,  0 -8  ) o m e n (  23, 9 ,  15 ) 

for I = ma.( 1, I?], I?) to .in( 7 ,  I?], [?I 
or, simplifying the J limits: 

for J = 0 to 9 

for I = .ax( 1 ,  [?I, to mi.( 7 ,  I?], I?] 
Note tha t  indeed the inner loop limits are correct: 

J=0, I = max(1, 
J=1, I = max(1, 
J=2, I = rnax (1,  
J=3, I = rnax (1,  
J=4, I = max(1, 
J=5, I = rnax (1,  
J=6, I = rnax (1, 
J=7, I = rnax (1,  
J=8, I = rnax (1,  
J=9, I = max(1, 

'6-0/21, r0-2/31 ) to min(7,  
'6-1/2],[1-2/31 ) to rnin (7,  
.6-2/21,[2-2/31 ) to min(7, 
'6-3/21,[3-2/31 ) to min(7, 
'6-4/21,14-2/31 ) to rnin (7,  
'6-5/21. r5-2/31 ) to rnin (7,  
'6-6/2],[6-2/31 ) to rnin (7,  
'6-7/21,[7-2/31 ) to rnin (7,  
'6-8121, [8-2/31 ) to min(7,  
'6-9/21, [9-2/31 ) to rnin (7,  

As a final example, let us try t o  interchange the I J K  loop below to  a K J I  form: 

for I = 1 to 5 
for J = 6-1 to 1 0  

for K = 1 to 10-1 

We proceed by first going t o  the JIK form (using rules 2c and 3a): 

for J = 6-5 to 1 0  
for I = m a x ( l , 6 - J )  to 5 

for K = 1 to 10-1 

then t o  the J K I  form (rules 2a and 3c): 



for J = 1 to 10 
for K  = 1 to m i n  ( 1 0 - 1 , l O -  ( 6 - 5 ) )  

for I = m a x  ( l , 6 - J )  to m i n  ( 5 , l O - K )  

and finally t o  the desired K J I  form (rules 2a, 3a and 3b): 

for K  = 1 to m i n  ( 1 0 - 1 , 4 + 1 0 )  
for J = m a x  ( 1 ,  K - 4 )  to 10 

for I = m a x  ( l , 6 - J )  to r n i n  ( 5 , l O - K )  

Another way would be t o  go from the I J K  form first t o  the I K J  form (rules 2a and 3a): 

for I = 1 to 5 
for K  = 1 to 10-1 

for J = 6-1 to 10 

then t o  the  K I J  form (rules 2a and 3c): 

for K  = 1 to 10-1 
for I = 1 to m i n  ( 5 , l O - K )  

for J = 6-1 to 10 

and finally t o  the  K J I  form (rules 2c and 3a): 

for K  = 1 to 10-1 
for J = m a x ( 6 - 5 , 6 -  ( 1 0 - K ) )  to 10 

for I = max ( l , 6 - J )  to m i n  ( 5 , l O - K )  

We leave i t  t o  the  reader t o  show t h a t  all these forms traverse the same iteration space. 

6 Summary 

Program restructuring is an  important capability for compilers and programming tools for com- 
plex computer architectures. I t  is one method to  achieve improved performance on advanced 
computer architectures. Restructuring can never duplicate or surpass the benefits of finding a n  
appropriate algorithm, but the ability t o  efficiently test for and perform many restructuring 
transformations will allow compilers t o  do a better job of mapping programs onto machines. 

This paper discusses annotating da ta  dependence relations with a bit vector t o  represent 

the  direction vector. A new direction vector element was introduced for reductions. The use of 
the bit vector and especially the  reduction direction was shown by describing d a t a  dependence 
tests for several program transformations. This included tests for a particular form of loop 

interchanging, loop circulation, using only a few bit vector operations per dependence relation. 
We also discuss how t o  interchange loops with simple convex loop limits. Some transformations 
are useful t o  uncover additional parallelism, while others are  useful t o  optimize performance by 
taking advantage of certain architectural features. We believe this work will be useful when 
implementing compilers and other programming tools for advanced parallel computers. 
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