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A b s t r a c t  
A technique for mapping algorithms t o  massively parallel processors is described; this 
method differs from previous work by focusing on explicit program restructuring as 
opposed t o  manual or  algebraic mapping, and allows nonlinear as well as linear m a p  
pings. This method benefits from previous work in program restructuring and systolic 
ar ray synthesis and thus will be simple t o  implement. 

P r o l o g u e  

Systolic array mapping of a nested-loop iterative algorithm has been posed as 
finding a linear mapping (R) of the index set of the algorithm (I C 2") such t h a t  cer- 
tain constraints are  met. The algorithm is usually restricted t o  tightly nested loops (n 
nested loops) with invariant o r  perhaps triangular loop limits t h a t  define a finite index 
se t  o r  iteration space. The  body of the algorithm computes new values for one or more 
hrray elements from previously computed values and initial conditions. The mapping R 

is usually defined as , where T is the time mapping, and S is the  space (or proces- (3 
sor) mapping. Thus, a particular iteration i will be executed by processor Si at time 
s tep Ti. Each element in the index set I requires certain data ,  typically expressed as 
subscripted array references. The  time/space mapping of the index set  imposes a time 
and  space mapping on the generation and usage of the d a t a  elements. This synthesis 
process is also useful for mapping algorithms onto  massively parallel computer systems. 

Another approach for massive parallelism is t o  use a n  explicitly d a t a  parallel 
language model. The  user is then responsible for mapping the d a t a  and execution t o  
t h e  processors (or virtual  processors); some recent work on automating some of this pro- 
cess is encouraging [KLSgO]. 

Here we focus on mapping a n  algorithm by applying program restructuring 
transformations, either automatically or  semi-automatically (under user control). R e s  
tructuring transformations, such as loop interchanging, have been investigated as 
methods to discover additional parallelism in eequential programs [AlK84, Wo178, Wo1821 
and  to optimize the  performance of memory hierarchies [AKLSl,IrT88]. We believe we 
can get many of the same benefits from program restructuring as from algebraic 



mathods, without as many restrictions on the source program. This paper describes 
some restructuring transformations and how they would be used in such a scheme. 

Model of Parallel Computation 

We assume an ensemble of processors executing in either SIMD (Single Instruction 
Multiple Data) or SPMD (Single Program Multiple Data) mode. A parallel algorithm 
will consist of a number of steps, where each step comprises a computation phase and a 
communication phase. The computation phase describes parallel execution across all or 
a subset of the processor ensemble. An algorithm is expressed in the form of nested 
loops: 

for il = . . . 
for it = ... . . .  

for in = ... 
c o m p u t a t i o n  (i) 

end for . . .  
endfor 

Two interpretations can be taken of such a program: an imperative program defines the 
order of execution of the iterations which is then used t o  find the da ta  dependence rela- 
tions, while a single-assignment program defines the data  dependence relations which 
then are used t o  find a legal ordering of the iterations. The standard form of the paral- 
lel algorithm we use is: 

do jlrl = ... 
pardo kl = . . . 

pardo k2 = . . . . . .  
pardo k l s l  = . . . 

c o m p u t a t i o n  (r (jk) ) 
end par do . . .  

endpardo 
communication phase 

enddo . . . 

where r is a mapping function from the jk space t o  the i space ( A  is R-I). The limits 
for each loop can in general be affine functions of the outer loop variables (and cannot 
be modified in the body of the loop); the loop variables will only be used in other loop 
limits and to index arrays or as literals within the body of the loop. In most of the 
examples, the communication phase will be implicit, but will be constrained t o  nearest 
neighbors according t o  the defined topology. While the original algorithm may be 



either imperative or  declarative, the  target  language is strictly imperative, meaning 
t h a t  the  order of the  execution of the iterations of the serial do loops is strictly for- 
ward. 

More abstractly, the  parallel algorithm can be viewed as: 

do j, = ... 
do j2 = ... . . .  

do jlTl = ... 
computation phase 
communication phase 

enddo . . .  
enddo 

where the  computation phase is the set of nested pardo loops. The total  number of 
loops in the  parallel algorithm (IT1 + I S  1 )  must equal the number of loops in the origi- 
nal algorithm (n). The  method described here will proceed by transforming the original 
algorithm by a series of elementary program transformations into an  appropriate paral- 
lel form. 

One difference between the approach described here and some other methods is t h a t  
classical algebraic mapping methods only allow for a single time dimension, while our 
target  algorithmic model allows nested sequential "time" loops. Formally, nested 
sequential loops implicitly define a single timing schedule via loop collapsing; t o  simplify 
the  program restructuring approach, we keep the nested loops. Also, with nested loops 
some of the communication can be "floated" out of the innermost levels: 

do jlTl = 
computation phase 
communication phase 

enddo 
eub-communication phase 

enddo . . . 
enddo 

This  still allows for regular communication patterns; taking advantage of local memory 
to reduce communication in this way can reduce the total  load on the network 
bandwidth. 

Note t h a t  we will take  advantage of the  topology of the processor network, much 
like other work in systolic array mapping strategies [CCL88,FoM85,LaM85, Qui841. We 
envision our approach being applied to several models of processor ensembles, including 
SIMD parallel processors, systolic arrays of custom or  semi-custom chips, o r  ar rays  of 
standard single-chip microprocessors. 



Overview of Data Dependence 

We say tha t  nested loops define an iteration space, comprising a finite discrete 
Cartesian space with dimensionality equal to  the loop nest level. For example, the loop 
below defines a twedimensional 5x10 iteration space. In imperative languages, the 
semantics of a serial loop define the order in which the points in the iteration space are 
executed. 

Program 1: 
f o r i = l t o 5  

for j = 1 to 10 
A ( i ,  j )  = B ( i ,  j)  + C( i )  * D ( j )  

end for 
endfor 

There is no reason that  the iteration space need be rectangular; many popular a l g e  
rithms have inner loops whose limits depend on the values of outer loop indices. The 
iteration space for the loop below is triangular, suggesting the name triangular loop. 
Other interesting iteration space shapes can be defined by nested loops, such as tra- 
pezoids, rhomboids, and so on; we will show how some of these shapes can be generated 
from each other via loop restructuring. 

Program 2: 
f o r i = l t o 5  

for j = i to  5 
A ( i , j )  = B ( i , j )  + C(i )*D(j )  

endfor 
endfor 

Data Dependence. Many compilers available today for vector and parallel computers 
advertise the ability t o  detect vector or parallel operations from sequential loops. 
Parallelism is detected by discovering the essential data  flow (or da t a  dependence) in 
the loop and allowing vector or parallel execution when da ta  dependence relations are 
not violated. Loop restructuring transformations, such as loop interchanging, are often 
applied t o  enhance the available parallelism or otherwise optimize performance; da t a  
dependence information is needed t o  test whether restructuring transformations are 
legal (whether the program produces the same answer after restructuring as it did 
before). 

In imperative languages, there are three essential kinds of da t a  dependence. A 
flow-dependence relation occurs when the value assigned t o  a variable or array element 
in the execution of one instance of a statement is used (read, fetched) by the subsequent 
execution of an instance of the .same or another statement. The loop below has a flow 
dependence relation from statement Sr t o  itself, since the value assigned t o  A ( i + l )  
will be used on the next iteration of the loop. We write this S1 b sl. 



for i = 1 to N-1 
S,: A ( i + l )  = A ( i )  + B ( i )  

endfor 

An anti-dependence relation occurs when the value read from a variable or  array 
element in a n  instance of some statement is subsequently reassigned. In the loop below 
(assuming a n  imperative language), there is an  anti-dependence relation from S, t o  
St, since B ( i ,  j + l )  is used in S1 and subsequently reassigned by S2 in the next 
iteration of the  j loop. We write this S1 F S2. 

Program 3: 
for i = 1 f o N  

for j = 1 t o  M-1 
S1 : A ( i ,  j )  = B ( i ,  j + l )  + 1 
S2 : B ( i ,  j )  = C ( i )  - 1 

end for 
endfor 

Finally, a n  output dependence relation occurs when some variable o r  ar ray element 
is assigned in a n  instance of a statement and subsequently reassigned. An example of 
this is shown below (again assuming an  imperative language) where there is an poten- 
t ial  output  dependence relation from S2 to S1, since the variable B  ( i + l )  assigned in 
S2 may be reassigned in the  next iteration of the loop by S1. We write this S2 60 S1. 
This  also shows t h a t  the  d a t a  dependence relations in a program must be approxi- 
mated; since a compiler will not know the actual paths taken in the program, i t  must 
make conservative assumptions. 

Program 4: 
for i = 1 to N-1 

S1: if (A ( i )  > 0) B ( i )  = C ( I )  /A ( I )  
S2: B ( i + l )  = C ( i )  / 2 

endfor 

Single Aeaignment Languages. In single-assignment languages, such as SISAL 
P A 8 5 1  o r  Crystal [Che86], anti-dependence and output dependence relations cannot 
occur since variables and array elements cannot be reassigned. In Crystal, for instance, 
Program 4 would simply be illegal (since i t  tries t o  redefine B ( i ) ) ,  while Program 3 
would be treated as having a flow dependence from S2 t o  S1, requiring the j loop t o  
be executed backwards. For most of this paper we will concentrate on imperative 
language examples. Since our model of a parallel algorithm follows imperative seman- 
tics, programs written in a n  single-assignment language will be t o  converted t o  a n  
imperative program. We will d o  this by loop transformations such t h a t  the normal 
imperative execution of the  loops will satisfy all the  dependence relations. 

Distance and Direction Vectors. In order to apply a wide variety of loop transfor- 
mations, d a t a  dependence relations are  annotated with information showing how they 
a r e  affected by the  enclosing loops. Several such annotations are  popular today. Many 
dependence relations have a constant distance in each dimension of the iteration space. 



When this is the case, a distance vector can be built where each element is a constant 
integer representing the dependence distances in the corresponding loop. For example, 
in the following program there is a data  dependence relation in the iteration space as  
shown in Figure 1; each iteration (1, j )  depends on the value computed in iteration 
( i ,  j - 1 ) .  We say tha t  the distances for this dependence reIation are zero in the i 

loop and one in the j loop, and we write this S1 6(0,1) S1. 

Program 5: 
for i = 1 to  N 

for j = 2  to  M 
Sl : A ( 1 ,  j) = A ( 1 ,  j-1) + B ( i , j )  

end for 
endfor 

Figure 1. 

For many transformations, the actual distance in each loop may not be so impor- 
tan t  as just the sign of the distance in each loop; also, the distance may not be con- 
stant,  even though it may always be positive (or always negative). As an example, in 
the loop: 

Program 6: 
for i = 1 t o N  

for j = 1 t o N  
s1 : X ( i + l , 2 * j )  = X ( 1 ,  j) + B ( 1 )  

endfor 
end for 

the assignment t o  X ( i + l ,  2 j )  is used in some subsequent iteration of the i and j 

loops by the X ( i ,  j )  reference. Some of the dependence relations for this program are 
given in the table below: 

assigned by used by dependence 
element i j i j distance 
X(212) 1 1 2 2 (191) 
X(3,4) 2 2 3 4 (1 92) 

The distance for this dependence in the j loop is always positive, but is not a constant. 
A common method t o  represent this is t o  save a vector of the signs of the dependence 
distances, called a direction uector. Each direction vector element will be one of 



<+, 0 ,  -) [Ban88]; for historical reasons, these are  usually written (<, =, >) 
~o178,WoB87,Wo189c]. In Program 3, the dependence relation would be written 

s1 6(=,<) s1. 
Here we extend direction vectors by adding a fourth dependence direction explicitly 

for reductions. Take,  for example, the imperative program: 

for i = I to  N 
S1 : S = S + A ( i )  

endfor 

Previous work in d a t a  dependence would classify this program as having the depen- 
dence relation S1 6(,) S1, thus implicitly preventing reordering of the index set. Using 
a single assignment language, this would have t o  be written: 

f o r i = l t o N  
S1: S ( i + l )  = S ( i )  + A ( i )  

endfor 

which strictly defines the order of the  accumulation. Because we want t o  be able t o  
change the order of the accumulation, for associative reductions like this we will use the 
dependence relation S1 6(,) S1. This works equally well for certain declarative 
languages, such as Crystal, which do not define a n  order of accumulation in the first 
place. T h e  difference is more noticeable with nested reductions: 

for i = 1 t o N  
for j = l h M  

S1 : S = S + B ( i ,  j) 
end for 

endfor 

Previous work would say tha t  this loop has the dependence relations S1 6(,,,) S, as 
well as S1 6(=,<) S1. The  dependence test for loop interchanging, for example, is t h a t  
there must be no (<, >) directions; unfortunately, there is a (<, >) implied by the 
(c, *)  . With extended direction vectors, we call this S1 6(B,R) S1, a reduction in both 

dimensions. A reduction direction always corresponds t o  a dependence distance of one. 
Practically speaking, we will only be able t o  find reduction directions when all other 
directions a re  (=) , and t h a t  is the only case we will deal with here. 

Another popular d a t a  dependence annotation saves only the  nest level of the  outer- 
most loop with a non-zero distance (non- (=) direction) [AlK87]. The  dependence rela- 
tion for Program 5 has  a zero distance in the outer loop, but a non-zero distance in the 
inner loop, so we would write S1 @ S1. We also say t h a t  this dependence relation is 
carried by the  inner j loop. Some dependence relations may not be carried by any 
loop, as below: 

for i = 1 f o N  
for j = 2 h M  

S1 : A ( i , j )  = B ( 1 , j )  + C ( i , j )  
S2 : D ( i ,  j )  = A ( i #  j )  + 1 

end for 
endfor 



Here the references to A ( i ,  j )  produce a dependence relation from S1 to S2 with 
zero distance in both loops. We would thus say S1 6(0,0) S2 o r  S1 6(,,=) S2. Since i t  
is carried by neither of the loops, we call i t  a loop independent dependence, represented 
S, 600 S2. This annotation by itself is too coarse for our application, though we will use 
the  notion of loopcarried dependence in our discussion. In particular, a loop tha t  does 
not carry any dependence relations can be executed in parallel; we will make use of this 
fact  by transforming algorithms to change the loops which carry dependences, and mov- 
ing dependence-carrying loops t o  the outermost levels. 

For reduction loops, we say t h a t  the dependence relation is carried by all loops with 
a n  R direction. In the program: 

f o r  i = 1 to N 
f o r  j = l b M  

for k = 1 to L 
S1 : T ( j )  = T ( j )  + B ( i , j 8 k )  

end f o r  
end f o r  

e n d f o r  

the  dependence relation is carried by the i and k loops, written Sl 6(B,r,B) S1 o r  
S1 Pa3 S1. 

I n p u t  Dependence.  For our purposes there is reason t o  also look at the order in 
which d a t a  elements a re  read, when they are used multiple times. For instance, in P r e  
gram 3, the  array element C ( i )  on the right hand side of S2 is used M-1 times, once 
for each iteration of the j loop. There is no d a t a  dependence constraint placed on the 
program by this fact; the  different iterations can be assigned t o  different processors, and 
they can each fetch C ( i )  in any order; nonetheless, we will compute a relation 
between right hand side variable references, when any element is used more than once 
in the loop. For  purposes of testing for legality of program restructuring as described in 
the next section, these input dependence relations will not disallow any transformation; 
however, we will keep these relations and update them as we update the other "real" 
d a t a  dependence relations. Whereas input dependence relations cannot have a reduc- 
tion direction, we d o  note when they have correspond t o  a broadcast along some index 
dimension. So for Program 3 we say S2 6'(,,,) S2. We will see in the  next section t h a t  
some transformations change (<) directions into (>) directions, which cannot be 
satisfied by imperative semantics (such as the target  language), but  input dependence 
relations will be handled in a special way. 

E l e m e n t a r y  T r a n s f o r m a t i o n s  

T h e  element program restructuring transformations which we propose t o  use in our 
mapping method are  

loop interchanging, 
loop skewing, 



loop reversal and 
looprotation.  

For  each transformation, we will describe i ts  effect on d a t a  dependence relations and i ts  
effect on the  shape of the iteration space. For the discussion below, assume t h a t  we 
have n nested loops, and tha t  every dependence relation is annotated with a distance 
vector (dl, d l ,  . . . d,) or  direction vector 42, . . . ,dn) . In all cases, dk is 
either a constant integer, or  is *, meaning i t  has unknown value, and 
& C (<, =, >, R 3 .  

Loop Interchanging. Interchanging nested loops can dramatically change the execu- 
tion characteristics of the loop, and can enhance the parallelism available at the inner 
loop levels [AlK84, Wo178, Wo182, Wo189c]. Loop interchanging essentially transposes an  
iteration space about the  major diagonal; thus a 5x10 iteration space (Program I) 
becomes a 10x5 space after interchanging, and an  upper right triangular iteration 
space (Program 2) becomes a lower left triangle. 

Loop interchanging can change the direction vector or  distance vector associated 
with every d a t a  dependence relation in the loop. Loop interchanging of the k and k+l 
loops changes the  distance vector by interchanging the elements corresponding t o  those 
two  loops, as in: 

int (k, k+l) 

(dl,d2, *,dkrdk+lr rdn) (dl,d2,. *,dk+l,dk,. rdn) 

and the direction vector is modified as: 
int (k, k+l) - ,&,&+I, ,dn) 4 (41#428 *.*#&+I#&# *.**A) 

In a twenested loop (n=2), for instance, interchanging the  two loops would change a 
(=, <) dependence relation into a (<, =) , moving the dependence-carrying loop out- 
wards. However, a (<, <) dependence relation would still look the same after inter- 
changing, which would change the dependence carrying loop t o  the new outer loop. 
Notice t h a t  since we are  allowing the order of reductions t o  change, reduction depen- 
dences d o  not prevent interchanging. Interchanging corresponds t o  the  algebraic 

transformation . Io '1 
Any loop ordering is achievable by multiple applications of adjacent pairwise loop 

interchanging. There is often more than  one way t o  change one loop ordering t o  
another. For instance, a threenested I J K  loop can be changed to a K J I  loop either 
by I JK-.*IKJ+KI J + K J I  or by I J K + J I K - + J K I - - + K J I .  We assume a practical 
algorithm for visiting all legal permutations of the loops without duplication (to reduce 
wasted time). 

Loop Skewing. Loop skewing was introduced as a alternate derivation of the  wave- 
front method [Wo186a], and we use it as such here. In the twenested case below: 



for i = 2 to N-1 
for j = 2 to N-1 

computation ( i  , j ) 
endfor 

end for 

the  j loop can be skewed with respect t o  the i loop by adding i to the upper and 
lower limits of the  j loop and subtracting i from j within the body of the loop: 

for i = 2  t o  N-1 
for j = i + 2  t o  i + N - 1  

computation ( i  , j -i) 
end for 

endfor 

In general, a loop can be skewed with respect t o  any outer loop in which i t  is contained, 
and the loop can be skewed with any integer factor. For the examples in this paper, we 
will use only the skewing factors of +1 or  -1 (the example above uses a factor of + 1 ;  

a factor of -1 would subtract  i from the loop limits and add i within the body of the 

loop). 
By itself loop skewing has no effect on the order of execution of the iterations of the 

loop. However it has significant impact on the d a t a  dependence reiations in the loop. 
For instance, the  following loop: 

for i = 2 t o  N-1 
for j = 2 to N-1 

A ( i ,  j} = A ( i - 1 ,  j )  + A ( i ,  j-1) 
end for 

end for 

has  two flow-dependence relations, with distance vectors (1 ,O)  and ( 0 , l )  (or direc- 
tion vectors (<, =) and (=, <) ). The  dependence relations in the iteration space are: 

Since each loop carries a dependence relation, neither loop can be executed in parallel. 
However, ekewing the  inner loop by a factor of +1 changes the program to: 



for i = 2  to N-1 
for j = i + 2  to i + N - 1  

A ( i , j - i )  = A ( i - 1 , j - i )  + A ( i ,  j - i - 1 )  
endfor 

end for 

The new iteration space is a trapezoid: 

In particular, the dependence relations have distance vectors ( 1 , l )  and ( 0 , l )  (or 
direction vectors (<, <) and (=, <)). Now consider what happens when the skewed 
loops are interchanged [Wo186b]: 

for j = 2 + 2  to N-1+N-1 
for i = max ( 2 ,  j - N + l )  to m i n  (N-1, j -2 )  

A ( i ,  j - i )  = A ( i - 1 ,  j - i )  + A ( i ,  j - i - 1 )  
endfor 

end for 

Now the dependence distance vectors are ( 1 , l )  and (1 ,O)  (direction vectors are 
(<, <) and (<, =) ), meaning that the outer -j loop carries both dependence relations. 

This means that  the inner loop can be executed in parallel, since it no longer carries 
any dependence relations. This is the main effect of which we will take advantage by 
loop skewing. Another effect is simply aligning iterations differently in the processors, 
which will be useful t o  change interprocessor communication requirements, and prevent 
multiple processors from needing the same da ta  a t  the same time. 

As with loop interchanging, loop skewing can change the direction vector or dis- 
tance vector associated with each dependence relation in the loop. Skewing the m loop 
with respect t o  the k loop by a factor of jwill  change the distance vector by adding 
the value of dk t o  dm: 

In this paper, we will use only factors of f 1. Skewing by a factor of +1 corresponds t o  

the algebraic transformation . I' "1 
If the only information kept is a direction vector, skewing the m loop with respect 

t o  the k loop by a positive factor will change 4, according t o  the following table: 



A reduction or  broadcast entry acts  like a < with a distance of one when combined 
with any other entry. If & is (R) or (B) , i t  will change t o  (c) unless &E{R, B); 
otherwise, remains the same. The corresponding table for skewing by a negative fac- 

positive 
skew 

> 
R 
B 

tor  is: 

A, 
< = > R  B  

< < < *  
& = < = > R B  

* > >  
< R 
< B  

The  entries a re  due t o  the uncertainty of the sign of the sum a positive and negative 
number when the magnitude of those number is unknown. Loop skewing can be used t o  
find additional parallelism when i t  can change a zero or  negative direction in the inner 
loop to a positive direction, thus allowing loop interchanging t o  make t h a t  the carrying 
loop. 

Loop Reversal. Loop reversal is simply running a loop backwards. It has little appli- 
cability when compiling imperative languages, but i t  will allow compilation of single- 
assignment programs t o  imperative semantics. In particular, when an  single-assignment 
program requires a loop t o  run backwards, as below: 

for 1 = 1 to N-1 
A ( 1 )  = A ( i + l )  + 1 

endfor 

reversal can allow normal imperative semantics t o  execute the  loop sequentially: 

for 1 = N-1 t o  1 by -1 
A ( 1 )  = A ( i + l )  + 1 

end for 

Reversal consists of switching the lower and upper limits and negating the increment of 
the  loop. 

When converting single-assignment programs t o  imperative programs, the  order of 
execution of the iterations (forward o r  reverse) is defined by whether the  loop carries 
any dependences. An imperative program can only carry a dependence with a positive 
distance (or (<) direction), so a n  single-assignment program with a loop carried 



negative distance (as above) would have to  be reversed. Not all single-assignment loops 
can be converted t o  imperative programs by simple inspection of dependence distances 
and loop reversal, but that  is a subject for another paper. 

Reversing the k loop negates the distance vector element dk: 

or the direction vector as: 

where -A is defined by: 

Reversal corresponds t o  the algebraic transformation . I' "1 
Loop Rotation. Loop rotation is most easily defined when the loops are "normalized", 
tha t  is have a lower limit of zero and increment of one; unnormalized loops can always 
be normalized by a simple program transformation if desired [AlK87,KKPSl]. Rotation 
is much like skewing [Wo189a]; in the twenested case below: 

for i = 0 to N-1 
for j = 0 to M-1 

computation (i , j )  
endfor 

endfor 

rotating the j loop with respect t o  the i loop changes the computation to: 

for i = 0 to  N - 1  
for j = 0 to  M-1 

computation (i, ( j - i) mod M) 
endfor 
end for 

As with skewing, rotation by a factor of -1 is also legal, producing: 

for i = 0 to N-1 
for j = 0 to  H-1 

computation (i , ( j  +i) mod M) 
end for 

endfor 

Loop rotation corresponds to  skewing the loop around a torus; the picture below shows 



a rotated iteration space where Cij corresponds to computation (i, j) , and N=3, M=4. 

Loop rotation can also be applied t o  non-adjacent loops, as with loop skewing. 
Unlike skewing, rotation has no effect on the shape of the iteration space, since it 
merely moves part  of the iteration space around. 

Rotating loop m with respect t o  loop k will usually leave distance vector element 
dk unchanged, since the order of execution of the iterations of the k loop are 
unchanged. However, two new distance vectors will be generated by rotation; for for- 
ward rotation (factor +I, where N is the trip count of the m loop), the two distance 
vector elements for the m loop will be dk+dm mod N and - (-dk-dm mod N) . 

rotate (k, m) (dl, . . . , dk, . . . (dk+d, mod N) , . . . , d,) 
(dl# . - - # d k ,  • . # d m ,  -#dn)  (dl, . . . , dk , . . . # - (-dk-dm mod N)  , . . . , dn) 

The second distance vector holds for dependence relations tha t  get rotated around the 
iteration space when dk+dm is not zero. We will use the notation d rot N to represent 
the two distances in the ma position above. For direction vectors we can use the same 
table we had for skewing, except all < and > entries in the table must be replaced with 
*. If we do not know the dependence distances, then the direction vector elements for 
the interesting cases will be changed to: 

(k r 4m) 
positive 
rotation 

In other cases, any dependence carried by the m loop will be violated by loop rotation 
(in the sense tha t  the imperative target language will violate that  dependence). I t  is 
interesting t o  investigate what communication is implied when dk is a small constant 
or & is (R) or (B) , and d, is zero (& is (=) ). The k loop will still carry any 

( & a  4-1 
negative 
rotation 

= 

& R 
B 

4 m  - - R B 
4 m  - - R B 

(=, =) (=, R) (=, B) 
(<,<>) (R.R) 
(<.<>) (Be B) 



dependence (and thus  be good for the time loop), and the communication implied by the 
dependence relations can be satisfied by end-around ring processor connections, using 
modular arithmetic, assuming the number of processors is the same as the number of 
iterations. In the table above, the  < entries correspond t o  a dependence distance of 
one, and the  <> entries correspond t o  a distance of ( 1  rot N) . 

It is also well defined t o  rotate a loop with respect t o  an  inner loop. T h e  simple 
twenested computation: 

for i = 0 to N-1 
for j = 0 t o  M - 1  

computation (i , j) 
end for 

endfor 

would be changed to: 

for i = 0 to N-1 
for j = 0 to M - 1  

computation ( ( i f j )  mod M,j) 
end for 

end for 

After rotating outer loop k with respect t o  inner loop m, the dependence distance vec- 
tor  element dk for will be ( (dk+d,) rot M) , where M is the tr ip count of the m loop. 
T h e  direction vectors for the interesting cases will be: 

( A  8 dm) 

positive 
rotation 

= 

& R 
B 

Again, the  dependence distances corresponding t o  the < and <> entries are  one with 
respect to rotation. Rotation, like skewing and interchanging, can change the loop 
which carries a dependence relation. 

( A .  dm) 
negative 
rotation 

= 

& R 
B 

4 m  - - R B 

(=,=) (<, <>) (<,<>) 
(R,=) (R.R) 
(B,=) (B, B) 

Restructuring Goals 

#mi - - R B 

(=,=) (<,<>) (<,<>) 
(R,=) (R,R) 
(B,=) (B* B) 

We propose a method t h a t  will a t tempt  t o  generate a comprehensive set  of correct, 
equivalent forms of a n  input algorithm from which the best one o r  a se t  of "good" ones 
can be chosen. We s t a r t  by looking at the goals or requirements of the final program. 

Using the  terminology in the first section, the time/space mapping (3 of the index 

se t  imposes a time and space mapping on the generation and usage of the  d a t a  ele- 
ments. If A is a d a t a  array, then index set  element i E I refers to (or generates) 
A (fA (i) ) , where fA returns a vector of subscripts if A is multidimensional. Many 
algebraic mapping methods place restrictions on the form of fA. Four goals t h a t  USU- 

ally must be met  by mapping methods are: T h e  conditions t h a t  usually must be met 



are: 
1) N o  two  iterations may be mapped t o  the same processor at the same time: for any 

two  index se t  elements i, j E I such tha t  i#j, either Ti#Tj or Si#Sj. 
2) All d a t a  dependence relations must be satisfied: for any two index set  elements 

i, j E I such t h a t  j depends on i, the relation Ti c Tj must hold. 
3) N o  two  processors should require the same d a t a  at the same time: for any two 

index se t  elements i, j E I such tha t  iZj, if f A  (i) = fA ( j )  (for any d a t a  array A), 
then Ti#Tj. 

4) T h e  index set  must be mapped such t h a t  d a t a  will flow across the processor ensem- 
ble using available connections and the d a t a  motion across the systolic ar ray must 
be uniform: for any d a t a  array A and any two index set elements i, j E I such t h a t  
i#j, fA (i) = f A  ( j )  and Ti < Tj, then Sj = Si + ( T j - T i )  dAvA. The  vector vA is 
the  direction of motion of the d a t a  array A, and must correspond t o  one of the 
available interprocessor connections; in a two dimensional mesh connected array,  

for instance, the  four possible directions are  [$ I;), [-:) and (;I). The  value dA 

is the  delay of the  array A, and often must be an  integer greater than zero. Usu- 
ally dA will be one, meaning t h a t  the d a t a  moves from one processor to i ts  neighbor 
every t ime step. Delays greater than one require extra registers o r  memory associ- 
a ted with each cell to hold the delayed values. Some recent work has proposed 
methods to allow d a t a  to "turn" under program control, o r  t o  allow multiple copies 
of read-only d a t a  to flow across the ensemble. Since our machine model includes a 
non-trivial amount of local memory, we only require t h a t  dA be greater than o r  
equal t o  one, but need not be integer; this can always be satisfied if the d a t a  com- 
munication is between neighbors. 
Using program restructuring, the first goal (no two iterations can be mapped to the 

same point in space/time) is satisfied by the construction of the restructured program. 
Each transformation we use is one-teone in the domain and range index sets. More- 
over (as explained in Section 2), the mapping of the transformed program t o  time and 
space is as simple as mapping one or  more dimensions of the transformed index set  t o  
time and  the  rest to space. Thus, no two iterations can possibly be mapped to the 
same space/time point. 

T h e  second goal ( that  a11 d a t a  dependence relations must be satisfied) can be met 
by requiring t h a t  no parallel loop can carry any dependence relation. T h e  parallel 
loops in our computation model correspond t o  the  space dimensions. Thus, the  loops 
must  be restructured and reordered so t h a t  the time loops carry all dependence rela- 
tions; here we only worry about flow, ant i  and output dependence relations. It  is a sim- 
ple m a t t e r  for a restructuring tool to check if the outer time loops carry all dependence 
relations, and to interchange or  otherwise a t tempt  t o  modify the  program to guarantee 
this. Note t h a t  even if our input language is single-assignment, the output language is 
imperative (the sequential time loops run strictly forward, and the space "loops" run in 
asynchronously in parallel). Thus, the time loops can only satisfy loop carried depen- 
dence relations whose outermost non-zero dependence distance is positive (outermost 
non- (=) direction is (c) o r  (R)). 



T h e  third goal (no two processors need the same d a t a  at the same time) brings up 
the  reason for computing and keeping input dependence relations. If two (or more) p r e  
cessors need a d a t a  element at the same time (as in Program 3), then there will be a 
loopcarried input-dependence relation. We can satisfy this goal by requiring tha t  the 
time loops carry all input dependence relations also. Unlike the other kinds of depen- 
dence, however, we allow input dependence relations t o  have negative dependence dis- 
tances o r  (>) directions in the carried loop position. 

T h e  fourth goal is much more difficult to satisfy. For instance, in systolic array 
synthesis, in order to guarantee uniform d a t a  flow across the processors, a restructuring 
tool must know the dependence distance in the space dimensions ( to  know the distance 
between the  source and destination processors) and in the  time dimensions ( to  compute 
the delay). For  a more general computation, we may need only t o  know the distance in 
the  space dimensions, if we know tha t  distance is equal t o  one. 

Global R e d u c t i o n s  a n d  Broadcasts. There may be applications where i t  is accept- 
able or  desirable t o  allow the parallel loop (space loop) t o  compute a reduction. Some 
processor ensembles (such as hypercubes) have fast ways for all processors (or a subset 
of the processors) t o  compute a global reduction. If so, then we can relax rule 2 t o  
allow the  space dimensions to carry reduction dependence relations. Equally common 
a re  machines where the parallel loop is allowed t o  broadcast values along some axis or  
t o  all processors. In those cases, we can relax rule 3 t o  allow space dimensions to carry 
input dependence relations. 

T w o  Examplea 

This section contains two simple examples to show the additional power of the p r e  
gram restructuring method compared t o  other automatic timelspace mapping methods. 
T h e  first example tries to map  the Program 6 (from section 3) onto a general distri- 
buted memory processor ring. In addition, let all the d a t a  reside in the  processors 
according t o  some mapping strategy t o  be computed automatically. T h e  dependence 
relations a re  given in the  table: 

var  type i j 

X flow 1 < 
B input = B 

where non-zero dependence distances are  shown, if known. Because the  target  architec- 
ture is a ring (one dimensional), we will assign one loop to the space dimension and one 
to the time dimension. The  time loop must satisfy (carry) all dependence relations, and 
the  dependence distance in the  space dimension must be known. This is satisfied if the 
loops are  interchanged with the 3 loop corresponding to time and the  i loop 
corresponding to space: 



do j = l t a N  
pardo i = 1 to N 

X(i+1,2*j) = X(i, j) + B ( i )  
endpardo 

enddo 

In the mapped algorithm, each processor holds a column of X and an element of B. 
Condition 4 is satisfied by virtue of the distance in the space dimension being exactly 
one. At each time step j, each processor can send the jth element of its column to  its 
right neighbor, receive an element from its left neighbor, and compute element 2 j of 
its column. Note tha t  we used the same mapping strategy even though the target 
architecture was not systolic. 

An interesting example is the automatic mapping of matrix multiply with perfect 
efficiency onto a two dimensional torus of processors. The original program is: 

for i = 1 t o  N 
for j = 1 to  N 

f o r k = l t o N  
C(i, j) = C ( i ,  j) + A(i,k)*B(k, j) 

endfor 
endfor 

endfor 

The goal is t o  have one time loop and two space loops (corresponding t o  the two dimen- 
sional processor topology) and perfect processor efficiency with no broadcasts or global 
reductions. The dependence table is: 

dependence direction 
var type i j k  

c flow = = R 
A input = B =  
B input B = = 

No single loop carries all the dependence relations. However, the k loop carries the 
reduction; if we first interchange tha t  loop t o  the outermost level, then rotate it with 
respect to the two inner loops, it will carry the input dependence relations also: 

f o r k =  1 t a N  
f o r i = l f o N  

for j = 1 f o N  
krot = (k+j-2) mod N + 1 
krot = (krot+i-2) mod N + 1 
C(i, j) = C(i, j) + .A(i,krot)*B(krot, j) 

endfor 
end for 

endfor 

Tbe new dependence table is: 



var  type k i 

C flow R - - - - 
A input 1 - - 1 rot N 
B input 1 1 rot N - - 

T h e  k loop can now serve as the time loop, so we have the desired form: the  time loop 
carries all dependences and the  dependence distance in the space loop is constant. This 
is generally known as "Cannon's form" of the matrix multiply, and is used on systems 
such as the Thinking Machines CM-2 (Joh871. The advantage of having an automatic 
mechanism t o  discover this form of the algorithm is tha t  the mechanism can then be 
applied to other loops and programs with similar dependence structure. 

Restructuring Method 

We propose a restructuring tool which implements the program restructuring 
transformations we have described based on the d a t a  dependence formalisms we have 
shown. T h e  transformations are driven by a recursive control program which will 
exhaustively visit all the  different possible restructured forms of the given algorithm. 
Each form will then be checked t o  see if i t  meets the  minimum requirements for a legal 
spacelt ime mapping, and some sort  of optimality measure will be applied t o  choose the 
best mappings. We examine the problems of exhaustive search and explore possibilities 
t o  reduce the  combinatorial explosion. The  input t o  the tool is: 
1. the  algorithm (in either a n  single-assignment or  imperative language); 
2. limits on the target  architecture, such as minimum and/or maximum dimensional- 

ity, size, and connectivity; 
3. description of a measure of optimality, usually minimum time, but perhaps 

minimum space-time product or some other measure. 
The  control program will have the form: 



function control ( given : algorithm ) :  
var new, best : algorithm: 
var t : transformation: 

best := nil; 
if legal-mapping( given ) then 
best := given; 

endif: 
for t in transformation loop 

if legal ( t, given ) then 
new : = apply ( t, given ) ; 
new := control ( new ) ; 
I legal-mapping( new ) then 

if better ( new, best ) then 
best := new: 

endif; 
endif; 

endif; 
endloop : 
return best : 

end control; 

Thus, at each level in the recursion, the control program will perform comparative 
analysis of all the legal mappings, and save the best. In practice a user might like t o  
see several equivalently good mappings, or the top several mappings. Another flaw in 
this program is t h a t  the number of possible transformations at any one time depends on 
the  form of the program; there are  more possible loops t o  interchange with 4 nested 
loops than  with only 2, for instance. Additionally, when the program recurses down a 
level i t  must ensure t h a t  i t  doesn't choose a transformation t o  nullify some previous 
transformation. Moreover, as was mentioned with respect t o  loop interchanging, there 
is often more than one sequence of loop transformations t h a t  can change a n  algorithm 
from form A t o  form B; the control program must prevent such redundant recursion. 

Still, the size of the search tree is large. Let us explore this with a simple example. 
The  following algorithm computes the value of a polynomial at many points Xi using 
the coefficients A, by Horner's rule: 

for i = 1 t o N  
for j = 1 t o M  

S1 : R(i) = R(i)*X(i) + A ( j )  
end for 

endfor 

For this example, the target  architecture is a linear array without global reduction o r  
broadcast capability. The  d a t a  dependence relations for this program are: 

SI 6 (= ,~ )  S1 due t o  R 

S16i=,cl s1 due to X 

s 6 ,  S1 due t o  A 



The  table of dependence relations is: 

var  type i -j 

R flow = R 
X input = 1 

A input 1 = 

We call this initial form of the algorithm the IJ form; Figure 2 shows par t  of the 
search tree of the different forms generated by automatic restructuring, where a super- 
script R means the loop was reversed, a subscript +i (-i) means the loop was skewed 
with respect to loop i by a factor of +1 (-I), and a subscript of r+ i  or  r - i  means 
the loop was rotated with respect t o  i. At least 72 distinct forms of the algorithm can 
be generated by automatic means, many of which are legitimate mappings. 

Figure 2. 

Directed Reatructuring. Exhaustive search of all possible restructurings quickly 
becomes too expensive. A method t o  prune the search tree is necessary. Here we 
explore in what cases each transformation is useful. Loop interchanging is useful for 
two reasons; first, it is obviously useful t o  bring a dependence-carrying loop t o  the  
outermost o r  "time" position. If some subset of the loops can be shown to carry all the 
dependence relations in the  loop, then interchanging these t o  be the time loops will pro- 
duce a legitimate mapping. In our example, no single loop carries all the dependence 
relations, so loop interchanging alone will not suffice. A second use for loop interchang- 
ing is to change the  order of loops in preparation for skewing or  rotation. 

As we showed earlier, loop skewing can change an  (=) dependence direction t o  a 
(<), and  combined with interchanging can change the dependence-carrying loop and 
move i t  to the outer (time) position. In our Horner's rule program, for instance, skew- 



ing the j loop with respect t o  i changes the dependence graph to: 

var type i j+i 

R flow = R  
X input = 1 

A input 1 1 

and loop interchanging then produces: 

var type j+i i 

R flow R  = 
X input 1 = 
A input 1 1 

Now, the outer loop carries all the dependence relations and can be used for the "time" 
loop, while the inner loop can be mapped to  the "space" dimension: 

for j = 2 to  N+M 
for i = m a x ( 1 ,  j-M) to m i n ( N , j - 1 )  

S1 : R ( i )  = R ( I ) * X ( I )  + A ( j - i )  
end for 

endfor 

Figure 3 shows a picture of how the computation proceeds through the first few time 
steps. The j loop could also be skewed with a factor of -1, which after interchanging 
would produce the dependence graph: 

var type j i 

R flow R  = 
X input 1 = 
A input -1 1 

Note that  the elements of A  are  still buffered (remember that  leading (>) directions 
are allowed for input  dependence), but they will flow backwards: 

for j = 1 - N  to M-1 
for i = m a x ( 1 , l - j )  to m i n ( N , M - j )  

S1 : R ( 1 )  = R ( i ) * X ( I )  + A ( j + i )  
endfor 

endfor 

Figure 4 shows a picture of how this computation proceeds (for N, ~=3). 
Loop reversal is occasionally useful t o  enable loop interchanging by changing a 

(<, >) direction t o  a (<, <) direction. More practically, some applications (in a sys- 
tolic architecture) may have constraints on the order in which da t a  is presented t o  the 
processor ensemble. Here, loop reversal may be useful t o  invert the order in which the 
da ta  elements are used (for instance, reversing the j loop in the j+,i form above). 

Loop rotation is another animal altogether; like skewing, rotation is useful for 
buffering dependence relations. The diflerence between rotation and skewing is tha t  
after loop rotation, when the outer loop is assigned to  time, all the processors can begin 



Proc. 1 Proc. 2 

t l  R l = R l X l + A f  

Proc. 3 

t 2  R1 = R l X l  + A2 R 2  = R2X2 + A1 

t 3  R1 = R l X 1  + A3 R2 = R2X2 + A2 R 3  = R3X3 + A1 

Figure 3. 

Proc. 1 Proc. 2 Proc. 3 

Figure 4. 

Proc. 1 Proc. 2 Proc. 3 

Figure 5. 



simultaneously. There is no r a m p u p  and rampdown at the beginning and end of the 
loop. This  construct is useful in non-systolic applications, where the d a t a  already 
resides in the processors. Interchanging the j loop outwards and rotating i t  in the 
Horner's rule program above gives us (assuming M ~ N ) :  

for j = 1 to  M 
for i = 1 to  N 

Jrot = (j+i-2) mod M + 1 
Sa : R (I) = R (1) *X (I) + A (Jrot) 

endfor 
end for 

Figure 5 shows a picture of how this loop executes, after assigning i t  t o  the time dimen- 
sion. 

This analysis leads us to believe t h a t  the control program for the restructuring p r e  
cedure can selectively choose t o  generate only a subset of restructured programs t h a t  
are  likely t o  generate legitimate mappings. 

Summary and Limitations 

We have shown a new approach t o  the problem of mapping a nested loop algorithm 
on to  fixed topology processor ensembles. Our solution, based on program restructuring, 
is similar t o  other approaches based on finding linear program mappings from some 
representation of the d a t a  dependence relations in the program (often by algebraic 
manipulation). An important advantage t o  our approach is t h a t  i t  is not limited t o  
linear mappings; although loop rotation is the only nonlinear transformation shown 
here, other transformations, such as folding or  other contractions, can be defined and 
added to this approach [CCLSS]. Another advantage is i t s  flexibility; we are  working on 
simple ways t o  use iteration space tiling t o  deal with fixed size processor ensembles or  
to improve the  ra t io  between the computation inside a "time step" and the communica- 
tion between steps prT8S1Wo189b]. Finally, program restructuring is not limited t o  
str ict  tightly-nested loop algorithms. By using advanced restructuring methods, our 
method will be enhanced t o  allow more general algorithmic forms, easing the program- 
ming task for a user rWo186bI. 

One of the limitations of our approach is the restriction of skewing and rotating 
only by unit factors. The  transformations are  quite well-defined with larger magnitude 
factors, but  the  breadth of the  search tree of restructured forms would grow uncontroll- 
ably if we tried many factors. We a re  looking at methods to directly compute the 
required skew o r  rotation factor from the  program, e.g., from the  dependence distances 
(when known). Without a direct method, we will be either confined t o  limit the skew 
factors allowed, o r  will have to potentially pay the cost of searching a large tree; this is 
directly equivalent to the method used to find the timing transformation rr in For88). 

We make no claims t h a t  any such tool will ever be able t o  map "ordinary" pro- 
grams into efficient code for a massively parallel system. We also claim t h a t  the "vec- 
torization" approach will fail for such a system. A vectorizing compiler, when i t  finds a 
loop for which i t  cannot generate vector code, will generate scalar code; because the 



ratio of vector t o  scalar performance on today's vector computers is in the range of 4 
30, this is (more or less) acceptable for many users. For large parallel computers, the 
ratio of parallel t o  sequential performance is so great tha t  generating "correct but 
slow" sequential code is as bad as or worse than failing altogether. We do claim tha t  a 
user will be able t o  write a program in a convenient form with a familiar looking 
language, and with the aid of a tool will be able t o  run the program on massively paral- 
lel processor ensembles. We have begun work on a tool embodying our approach. 
Among the measures of success are the power, flexibility and efficiency (compile time) of 
the tool. 
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