
Massive Parallelism through Program Restructuring

Michael Wolje

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-009

June, 1990

Massive Parallelism through Program Restructuring

Michael Wolfe
Oregon Graduate Institute of Science and Engineering

19600 NW von Neumann Drive
Beaverton, OR 97006

A b s t r a c t
A technique for mapping algorithms t o massively parallel processors is described; this
method differs from previous work by focusing on explicit program restructuring as
opposed t o manual or algebraic mapping, and allows nonlinear as well as linear m a p
pings. This method benefits from previous work in program restructuring and systolic
ar ray synthesis and thus will be simple t o implement.

P r o l o g u e

Systolic array mapping of a nested-loop iterative algorithm has been posed as
finding a linear mapping (R) of the index set of the algorithm (I C 2") such t h a t cer-
tain constraints are met. The algorithm is usually restricted t o tightly nested loops (n
nested loops) with invariant o r perhaps triangular loop limits t h a t define a finite index
se t o r iteration space. The body of the algorithm computes new values for one or more
hrray elements from previously computed values and initial conditions. The mapping R

is usually defined as , where T is the time mapping, and S is the space (or proces- (3
sor) mapping. Thus, a particular iteration i will be executed by processor Si at time
s tep Ti. Each element in the index set I requires certain data , typically expressed as
subscripted array references. The time/space mapping of the index set imposes a time
and space mapping on the generation and usage of the d a t a elements. This synthesis
process is also useful for mapping algorithms onto massively parallel computer systems.

Another approach for massive parallelism is t o use a n explicitly d a t a parallel
language model. The user is then responsible for mapping the d a t a and execution t o
t h e processors (or virtual processors); some recent work on automating some of this pro-
cess is encouraging [KLSgO].

Here we focus on mapping a n algorithm by applying program restructuring
transformations, either automatically or semi-automatically (under user control). R e s
tructuring transformations, such as loop interchanging, have been investigated as
methods to discover additional parallelism in eequential programs [AlK84, Wo178, Wo1821
and to optimize the performance of memory hierarchies [AKLSl,IrT88]. We believe we
can get many of the same benefits from program restructuring as from algebraic

mathods, without as many restrictions on the source program. This paper describes
some restructuring transformations and how they would be used in such a scheme.

Model of Parallel Computation

We assume an ensemble of processors executing in either SIMD (Single Instruction
Multiple Data) or SPMD (Single Program Multiple Data) mode. A parallel algorithm
will consist of a number of steps, where each step comprises a computation phase and a
communication phase. The computation phase describes parallel execution across all or
a subset of the processor ensemble. An algorithm is expressed in the form of nested
loops:

for il = . . .
for it =

for in = ...
c o m p u t a t i o n (i)

end for . . .
endfor

Two interpretations can be taken of such a program: an imperative program defines the
order of execution of the iterations which is then used t o find the da ta dependence rela-
tions, while a single-assignment program defines the data dependence relations which
then are used t o find a legal ordering of the iterations. The standard form of the paral-
lel algorithm we use is:

do jlrl = ...
pardo kl = . . .

pardo k2 =
pardo k l s l = . . .

c o m p u t a t i o n (r (jk))
end par do . . .

endpardo
communication phase

enddo . . .

where r is a mapping function from the jk space t o the i space (A is R-I). The limits
for each loop can in general be affine functions of the outer loop variables (and cannot
be modified in the body of the loop); the loop variables will only be used in other loop
limits and to index arrays or as literals within the body of the loop. In most of the
examples, the communication phase will be implicit, but will be constrained t o nearest
neighbors according t o the defined topology. While the original algorithm may be

either imperative or declarative, the target language is strictly imperative, meaning
t h a t the order of the execution of the iterations of the serial do loops is strictly for-
ward.

More abstractly, the parallel algorithm can be viewed as:

do j, = ...
do j2 =

do jlTl = ...
computation phase
communication phase

enddo . . .
enddo

where the computation phase is the set of nested pardo loops. The total number of
loops in the parallel algorithm (IT1 + I S 1) must equal the number of loops in the origi-
nal algorithm (n). The method described here will proceed by transforming the original
algorithm by a series of elementary program transformations into an appropriate paral-
lel form.

One difference between the approach described here and some other methods is t h a t
classical algebraic mapping methods only allow for a single time dimension, while our
target algorithmic model allows nested sequential "time" loops. Formally, nested
sequential loops implicitly define a single timing schedule via loop collapsing; t o simplify
the program restructuring approach, we keep the nested loops. Also, with nested loops
some of the communication can be "floated" out of the innermost levels:

do jlTl =
computation phase
communication phase

enddo
eub-communication phase

enddo . . .
enddo

This still allows for regular communication patterns; taking advantage of local memory
to reduce communication in this way can reduce the total load on the network
bandwidth.

Note t h a t we will take advantage of the topology of the processor network, much
like other work in systolic array mapping strategies [CCL88,FoM85,LaM85, Qui841. We
envision our approach being applied to several models of processor ensembles, including
SIMD parallel processors, systolic arrays of custom or semi-custom chips, o r ar rays of
standard single-chip microprocessors.

Overview of Data Dependence

We say tha t nested loops define an iteration space, comprising a finite discrete
Cartesian space with dimensionality equal to the loop nest level. For example, the loop
below defines a twedimensional 5x10 iteration space. In imperative languages, the
semantics of a serial loop define the order in which the points in the iteration space are
executed.

Program 1:
f o r i = l t o 5

for j = 1 to 10
A (i , j) = B (i , j) + C(i) * D (j)

end for
endfor

There is no reason that the iteration space need be rectangular; many popular a l g e
rithms have inner loops whose limits depend on the values of outer loop indices. The
iteration space for the loop below is triangular, suggesting the name triangular loop.
Other interesting iteration space shapes can be defined by nested loops, such as tra-
pezoids, rhomboids, and so on; we will show how some of these shapes can be generated
from each other via loop restructuring.

Program 2:
f o r i = l t o 5

for j = i to 5
A (i , j) = B (i , j) + C(i)*D(j)

endfor
endfor

Data Dependence. Many compilers available today for vector and parallel computers
advertise the ability t o detect vector or parallel operations from sequential loops.
Parallelism is detected by discovering the essential data flow (or da t a dependence) in
the loop and allowing vector or parallel execution when da ta dependence relations are
not violated. Loop restructuring transformations, such as loop interchanging, are often
applied t o enhance the available parallelism or otherwise optimize performance; da t a
dependence information is needed t o test whether restructuring transformations are
legal (whether the program produces the same answer after restructuring as it did
before).

In imperative languages, there are three essential kinds of da t a dependence. A
flow-dependence relation occurs when the value assigned t o a variable or array element
in the execution of one instance of a statement is used (read, fetched) by the subsequent
execution of an instance of the .same or another statement. The loop below has a flow
dependence relation from statement Sr t o itself, since the value assigned t o A (i + l)
will be used on the next iteration of the loop. We write this S1 b sl.

for i = 1 to N-1
S,: A (i + l) = A (i) + B (i)

endfor

An anti-dependence relation occurs when the value read from a variable or array
element in a n instance of some statement is subsequently reassigned. In the loop below
(assuming a n imperative language), there is an anti-dependence relation from S, t o
St, since B (i , j + l) is used in S1 and subsequently reassigned by S2 in the next
iteration of the j loop. We write this S1 F S2.

Program 3:
for i = 1 f o N

for j = 1 t o M-1
S1 : A (i , j) = B (i , j + l) + 1
S2 : B (i , j) = C (i) - 1

end for
endfor

Finally, a n output dependence relation occurs when some variable o r ar ray element
is assigned in a n instance of a statement and subsequently reassigned. An example of
this is shown below (again assuming an imperative language) where there is an poten-
t ial output dependence relation from S2 to S1, since the variable B (i + l) assigned in
S2 may be reassigned in the next iteration of the loop by S1. We write this S2 60 S1.
This also shows t h a t the d a t a dependence relations in a program must be approxi-
mated; since a compiler will not know the actual paths taken in the program, i t must
make conservative assumptions.

Program 4:
for i = 1 to N-1

S1: if (A (i) > 0) B (i) = C (I) /A (I)
S2: B (i + l) = C (i) / 2

endfor

Single Aeaignment Languages. In single-assignment languages, such as SISAL
P A 8 5 1 o r Crystal [Che86], anti-dependence and output dependence relations cannot
occur since variables and array elements cannot be reassigned. In Crystal, for instance,
Program 4 would simply be illegal (since i t tries t o redefine B (i)) , while Program 3
would be treated as having a flow dependence from S2 t o S1, requiring the j loop t o
be executed backwards. For most of this paper we will concentrate on imperative
language examples. Since our model of a parallel algorithm follows imperative seman-
tics, programs written in a n single-assignment language will be t o converted t o a n
imperative program. We will d o this by loop transformations such t h a t the normal
imperative execution of the loops will satisfy all the dependence relations.

Distance and Direction Vectors. In order to apply a wide variety of loop transfor-
mations, d a t a dependence relations are annotated with information showing how they
a r e affected by the enclosing loops. Several such annotations are popular today. Many
dependence relations have a constant distance in each dimension of the iteration space.

When this is the case, a distance vector can be built where each element is a constant
integer representing the dependence distances in the corresponding loop. For example,
in the following program there is a data dependence relation in the iteration space as
shown in Figure 1; each iteration (1, j) depends on the value computed in iteration
(i , j - 1) . We say tha t the distances for this dependence reIation are zero in the i

loop and one in the j loop, and we write this S1 6(0,1) S1.

Program 5:
for i = 1 to N

for j = 2 to M
Sl : A (1 , j) = A (1 , j-1) + B (i , j)

end for
endfor

Figure 1.

For many transformations, the actual distance in each loop may not be so impor-
tan t as just the sign of the distance in each loop; also, the distance may not be con-
stant, even though it may always be positive (or always negative). As an example, in
the loop:

Program 6:
for i = 1 t o N

for j = 1 t o N
s1 : X (i + l , 2 * j) = X (1 , j) + B (1)

endfor
end for

the assignment t o X (i + l , 2 j) is used in some subsequent iteration of the i and j

loops by the X (i , j) reference. Some of the dependence relations for this program are
given in the table below:

assigned by used by dependence
element i j i j distance
X(212) 1 1 2 2 (191)
X(3,4) 2 2 3 4 (1 92)

The distance for this dependence in the j loop is always positive, but is not a constant.
A common method t o represent this is t o save a vector of the signs of the dependence
distances, called a direction uector. Each direction vector element will be one of

<+, 0 , -) [Ban88]; for historical reasons, these are usually written (<, =, >)
~o178,WoB87,Wo189c]. In Program 3, the dependence relation would be written

s1 6(=,<) s1.
Here we extend direction vectors by adding a fourth dependence direction explicitly

for reductions. Take, for example, the imperative program:

for i = I to N
S1 : S = S + A (i)

endfor

Previous work in d a t a dependence would classify this program as having the depen-
dence relation S1 6(,) S1, thus implicitly preventing reordering of the index set. Using
a single assignment language, this would have t o be written:

f o r i = l t o N
S1: S (i + l) = S (i) + A (i)

endfor

which strictly defines the order of the accumulation. Because we want t o be able t o
change the order of the accumulation, for associative reductions like this we will use the
dependence relation S1 6(,) S1. This works equally well for certain declarative
languages, such as Crystal, which do not define a n order of accumulation in the first
place. T h e difference is more noticeable with nested reductions:

for i = 1 t o N
for j = l h M

S1 : S = S + B (i , j)
end for

endfor

Previous work would say tha t this loop has the dependence relations S1 6(,,,) S, as
well as S1 6(=,<) S1. The dependence test for loop interchanging, for example, is t h a t
there must be no (<, >) directions; unfortunately, there is a (<, >) implied by the
(c, *) . With extended direction vectors, we call this S1 6(B,R) S1, a reduction in both

dimensions. A reduction direction always corresponds t o a dependence distance of one.
Practically speaking, we will only be able t o find reduction directions when all other
directions a re (=) , and t h a t is the only case we will deal with here.

Another popular d a t a dependence annotation saves only the nest level of the outer-
most loop with a non-zero distance (non- (=) direction) [AlK87]. The dependence rela-
tion for Program 5 has a zero distance in the outer loop, but a non-zero distance in the
inner loop, so we would write S1 @ S1. We also say t h a t this dependence relation is
carried by the inner j loop. Some dependence relations may not be carried by any
loop, as below:

for i = 1 f o N
for j = 2 h M

S1 : A (i , j) = B (1 , j) + C (i , j)
S2 : D (i , j) = A (i # j) + 1

end for
endfor

Here the references to A (i , j) produce a dependence relation from S1 to S2 with
zero distance in both loops. We would thus say S1 6(0,0) S2 o r S1 6(,,=) S2. Since i t
is carried by neither of the loops, we call i t a loop independent dependence, represented
S, 600 S2. This annotation by itself is too coarse for our application, though we will use
the notion of loopcarried dependence in our discussion. In particular, a loop tha t does
not carry any dependence relations can be executed in parallel; we will make use of this
fact by transforming algorithms to change the loops which carry dependences, and mov-
ing dependence-carrying loops t o the outermost levels.

For reduction loops, we say t h a t the dependence relation is carried by all loops with
a n R direction. In the program:

f o r i = 1 to N
f o r j = l b M

for k = 1 to L
S1 : T (j) = T (j) + B (i , j 8 k)

end f o r
end f o r

e n d f o r

the dependence relation is carried by the i and k loops, written Sl 6(B,r,B) S1 o r
S1 Pa3 S1.

I n p u t Dependence. For our purposes there is reason t o also look at the order in
which d a t a elements a re read, when they are used multiple times. For instance, in P r e
gram 3, the array element C (i) on the right hand side of S2 is used M-1 times, once
for each iteration of the j loop. There is no d a t a dependence constraint placed on the
program by this fact; the different iterations can be assigned t o different processors, and
they can each fetch C (i) in any order; nonetheless, we will compute a relation
between right hand side variable references, when any element is used more than once
in the loop. For purposes of testing for legality of program restructuring as described in
the next section, these input dependence relations will not disallow any transformation;
however, we will keep these relations and update them as we update the other "real"
d a t a dependence relations. Whereas input dependence relations cannot have a reduc-
tion direction, we d o note when they have correspond t o a broadcast along some index
dimension. So for Program 3 we say S2 6'(,,,) S2. We will see in the next section t h a t
some transformations change (<) directions into (>) directions, which cannot be
satisfied by imperative semantics (such as the target language), but input dependence
relations will be handled in a special way.

E l e m e n t a r y T r a n s f o r m a t i o n s

T h e element program restructuring transformations which we propose t o use in our
mapping method are

loop interchanging,
loop skewing,

loop reversal and
looprotation.

For each transformation, we will describe i ts effect on d a t a dependence relations and i ts
effect on the shape of the iteration space. For the discussion below, assume t h a t we
have n nested loops, and tha t every dependence relation is annotated with a distance
vector (dl, d l , . . . d,) or direction vector 42, . . . ,dn) . In all cases, dk is
either a constant integer, or is *, meaning i t has unknown value, and
& C (<, =, >, R 3 .

Loop Interchanging. Interchanging nested loops can dramatically change the execu-
tion characteristics of the loop, and can enhance the parallelism available at the inner
loop levels [AlK84, Wo178, Wo182, Wo189c]. Loop interchanging essentially transposes an
iteration space about the major diagonal; thus a 5x10 iteration space (Program I)
becomes a 10x5 space after interchanging, and an upper right triangular iteration
space (Program 2) becomes a lower left triangle.

Loop interchanging can change the direction vector or distance vector associated
with every d a t a dependence relation in the loop. Loop interchanging of the k and k+l
loops changes the distance vector by interchanging the elements corresponding t o those
two loops, as in:

int (k, k+l)

(dl,d2, *,dkrdk+lr rdn) (dl,d2,. *,dk+l,dk,. rdn)

and the direction vector is modified as:
int (k, k+l) - ,&,&+I, ,dn) 4 (41#428 *.*#&+I#&# *.**A)

In a twenested loop (n=2), for instance, interchanging the two loops would change a
(=, <) dependence relation into a (<, =) , moving the dependence-carrying loop out-
wards. However, a (<, <) dependence relation would still look the same after inter-
changing, which would change the dependence carrying loop t o the new outer loop.
Notice t h a t since we are allowing the order of reductions t o change, reduction depen-
dences d o not prevent interchanging. Interchanging corresponds t o the algebraic

transformation . Io '1
Any loop ordering is achievable by multiple applications of adjacent pairwise loop

interchanging. There is often more than one way t o change one loop ordering t o
another. For instance, a threenested I J K loop can be changed to a K J I loop either
by I JK-.*IKJ+KI J + K J I or by I J K + J I K - + J K I - - + K J I . We assume a practical
algorithm for visiting all legal permutations of the loops without duplication (to reduce
wasted time).

Loop Skewing. Loop skewing was introduced as a alternate derivation of the wave-
front method [Wo186a], and we use it as such here. In the twenested case below:

for i = 2 to N-1
for j = 2 to N-1

computation (i , j)
endfor

end for

the j loop can be skewed with respect t o the i loop by adding i to the upper and
lower limits of the j loop and subtracting i from j within the body of the loop:

for i = 2 t o N-1
for j = i + 2 t o i + N - 1

computation (i , j -i)
end for

endfor

In general, a loop can be skewed with respect t o any outer loop in which i t is contained,
and the loop can be skewed with any integer factor. For the examples in this paper, we
will use only the skewing factors of +1 or -1 (the example above uses a factor of + 1 ;

a factor of -1 would subtract i from the loop limits and add i within the body of the

loop).
By itself loop skewing has no effect on the order of execution of the iterations of the

loop. However it has significant impact on the d a t a dependence reiations in the loop.
For instance, the following loop:

for i = 2 t o N-1
for j = 2 to N-1

A (i , j} = A (i - 1 , j) + A (i , j-1)
end for

end for

has two flow-dependence relations, with distance vectors (1 ,O) and (0 , l) (or direc-
tion vectors (<, =) and (=, <)). The dependence relations in the iteration space are:

Since each loop carries a dependence relation, neither loop can be executed in parallel.
However, ekewing the inner loop by a factor of +1 changes the program to:

for i = 2 to N-1
for j = i + 2 to i + N - 1

A (i , j - i) = A (i - 1 , j - i) + A (i , j - i - 1)
endfor

end for

The new iteration space is a trapezoid:

In particular, the dependence relations have distance vectors (1 , l) and (0 , l) (or
direction vectors (<, <) and (=, <)). Now consider what happens when the skewed
loops are interchanged [Wo186b]:

for j = 2 + 2 to N-1+N-1
for i = max (2 , j - N + l) to m i n (N-1, j -2)

A (i , j - i) = A (i - 1 , j - i) + A (i , j - i - 1)
endfor

end for

Now the dependence distance vectors are (1 , l) and (1 ,O) (direction vectors are
(<, <) and (<, =)), meaning that the outer -j loop carries both dependence relations.

This means that the inner loop can be executed in parallel, since it no longer carries
any dependence relations. This is the main effect of which we will take advantage by
loop skewing. Another effect is simply aligning iterations differently in the processors,
which will be useful t o change interprocessor communication requirements, and prevent
multiple processors from needing the same da ta a t the same time.

As with loop interchanging, loop skewing can change the direction vector or dis-
tance vector associated with each dependence relation in the loop. Skewing the m loop
with respect t o the k loop by a factor of jwill change the distance vector by adding
the value of dk t o dm:

In this paper, we will use only factors of f 1. Skewing by a factor of +1 corresponds t o

the algebraic transformation . I' "1
If the only information kept is a direction vector, skewing the m loop with respect

t o the k loop by a positive factor will change 4, according t o the following table:

A reduction or broadcast entry acts like a < with a distance of one when combined
with any other entry. If & is (R) or (B) , i t will change t o (c) unless &E{R, B);
otherwise, remains the same. The corresponding table for skewing by a negative fac-

positive
skew

>
R
B

tor is:

A,
< = > R B

< < < *
& = < = > R B

* > >
< R
< B

The entries a re due t o the uncertainty of the sign of the sum a positive and negative
number when the magnitude of those number is unknown. Loop skewing can be used t o
find additional parallelism when i t can change a zero or negative direction in the inner
loop to a positive direction, thus allowing loop interchanging t o make t h a t the carrying
loop.

Loop Reversal. Loop reversal is simply running a loop backwards. It has little appli-
cability when compiling imperative languages, but i t will allow compilation of single-
assignment programs t o imperative semantics. In particular, when an single-assignment
program requires a loop t o run backwards, as below:

for 1 = 1 to N-1
A (1) = A (i + l) + 1

endfor

reversal can allow normal imperative semantics t o execute the loop sequentially:

for 1 = N-1 t o 1 by -1
A (1) = A (i + l) + 1

end for

Reversal consists of switching the lower and upper limits and negating the increment of
the loop.

When converting single-assignment programs t o imperative programs, the order of
execution of the iterations (forward o r reverse) is defined by whether the loop carries
any dependences. An imperative program can only carry a dependence with a positive
distance (or (<) direction), so a n single-assignment program with a loop carried

negative distance (as above) would have to be reversed. Not all single-assignment loops
can be converted t o imperative programs by simple inspection of dependence distances
and loop reversal, but that is a subject for another paper.

Reversing the k loop negates the distance vector element dk:

or the direction vector as:

where -A is defined by:

Reversal corresponds t o the algebraic transformation . I' "1
Loop Rotation. Loop rotation is most easily defined when the loops are "normalized",
tha t is have a lower limit of zero and increment of one; unnormalized loops can always
be normalized by a simple program transformation if desired [AlK87,KKPSl]. Rotation
is much like skewing [Wo189a]; in the twenested case below:

for i = 0 to N-1
for j = 0 to M-1

computation (i , j)
endfor

endfor

rotating the j loop with respect t o the i loop changes the computation to:

for i = 0 to N - 1
for j = 0 to M-1

computation (i, (j - i) mod M)
endfor
end for

As with skewing, rotation by a factor of -1 is also legal, producing:

for i = 0 to N-1
for j = 0 to H-1

computation (i , (j +i) mod M)
end for

endfor

Loop rotation corresponds to skewing the loop around a torus; the picture below shows

a rotated iteration space where Cij corresponds to computation (i, j) , and N=3, M=4.

Loop rotation can also be applied t o non-adjacent loops, as with loop skewing.
Unlike skewing, rotation has no effect on the shape of the iteration space, since it
merely moves part of the iteration space around.

Rotating loop m with respect t o loop k will usually leave distance vector element
dk unchanged, since the order of execution of the iterations of the k loop are
unchanged. However, two new distance vectors will be generated by rotation; for for-
ward rotation (factor +I, where N is the trip count of the m loop), the two distance
vector elements for the m loop will be dk+dm mod N and - (-dk-dm mod N) .

rotate (k, m) (dl, . . . , dk, . . . (dk+d, mod N) , . . . , d,)
(dl# . - - # d k , • . # d m , -#dn) (dl, . . . , dk , . . . # - (-dk-dm mod N) , . . . , dn)

The second distance vector holds for dependence relations tha t get rotated around the
iteration space when dk+dm is not zero. We will use the notation d rot N to represent
the two distances in the ma position above. For direction vectors we can use the same
table we had for skewing, except all < and > entries in the table must be replaced with
*. If we do not know the dependence distances, then the direction vector elements for
the interesting cases will be changed to:

(k r 4m)
positive
rotation

In other cases, any dependence carried by the m loop will be violated by loop rotation
(in the sense tha t the imperative target language will violate that dependence). I t is
interesting t o investigate what communication is implied when dk is a small constant
or & is (R) or (B) , and d, is zero (& is (=)). The k loop will still carry any

(& a 4-1
negative
rotation

=

& R
B

4 m - - R B
4 m - - R B

(=, =) (=, R) (=, B)
(<,<>) (R.R)
(<.<>) (Be B)

dependence (and thus be good for the time loop), and the communication implied by the
dependence relations can be satisfied by end-around ring processor connections, using
modular arithmetic, assuming the number of processors is the same as the number of
iterations. In the table above, the < entries correspond t o a dependence distance of
one, and the <> entries correspond t o a distance of (1 rot N) .

It is also well defined t o rotate a loop with respect t o an inner loop. T h e simple
twenested computation:

for i = 0 to N-1
for j = 0 t o M - 1

computation (i , j)
end for

endfor

would be changed to:

for i = 0 to N-1
for j = 0 to M - 1

computation ((i f j) mod M,j)
end for

end for

After rotating outer loop k with respect t o inner loop m, the dependence distance vec-
tor element dk for will be ((dk+d,) rot M) , where M is the tr ip count of the m loop.
T h e direction vectors for the interesting cases will be:

(A 8 dm)

positive
rotation

=

& R
B

Again, the dependence distances corresponding t o the < and <> entries are one with
respect to rotation. Rotation, like skewing and interchanging, can change the loop
which carries a dependence relation.

(A . dm)
negative
rotation

=

& R
B

4 m - - R B

(=,=) (<, <>) (<,<>)
(R,=) (R.R)
(B,=) (B, B)

Restructuring Goals

#mi - - R B

(=,=) (<,<>) (<,<>)
(R,=) (R,R)
(B,=) (B* B)

We propose a method t h a t will a t tempt t o generate a comprehensive set of correct,
equivalent forms of a n input algorithm from which the best one o r a se t of "good" ones
can be chosen. We s t a r t by looking at the goals or requirements of the final program.

Using the terminology in the first section, the time/space mapping (3 of the index

se t imposes a time and space mapping on the generation and usage of the d a t a ele-
ments. If A is a d a t a array, then index set element i E I refers to (or generates)
A (fA (i)) , where fA returns a vector of subscripts if A is multidimensional. Many
algebraic mapping methods place restrictions on the form of fA. Four goals t h a t USU-

ally must be met by mapping methods are: T h e conditions t h a t usually must be met

are:
1) N o two iterations may be mapped t o the same processor at the same time: for any

two index se t elements i, j E I such tha t i#j, either Ti#Tj or Si#Sj.
2) All d a t a dependence relations must be satisfied: for any two index set elements

i, j E I such t h a t j depends on i, the relation Ti c Tj must hold.
3) N o two processors should require the same d a t a at the same time: for any two

index se t elements i, j E I such tha t iZj, if f A (i) = fA (j) (for any d a t a array A),
then Ti#Tj.

4) T h e index set must be mapped such t h a t d a t a will flow across the processor ensem-
ble using available connections and the d a t a motion across the systolic ar ray must
be uniform: for any d a t a array A and any two index set elements i, j E I such t h a t
i#j, fA (i) = f A (j) and Ti < Tj, then Sj = Si + (T j - T i) dAvA. The vector vA is
the direction of motion of the d a t a array A, and must correspond t o one of the
available interprocessor connections; in a two dimensional mesh connected array,

for instance, the four possible directions are [$ I;), [-:) and (;I). The value dA

is the delay of the array A, and often must be an integer greater than zero. Usu-
ally dA will be one, meaning t h a t the d a t a moves from one processor to i ts neighbor
every t ime step. Delays greater than one require extra registers o r memory associ-
a ted with each cell to hold the delayed values. Some recent work has proposed
methods to allow d a t a to "turn" under program control, o r t o allow multiple copies
of read-only d a t a to flow across the ensemble. Since our machine model includes a
non-trivial amount of local memory, we only require t h a t dA be greater than o r
equal t o one, but need not be integer; this can always be satisfied if the d a t a com-
munication is between neighbors.
Using program restructuring, the first goal (no two iterations can be mapped to the

same point in space/time) is satisfied by the construction of the restructured program.
Each transformation we use is one-teone in the domain and range index sets. More-
over (as explained in Section 2), the mapping of the transformed program t o time and
space is as simple as mapping one or more dimensions of the transformed index set t o
time and the rest to space. Thus, no two iterations can possibly be mapped to the
same space/time point.

T h e second goal (that a11 d a t a dependence relations must be satisfied) can be met
by requiring t h a t no parallel loop can carry any dependence relation. T h e parallel
loops in our computation model correspond t o the space dimensions. Thus, the loops
must be restructured and reordered so t h a t the time loops carry all dependence rela-
tions; here we only worry about flow, ant i and output dependence relations. It is a sim-
ple m a t t e r for a restructuring tool to check if the outer time loops carry all dependence
relations, and to interchange or otherwise a t tempt t o modify the program to guarantee
this. Note t h a t even if our input language is single-assignment, the output language is
imperative (the sequential time loops run strictly forward, and the space "loops" run in
asynchronously in parallel). Thus, the time loops can only satisfy loop carried depen-
dence relations whose outermost non-zero dependence distance is positive (outermost
non- (=) direction is (c) o r (R)).

T h e third goal (no two processors need the same d a t a at the same time) brings up
the reason for computing and keeping input dependence relations. If two (or more) p r e
cessors need a d a t a element at the same time (as in Program 3), then there will be a
loopcarried input-dependence relation. We can satisfy this goal by requiring tha t the
time loops carry all input dependence relations also. Unlike the other kinds of depen-
dence, however, we allow input dependence relations t o have negative dependence dis-
tances o r (>) directions in the carried loop position.

T h e fourth goal is much more difficult to satisfy. For instance, in systolic array
synthesis, in order to guarantee uniform d a t a flow across the processors, a restructuring
tool must know the dependence distance in the space dimensions (to know the distance
between the source and destination processors) and in the time dimensions (to compute
the delay). For a more general computation, we may need only t o know the distance in
the space dimensions, if we know tha t distance is equal t o one.

Global R e d u c t i o n s a n d Broadcasts. There may be applications where i t is accept-
able or desirable t o allow the parallel loop (space loop) t o compute a reduction. Some
processor ensembles (such as hypercubes) have fast ways for all processors (or a subset
of the processors) t o compute a global reduction. If so, then we can relax rule 2 t o
allow the space dimensions to carry reduction dependence relations. Equally common
a re machines where the parallel loop is allowed t o broadcast values along some axis or
t o all processors. In those cases, we can relax rule 3 t o allow space dimensions to carry
input dependence relations.

T w o Examplea

This section contains two simple examples to show the additional power of the p r e
gram restructuring method compared t o other automatic timelspace mapping methods.
T h e first example tries to map the Program 6 (from section 3) onto a general distri-
buted memory processor ring. In addition, let all the d a t a reside in the processors
according t o some mapping strategy t o be computed automatically. T h e dependence
relations a re given in the table:

var type i j

X flow 1 <
B input = B

where non-zero dependence distances are shown, if known. Because the target architec-
ture is a ring (one dimensional), we will assign one loop to the space dimension and one
to the time dimension. The time loop must satisfy (carry) all dependence relations, and
the dependence distance in the space dimension must be known. This is satisfied if the
loops are interchanged with the 3 loop corresponding to time and the i loop
corresponding to space:

do j = l t a N
pardo i = 1 to N

X(i+1,2*j) = X(i, j) + B (i)
endpardo

enddo

In the mapped algorithm, each processor holds a column of X and an element of B.
Condition 4 is satisfied by virtue of the distance in the space dimension being exactly
one. At each time step j, each processor can send the jth element of its column to its
right neighbor, receive an element from its left neighbor, and compute element 2 j of
its column. Note tha t we used the same mapping strategy even though the target
architecture was not systolic.

An interesting example is the automatic mapping of matrix multiply with perfect
efficiency onto a two dimensional torus of processors. The original program is:

for i = 1 t o N
for j = 1 to N

f o r k = l t o N
C(i, j) = C (i , j) + A(i,k)*B(k, j)

endfor
endfor

endfor

The goal is t o have one time loop and two space loops (corresponding t o the two dimen-
sional processor topology) and perfect processor efficiency with no broadcasts or global
reductions. The dependence table is:

dependence direction
var type i j k

c flow = = R
A input = B =
B input B = =

No single loop carries all the dependence relations. However, the k loop carries the
reduction; if we first interchange tha t loop t o the outermost level, then rotate it with
respect to the two inner loops, it will carry the input dependence relations also:

f o r k = 1 t a N
f o r i = l f o N

for j = 1 f o N
krot = (k+j-2) mod N + 1
krot = (krot+i-2) mod N + 1
C(i, j) = C(i, j) + .A(i,krot)*B(krot, j)

endfor
end for

endfor

Tbe new dependence table is:

var type k i

C flow R - - - -
A input 1 - - 1 rot N
B input 1 1 rot N - -

T h e k loop can now serve as the time loop, so we have the desired form: the time loop
carries all dependences and the dependence distance in the space loop is constant. This
is generally known as "Cannon's form" of the matrix multiply, and is used on systems
such as the Thinking Machines CM-2 (Joh871. The advantage of having an automatic
mechanism t o discover this form of the algorithm is tha t the mechanism can then be
applied to other loops and programs with similar dependence structure.

Restructuring Method

We propose a restructuring tool which implements the program restructuring
transformations we have described based on the d a t a dependence formalisms we have
shown. T h e transformations are driven by a recursive control program which will
exhaustively visit all the different possible restructured forms of the given algorithm.
Each form will then be checked t o see if i t meets the minimum requirements for a legal
spacelt ime mapping, and some sort of optimality measure will be applied t o choose the
best mappings. We examine the problems of exhaustive search and explore possibilities
t o reduce the combinatorial explosion. The input t o the tool is:
1. the algorithm (in either a n single-assignment or imperative language);
2. limits on the target architecture, such as minimum and/or maximum dimensional-

ity, size, and connectivity;
3. description of a measure of optimality, usually minimum time, but perhaps

minimum space-time product or some other measure.
The control program will have the form:

function control (given : algorithm) :
var new, best : algorithm:
var t : transformation:

best := nil;
if legal-mapping(given) then
best := given;

endif:
for t in transformation loop

if legal (t, given) then
new : = apply (t, given) ;
new := control (new) ;
I legal-mapping(new) then

if better (new, best) then
best := new:

endif;
endif;

endif;
endloop :
return best :

end control;

Thus, at each level in the recursion, the control program will perform comparative
analysis of all the legal mappings, and save the best. In practice a user might like t o
see several equivalently good mappings, or the top several mappings. Another flaw in
this program is t h a t the number of possible transformations at any one time depends on
the form of the program; there are more possible loops t o interchange with 4 nested
loops than with only 2, for instance. Additionally, when the program recurses down a
level i t must ensure t h a t i t doesn't choose a transformation t o nullify some previous
transformation. Moreover, as was mentioned with respect t o loop interchanging, there
is often more than one sequence of loop transformations t h a t can change a n algorithm
from form A t o form B; the control program must prevent such redundant recursion.

Still, the size of the search tree is large. Let us explore this with a simple example.
The following algorithm computes the value of a polynomial at many points Xi using
the coefficients A, by Horner's rule:

for i = 1 t o N
for j = 1 t o M

S1 : R(i) = R(i)*X(i) + A (j)
end for

endfor

For this example, the target architecture is a linear array without global reduction o r
broadcast capability. The d a t a dependence relations for this program are:

SI 6 (= ,~) S1 due t o R

S16i=,cl s1 due to X

s 6 , S1 due t o A

The table of dependence relations is:

var type i -j

R flow = R
X input = 1

A input 1 =

We call this initial form of the algorithm the IJ form; Figure 2 shows par t of the
search tree of the different forms generated by automatic restructuring, where a super-
script R means the loop was reversed, a subscript +i (-i) means the loop was skewed
with respect to loop i by a factor of +1 (-I), and a subscript of r+ i or r - i means
the loop was rotated with respect t o i. At least 72 distinct forms of the algorithm can
be generated by automatic means, many of which are legitimate mappings.

Figure 2.

Directed Reatructuring. Exhaustive search of all possible restructurings quickly
becomes too expensive. A method t o prune the search tree is necessary. Here we
explore in what cases each transformation is useful. Loop interchanging is useful for
two reasons; first, it is obviously useful t o bring a dependence-carrying loop t o the
outermost o r "time" position. If some subset of the loops can be shown to carry all the
dependence relations in the loop, then interchanging these t o be the time loops will pro-
duce a legitimate mapping. In our example, no single loop carries all the dependence
relations, so loop interchanging alone will not suffice. A second use for loop interchang-
ing is to change the order of loops in preparation for skewing or rotation.

As we showed earlier, loop skewing can change an (=) dependence direction t o a
(<), and combined with interchanging can change the dependence-carrying loop and
move i t to the outer (time) position. In our Horner's rule program, for instance, skew-

ing the j loop with respect t o i changes the dependence graph to:

var type i j+i

R flow = R
X input = 1

A input 1 1

and loop interchanging then produces:

var type j+i i

R flow R =
X input 1 =
A input 1 1

Now, the outer loop carries all the dependence relations and can be used for the "time"
loop, while the inner loop can be mapped to the "space" dimension:

for j = 2 to N+M
for i = m a x (1 , j-M) to m i n (N , j - 1)

S1 : R (i) = R (I) * X (I) + A (j - i)
end for

endfor

Figure 3 shows a picture of how the computation proceeds through the first few time
steps. The j loop could also be skewed with a factor of -1, which after interchanging
would produce the dependence graph:

var type j i

R flow R =
X input 1 =
A input -1 1

Note that the elements of A are still buffered (remember that leading (>) directions
are allowed for input dependence), but they will flow backwards:

for j = 1 - N to M-1
for i = m a x (1 , l - j) to m i n (N , M - j)

S1 : R (1) = R (i) * X (I) + A (j + i)
endfor

endfor

Figure 4 shows a picture of how this computation proceeds (for N, ~=3).
Loop reversal is occasionally useful t o enable loop interchanging by changing a

(<, >) direction t o a (<, <) direction. More practically, some applications (in a sys-
tolic architecture) may have constraints on the order in which da t a is presented t o the
processor ensemble. Here, loop reversal may be useful t o invert the order in which the
da ta elements are used (for instance, reversing the j loop in the j+,i form above).

Loop rotation is another animal altogether; like skewing, rotation is useful for
buffering dependence relations. The diflerence between rotation and skewing is tha t
after loop rotation, when the outer loop is assigned to time, all the processors can begin

Proc. 1 Proc. 2

t l R l = R l X l + A f

Proc. 3

t 2 R1 = R l X l + A2 R 2 = R2X2 + A1

t 3 R1 = R l X 1 + A3 R2 = R2X2 + A2 R 3 = R3X3 + A1

Figure 3.

Proc. 1 Proc. 2 Proc. 3

Figure 4.

Proc. 1 Proc. 2 Proc. 3

Figure 5.

simultaneously. There is no r a m p u p and rampdown at the beginning and end of the
loop. This construct is useful in non-systolic applications, where the d a t a already
resides in the processors. Interchanging the j loop outwards and rotating i t in the
Horner's rule program above gives us (assuming M ~ N) :

for j = 1 to M
for i = 1 to N

Jrot = (j+i-2) mod M + 1
Sa : R (I) = R (1) *X (I) + A (Jrot)

endfor
end for

Figure 5 shows a picture of how this loop executes, after assigning i t t o the time dimen-
sion.

This analysis leads us to believe t h a t the control program for the restructuring p r e
cedure can selectively choose t o generate only a subset of restructured programs t h a t
are likely t o generate legitimate mappings.

Summary and Limitations

We have shown a new approach t o the problem of mapping a nested loop algorithm
on to fixed topology processor ensembles. Our solution, based on program restructuring,
is similar t o other approaches based on finding linear program mappings from some
representation of the d a t a dependence relations in the program (often by algebraic
manipulation). An important advantage t o our approach is t h a t i t is not limited t o
linear mappings; although loop rotation is the only nonlinear transformation shown
here, other transformations, such as folding or other contractions, can be defined and
added to this approach [CCLSS]. Another advantage is i t s flexibility; we are working on
simple ways t o use iteration space tiling t o deal with fixed size processor ensembles or
to improve the ra t io between the computation inside a "time step" and the communica-
tion between steps prT8S1Wo189b]. Finally, program restructuring is not limited t o
str ict tightly-nested loop algorithms. By using advanced restructuring methods, our
method will be enhanced t o allow more general algorithmic forms, easing the program-
ming task for a user rWo186bI.

One of the limitations of our approach is the restriction of skewing and rotating
only by unit factors. The transformations are quite well-defined with larger magnitude
factors, but the breadth of the search tree of restructured forms would grow uncontroll-
ably if we tried many factors. We a re looking at methods to directly compute the
required skew o r rotation factor from the program, e.g., from the dependence distances
(when known). Without a direct method, we will be either confined t o limit the skew
factors allowed, o r will have to potentially pay the cost of searching a large tree; this is
directly equivalent to the method used to find the timing transformation rr in For88).

We make no claims t h a t any such tool will ever be able t o map "ordinary" pro-
grams into efficient code for a massively parallel system. We also claim t h a t the "vec-
torization" approach will fail for such a system. A vectorizing compiler, when i t finds a
loop for which i t cannot generate vector code, will generate scalar code; because the

ratio of vector t o scalar performance on today's vector computers is in the range of 4
30, this is (more or less) acceptable for many users. For large parallel computers, the
ratio of parallel t o sequential performance is so great tha t generating "correct but
slow" sequential code is as bad as or worse than failing altogether. We do claim tha t a
user will be able t o write a program in a convenient form with a familiar looking
language, and with the aid of a tool will be able t o run the program on massively paral-
lel processor ensembles. We have begun work on a tool embodying our approach.
Among the measures of success are the power, flexibility and efficiency (compile time) of
the tool.

References

W. A. Abu-Sufah, D. J. Kuck and D. H. Lawrie, On the Performance
Enhancement of Paging Systems Through Program Analysis and
Transformations, IEEE Trans. on Computers C-SO, 5 (May 1981), 341-356.
J. R. Allen and K. Kennedy, Automatic Loop Interchange, in Proc. of the
SIGPLAN 84 Sympoiium on Compiler Construction, New York, June 1984,
233-246.
J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs to
Vector Form, ACM Transactions on Programming Languages and Systems 9,
4 (October 1987), 491-542.
U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic
Publishers, Norwell, MA, 1988.
M. C. Chen, A Parallel Language and Its Compilation t o Multiprocessor
Machines or VLSI, in Conj. Record oj the Thirteenth Annual ACM Symp. on
Principles o j Programming Languages, ACM Press, 1986, 131-139.
M. Chen, Y. Choo and J. Li, Compiling Parallel Programs by Optimizing
Performance, J . Supercomputing ,9, 2 (October 1988), 171-207, Kluwer
Academic Publishers.
J. A. B. Fortes and D. I. Moldovan, Parallelism Detection and
Transformation Techniques Useful for VLSI Algorithms, in Journal Parallel
€4 Distributing Computing, 1985.
J. A. B. Fortes, On the Expansion, Analysis and Mapping of Conventional
Programs into Code for Bit Level Processor Arrays, in Proc. o j Frontiers 88:
the grid Symp. on the Frontiers o j Massively Parallel Computation, IEEE
Computer Society Press, October 10.12, 1988, 567-574.
F. Irigoin and R. Triolet, Supernode Partitioning, in Conk Record ojthe 15th
Annual ACM Symp. on Principles o j Programming Languages, ACM Press,
New York, 1988,319-329.
S. L. Johnsson, Communication Efficient Basic Linear Algebra Computations
on Hypercube Architectures, 3. o j Parallel and Distributed Computing 4, 2
(April 1987), 133-172.
K. Knobe, J. D. Lukas and G. L. Steele Jr., Data Optimization: Allocation of
Arrays t o Reduce Communication on SIMD Machines, J, o j Parallel and

ratio of vector t o scalar performance on today's vector computers is in the range of 4
30, this is (more or less) acceptable for many users. For large parallel computers, the
ratio of parallel t o sequential performance is so great tha t generating "correct but
slow" sequential code is as bad as or worse than failing altogether. We do claim that a
user will be able t o write a program in a convenient form with a familiar looking
language, and with the aid of a tool will be able to run the program on massively paral-
lel processor ensembles. We have begun work on a tool embodying our approach.
Among the measures of success are the power, flexibility and efficiency (compile time) of
the tool.

W. A. Abu-Sufah, D. J. Kuck and D. H. Lawrie, On the Performance
Enhancement of Paging Systems Through Program Analysis and
Transformations, IEEE Trans. on Computers C-SO, 5 (May 1981), 341-356.
J. R. Allen and K. Kennedy, Automatic Loop Interchange, in Proc. of the
SIGPLAN 84 Sympos'ium on Compiler Construction, New York, June 1984,
233-246.
J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs t o
Vector Form, ACM Transactions on Programming Languages and Systems 9,
4 (October 1987), 491-542.
U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic
Publishers, Norwell, MA, 1988.
M. C. Chen, A Parallel Language and Its Compilation t o Multiprocessor
Machines or VLSI, in Conj. Record of the Thirteenth Annual ACM Symp. on
Principles of Programming Languages, ACM Press, 1986, 131-139.
M. Chen, Y. Choo and J. Li, Compiling Parallel Programs by Optimizing
Performance, J. Supercomputing El 2 (October 1988), 171-207, Kluwer
Academic Publishers.
J. A. B. Fortes and D. I. Moldovan, Parallelism Detection and
Transformation Techniques Useful for VLSI Algorithms, in Journal Parallel
tY Distributing Computing, 1985.
J. A. B. Fortes, On the Expansion, Analysis and Mapping of Conventional
Programs into Code for Bit Level Processor Arrays, in Proc. of Frontiers 88:
the end Symp. on the Frontiers of Massively Parallel Computation, IEEE
Computer Society Press, October 10-12, 1988, 567-574.
F. Irigoin and R. Triolet, Supernode Partitioning, in Conj. Record ojthe 15th
Annual ACM Symp. on Principles of Programming Languages, ACM Press,
New York, 1988, 314329.
S. L. Johnsson, Communication Efficient Basic Linear Algebra Computations
on Hypercube Architectures, J. o j Parallel and Distributed Computing 4, 2
(April 1987), 133-172.
K. Knobe, J. D. Lukas and G. L. Steele Jr., Data Optimization: Allocation of
Arrays t o Reduce Communication on SIMD Machines, J. o j Parallel and

