
Scalar vs. Parallel Optimizations

Michael Wolfe

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-010

July, 1990

Scalar vs. Parallel Optimizations

Michael Wolfe
Oregon Graduate Institute of Science and Technology

19600 NW von Neumann Drive
Beaverton, OR 97006

Abstract

In the realm of high performance and parallel computers, defining the order in

which t o perform program optimizations and the interaction between optimiza-

tions is a difficult task. The compiler must perform some tradeoff between

different optimizations, in particular trading traditional scalar optimizations

against new parallel optimizations. Since the potential performance benefit of

parallel optimizations can be a n order of magnitude higher, performing scalar

pessimizations (inverting scalar optimizations) t o enable parallel optimizations

can be the right overall decision. It is difficult t o treat parallel and scalar

optimizations with a single framework, since they deal with different machine

abstractions. We also show tha t no fixed ordering of optimizations will find the

optimal transformed program; the ordering of optimizations must depend both

on the target machine and on the program being compiled.

Keywords: compiler optimization, loop optimization, loop parallelization

1. Prologue

Optimizing compilers are important for producing efficient code for high-level languages.

Translators for high level languages typically perform several classical scalar optimizations,

such a s code floating, strength reduction, common subexpression removal, and so on. Most

applications of classical optimizations arise from the semantic gap between the high level

language and the machine instruction set. For instance, where a language supports arrays and

loops, the instruction set might only support address arithmetic, register indirect loads and con-

ditional branches. A simple translation of each array reference and loop t o its direct instruction

set equivalent would be too inefficient. Recognizing the common addressing arithmetic among

multiple array references, floating partial computations out of loops and changing high cost

operations (multiply) into lower cost operations (add or increment) can generate code almost as

efficient as hand written machine code, a t a lower cost t o the programmer and with fewer

errors. Some computer systems attempt t o fill the semantic gap with hardware, for instance by

directly supporting multidimensional array indexing; experience seems to have shown tha t a

more effective solution is t o use less expensive hardware and optimizing compilers. Scalar

optimizations typically produce speed improvements in the range of 2-3, by reducing the total

number of instructions in the program, the cost of those instructions, and the frequency of exe-

cution of some instructions.

With high performance computers, such as parallel or vector computers with deep memory

hierarchies, there is again a semantic gap between the program and the hardware of the com-

puter system; some approaches t o filling this gap are t o change the language t o more closely

model the computer system hardware, such as adding parallel extensions t o the programming

language. Many users have found that the critical element in extracting maximum performance

is t o efficiently use the memory hierarchy, such as effective use of cache memory. Some of these

users resort t o manually restructuring their programs to take advantage of this (supposedly

transparent) architectural feature. As with scalar optimizations, these manual techniques have

spawned a number of automatic parallel optimizations. These optimizations are in some sense

more important than scalar optimizations, since the potential benefit from a parallel optimiza-

tion is a n order of magnitude greater than for scalar optimization, by improving memory hierar-

chy utilization, reducing the frequency of interprocessor communication, or increasing the total

parallelism in the program. Since these computers are often used in applications in which the

computation is concentrated in nested loops, many parallel optimizations focus on loops, such as

loop distribution, loop fusion, loop interchanging, strip mining, supernode partitioning, and so

on.

A recent paper by Whitfield and Soffa described a n approach for ordering optimizations in

a compiler [WhSSO]; they attempt t o t reat scalar and parallel optimizations in a uniform

manner, and show tha t some optimizations work a t cross purposes. In particular, some optimi-

zations prevent (disable) application of other optimizations. From this observation they offer a

framework from which t o deduce a n ordering in which the various optimizations should be per-

formed.

Since the potential benefit of parallel optimizations is much greater, we focus here on the

parallel optimizations. Moreover, we show how parallel optimizations can be enhanced by per-

forming the inverse of some scalar optimizations, a n option not previously considered. We also

show tha t a single ordering of parallel optimizations cannot be chosen tha t will give optimal

results all the time.

In particular, the scalar optimizations considered here are:

a CSE - Common Subexpression Elimination

a IFU - IF Unswitching (floating IFs)

a ICM - Invariant Code Motion

RED - Strength Reduction

The term "parallel optimization" reflects tha t the machines for which these transformations are

of most interest are parallel or vector computers; nevertheless they can be used t o enhance the

performance of many high performance scalar computers also. The parallel optimizations con-

sidered are:

a DIS - Loop Distribution

a FUS - Loop Fusion

a INX - Loop Interchanging

PAR - Loop Parallelization

Whitfield and Soffa showed tha t invariant code motion can disable INX and FUS in some

instances; here we intend t o show tha t ICM-I can enable INX. We will also show (for instance)

tha t RED applied in certain circumstances can disable PAR, CSE can disable DIS, IFU can dis-

able INX and FUS, and tha t the application of the inverse of these scalar optimizations can

sometimes enhance the application of parallel optimizations.

2. Optimiaations and Equivalent Programs

An optimization 0 is a function Fo tha t takes a program Po and generates a new

(equivalent) program PI, such tha t according to some cost metric C, the cost is reduced.

Typically, optimizing compilers use the estimated or predicted number of instructions executed

as the cost metric; other metrics may be code size, amount of parallelism, usage of higher level

of memory hierarchy, and so on.

Two correct programs are equivalent (in the context of this paper) when the two programs

exhibit the same observable behaviour. For instance, the programs:

A := 5: A := 2+3:
B := A + A: B := 2*A:
p r i n t B: p r i n t B:

would be considered t o be equivalent, since they would both print the number "10". The observ-

able behaviour is generally taken t o mean tha t certain well-defined operations tha t communi-

cate with the environment of the program (such as input/output statements, or messages

to/from other programs) will occur in the same order and with the same content. We do not

mean equivalence in the sense of [HPR88], where the behaviour of a program is taken t o mean

tha t the same operations are performed on the same data . We also focus on correct programs;

we allow a compiler t o optimize a program tha t terminates abnormally to change the mode in

which it terminates, thus avoiding many complications [CaF89]. Some applications can use

more aggressive optimizations if the order of externally visible events does not matter, such a s if

reading and writing two different files can be reordered (it can matter if the write is a prompt

for the da t a for the read). Also, some parallel compilers allow optimizing a loop such as:

f o r I := 1 t o N do
S = S + A(1)

endfor:

by executing the iterations of the loop in a different order, such as backwards. Mathematically,

the sum may be accumulated in any order since addition is commutative. However, any numer-

ical analyst will realize tha t the answer with floating point computer arithmetic can be sensitive

to the order of accumulation. In general, we assume tha t optimizations will only reorder float-

ing point calculations when the roundoff characteristics will not be affected, and tha t

input/output (or any intentional external visible events) will not be reordered or modified.

We assume the scalars in the program have been converted t o Static Single Assignment

(SSA) form [AWZ88,CFR89]. In some sense, this simplifies the program and eliminates the need

for an extra precondition for loop fusion involving upward-exposed uses of scalar variables; using

the SSA form, simple dependence tests are sufficient.

3. Brief Review of Dependence

Since dependence conditions are used t o test for when a parallel optimization is legal, here

we briefly review definitions of dependence [BCK79,FOW87]. In these definitions, a statement

refers t o a element of the intermediate language of the compiler, which may be a subexpression,

a statement or a basic block. A flow dependence relation Sv S S, occurs when statement Sv

defines a variable and statement S, uses or might use tha t definition. An anti-dependence rela-

tion S, F S, occurs when Sv uses a variable tha t is subsequently redefined by S,. An output

dependence relation S, So S, occurs when Sv defines a variable tha t is subsequently redefined

by s,. A control dependence relation Sv 6' S, occurs when Sv is a control statement (condi-

tional branch or loop header) tha t determines whether or not statement S, will execute. Usu-

ally we are not concerned with the kind of dependence, so we will just say tha t S, is dependent

on S,, written S, S* S,.

In loops we are also concerned with the relative iterations of the statements involved in the

dependence, and we distinguish three cases (PaW861. If Sv is enclosed in one loop, let Sv [i]

refer t o the execution of Sv during iteration i of the loop. If S, [i] S* S, [j] , then depending

on the sign on i- j we have three possible dependence directions. If i- j<0 , then we have a

forward dependence, written Sv [i] 6 (') * S, [j] ; if i- j>O, we have a backward dependence

direction, written S, [i] 6(')* s, [j] ; finally, if i- j=O, we have a n equal dependence direc-

tion, written Sv [i] S(')* S, [j] . In normal sequential loops, a backward direction would

correspond t o a dependence flowing backwards in time, and so cannot occur. In nested loops, a

dependence relation has a direction for each loop, giving rise t o a direction vector; in this case,

an inner loop can have a backwards direction. Also, when we compute directions for adjacent

loops t o test for loop fusion, backwards directions can occur (see below). For dependence rela-

tions within a loop or nested loop, the outermost loop with a forward direction is said t o carry

tha t dependence relation. When we apply a parallel optimization t o a particular loop, we

ignore any dependence relation carried by an outer loop.

4. Enabling Parallel Optimieations

Since our premise is tha t parallel optimizations have the most potential benefit, we want

the compiler t o have the most flexibility in applying them possible. We do not consider exactly

why a particular transformation should be performed; the decision as t o whether or not t o per-

form a transformation is a very important part of the optimization process, and will be con-

sidered in a subsequent section. Here we describe the parallel optimizations and show how they

are affected by particular scalar optimizations.

Loop Distribution. DIS is legal as long as any cycle of dependence relations is not broken

across the distributed loop(s); some reordering of the code may be necessary [BCK79]. For

instance, the following loop:

f o r I = 1 t o N d o
S1: A (1) = B (I) + 1
S,: B (I + l) = B (I) *C (I) + D (1)

e n d f o r

has the dependence relations

The loop can be distributed, as long as the statements are reordered; note the single-statement

dependence cycle involving S, :

f o r I = 1 t o N d o
S,: B (I + l) = B (I) * C (I) + D (I)

e n d f o r
f o r I = 1 t o N d o

S,: A (1) = B (I) + 1
e n d f o r

Loop distribution is in some sense the essence of automatic vectorization, and is sometimes

explicitly implemented for partial loop vectorization.

Common subexpression elimination (CSE) can disable DIS. Take the loop:

f o r I = 1 t o N d o
S,: A (1) = A (I) * (B (I) + 1)
s : B (I + l) = B (I) + 1

e n d f o r

the subexpression B (I) +1 is common t o both statements. If i t were pulled out and assigned t o

a temporary variable, as in:

f o r I = 1 t o N do
S,: T = B (I) + 1
S1: A (1) = A (I) * T
S,: B (I + l) = T

e n d f o r

then the loop can no longer be distributed. One solution is t o "expand the temporary variable

T into an array; this makes sense in a vector environment, where the objects being manipulated

are vectors anyway:

f o r I = 1 t o N d o
S,: T (1) = B (I) + 1
S,: A (1) = A (1) * T (I)
S,: B (I + l) = T (I)

e n d f o r

In other environments, many of the common subexpressions are the array references anyway, so

assigning these t o temporary arrays does not address the problem, and increases the memory

bandwidth requirement. In fact, inserting redundant computation, through global forward sub-

stitution, can enable distribution. This is essentially the inverse of CSE.

Loop Fusion. FUS is legal when the loop limits match, and when there is no dependence rela-

tion with a (>) direction [Lov77,WoB87]. For instance, the only dependence relation in the

program:

f o r I = 1 t o N do
S1: A(1) = B (I) + 1

endfor
f o r I = 1 t o N do

s,: B (I + l) = C (I) + D (I)
end f o r

is S1 F(,) S2; this means tha t there is a dependence S1 [i] F S, [j] where i > j. Loop fusion,

applied t o this program, would "turn the dependence around", resulting in a flow dependence

S, S (,) S1. Opportunities for loop fusion are relatively rare in normal programs, but in some

languages t ha t t reat arrays or vectors in a single statement, loop fusion will become an impor-

t an t optimization.

IF unswitching (IFU) [AlC72] can disable FUS. Take the program:

f o r I = 1 t o N do
S1: A(1) = A (I) * (C (I) + 1)

endf o r
f o r I = 1 t o N do

S1: i f (X < > O) then
S3: B (I + l) = X*(B(I) + 1)

e n d i f
end f o r

As i t stands, the loops can be fused; if IFU is applied t o the second loop, however, the loops in

the result program cannot be fused:

f o r I = 1 t o N do
s,: A(1) = A (I) * (C (I) + 1)

endf o r
S,: i f (X <> 0) then

f o r I = 1 t o N do
S3 : B (I + l) = X*(B(I) + 1)

end f o r
e n d i f

Moreover, if we define IF Sinking as IFU-I, then sinking IF'S into loops can enable loop fusion.

IFU is related t o general ICM, although i t is applied t o a control construct. Whitfield and

Soffa [WhSSO] claim ICM can disable FUS, by making the loops nonadjacent; if we assume the

compiler works from a dependence structure rather than a lexical structure, ICM will not

disable FUS unless there is a dependence chain from the first loop through the invariant code t o

the second loop. Usually this will mean a (>) dependence direction in the original loop, except

in the case where the dependence is from the first and only the first iteration of the first loop, as

in:

f o r I = 1 t o N do
S,: A (1) = A (I) * (C (1) + 1)

end f o r
f o r I = 1 t o N do

S,: B (I + l) = (A(1) + 1) * D (I)
end f o r

Here, the dependence relation is S, 6 (<) S3, and the original loops can be fused; after ICM, the

loops can no longer be made adjacent and so cannot be fused:

f o r I = 1 t o N do
S,: A (1) = A (I) * (C (I) + 1)

end f o r
T = A (l) + 1
f o r I = 1 t o N do

SJ: B (I + l) = T * D (I)
endf o r

Loop Interchanging. Simple INT is legal when the loops are tightly nested and there is no

dependence relation with a (<, >) direction [A1K84]. Interchanging of non-tightly nested loops

has also been studied elsewhere; i t requires the loop limits t o match (square or triangular) and

has more complex dependence conditions, and so not be considered here. Loop interchanging is

commonly used t o expose additional parallelism in programs and t o optimize the memory refer-

ence patterns of arrays in loops.

IFU can disable INX. In a program such as:

f o r J = 1 t o N do
f o r I = 1 t o M - 1 do

S1 : A (1 , J) = A (I , J) * (C (I , J) + 1)
S a : i f (X (1) 0 0) then
S3 : B (I + l , J) = X * (B (I , J) + 1)

end i f
end f o r

endf o r

the only dependence relation is S3 6(=,<) S3, which does not prevent interchanging. Applying

IF'U however produces the program:

f o r J = 1 t o N d o
S,: i f (X (1) <> 0) t h e n

f o r I = 1 t o M-1 d o
S1 : A (1 . J) = A (I . J) * (C (I . J) + 1)
S3 : B (I + l , J) = X * (B (I , J) + 1)

e n d f o r
else

f o r I = 1 t o M - 1 d o
S1 : A (1 , J) = A (I , J) * (C (I , J) + 1)

e n d f o r
e n d i f

e n d f o r

Since the loops are not tightly nested, they cannot be interchanged. Of course, if the original

loops were interchanged, then IF'U could not be applied.

ICM can also disable INX for exactly the same reasons as IFU. Applying the ICM-' and

IFU-I can enable INX by making non-tightly nested loops be tightly nested.

Loop Parallelisation. PAR is legal when a loop does not carry any dependence relation

[ACK86]. RED applied in its simplest form can disable PAR by inserting dependence cycles for

induction variables. In the program:

f o r I = 1 t o N d o
S,: J = 4 * I
S,: B (J) = C (I)
S,: B (J + 1) = D (I)

e n d f o r

there are no loop carried dependence relations. Standard compiler analysis would recognize J

as a n induction variable, and RED would replace it by:

J = 0
f o r I = 1 t o N d o

S,: J = J + 4
S,: B (J) = C (I)
S,: B (J + l) = D (1)

e n d f o r

This translation inserts a dependence cycle for J, preventing effective parallelization. Of

course, the same standard compiler analysis would recognize this variable J as a n induction

variable, and could do the inverse substitution, using RED-'. This example may seem a bit

trite, but i t exposes the importance of recognizing the interaction of standard scalar optimiza-

tions and parallel optimizations.

5. Analysis vs. Synthesis

For the most part, compiler optimizations for high performance computers can be divided

into two disjoint parts: the analysis phase and the synthesis phase. The analysis phase discov-

ers facts about the program but does not necessarily perform any modifications or code improve-

ments. Examples of the types of analysis necessary before optimization are conversion t o Static

Single Assignment (SSA) form [AWZ88,CFR89], induction variable recognition and da ta depen-

dence analysis. Even constant propagation is simply recognition of what variable names have

constant values a t certain points in the program.

One obvious exception t o this rule is dead code elimination. Eliminating dead code can

only improve other optimizations, by removing any possible constraints tha t would prevent their

application.

The synthesis phase uses the knowledge collected by the analysis t o choose which transfor-

mations t o perform and in which order. Even for scalar computers this process cannot be

guaranteed t o generate optimal code, due t o the interaction of optimizations such as register

assignment, instruction selection and scheduling. For parallel computers the problem is even

harder. Let us return briefly t o a previous example, where the optimizer must choose between

interchanging (INX) and unswitching (IFU):

f o r J = 1 t o N do
f o r I = 1 t o M-1 do

S1 : A (1 . J) = A (I , J) * (C (I , J) + 1)
S2: i f (X (1) <> 0) then
S,: B (I + l , J) = X * (B (I , J) + 1)

end i f
end f o r

endf o r

For a conventional scalar computer, the obvious choice is t o perform IFU; this moves the condi-

tional test outside of the innermost loop. If the arrays are declared of size MXN (assuming nor-

mal row-major array storage), the stride of the references t o the arrays in the inner loop will be

N (the distance in memory words between successive accesses t o the same array); if N is very

large (larger than the page size), this could cause virtual memory thrashing [AKL81]. However,

most compilers proceed without considering this effect.

For a vector computer, the choice is no longer so obvious. The inner loop here cannot be

vectorized, due t o the dependence self-cycle S, 6(=,,) S 3 . Also, vector computers are much

more sensitive t o the stride of memory references. Some strides (typically multiples of powers of

two) generate poor interleaved memory performance, while a stride of one is always safe (and

sometimes optimal) since it can take advantage of long cache lines. Applying IFU generates two

inner loops, one of which can be fully vectorized and the other of which can only be partially

vectorized; both of these loops have large memory strides. Applying INX generates one vectoriz-

able inner loop, with stride-1 memory references, but with a conditional. A third option is t o

first apply DIS:

f o r J = 1 t o N do
f o r I = 1 t o M-1 do

S1 : A (1 . J) = A (I , J) * (C (I . J) + 1)
endfor

endf o r
f o r J = 1 t o N do

f o r I = 1 t o M-1 do
S2: i f (X (I) <> 0) then
S3 : B (I + l , J) = X * (B (I , J) + 1)

end i f
end f o r

endf o r

then t o optimize each statement individually, using IFU or INX as appropriate; this could be

important if the array references in the first statement were transposed, for instance.

There are several ways for an optimizer t o choose which parallel transformation t o per-

form. The first method chooses a n ordering for the transformations; this is essentially the

method tha t the Parafrase translator uses, allowing the user t o choose the ordering of transfor-

mations [KKP8l7KSC84]. This is also the method suggested by [WhSSO]. When applying a

transformation, the optimizer only needs t o decide whether this transformation will (1) improve

the code or (2) enable (or disable) some subsequent optimization from improving the code.

The second method performs an exhaustive search of all possible transformations and com-

binations of transformations of the program. In order t o be reasonable, the catalogue of

transformations which are searched this way must be relatively small. For instance, using a

catalog of one transformation, i t might be feasible t o compare all possible loop orderings from

loop interchanging. In certain applications, exhaustive search may be reasonable, such as when

writing a subroutine library.

The third method iteratively chooses which transformation t o perform next, based upon a

model of the target machine and knowledge of what effects each transformation will have upon

the program. This method has all the potential of the exhaustive search without the cost, and

allows transformations t o be applied in different orders t o different programs. The problem is

tha t this method requires an oracle t o decide which transformations t o perform in which order

on each program. In many cases the decision is obvious, but i t is not clear how detailed the

machine model must be in order t o always generate optimal or reasonable code.

We can compare these three methods by looking a t the skeleton program:

f o r I = ...
f o r J = ...

S1 : A(1,J) . . a

end f o r
f o r K = ...

f o r L = ...
S2 : B(I,K,L) . ..

endfor
end f o r

endfor

Suppose tha t for some target machine, i t is optimal t o perform the following transformations:

(INX(L,K)->FUS(J,L)->INX(J,I)), generating the program:

f o r J = ...
f o r I = ...

S1 : A(1.J) ...
f o r K = ...

S2: B(I,K,J) ...
end f o r

endfor
endf o r

The first method, in which the transformation ordering is bound a t compiler-generation time,

cannot generate this program. Actually, the ordering suggested in [WhSSO] already has one

cycle (INX->ICM->INX, potentially allowing for more), but the addition of cycles quickly

begins t o look like our third method. The second method would generate (or attempt t o gen-

erate) many different versions of the program, including (FUS(J,K)->INX(J,I)), (DIS(1)-

>INX(I,J)->INX(I,K)->INX(I,L)), and so on. Each of the versions, including all intermediate

versions, would be evaluated, and the best version would be used as the final generated code.

The third method, using a smart oracle for choosing the transformations, would perform the

three transformations in the order required, without attempting any other optimizations.

The problem with any compile-time evaluation technique is tha t many of the parameters

are not known at compile time. Factors such as relative loop limits, presence or absence of a

da t a dependence relation, or even memory strides may all be unknown. Some current compilers

already generate multiple versions of a loop or program and choose which version t o execute a t

run time depending on actual parameters [BDH87].

8. Other Work

The most relevant other work is described in the paper [WhS9O], which used a different set

of optimizations. They studied the scalar transformations constant propagation and dead code

elimination as well as ICM. As mentioned, we feel tha t constant propagation belongs more t o

the analysis phase of the compiler than the synthesis phase. We agree tha t dead code elimina-

tion should precede other transformations; though we expect its application t o user code to be

minimal, in this sense we agree tha t there are some transformations tha t can be ordered. A

compiler might also perform dead code elimination after other scalar optimizations.

The parallel transformations they studied were strip mining and loop peeling, as well as

INX and FUS. Strip mining [Lov77] has two uses for parallel compilers: i t can divide a loop into

fixed-sized chunks, as for vector register machines, and the outer strip and inner element loops

can be interchanged with other loops, t o change memory reference locality and improve memory

hierarchy utilization [AKL81,GJG88]. Simple strip mining is more of a code generation issue

than an optimization. When strip mining is combined with interchanging, the iteration space is

effectively divided into "supernodes" [IrT88]; this effect depends more on the interchanging than

the strip mining, so we have chosen t o focus on interchanging here.

Loop peeling (peeling off the first or last one iteration of a loop) can be used t o break a

da ta dependence chain tha t involves only a single iteration. Loop peeling is really just a res-

tricted application of general index set splitting [Ban79], which can be used for many reasons.

To properly optimize index set splitting, the split point must be computed, such as the desired

loop limits (e.g. for loop fusion) or the cross over point of some data dependence condition.

In this paper, we chose t o inspect scalar transformations tha t have interesting inverses.

Forward substitution can be the inverse of CSE, while code sinking (into loops) can be the

inverse of IFU and ICM. In the special case of induction variables, RED also has a simple

inverse. The point we wanted t o make is tha t the potential benefit from parallel optimizations

can outweigh the potential benefit from scalar optimizations t o the point t o where it can be

necessary t o explicitly invert some optimizations, or t o perform scalar pessimizations, in order t o

generate overall optimal parallel code. As i t turned out, the parallel optimizations we chose

have simple inverses also.

There has been a great deal of work on compiler optimizations for parallel computers. We

chose a small set of four transformations t o illustrate the problems tha t can arise when trying

t o interleave parallel and scalar optimizations. Other transformations tha t are also relevant

are loop skewing [Wo186], loop collapsing and loop coalescing [Po187], loop reversal, index set

splitting, loop unrolling [DoH79], scalarization, alignment and replication [ACK87] and so on.

Note tha t the goal here is not so much automatic detection of parallelism from sequential pro-

grams, but automatic generation of optimal (or close t o optimal) code from a machine-

independent sequential or parallel program.

7. Summary

Many machine independent scalar optimizations are possible because many conventional

scalar computers and programming languages share a common "von-Neumann" model of compu-

tation. Common subexpression elimination and code floating are generally beneficial regardless

of the target machine architecture. In this framework, i t is feasible t o build a retargetable

optimizing compiler, where only a few back-end machine-specific optimizations and the final

code generator need t o be rewritten for a new machine.

In the realm of high performance and parallel computers, this is a much more difficult task.

The gap between the programming language model of computation and the machine instruction

set is somewhat larger, and efficient execution of machine-independent programs depends more

heavily on compiler optimizations. The tradeoff between different optimizations (in particular,

between scalar and parallel optimizations) becomes important. It is still feasible t o have a

retargetable optimizing compiler framework. The analysis phase of the compiler as well as

many of the particular optimizations would be shared, although many transformations would

have t o be parameterized so they could be customized t o each application; this is no harder

than parameterizing a register allocation routine for different numbers of registers. We briefly

described a framework in which the parallel optimizations can be controlled by an oracle based

on a model of the machine and the characteristics of the particular program being compiled.

After parallel optimization is complete, the program can be treated as a set of sequential tasks

t o which normal scalar optimization can be applied.

We wish t o emphasize two key points. First, i t is difficult and perhaps unreasonable t o

t reat parallel and scalar optimizations in the same framework, since they deal with different

machine abstractions. Second, the order in which parallel optimizations should be applied t o a

program depends upon both the target machine architecture and the particular program being

compiled; a n attempt t o reduce this complexity by finding a single fixed optimization ordering

must sacrifice some execution performance.

Referenc

[AKL8 11 W. A. Abu-Sufah, D. J. Kuck and D. H. Lawrie, On the Performance Enhancement
of Paging Systems Through Program Analysis and Transformations, IEEE Trans. on
Computers C-SO, 5 (May 1981), 341-356.
F. E. Allen and J. Cocke, A Catalogue of Optimizing Transformations, in Design and
Optimization of Compilers, R. Rustin (ed.), Prentice-Hall, Englewood Cliffs, NJ, 1972,
1-30.
J. R. Allen and K. Kennedy, Automatic Loop Interchange, in Proc. of the SIGPLAN
84 Symposium on Compiler Construction, New York, June 1984, 233-246.
R. Allen, D. Callahan and K. Kennedy, , Automatic Decomposition of Scientific
Programs for Parallel Execution, Rice Univ., Nov. 5, 1986.
R. Allen, D. Callahan and K. Kennedy, Automatic Decomposition of Scientific
Programs for Parallel Execution, in Conf. Record of the 14th Annual ACM Symp. on
Principles of Programming Languages, ACM Press, New York, 1987, 63-76.
B. Alpern, M. N. Wegman and F. K. Zadeck, Detecting Equality of Variables in
Programs, in Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, January 1988, 1-11.
U. Banerjee, S. Chen, D. J. Kuck and R. A. Towle, Time and Parallel Processor
Bounds for Fortran-Like Loops, IEEE Trans. on Computers C-28, 9 (September
1979), 660-670.
U. Banerjee, Speedup of Ordinary Programs, PhD Thesis, Univ. of Illinois, October
1979. (UMI 80-08967).
M. Byler, J. Davies, C. Huson, B. Leasure and M. Wolfe, Multiple Version Loops, in
Proc. of the 1987 International Conf. on Parallel Processing, S. K . Sahni (ed.), Penn
State Press, University Park, PA, 1987, 312-318. August 17-21, 1987.
R. Cartwright and M. Felleisen, The Semantics of Program Dependence, in
Proceedings of the SIGPLAN '89 Conference on Programming Language Design and
Implementation, ACM, New York, June 1989, 13-27. June 21-23 1989, Portland OR.
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and K. Zadeck, An Efficient
Method of Computing Static Single Assignment Form, in Conf. Record of the 16th
Annual ACM Symp. on Principles of Programming Languages, ACM Press, New York,
January 11-13 1989, 25-35.
J. J. Dongarra and A. R. Hinds, Unrolling Loops in Fortran, Software Practice and
Ezperience 9(1979), 219-229.
J. Ferrante, K. J. Ottenstein and J. D. Warren, The Program Dependence Graph and
its use in Optimization, ACM Trans. on Programming Languages and Systems 9, 3
(July 1987), 319-349.
D. Gannon, W. Jalby and K. Gallivan, Strategies for Cache and Local Memory
Management by Global Program Transformation, J. Parallel and Distributed
Computing 5, 5 (October 1988), 587-616, Academic Press.
S. Horwitz, J. Prins and T. Reps, On the Adequacy of Program Dependence Graphs
for Representing Programs, in Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, January 1988, 146-157.
F. Irigoin and R. Triolet, Supernode Partitioning, in Conf. Record of the 15th Annual
ACM Symp. on Principles of Programming Languages, ACM Press, New York, 1988,
319-329.
D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure and M. Wolfe, Dependence Graphs
and Compiler Optimizations, in Conf. Record of the 8th ACM Symp. on the Principles
o f Programming Languages, Williamsburg, VA, 1981, 207-218.
D. J. Kuck, A. H. Sameh, R. Cytron, A. V. Veidenbaum, C. D. Polychronopoulos, G.
Lee, T. McDaniel, B. R. Leasure, C. Beckman, J. R. B. Davies and C. P . Kruskal,
The Effects of Program Restructuring, Algorithm Change, and Architecture Choice
on Program Performance, in Proc. o f the 1984 International Conference on Parallel

Proceeaing, R. M. Keller (ed.), IEEE Computer Society Press, Los Angeles, August
21-24, 1984, 129-138.

[Lov77] D. Loveman, Program Improvement by Source-to-Source Transformation, J. of the
A C M 20, 1 (January 1977), 121-145.

[Paw861 D. A. Padua and M. Wolfe, Advanced Compiler Optimizations for Supercomputers,
Comm. of the A C M 29, 12 (December 1986), 1184-1201.

[Po1871 C. D. Polychronopoulos, Loop Coalescing: A Compiler Transformation for Parallel
Machines, in Proc. of the 1987 International Conf. on Parallel Processing, S . K . Sahni
(ed.), Penn State Press, University Park, PA, 1987, 235-242. August 17-21, 1987.

[WhS9O] D. Whitfield and M. L. Soffa, An Approach to Ordering Optimizing Transformations,
in Proceedings of the Second ACM SIGPLAN Symposium on Principles d Practices of
Parallel Programming, March 1990, 137-146.

[Wo186] M. Wolfe, Loop Skewing: The Wavefront Method Revisited, Intl J. Paraflel
Programming 15, 4 (August 1986), 274294.

[WoB87] M. Wolfe and U. Banerjee, Data Dependence and Its Application to Parallel
Processing, Intl Journal of Parallel Programming 16, 2 (April 1987), 137-178.

This work was supported in part by NSF Grant CCR-8906909 and DARPA Grant MDA972-88-
J-1004.

