
Key Words in Context, an example

James Hook and Richard Kieburtz

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-012

August, 1990

Key Words in Context, an example

James Hook and Richard Kieburtz
Oregon Graduate Institute

hook0cse.ogi.edu

July 27, 1990

Abstract

This report presents the derivation of the "key words in context" example in the Ex-
tended ML framework of Sannella and Tarlecki[G, 7, 5, 8, 4, 91. Experiences with the
derivation are discussed.

1 Introduction

The production of verifiably correct programs without sacrifice of performance in execution
has been a goal of computer scientists for years. Several methods for deriving programs from
specifications have been proposed over the years, but few have demonstrated the capacity to
scale up to realistic examples.

Specifications have generally followed one of two paradigms. A logical specification expresses
logical relations over quantified object variables. The behavior entailed by a logical specification
is inferred by constructing a realization if this is not manifest. Both first-order and higher-order
logics have been used for specification. In principle, logics provide the means for composition
of specifications, but this has not been very extensively developed linguistically. Composition
of specifications seems clumsy in most logics.

An algebraic specification defines the operators of a many-sorted algebra, typically by im-
posing an equational theory. A carrier set for the algebra is usually not specified. In an
algebraic specification, the behavior is manifest, but logical relations must be inferred in order
to prove general properties. Algebraic composition is a natural and useful technique, but in a
purely first-order algebraic system, new composition operators cannot themselves be specified.

Sannella and Tarlecki, building on extensive experience in algebraic specification languages,
have recently developed Extended ML, a method for deriving ML programs that appears to
provide sufficient tools for composition of component specifications to overcome the scaling
problems. The method of developing a specification by refinement is still being fleshed out.
This paper presents a non-trivial example developed according to their method. We offer
comments on how this process might be automated and what demands it places on the logic.

In reviewing the text of this paper we have noticed, to our consternation, that the volume
of words and symbols generated is at the verge of overwhelming the reader. The reader of

a specification must be able to concentrate his/her attention on specific details of concern.
Having the visual field cluttered with text that dilutes the density of information content is
distracting. There are several ways to mitigate this problem. (1) Some parts of component
specifications are repeated many times in the linear text of the paper because they occur in
several contexts. If one were reading the specification from the screen of a workstation, particu-
larly one utilizing a hypertext-like environment, the duplications would be less distracting. (2)
The text of specifications suffers from the wordiness of a programming notation. It would be
easier to digest if it appeared in more familiar mathematical notation with abbreviated names
and special symbols for operators such as universal quantification. Setting the text of axioms
in an italic font in 'math mode' format would help to distinguish them from the declarations
that appear in a signature. (3) At some points in the example, coercion functions are used to
resolve otherwise overloaded operator names. Overloaded operator names are commonly used
in mathematics, and a convention that permitted such overloading would be a boon to the
readability of specifications.

In evaluating the specification language and methods we have used in this paper, the reader
should also keep in mind that were a similar probIem done in practice, the software designer
would expect to have at his/her disposal libraries of existing module specifications and im-
plementations. We have given everything needed for our example as if it were all created at
one time, without benefit of an archive of prior work. Note that the module structure of the
SML (and EML) language caters explicitly for the use of libraries by providing the interface
structure and modes of composition that are needed. When this structure is superimposed on
a modest example in which library modules are not used, it may appear cumbersome, but in
practice it saves time and effort.

The example is not yet as complete as we would like. Specifically, it does not deal with
1/0 or display, character sets or fonts, or programmed exceptions. These can all be specified
in EML and will be given in a future edition of this example.

1.1 Problem statement

The application we consider is one that has been used many times as an example. It is to
generate, from a list of one-sentence titles, a list of permutations of the titles sorted by the
occurrence of so-called key words. This is called a Key Words in Context (kwic) index.

More specifically, we require a sorted list of cyclic permutations of the original titles such
that (1) each original title appears, (2) only those permutations appear that begin with a key
word, and (3) only distinct titles and permutations appear in the output. A key word is any
word that has not been explicitly noted as insignificant.

2 Specifying the problem

The Extended ML (EML) framework augments Standard ML's (SML) module declarations,
a substructure intended to support programming in the large, to a calculus for specification
and refinement. It generalizes the structures (large values) and signatures (large types) of

SML to include axiom declarations[3, 1, 21. In the case of signatures, these axioms are viewed
as specifications. In the case of structures they constrain the space of models in a manner
consistent with the specification. Axioms are of use in structures during intermediate stages of
the refinement process-once the structure is fully implemented with ML values there should
be only one model. Extended ML also supports Standard ML's large functions-functors. This
treatment is simply an extension of the treatment of structures to a parametric setting.

The Extended ML framework may be used with almost any logic. In the core of this
development we use a first-order logic with equality, similar to that used in Sannella and
Tarlecki[G]. Although EML is not implemented, this code does typecheck and run in Standard
ML with the EML specific constructions commented out.

In our research we hope to develop a suite of related logics that can cope with richer
subsets than the first-order logic in the main example. This would allow, among other things,
the extension of the example to include its input-output specification. It would also support
formal justification of the exploitation of higher-order functions used in section 3.1.

2.1 KWIC specification

To proceed from the informal problem description given above to a specification, we need to
make many of the ideas more precise. We begin by typing the main function:

v a l kwic : s t r i n g l ist l i s t -> s t r i n g l i s t -> s t r i n g l i s t l i s t

To express the ensemble of properties in the specification we will need:

1. a Total-Order structure, ordered-words, that captures the ordering of words,

2. a Sorted-Total-Order structure, o rdered- t i t l es , that encodes the ordering on titles,

3. a Rot a t ion structure on titles, permuted-t i t l e s , that describes significant rotations,
and

4. a Repetit ion-Free-List structure on titles, un ique- t i t l es , that describes the final
output.

Given these structures we will develop axioms that specify:

1. ordered-words is a lexicographic ordering derived from the ASCII character code.

2. orde red - t i t l e s is a lexicographic ordering derived from ordered-words.

3. The output is sorted by the o rde red - t i t l e s ordering and made unique by the unique- t i t l es
filter.

4. The output contains exactly the significant rotations (as defined in permuted-tit les) of
the input.

2.2 Supporting Concepts

To make our specification precise we need to build up a library of supporting concept specifi-
cations. These are the algebras of basic mathematical notions. In an EML specification, the
operators of these algebras are expressed as programmed functions.

2.2.1 Order relations

One of the simplest component specifications in the system is that of an equivalence relation.
It is expressed:

signature Equiv-Re1 =
s ig

type elem
val eq : elem -> elem -> boo1
axiom (all x: elem. eq x x = true)
and (all x,y:elem. eq x y = eq y x)
and (all x,y,z:elem. eq x y and eq y z => eq x z)

end ;

This introduces a signature named Equiv-Re1 and binds it to the signature that has a type
called elem, an operation called eq, and three familiar axioms characterizing eq as an equiva-
lence relation. In a nicer syntax these axioms appear as:

Where N represents eq.
Total orders may be defined by incremental development on this basis, using the include

signature construction operator. We extend equivalence relations to partial orders and partial
orders to total orders as follows:

signature Partial-Order =
s ig

include Equiv-Re1
val less : elem -> elem -> bool
axiom (all x: elem . less x x = false)
and (all x,y: elem . less x y => not less y x)
and (all x,y,z: elem . less x y and less y z => less x 2)

end ;

Which augments the equivalence relation axioms with:

Where we have used C for less. This is followed by the definition:

signature Total-Order =
s ig

include Partial-Order
axiom (all x,y: elem . less x y orelse less y x orelse eq x y)

end ;

which adds the restriction that Vx, y : elem. z C y V y C x V x N y.
The reason we need total orders in this exercise is to produce a sorted list of output. Sorting

is expressed by the following specification:

signature Sort ed-Total-Order =
s ig

include Total-Order

val ordered : elem list -> bool
axiom (all 1: elem list.

(all u,v:elem list.
all x,y:elem. 1 = uO[x]Q[y]Ov => less x y orelse eq x y)

<=> ordered 1)

val permutation : elem list -> elem list -> bool
axiom (permutation [I [I = true)
and (alll,u,v:elemlist.

all x: elem. permutation (x: :l) (uOCx1 Ov) =
permutation 1 (u6v))

val sort : elem list -> elem list

axiom (all 1,u:elem list.
1 = sort u => (permutation 1 u andalso

ordered 1)
end ;

The first axiom:

Vl : elem list. (Vu, v : elem list. V x , y : elem . l = uO[x]Q[y]Qv -, x C y) t, ordered l

characterizes the meaning of ordered. The next two express permutations. Finally, a sort is
characterized as an ordered permutation of the input.

2.2.2 Rotations

A list r is a rotation of a list I if r can be decomposed into two lists u and v such that T = uv
and l = vu. A rotation is trivial if either u or v is the empty string. A rotation is significant
with respect to a predicate s if it is trivial or s(hd r) .

The formulation below focuses on the function signif icant-rotations which expects a
significance predicate and a title and returns the list of all significant rotations of the title.
This specification is captured in the signature:

signature Sig-Rotation =
s ig

type elem

val significant-rotations : (elem -> bool) -> elem list -> elem list list

val rotation : elem list -> elem list -> bool
val significant : (elem -> bool) -> elem list -> elem list -> bool

axiom (all 1, u, v: elem list.
1 = uOv => rotation 1 (v6u))

and (all 1, r: elem list.
rotation 1 r => exists u, v: elem list.

uOv = 1 andalso vQu = r)

and (all sig-pred: elem -> bool.
all 1, r: elem list.

significant sig-pred 1 r
<=> 1 = r orelse

(rotation 1 r andalso sig-pred (hd r)))

and (all sig-pred: elem -> bool.
all 1, r: elem list.

significant sig-pred 1 r
<=> r is-in significant-rotation sig-pred 1)

end ;

2.2.3 Sets

Since the significance predicate is going to be applied repeatedly, we choose to introduce a set
abstraction for collections of insignificant words to support its implementation. This will allow
us to easily change the module as more efficient implementations are required.

The EML signature for sets is:

signature Set =
sig type elem

type set
val empty : set
val is-member : elem -> set -> bool
val insert : elem -> set -> set
val list-members : set -> elem list
axiom (all x: elem. is-member x empty = false)
and (all x,y: elem.

all s : set. (x=y) is-member x (insert y s) = true)
and (all x,y: elem.

all s: set. not (x=y) is-member x (insert y s) = is-member x s)
and (all x: elem.

all s: set. x is-in list-member s <=> is-member x s)
end ;

2.2.4 Repetition free lists

Finally, to delete repetitions from the output, we specify lists without repetitions:

signature Repetition-Free-List =
sig include Equiv-Re1

val repetition-free: elem list -> bool

axiom all 1:elem list.
repetition-free 1 <=>
(all u,v: elem list,
all x,y: elem.

1 = uQ [x,y]Qv => not eq x y)

val remove-repetitions: elem list -> elem list

axiom all 1: elem list.
repetition-free (remove-repetitions 1)

axiom all 1:elem list, x:elem.
x is-in 1 <=> x is-in remove-repetitions 1

axiom all u,v,u: elem list, x,y:elem.
not eq x y =>
exists u',v',w3: elem list.
u20[x]Ov2Q[y]Qw' =
remove-repet it ions (uO [XI OvO [y] Qu)

end

2.3 Sharing declarations

To integrate the specification it is necessary to relate the component structures to each other
formally. In SML this is done with sharing declarations. Without an explicit sharing decla-
ration, each occurrence of a type or structure declaration is taken to be distinct, even from
another occurrence that is textually identical. In the ML nomenclature, this is called the
generative property of declarations.

Standard ML (and EML) supports two sorts of sharing: type sharing and structure sharing.
Either sort defines equivalences of names. Unfortunately, name equivalence is not rich enough
to express the relationships in our example. Consider the relationship between ordered-words
and ordered-titles. What we want to specify is:

sharing type ordered-titles elem = ordered,words.elem list

But the right hand side of this sharing specification is a type expression-not a name.
To accommodate to this restriction we shall augment the basic order types and order type

functors by identifying derived structures and including in them the structure from which they
are derived. To this end we define Derived-Total-Order and Derived-Sorted-Total-Order
as:

signature Derived-Total-Order =
s ig

include Total-Order
structure elem,order:Total,Order

val elem-to-list: elem -> elem,order.elem list
and list-to-elem: elem,order.elem list -> elem
axiom (all x:elem. x = list-to-elem (elem-to-list x))
and (all 1: elem-order . elem list. 1 = elem-to-list (list-to-elem 1))

axiom (all y: elem,order.elem.
all 1: elem. less (list-to-elem [I)

(list-to-elem (y::(elem,to,list 1))) = true)
and (all x,y: elem,order.elem.

all xs,ys: elem.
less (list-to-elem (x::(elem,to,list xs)))

(list-to-elem (y::(elem,to,list ys))) =
elem,order.less x y
orelse elem,order.eq x y

andalso less xs ys)
and (all 1:elem. less 1 (list-to-elem [I) = false)

end ;

signature Sorted,Derived,Total,Order =
s ig

include Sorted-Total-Order
structure elem,order:Total,Order
val elem-to-list: elem -> elem,order.elem list
and list-to-elem: elem,order.elem list -> elem
axiom (all x:elem. x = list-to-elem (elem-to-list x))
and (all 1:elem-order.elem list. 1 = elem,to~list(list~to,elem 1))

axiom (all y: elem,order.elem.
all 1: elem. less (list-to-elem [I)

(list-to-elem (y::(elem,to-list 1)))
= true)

and (all x,y: elem-order .elem.
all xs,ys: elem.
less (list-to-elem (x: : (elem-to-list xs)))

(list-to-elem (y : : (elem-to-list ys)))
= elem,order.less x y
orelse elem,order.eq x y

andalso less xs ys)
and (all 1:elem. less 1 (list-to-elem 11) = false)

end ;

With these changes it is possible to express the relationship between the Total-Order
ordered-words and the Sorted-Derived-Total-Order ordered-titles with the structure
sharing constraint:

sharing ordered,titles.elem-order = ordered-words

With these details completed, the specification can now be given in full.

signature KWIC-specification =
s ig

structure ordered-words: Total-Order
sharing type ordered-words.elem = string

structure ordered-titles: Sorted-Derived-Total-Order
sharing ordered,titles.elem,order = ordered-words

structure permuted-titles: Sig-Rotation
sharing type permuted,titles.elem = string

structure unique-titles: Repetition-Free-List
sharing type ordered,titles.elem = unique,titles.elem

val kwic : string list list -> string list -> string list list

axiom (all c:string ordered,words.less c = false)

and (all c: string.
all 1: string list.
(length (explode c) = I) =>

(ordered-uords . less '11' (implode (c : : 1)) = true))

and (all s,t:string.
all x,y:string.
all xs,ys: string list.

((explode s) = x : : xs
andalso (explode t) = y : : ys)

=> ordered,words.less s t
= (x < y) orelse (x = y)

andalso ordered-words .less (implode xs)
(implode ys)

and (all titles: string list list.
all insignif icant-words: string list.
let val output = kwic titles insignificant-words
in

ordered-titles.sorted output
andalso unique,titles.repetition-free output

end)

and (all titles: string list list.
all insignificant-words: string list.
all y: string list.
y is-in kwic titles insignificant-words.
<=> (y is-in titles

orelse (exists x : string list.
x is-in titles
andalso permuted-t itles .rotat ion y x
andalso not (hd y) is-in insignificant-words)))

end

3 Deriving a solution

In the preceding section, we gave a signature with logical relations to specify the required
behavior of the function kwic. The task is now to derive an SML structure that has the SML
part of this signature and that satisfies all of the EML axioms given in the signature. The
general approach of the EML method is to express specific implementations as structures and
parametric implementations as functors. This example is specific, so we begin by giving the
skeleton of a structure, using question marks to indicate the text to be filled in. This fully
unspecified structure is nearly identical to the specifying signature; in most derivations we
would expect an automated assistant to produce this text for us.

structure KWIC =
struct

structure ordered-words: Total-Order = ?
structure ordered-titles: Sorted,Derived,Total,Order = ?
structure permuted-titles: Rotation = ?
structure unique-titles: Repetition-Free-List = ?

val kwic : string list list -> string list -> string list list = ?

axiom (all c:string ordered,words.less c "" = false)

and (all c: string.
all 1: string list.
(length (explode c) = I) =>

(ordered,words.less "" (implode (c::l)) = true))

and (all s,t:string.
all x,y:string.
all xs,ys: string list.

((explode s) = x::xs
andalso (explode t) = y: :ys)

=> ordered,words.less s t
= (x < y) orelse (x = y)

andalso ordered,words.less (implode xs)
(implode ys)

and (all titles: string list list.
all insignificant-words: string list.
let val output = kwic titles insignificant-words
in

ordered,titles.sorted output
andalso unique-titles.repetition-free output

end)

and (all titles: string list list.
all insignificant-words: string list.
all y: string list.
y is-in kwic titles insignificant-words.
<=> (y is-in titles

orelse (exists x : string list.
x is-in titles
andalso permuted,titles.rotation y x
andalso not (hd y) is-in insignif icant-words)))

end

The first piece required is the body of a struct for ordered-words. In fact, we guess from
the first few axioms that ordered-words must be:

struct type elem = string
fun less (x:elem) y = x < y
fun eq (x:elem) y = x = y

end

Formally, the method allows us to retire the axioms specifying ordered-words a t this stage,
since the previous axioms are a consequence of this choice, according to the semantics of SML.

To refine the next ? we postulate a functor that makes use of ordered-words to define
ordered-titles. The functor, words-to-titles, is given the signature:

functor vords,to,titles (T:Total,Order)
: sig include Sorted-Derived-Total-Order

sharing elem-order = T
end

= ?

Assuming this functor, the specification may be refined again, replacing the definition of
ordered-titles with the functor application. The axioms constraining ordered-titles may
now be omitted since they too have become derived rules.

Before continuing with the top level structure, we decide to refine the new functor into two
parts-one that gives the lexical order and one that provides a sort function. These functors
are Lex and Derived-Wort; their signatures are given:

functor Lex (T:Total,Order)
: sig include Derived-Total-Order

sharing T = elem.order
end

= ?

functor Derived-QSort (L:Derived,Total,Order)
: sig include Sorted-Derived-Total-Order

sharing L.elem,order = elem-order
end

= ?

In terms of these functors, words,to,titles may now be completely specified as:

functor words-to-titles (T:Total,Order)
: sig

include Sorted-Derived-Total-Order
sharing elem-order = T

end
= Derived-QSort (Lex (T))

Since the EML signatures match exactly and the sharing specifications are propagated, no
proof obligations are incurred.

We next refine Lex. It is sufficiently simple that it need not be decomposed further. By
elaboration of the signature and sharing specification we obtain the outline below. Note that
the axiomatization strongly suggests the use of T . elem list as the representation of the elem
type-

functor Lex (T:Total,Order)
: sig include Derived-Total-Order

sharing T = elem.order
end

= struct
type elem = T. elem list
structure elem-order = T

val elem-to-list: elem -> elem,order.elem list
and list-to-elem: elem,order.elem list -> elem
axiom (all x:elem. x = list-to-elem (elem-to-list x))
and (all 1:elem-order.elem list. 1 = elem,to,list(list~to~elem 1))

val less: elem -> elem -> bool = ?
axiom (all x: elem . less x x = false)
and (all x,y: elem . less x y => not less y x)
and (all x,y,z: elem . less x y and less y z => less x z)
and (all y: elem,order.elem.

all 1: elem. less (y : :l) = true)
and (all x,y: elem,order.elem.

all xs,ys: elem.
less (x::xs) (y::ys) = elem,order.less x y

orelse elem,order.eq x y
andalso less xs ys)

and (all 1:elem. less 1 [I = false)

val eq: elem -> elem -> bool = ?
axiom (all x: elem. eq x x = true)
and (all x,y:elem. eq x y = eq y x)
and (all x,y,z:elem. eq x y and eq y z => eq x z)

and (eq C1 [I = true)
and (all y: elem,order.elem.

all 1: elem. eq C] (y::l) = false)
and (all x,y: elem-order.elem.

all xs,ys: elem.
eq (x: : XS) (y : : ys) = elem-order . eq x y

andalso eq xs ys)

axiom (all x,y: elem . less x y orelse less y x orelse eq x y)
end

The first refinement step is to select T . elem lists for our elements. This gives identity func-
tions for the ismorphism between elements and lists. The functor body can then be immediately
refined using the simple recursive functions suggested by the axioms:

functor Lex (T :Total-Order)
: sig include Derived-Total-Order

sharing T = elem-order
end

= struct
type elem = T.elem list
structure elem-order = T

fun elem-to-list x = x
and list-to-elem x = x;

fun less [I [I = false
I less [I (,: : -1 = true
I less (x: :xs) (y: :ys) = T.less x y orelse

((T.eq x y) andalso less xs ys)
I less (,: :,) [I = false

fun eq [I [I = true
I eq [I (,::,I = false
I eq (,::,I O = false
1 eq (x: :xs) (y : : ys) = (T. eq x y) andalso (eq xs ys)

end

This refinement requires that the axioms of the previous stage be derivable. While this is
not simply signature checking, it is straightforward.

With Lex fully specified we turn to QSort-suggestively named after the quick sort algo-
rithm which we intend to implement. We choose to refine a particular structure rather than
compose functors. Elaborating the signature and sharing declarations yields the skeleton of
the implementation:

functor Derived-QSort (L:Derived,Total,Order)
: sig include Sorted,Derived,Total,Order

sharing L.elem,order = elem-order
end

= struct
structure elem-order = ?

type elem = ?

val elem-to-list: elem -> elem-order.elem list
and list-to-elem: elem,order.elem list -> elem
axiom (all x:elem. x = list-to-elem (elem-to-list x))
and (all 1:elem-order.elem list. 1 = elem,to,list(list~to~elem 1))

val less: elem -> elem -> bool = ?
axiom (all x: elem . less x x = false)
and (all x,y: elem . less x y => not less y x)
and (all x,y,z: elem . less x y and less y z => less x z)

val eq : elem -> elem -> bool = ?
and (all x: elem. eq x x = true)
and (all x,y:elem. eq x y = eq y x)
and (all x,y,z:elem. eq x y and eq y z => eq x z)

and (all x,y: elem . less x y orelse less y x orelse eq x y)

val ordered : elem list -> bool = ?
axiom (all l,u,v,v: elem list.

all x,y:elem. 1 = u O [XI 6 v 6 [yl 6 v
=> (less x y orelse eq x y)

val permutation : elem list -> elem list -> bool = ?
axiom (permutation [I U = true)
and (all l,u,v:elem list.

all x: elem. permutation (x: : 1) (u6 Cxl 6v) =
permutation 1 (u6v))

val sort : elem list -> elem list
axiom (all 1,u:elem list.

1 = sort u => (permutation 1 u andalso
ordered 1)

end

Since the goal is simply an extension of L, the components from L may be incorporated directly
(using the open declaration) and all common axioms immediately discharged.

functor Derived-QSort (L:Derived,Total,Order)
: sig include Sorted-Derived-Total-Order

sharing L.elem-order = elem-order
end

= struct
open L

v a l ordered : elem l i s t -> bool = ?
axiom (a l l l , u , v , u : elem l i s t .

a l l x , y : e l e m . 1 = u Q [x] Q v [yl Q w
=> (l e s s x y o r e l s e eq x y)

v a l permutation : elem list -> elem l ist -> bool = ?
axiom (permutation [I [I = t r u e)
and (a l l l ,u,v:elem l is t .

a l l x : elem. permutat ion (x : : 1) (uB 1x1 8v) =
permutation 1 (uQv))

v a l s o r t : elem l i s t -> elem l ist
axiom (a l l 1,u:elem l i s t .

1 = s o r t u => (permutation 1 u andalso
ordered 1)

end

The problem now is to guide the derivation from our intuition about the behavior of quick-
sort. The basic idea is to successively partition the set into separated subsets until it is decom-
posed to singletons. Then the subsets are glued together in order by list catenation. To start
on this path, we introduce a predicate, separated, and function, p a r t i t i o n , as follows:

v a l separated: elem -> elem l ist -> elem l i s t -> bool
axiom (all a:elem.

a l l u,v:elem l ist .
separated a u v C=>

a l l x:elem. member x u => l e s s x a andalso
member x v => (l e s s a x o re l se eq a x))

v a l p a r t i t i o n elem -> elem list -> (elem l i s t * elem list)
axiom (a l l a:elem.

a l l 1:elem l i s t .
l e t v a l (u,v) = p a r t i t i o n a 1
i n permutation 1 (uOv) andalso

separated a u v)

Since this only introduces new requirements, no verification is needed. The partition pred-
icate is easily made concrete by the code:

fun p a r t i t i o n a [I = ([I , a)
I p a r t i t i o n a (x: : l) = l e t va l (u,v) = p a r t i t i o n a 1

i n i f l e s s x a then (x::u, v)
e l s e (u,x: :v)

end ;

Similarly, sort can be defined:

fun s o r t [I = [I
I s o r t [a] = [a]
1 s o r t (a : : l) = l e t v a l (u,v) = p a r t i t i o n a 1

i n (s o r t u)Q[al@(sort v)
end ;

This step should be automatically justified. It is easily seen to follow from the facts:

ordered u andalso ordered v andalso separated a u v
=> ordered uO[alQv

and

((u,v) = p a r t i t i o n a 1)
andalso permutation u u'
andalso permutation v v'
=> permutation (a: :1) (u'O[alQv')

While this completes the most interesting aspect of the definition, we are required to realize
ordered, permutation and separated as well.

This completes the derivation of the Derived-QSort functor. It is important to note that
there is more information about the logical development of the algorithm in its derivation than
in its final presentation.

3.1 Significant rotations

We now return to the top level structure. The next task is to construct a significant rotation
structure for the permuted-t i t les component. Since this structure deals with words, we refine
the top level structure by postulating a functor, Sig-Rotations, mapping arbitrary structures
to Sig-Rotation structures, and apply that to the ordered-words structure. Thus we add

permuted-t i t les = Sig-Rotations (ordered-words)

to our top level structure and declare the new functor:

func to r Sig-Rotations (S:Triv)
: s t r u c t include Sig-Rotation

shar ing type s.elem = elem
end

= ?

The definition of significant rotations makes a special case of the trivial rotation. This com-
plicates maters because it does not allow for a regular decomposition of the significant rotation

problem into rotations and filters, as seems most natural. Attempting to solve the problem
directly is possible, but the result is not elegant. However, since duplicates are ultimately
removed we can introduce duplicates in this module without changing the overall behavior of
the program. This allows us to put in all of the trivial rotations and all of the rotations that
start with a significant word.

To support the decomposition, the first step is to specify the interface between the compo-
nents. In this case it is the Rotation signature.

signature Rotation =
s i g type elem

val ro ta t ion : elem l ist -> elem l is t -> boo1
val a l l - ro ta t ions : elem l i s t -> elem l i s t l i s t
axiom a l l 1, r: elem l i s t .

ro ta t ion 1 r => ex is t s u,v:elem list . 1 = uOv andalso r = vOu
axiom a l l 1, r: elem l ist .

ro ta t ion 1 r <=> r is - in a l l - ro ta t ions 1
axiom a l l 1: elem l is t . length (a l l - ro ta t ions 1) = length 1

end

This permits the functor decomposition:

functor Rotation (S :Triv)
: s i g include Rotation

sharing type S.elem = elem
end

= ?

functor Sig-Rotation' (R:Rotation)
: s i g include Sig-Rotation

sharing type R.elem = elem
end

t ?

functor Sig-Rotation (S : Triv)
: s i g include Sig-Rotation

sharing type S.elem = elem
end

= Sig,Rotation2 (Rotation (S))

We first proceed with the Rotation functor. Rotations are cyclic permutations generated by
the unit rotation. We begin coding the function by writing down the axioms from the signature
and augmenting them with information about unit rotations. In an automated system this
would probably be a two step process, the first done by the system and the second by the user.

functor Rotation (S: triv)
: sig include Rotation

sharing type S.elem = elem
end

= struct
type elem = S.elem
val rotation : elem list -> elem list -> boo1 = ?
val unit-rotation : elem list -> elem list = ?
val all-rotations : elem list -> elem list list = ?

axiom all 1, r: elem list.
rotation 1 r => exists u,v:elem list . 1 = u9v andalso r = v9u

axiom all 1, r: elem list.
rotation 1 r <=> r is-in all-rotations 1

axiom all a:elem, 1:elem list.
unit-rotation (a::l) = 16Cal

axiom unit-rotation [I = [I
axiom all 1: elem list. length (all-rotations 1) = length 1

end

The rotation predicate and unit-rotation function are easily converted from axioms to
code, yielding:

val rotation 1 r = r is-in (all-rotations 1)

fun unit-rotation [I = [I
I unit-rotation (a::l) = 1 6 [dl

Given our knowledge that rotations are generated by iterating the unit rotation, a first cut
at all-rotations would be:

fun all-rotations 1 = 1 :: (all-rotations (unit-rotation 1))

The only problem with this is that it diverges! Since we know there are only n distinct rotations
of a sequence of length n, we can introduce the local function n-rotations to finitely iterate
the unit-rotat ion.

val n-rotations : elem list -> int -> elem list list = ?
axiom all 1 : elem list. n-rotations 1 0 = [I
axiom all 1 : elem list, n: int.

n-rotations 1 (n+1) = 1 : : (n-rotations (unit-rotation 1) n)

This specification is sufficiently specific that it should automatically be convertable to code.
We then observe that all-rotations can be defined:

fun all-rotations 1 3 n-rotations 1 (length 1)

The justification of this step may be non-trivial. Collecting all of these refinements together
we discover that we have fully specified the rotation functor.

functor Rotation (S : Triv)
: sig include Rotation

sharing type S.elem = elem
end

= struct
type elem = S.elem

fun unit-rotation fl = [I
I unit-rotation (a::l) = 1 Q [a]

fun n-rotations 1 =
fn n => if n = 0

then [I
else 1 : : (n-rotations (unit-rotation 1) (n - 1))

fun all-rotations 1 = n-rotations 1 (length 1)

fun rotation 1 r = r is-in (all-rotations 1)
end

We now proceed to refine the Sig-Rotation' functor. Elaborating the body with the
skeleton of the specification yields:

functor Sig-Rotation' (R:Rotation)
: sig include Sig-Rotation

sharing type R.elem = elem
end

= StruCt
type elem = R.elem

val significant-rotations : (elem -> bool) -> elem list -> elem list list = ?

val rotation : elem list -> elem list -> bool = ?
val significant : (elem -> bool) -> elem list -> elem list -> bool = ?

axiom (all 1, u, v: elem list.
1 = u6v => rotation 1 (v8u))

and (all 1, r: elem list.

rotation 1 r => exists u, v: elem list.
uOv = 1 andalso vQu = r)

and (all sig-pred: elem -> bool.
all 1, r: elem list.

significant sig-pred 1 r
<=> 1 = r orelse

(rotation 1 r andalso sig-pred (hd r)))

and (all sig-pred: elem -> bool.
all 1, r: elem list.

significant sig-pred 1 r
<=> r is-in signif icant-rotation sig-pred 1)

end ;

We can immediately discharge the rotation predicate by using R . rotation. It is then
trivial to implement the significance predicate:

fun significant sig-pred 1 r
= 1 = r orelse (rotation 1 r andalso sig-pred (hd r))

Now, to get significant rotations (with possible duplicates) we want to write:

fun significant-rotations sig-pred 1
= 1 : : (filter (sig-pred o hd) (R. all-rotations 1))

Unfortunately filter is a higher-order function, and there is no way in the simple logic that we
have attempted to use to discover the correctness of this refinement step. Research into logics
for EML that support higher-order reasoning is being carried out in several places, including
OGI, Bremen, and Edinburgh. We will continue with the development as if this step were
justifiable.

Collecting these refinements we get:

functor Sig-Rotation' (R:Rotation)
: sig include Sig-Rotation

sharing type R.elem = elem
end

= struct
type elem = R.elem

val rotation = R.rotation

fun significant sig-pred 1 r
= 1 = r orelse (rotation 1 r andalso sig-pred (hd r))

fun significant-rotations sig-pred 1
= 1 : : (filter (sig-pred o hd) (R.al1-rotations 1))

end

3.2 Sets

To implement the kuic function at top level, we anticipate taking the list of insignificant words
and building a function that characterizes membership in that set. To support this, we have in-
troduced the set abstraction earlier. At this point we extend the top level KWIC-specif icat ion
structure with the declaration below, and derive the Set functor:

structure word-set = Set(ordered,words)

The set abstraction may be provided for any structure with an equivalence predicate. We
express this by the following EML functor:

functor Set(Rel:Equiv,Rel)
: sig include Set

sharing type elem = Rel.elem
end

= ?

We refine this by supplying the structure derived from the specification. Electing to use
elem lists for our set type, the specification yields:

functor Set (Re1 : Equiv-Rel)
: sig include Set

sharing type elem = Rel.elem
end

= StrUCt
type elem = Rel.elem
type set = elem list
val empty : set = ?
val is-member : elem -> set -> boo1 = ?
val insert : elem -> set -> set = ?
val list-members : set -> elem list = ?
axiom (all x: elem. is-member x empty = false)
and (all x,y: elem.

all s: set. (x=y) is-member x (insert y s) = true)
and (all x,y: elem.

all s: set. not (x=y) is-member x (insert y s) = is-member x s)
and (all x: elem.

all s: set. x is-in list-member s <=> is-member x s)
end

We then use the obvious implementation for sets as lists. An automated assistant would be
expected to provide some level of help in translating these axioms to function definitions.

functor Set(Rel:Equiv,Rel) : Set =
struct

type elem = Rel.elem
type set = elem list
val empty = [I
fun is-member x 11 = false

I is-member x (y::ys) = Rel.eq x y orelse is-member x ys
fun insert x s = x::s
fun list-members s = s

end

3.3 Repetition-free lists

We will obtain repetition-free lists by a functor application.

functor Delete-Repet it ions (E : Equiv-Rel)
: sig include Repetition-Free-list

sharing type elem = E.elem
end

= ?

This will be used in the top level structure by including the declaration:

structure unique-titles = Delete-Repetitions (ordered-titles)

We refine the functor directly, simply elaborating the specification:

functor Delete-Repetitions (E : Equiv-Rel)
: sig include Repetition-Free-list

sharing type elem = E.elem
end

= struct
open E
val repetition-free: elem list -> boo1 = ?

axiom all 1:elem list.
repetition-f ree 1 <=>
(all u,v: elem list,
all x,y: elem.

1 = u@[x,y]@v => not eq x y)

val remove-repetitions: elem list -> elem list = ?

axiom all 1: elem list.
repetition-free (remove-repetitions 1)

axiom all 1:elem list, x:elem.
x is-in 1 <=> x is-in remove-repetitions 1

axiom all u,v,v: elem list, x,y:elem.
not eq x y =>
exists u',v3,w': elem list.
u'Q[x]~v'~[yl~w' =
remove-repet it ions (u0 1x1 0vB Cy] 0w)

end

The repet it ion-f ree predicate is easily implemented:

fun repetition-free [I = true
I repetition-free [,I = true
I repetition-free (a::(l as (b::,))) =

(not (eq a b)) andalso repetition-free 1

To develop the remove-repet it ions function we augment this with a function that takes
an element and a list and returns a list that deletes all initial occurrences of the element.

val strip-prefix : elem -> elem list -> elem list

axiom all x:elem, u,v : elem list.
strip-prefix x (u0v) = v

<=> (all y:elem. y is-in u => eq y x)
andalso all z:elem, w:elem list.

v = Z::W => not eq z x

We also augment the specification with a function that can handle intermediate results.

val remove-repetitions-2 : elem-list * elem-list -> elem-list

axiom all 1:elem list. remove-repetitions-2 (1,fl) = 1
axiom all 1,u: elem list. all x:elem.

remove-repetitions-2 (1 ,x: :u) =
remove-repetitions-; (l@[x],strip,prefix x u)

Assuming this function, remove-repetitions is trivially implemented. The final functor
body is:

functor Delete-Repetitions (E: Equiv-Rel)
: sig include Repetition-Free-List

sharing type elem = E.elem
end

= struct
open E

fun repetition-free [I = true
I repetition-free [,I = true
I repetition-free (a::(l as (b::,))) =

(not (eq a b)) andalso repetition-free 1

fun strip-prefix x [I = U
I strip-pref ix x (1 as (y : :u) =

if not (eq x y) then 1 else strip-prefix x u

fun remove-repetitions-2 (I,[]) = 1
I remove-repetitions-2 (1 ,x: :u) =

remove-repetitions-2 (10 [XI , strip-pref ix x u)

fun remove-repetitions 1 = remove-repetitions-2 ([I ,1)
end

3.4 A solution

It is now time to assemble all of our top level refinements and examine the specification. At this
point we have supplied all of the specified structures and one additional supporting structure.
The current refinment is:

structure KWIC =
struct

structure ordered-uords: Total-Order =
struct type elem = string

fun less (x:elem) y = x < y
fun eq (x:elem) y = x = Y

end

structure ordered-titles: Sorted-Derived-Total-Order =
uords,to,titles (ordered-words)

structure permuted-titles: Sig-Rotation =
Sig-Rot at ion (ordered-uords)

structure unique-titles: Repetition-Free-List =
Delete-Repetitions (struct type elem = string list

fun eq (x:string list) y = x = y
end)

structure word-set: Set =
Set (ordered-words)

val kwic : string list list -> string list -> string list list = ?

and (all titles: string list list.
all insignificant-words: string list.
let val output = kwic titles insignificant-words
in

ordered-t itles . sorted output
andalso unique,titles.repetition-free output

end)

and (all titles: string list list.
all insignificant-words: string list.
all y: string list.
y is-in kwic titles insignificant-words.
<=> (y is-in titles

orelse (exists x : string list.
x is-in titles
andalso permuted-titles .rotation y x
andalso not (hd y) is-in insignif icant-words)))

end

At this point all that remains is to supply the top level function kwic. Intuitively, this will
have four parts: construct the significance predicate, collect the rotations, sort the entries, and
remove duplicates from the list. As we already have the machinery to build the last two, we
will specify the first two:

val make-sig-pred: string list -> string -> boo1 = ?
axiom all 1: string list, x:string.

make-sig-pred 1 x
<=> not x is-in 1

Note that this function r e d y is intended to be used as a higher-order function. If the develop-
ment were being carried out in pure first-order EML, this would not be allowed. Instead sets
could be passed around everywhere where the significance predicates are used in this derivation.
That would satisfy the first-order constraints of this version of the logic.

The collection of entries is specified:

val collect-entries :
(string -> bool) -> (string list list) -> (string list list)
= ?

axiom (all titles: string list list.
all sig-word-predicate: string -> bool.
all y: string list.
y is-in collect-entries sig-word-predicate titles
<=> (y is-in titles

orelse (exists x : string list.
x is-in titles
andalso permuted,titles.rotation y x
andalso sig-word-predicate (hd y))))

With these functions, kwic is easily given:

fun kwic titles insig-words =
let sig-word-pred = make-sig-pred insig-words
in
unique,titles.remove,repetitions
(ordered-titles .sort

(collect-entries sig-word-pred titles))
end

The proof checker will have to verify that repetition removal does not reorder the elements and
that all elements of the collected entries are present in the final function value, but these follow
easily from the component specifications.

The two remaining functions are trivially implemented by higher-order list operations fold
and concmap. They can, of course, be built without these functions as well. That development
would proceed:

fun build-set [I = word-set . empty
I build-set (a::l) = word,set.insert a (build-set 1)

fun make-sig-pred 1 =
let insig-set = build-set 1
in fn x => not (word-set .isemember x insig-set)
end

fun collect-entries sig-pred [I = [I
I collect-entries sig-pred (t::l) =

(permuted-titles.significant,rotations sig-pred t)
O (collect-entries sig-pred 1)

The final, derived top level structure is:

structure KWIC =
struct

structure ordered-words: Total-Order =
struct type elem = string

fun less (x:elem) y = x < y
fun eq (x:elem) y = x = Y

end

structure ordered-titles: Sorted-Derived-Total-Order =
words-to-titles (ordered-words)

structure permuted-titles: Sig-Rotation =
Sig-rot at ion (ordered-words)

structure unique-titles: Repetition-Free-List =
Delete-Repetitions (struct type elem = string list

fun eq (x:string list) y = x = y
end)

structure word-set: Set = Set (ordered-words)

fun build-set [I = uord-set . empty
I build-set (a::l) = word,set.insert a (build-set 1)

fun make-sig-pred 1 =
let val insig-set = build-set 1
in fn x => not (word-set. is-member x insig-set)
end

fun collect-entries sig-pred [I = [I
1 collect-entries sig-pred (t : :l) =

(permuted-titles . signif icant-rotations sig-pred t)
Q (collect-entries sig-pred 1)

fun kwic titles insig-words =
let val sig-word-pred = make-sig-pred insig-words
in
unique-titles.remove-repetitions
(ordered-titles .sort

(collect-entries sig-word-pred titles))
end

end

Testing with the SML of New Jersey compiler yields the encouraging results:

- KWIC. kwic [["Toral', llToraal , "Tora"] ,
["It"] ,
["Crime", "and", "Punishment "11

[l l i t l l llandll] .
9 9

val it = [["Crime" , , "Punishment "1 ,
["It"] ,
["Punishment It , "Crime" , "and"] ,
["Tors" , "Tors" , "Tors"] I : ? . E . elem l ist

4 Comments

This example represents our first significant experience with EML-and we have identified
some problems, both with our approach and with the language and methodology. In doing the
example we have made some observations which we feel are important.

4.1 Provable vs. testable equalities

In designing signatures, we have exported the defining concepts as well as their implementations.
For example, in the Sig-Rotation signature, the rotation predicate was defined. Since there is
no way to distinguish defining characteristics from executable Boolean predicates, this requires
such predicates to be implementable. This dictates that rotations be over structures with
equality.

Since provable, but untestable, defining characteristics are common in computer science, we
think EML should support such a concept. In one draft we called these "metaval" declarations.

This observation also points out an anomaly in SML. There are two ways to get a structure
with equality: an explicit structure, as used in our example, or an implicit structure exploiting
eqtypes. It seems that there is no advantage to using the eqtype constuctor. Anything it can
express can be expressed more accurately with the module facility.

We have also found, unsurprisingly, that the first-order logic used to illustrate EML does
not support the higher-order programming style to which we are accustomed. It seems very un-
natural to eschew higher-order, polymorphic functions while "programming" in an "extension"
of ML. This is simply a deficiency in the logic. As has been noted elsewhere, the methodology
and framework are largely independent of the details of the logic-alternative logics are being
actively explored.

5 Conclusions

We are still debating which aspects of this derivation show strengths and which show weaknesses
of the EML language and methodology. We believe, however, that EML is a major step along
the path to an environment usable by programmers to formally derive real programs. However,

research is needed in (1) logics that allow us to express more of ML, (2) logics that allow us
to reason elegantly about higher-order fragments, (3) frameworks in which such logics can be
used together (if they differ) and (4) implementations that support the derivation process and
the examination of derivations.

We are also investigating the application of term rewriting techniques to improve the code
we have derived with this methodology. Our current vision is to support code improvement
by transformation as a major component of an environment for producing correct code with
satisfactory performance. We have notes on applying transformations to this example, and
expect to generate a technical report on this topic soon.

References

[I] Robert Harper, Robin Milner, and Mads Tofte. A type discipline for program modules. In
TAPSOFT '87, pages 308-319. Springer-Verlag, March 1987.

[2] David B. MacQueen. Using dependent types to express modular structure. In Conference
Record of the Thirteenth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 277-286,1986.

[3] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
Cambridge, Massachusetts, 1990.

[4] Donald Sannella. Formal program development in Extended ML for the working program-
mer. Technical Report ECS-LFCS-89-102, Laboratory for the Foundations of Computer
Science, Dept. of Computer Science, University of Edinburgh, Edinburgh, Scotland, De-
cember 1989.

[5] Donald Sannella and Fabio da Silva. Syntax, typechecking and dynamic semantics for Ex-
tended ML. Technical Report ECS-LFCS-89-101, Laboratory for the Foundations of Com-
puter Science, Dep t . of Computer Science, University of Edinburgh, Edinburgh, Scotland,
December 1989.

[6] Donald Sannella and Andrzej Tarlecki. Program specification and development in stan-
dard ML. In Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 67-77. ACM, January 1985.

[7] Donald Sannella and Andrzej Tarlecki. Extended ML: an institution-indepdendent frame-
work for formal program development. In David Pitt, Samson Abramsky, Axel Poign6,
and David Rydeheard, editors, Category Theory and Computer Programming Tutorial and
Workshop, volume 240 of Lecture Notes in Computer Science, pages 364-389, Berlin, 1986.
Springer-Verlag. Meeting was held in September 1985 in Guildford, UK.

[8] Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs: foun-
dations and methodology. Technical Report ECS-LFCS-89-71, Laboratory for the Founda-

tions of Computer Science, Dept. of Computer Science, University of Edinburgh, Edinburgh,
Scotland, December 1989.

[9] Donald Sannella and Andrzej Tarlecki. The semantics of extended ML, March 1990. Draft,
not for distribution.

