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Abstract 

We address the dynamics of learning in neural feature-discovery 
networks. The models introduced incorporate feed-forward connec- 
tions modified by a Hebb law, and recurrent lateral connections mod- 
ified by an anti-Hebb law. 

The stability of equilibria depends on both the learning rates in 
the system, and the second order statistics of the ensemble of inputs. 
We derive conditions for stability of equilibria, and use bifurcation 
theory to explore the behavior near loss of stability. The bifurcation 
analysis uncovers previously overlooked behaviors, including equilib- 
ria that consist of mixtures of the principal eigenvectors of the input 
auto-correlation, as well as limit cycles. The results provide a more 
complete picture of adaptation in Hebbian feature-discovery networks. 

'This work was supported by the Office of Naval Research under contracts N00014-88- 
K-0329 and N00014-90-1349 and by DARPA grant MDA 972-88-5-1004. 



Introduction 

One of the problems faced by both natural and artificial adaptive systems 
is the construction of efficient representations of the environment. In recent 
years there has been considerable interest in the notion that local Hebbian 
adaptation can provide a mechanism for building such representations. Nu- 
merous theoretical studies suggest, for example, that receptive field organi- 
zation similar to that found in striate visual cortex can be formed adaptively, 
in direct response to environmental stimuli [I, 2, 3, 41. 

Oja [5] made a remarkable observation that provides a link between phys- 
iologically motivated learning rules and ideas from signal processing. Oja 
showed that a simple model neuron, with a particular Hebbian adaptation 
rule, develops into a filter for the first principal component of input distribu- 
tion. Linsker [6] extends this, suggesting that perceptual systems organize 
themselves to  maximize informat ion transfer. 

Several researchers extend Oja's work, suggesting Hebbian networks that 
perform a complete principal component analysis (PCA). Oja and Karhunen 
[7] discuss an algorithm that maps to a three-layer, feed-forward network 
of linear neurons [a]. Sanger [9] proposes an algorithm that uses a set of 
cascaded feedback projections to the input space, and gives a convergence 
proof based on Oja's original work. This architecture singles out a particular 
cell for each principal component. Both of these models are robust, and 
useful for signal encoding applications [lo]. 

More recently, models that use lateral signal flow to force different cells 
to tune to different statistical features have appeared. Foldiak [Ill employs 
lateral connections that develop according to an anti-Hebbian rule. The 
cells in this algorithm do not filter for the principal components, but rather 
for mixtures of the principal components. We will show that this arises 
from a bifurcation that results from the form of the anti-Hebb rule. Rubner 
et a1 [12] propose a similar model, but with cascaded lateral connections. 
Like Sanger's scheme, this architecture singles out a particular cell for each 
principal component. 

From a dynamical viewpoint, these algorithms are poorly understood. 
The goal of this paper is to help form a more complete picture of feature- 
discovery models that use lateral signal flow. We introduce two new models, 
with particular emphasis on their learning dynamics. Our models incorporate 
Hebbian and ant i-Hebbian learning, and recurrent lateral connections. There 



are no architecturally distinguished cells in these models. This enhances 
their biological plausibility. The model development results in anti-Hebbian 
rules that depart from the forms previously given in the literature. We give 
stability analyses and derive bifurcation diagrams for the models. 

Stability analysis shows that the adaptation of the lateral connections has 
to be fast in order for the network to perform PCA. The bifurcation analyses 
reveal behaviors that previous researchers have overlooked. These include 
equilibria in which the weight vectors are combinations of the eigenvectors 
of the input's auto-correlation, as well as limit cycles. Since networks have 
high-dimensional equations of motion, we have employed a computer algebra 
system1 for the bifurcation calculations. 

In the next section, we make some general observations on stability that 
hold for a broad class of models. In section 3 we develop a model that treats 
the lateral connections to the lowest non-trivial order. In section 4 we treat 
the lateral signal flow to all orders. 

2 Extending the Single-Neuron Model 
Oja [5] showed that a single model neuron, with linear post-synaptic response 
and synaptic weights which develop under a Hebbian learning rule, develops 
to act as a filter for the first principal component of the input distribution. 
In this model the input vector, x E RN, is a random variable drawn from a 
stationary probability distribution. The vector of synaptic weights is denoted 
w. The post-synaptic response is given by 

where the superscript 'T' denotes transpose. The Hebb rule for the adapta- 
tion of the synaptic strengths is 

where 6w is the change in the weight vector in reponse to the pattern x, 
and y is the learning rate. The first term in (2) is the usual Hebbian term 
by which the synaptic weight changes according to the correlation between 
the input signal and the post-synaptic response. The second term in (2) 
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is an active decay which prevents the magnitude of the weight vector from 
diverging [13, 51. 

Under specific conditions on 7 [5, 14, 71, the discrete update in (2) is 
equivalent to the ensemble-averaged differential equation, 

where < . . . > denotes the average over the ensemble of input patterns. 
Substituting (1) into (3) leaves 

where Q is the auto-correlation of the input patterns, with matrix elements 
Qij =< x i x j  >. We denote the (unit-magnitude) eigenvectors of Q by ei, i = 
1 . . . N. The corresponding eigenvalues are assumed to be ordered as XI > 
A, > ... > AN. 

It is straightforward to verify that (4) has equilibria when the weight 
vector is along, or opposite, any of the eigenvectors of the autocorrelation. 
However, linear stability analysis shows that only the equilibrium at w = f el 
is stable, the other equilibria are saddle points. In the basis of eigenvectors 
of Q, the linearization of the vector field of (4) at the equilibrium w = f e; is 

The equilibria are asymptotically stable provided all of the eigenvalues 
of D f have negative real part. These eigenvalues can be read directly from 
(5). For arbitrary i, D f has i - 1 positive eigenvalues, corresponding to the 
unstable eigenspace, and N - i + 1 negative eigenvalues, corresponding to 
the stable eigenspace. Small perturbations along the directions in the stable 
eigenspace are exponentially damped, while those in the unstable eigenspace 
are amplified. Clearly, the only asymptotically stable equilibrium is at i = 1. 



In fact it is fairly straightforward [5, 131 to show that the weight vector 
asymptotically approaches f el, the eigenvector of the auto-correlation cor- 
responding to the largest eigenvalue. The variance of the cell's response is 
thus maximized, and the cell acts as a filter for the first principal component 
of the input distribution [5,  81. 

2.1 Stability Requirements 
Our goal is to extend this scheme to a system of M < N cells whose weight 
vectors converge to the leading M eigenvectors of the auto-correlation. Alter- 
natively, one may relax this goal, requiring that the weight vectors converge 
to a spanning basis for the M- dimensional principal component subspace. 
However, the solution of eigenvectors of the auto-correlation is convenient for 
analytic purposes and we will begin our discussion with this case. 

Before discussing particular models, we point out a general feature that 
will arise in a broad class of models designed to carry out our purpose. We 
show that the extended system will be parameterized by a coupling con- 
stant (or learning rate) that has a critical value for stability of the desired 
equilibrium. 

Consider a set of M linear neurons with weight vectors wl ,  . . . , WM con- 
necting each to the N-dimensional input space. We replicate (4) for each 
cell, adding suitable interaction terms designed to force the weight vectors 
to converge to different eigenvectors of the input's auto-correlation. For the 
purpose of this section, it is sufficient to assume that the interactions between 
the cells are sufficiently weak that we may treat them as a perturbation of 
the dynamics of (4). We assume the form, 

where f; is a vector field of the same form as in (4)) C is a coupling constant 
which specifies the strength of the interactions, G; carries the interactions 
between the cells, and the v are auxiliary variables appearing in the inter- 
actions. In general, there will be additional differential equations describing 
the evolution of the auxiliary variables. We write these as 

where fvi3 contains terms which describe the interactions between the weight 
vectors and the auxiliary variables. In the following sections, the auxiliary 



variables will take the form of a set of lateral couplings between the cells, and 
the constant C will appear as the learning rate associated with these lateral 
couplings. 

Consider the behavior at C = 0. We assume that the system (6, 7) has 
an equilibrium at w; = w: = e; ,  q;j = qo i j  This equilibrium cannot be 
stable. To see this, we observe that at C = 0, (6) is decoupled from (7). The 
equilibrium w; = e; has unstable eigenspaces for each i > 1, so the system 
(6) and (7) will have unstable eigenspaces at the equilibrium in question. 

Assuming that the linearization of (6, 7) has no eigenvalues with zero 
real part at C = 0, the equilibrium will persist for small values of C and the 
unstable directions will remain unstable [15]. Thus there is a minimal value 
for ICI, below which the equilibrium is unstable. 

3 Minimal Coupling 

In this section we introduce interactions between the cells in a minimal fash- 
ion. This model is obtained by writing a potential for the single-neuron 
model of 92, and augmenting this single-neuron potential with interaction 
terms designed to orthogonalize the weight vectors. These interactions are 
made local by introducing lateral couplings between the cells. The derivation 
leads naturally to an anti-Hebbian adaptation rule for the lateral connections. 

3.1 Potential Formulation 

It is widely recognized that the model in (4) performs hill-climbing on the 
variance of the cell response. The Hebb term in (4) is recovered by taking 
the gradient of 

1 2  1 U(w)=--  < y  > = - - w . Q w  
2 2 

with respect to w. We extend the system to an array of M cells, with weight 
vectors w;, i = 1, . . . , M, and linear responses y; = w; - x. The potential for 
the array is 



Following Yuille et al. [16] (see also [17]) we introduce an interaction potential 
that penalizes correlations between the cell responses 

This form elevates the potential in regions of the weight space where the cell 
responses are correlated or anti-correlated. We obtain the total potential by 
combining (8) and (9), 

where C is a coupling constant (c.f. 52.1). 
The equation of motion for the i th weight vector is obtained by combining 

the gradient of (10) with a decay term of the form given in (4), 

It is helpful to rewrite (1 1) in terms of ensemble averages over the input 
patterns, and the response of the ith cell, yi = wi x. Thus 

The first term on the right-hand side of (12) drives changes in the weight 
vector according to the correlation between the the input signal x and the 
modified response, 

Y" ' i  - yi - C C < y i y j  > Y j -  (13) 
j#; 

The jth term of the sum in (13) is the response yj gated by a factor pro- 
portional to the correlation between cells j and i .  This correlation is not 
computed locally within the network. Furthermore the response of the j th 
cell is not locally available to cell i .  



3.2 Local Realization 

The most natural way to localize these computations is to provide a set of 
lateral connections between the cells. In this section we treat these lateral 
signals to the lowest non-trivial order. We will continue to calculate the 
cell activities from the signals carried on the weights w as in (1). In this 
approximation the lateral connections mediate synaptic plasticity without 
directly influencing the cell response. 

We introduce a symmetric matrix of M ( M  - 1)/2  distinct lateral connec- 
tion strengths, . . 

q;,, z , 3 = 1 ,  ..., M ;  i f j ,  

and require that these equilibriate to - C < y; y j  >. The simplest dynamics 
to carry out this relaxation is 

where d is a rate constant. This form captures the notion that the lateral 
connections develop to oppose correlations between the cell responses. 

We make the substitution Cw; . Qwj + -q;j in (11) to obtain the final 
equations of motion for the forward weights, 

Equations (14) and (15) are the adaptation dynamics for the system of M 
cells with weights from the input space w and lateral connections q. 

3.3 Stability and Bifurcation Behavior 

We show that the stability of the desired equilibrium is dependent on the 
free parameters, in accord with the discussion in $2.1. The primary result 
is that the adaptation of the lateral connections needs to be fast relative to 
the adaptation of the forward weights in order for the system to perform 
a principal components analysis. Beyond the stability analysis, we derive 
bifurcation diagrams for the system. 



3.3.1 Stability 

By inspection (14) and (15) have an equilibrium at 

XO {w; = e;, i = 1 ,..., M; qij =O) VC. (16) 

To treat the stability of this equilibrium it is convenient to expand the w; in 
the basis of eigenvectors of Q, writing the components as 

- w;j = w; ej. 

Next we collect all variables into a single coordinate vector and arrange the 
components as, 

This vector contains M ( M  - 1)/2 triplets of the form (wij, wj;, q;j), M com- 
ponents w;;, and M ( N  - M) components in the last block. We write the 
equations of motion (14, 15) in short-hand as 

with F ( X )  defined by the components of the right-hand sides of (14) and (15) 
arranged in the same order as the coordinate vector (17). In this notation, 
the equilibrium (16) is at 

At Xo the linear part of the vector field takes the block-diagonal form (see 
the appendix) 

where the 3x3 sub-blocks, Mij, i < j ,  are of the form 



and { A )  and ( B )  are diagonal matrices of the form 

and 

Concentrate for the moment on the lower two blocks A and B. Since the 
eigenvalues of Q  are ordered according to X 1  > X 2 . .  ., the elements in these 
blocks are all negative. Thus the invariant subspaces corresponding to these 
blocks are stable eigenspaces. The block B is of particular interest. This 
block corresponds to perturbations out of the principal component subspace. 
These perturbations are always damped, indicating that the space spanned 
by the principal eigenvectors is asymptotically stable. 

The only possible instabilities arise in the 3 x 3  sub-blocks Mij.  These 
blocks define invariant subspaces of DFo, and each can be considered sepa- 
rately. Thus the stability problem for the entire recurrent network reduces 
to the consideration of a set of 3 x 3  matrices. 

Applying the Routh-Hurwitz conditions to the characteristic equation for 
M i j ,  we find that the equilibrium Xo is asymptotically stable provided 

d > d i j o 3  ( X i  - X j ) 2  ( X i  + X j )  + xg 

These conditions must be satisfied for all choices of the indices (i, j). The 
critical values Co and do depend on the eigenvalue spectrum of Q ,  so the 
stability of the equilibrium is dependent on the second order statistics of the 
input signal. Note that (25) is apt to be violated for networks with a large 
number of cells since Co increases with decreasing ( X i ,  X j ) .  



3.3.2 Bifurcation Behavior 

We want to locate the equilibria, 

near (Xo, Co) and determine their stability. A direct solution of (26) is 
intractable. Instead we use the Liapunov-Schmidt reduction [18] to replace 
the high-dimensional sys tem (26) with a low-dimensional system 

which is easily solved. The reduced system (27) is equivalent to (26) in the 
sense that the zeroes of g are in one-one correspondence with the zeroes of 
F, and the stability of the bifurcating equilibria can be inferred from g. In 
this sense the reduced function completely characterizes the bifurcation. The 
reduction is accomplished by means of a perturbation expansion about the 
bifurcation point (Xo, Co). Details are given in the appendix. 

We assume that the stability condition (25) is violated for a single pair 
of indices (i, j). At C = Cij,, M has a simple zero eigenvalue. We denote 
the corresponding eigenvector of DFo by v,. In this case the reduced func- 
tion is a real-valued function of the scalar variables z and C, where z is the 
displacement from Xo along v,. The equilibrium Xo corresponds to z = 0. 

The perturbation expansion shows that, to third order in z, the reduced 
function is equivalent to 

which is the normal form for a super-critical pitchfork bifurcation. The bi- 
furcation diagram (the solution set of g ( ~ ,  C) = 0) is shown in the upper 
portion of Fig. 1. The branch corresponding to the equilibrium Xo is stable 
for C > Co and unstable for C < Co. Two unstable branches are present 
for C > Co. At the equilibria on the unstable branches the forward weight 
vectors are mixtures of e; and ej, and the lateral connection 7;j is non-zero. 
The form of this bifurcation is independent of both the number of nodes M 
in the network, and the dimension N of the input space. 

The position of stable equilibria away from (Xo, Co) can be inferred from 
terms in the bifurcation expansion of order z5 and higher, or alternatively 
as follows. For simplicity, consider the case of two cells. We examine the 



degenerate solution for which both weight vectors are proportional to the 
principal eigenvector, 

This is asymptotically stable provided 

C < Cd -- min 

If the first condition in (29) is violated, then there is a supercritical pitchfork 
bifurcation, bottom portion of Fig. 1. (We have not determined the form of 
the bifurcation under violation of the second condition in (29)). The equilib- 
ria on the bifurcating, stable branches are mixtures of el and ez with non-zero 
7712. These branches presumably join the unstable supercritical branches of 
the bifurcation at (Xo, Co). 

Numerical integration of (14) and (15) confirms this picture. For large 
C the M weight vectors converge to the leading M eigenvectors of the auto- 
correlation. For C < Co, the weight vectors converge to mixtures of the 
leading eigenvectors. For C < Cd, the weight vectors collapse to the leading 
eigenvector. This scheme thus requires strong coupling (large C)  between 
the cross-correlations < yiyj  > and the lateral connection strengths q;j in 
order to effectively separate the forward weight vectors. 

The insets in Fig. 1 show the receptive fields (wl and w2) correspond- 
ing to the stable branches of the bifurcation diagram for a network of two 
cells. The plots show the magnitude of each of the components of w. These 
configurations were generated by a correlation matrix corresponding to a 
19-dimensional noise vector with short-range correlations between the com- 
ponent s. 

We confirmed the complete bifurcation diagram by numerical integration, 
sweeping the coupling strength up and back down through the bifurcation 
points. Figure 2 shows the cosine of the angle between the two weight vectors 
as a function of the coupling strength C. At the lowest values of C the weight 
vectors are opposite one-another, corresponding to Xd. AS C is increased this 
configuration becomes unstable and the angle between the weight vectors 
begins to close. At the highest values of C ,  the weight vectors are orthogonal, 
corresponding to Xo. 



For networks with more than two cells, there are presumably additional 
bifurcations along the branches emanating from ( X d ,  Cd). Simulations show 
various mixed states. Figure 3 shows receptive field configurations generated 
by a 3-cell model. The critical coupling value for these simulations is Co = 
0.294 for these simulations. Figure (3a) shows the receptive fields for C = 1.0. 
These are the eigenfunctions of the input correlation. Figure (3b) shows the 
receptive fields generated at C = 0.28. One of the nodes has converged to the 
leading eigenfunction, while the other two nodes have converged to mixtures 
of the second and third correlation eigenfunctions. Figure (3c) shows the 
receptive fields generated at C = 0.18. Two of the nodes have converged to 
the principal correlation eigenfunction, while the third has converged to the 
second eigenfunction. 

Finally if the condition on d in (24) is violated for a single pair of indices 
(i, j), while (25) satisfied, then the equilibrium Xo loses stability through a 
Hopf bifurcation. A pair of complex-conjugate eigenvalues of DF cross the 
imaginary axis at 

and the forward weights and lateral connection strengths will begin to oscil- 
late. 

3.4 Act ivity-Dependent Adapt at ion 

The conditions on the stability of Xo suggest that the adaptation rule for 
the lateral connection strengths can be modified to provide a more robust 
system. Examining (24) and (25), it is clear that the critical value for C d is 
bounded above by unity. Furthermore the relaxation rate required by (24) 
is bounded above by - 

do = X i  + X j ,  

which is the sum of the node response variances at the equilibrium point Xo. 
This suggests that the stability may be improved by weighting the relax- 

ation rate of the lateral connections by the variance of the cell responses. We 
make this change, rewriting (14) as 



With this change, the critical 3 x 3 sub-blocks of DFo become 

and the conditions for stability of the equilibrium Xo reduce to 

which no longer depends on the spectrum of the auto-correlation. 

4 Complete Coupling 

The model presented in the previous section deals with the lateral connec- 
tions only to the lowest non-trivial order in 7. In this section we develop a 
model that takes full account of the lateral connections. We derive stability 
conditions for the desired equilibrium and treat the bifurcation under loss 
of stability. We also suggest an enhancement, similar to that in 53.4, that 
provides a more robust algorithm. 

4.1 Equations of Motion 

As in the previous section, the model consists of an array of M linear neurons 
connected to the N-dimensional input space. The array is self-connected 
with a set of symmetric lateral connections. Both sets of connection strengths 
develop dynamically. 

The notation for this section departs slightly from that used previously. 
We define an M x N matrix of forward weights, w, connecting the input 
space to the cell array. The ith row of w is the weight vector, w;, to the ith 
cell of the array. The matrix 7 has the same structure as in the previous 
section. In addition, we define the vector of cell responses y E RM. 

The lateral connections converging on a cell are assumed to carry signals 
which contribute to the cell's response in the usual fashion. The response 
of the cell is given by the sum of the forward-propagated signals and the 
laterally-propagated signals. Thus the cell responses are given by 



where x E RN is the input pattern vector. This expression is solved for y to 
recover 

y = uwx (33) 

where 
U E (1 - q)-l 

and 1 denotes the identity matrix. 
In a system with explicit node dynamics, the matrix inversion in (34) 

would be implicitly calculated through the node dynamics (assuming conver- 
gent activation dynamics [1911) ). For implementation in a digital system, 
or for simulation without explicit node dynamics, some form of direct ma- 
trix inversion would need to be calculated. Alternately a truncated series 
expansion of u(q) seems to be a viable alternative. 

The ensemble-averaged, continuous time form of the adaptation rule for 
the forward weights takes the form 

where Diag is an operator which takes the diagonal elements of its argument. 
The lateral connection strengths develop according to 

The adaptation dynamics in (35) and (36) are close analogs to those of (15) 
and (14) in $3.2. The difference here is that the signals carried by the lateral 
connections are treated to all orders. This system differs from that given by 
Foldiak [ll] by the linear term in (36). 

The system has an equilibrium at 

Xo E {wi = e;, i = 1 ,..., M ;  q i j  = 0) V C. (37) 

To see this, note that at q = 0, the matrix u reduces to the identity and (35) 
reduces to M copies of (4). The last term of (36) reduces to 

'For example the system dy /d t  = : ( - y + ~ x + ~ y )  has a globally attracting fixed point 
at y = u w x  provided the matrix (1 - r;l) is positive definite. 



having used the definition of the equilibrium point (37) and the orthogonality 
of the eigenvectors of Q. 

4.2 Stability and Bifurcation 

In order to address the stability of the equilibrium we follow the treatment 
of 53.3 and expand the rows of w in the basis of eigenvectors of Q, writing 
the components as 

w;j = w; ej. 

We regroup the components as in (17) and write the equations of motion as 
in (18). 

To perform the stability and bifurcation calculations, we expand u as a 
power series in 7 

u211 +q+q2+?13+... . 
The first order term is sufficient for the stability calculation. The terms 
through order 73 are required to address the bifurcation. 

As in 53.3.1, the linear part of the vector field at the equilibrium breaks 
into block diagonal form with any instabilities constrained to 3 x 3 sub-blocks. 
For the present model, these critical sub-blocks take the form 

The stability conditions read 

d (Xi - Xj)2 c > c,= + 
( X i  + Xj) (AT + Xj) ' 

We digress briefly to discuss the form of the adaptation rule for 7 (36) in 
relation to (40). Previous authors [ll, 12, 201 advocate the use of the naive 
anti-Hebbian rule 

Ij;j = - < Y; yj >) (42) 
assuming that it is sufficient for feature extraction and clustering algorithms. 

Our development shows that the naive form can be inadequate when 
viewed in the context of a complete system. The discussion in 53.2 leading 



up to (14) shows that the departure from the naive form is quite natural. 
Furthermore, (40) shows that removing the term linear in 77 can lead to an 
instability. 

Let us return to the model in (35) and (36). If the stability condition on 
C (41) is violated, then the network undergoes a Hopf bifurcation. To show 
this, calculate the characteristic polynomial of Mij, 

At C = Co, the roots of (43) are 

The first (44) is negative, corresponding to a stable perturbation direction. 
The pair of roots in (45) are pure imaginary provided d > 0, so DFo develops 
a pair of pure imaginary eigenvalues at C = Co. 

The conditions for a non-degenerate Hopf bifurcation are satisfied [18,21]. 
If (41) is violated for a single pair of indices (i, j) then DFo has only a single 
pair of eigenvalues on the imaginary axis. Second, these eigenvalues cross 
the imaginary axis with non-zero speed as C passes through Co. To verify 
the crossing condition we calculate the rate of change of the real part of the 
complex-conjugate eigenvalues at Co. This is given by 

which confirms that Xo is stable for C > Co. Thus the conditions for a 
non-degenerate Hopf bifurcation are satisfied, and a one-parameter family of 
periodic solutions to (35) and (36) appear as C is varied in the vicinity of 
c o  - 

We applied the technique given in [18] to determine whether the bifur- 
cation is super, or sub-critical. The calculations were carried out with a 
computer algebra package and the results corroborated by independent nu- 
merical analysis at specific values of (A;, Xj) as well as by simulation. We 



carried out the calculations for the case of 2 cells in a 2-dimensional input 
space (five degrees of freedom). 

We find that the direction of the bifurcation depends on the eigenvalues 
Xi and X j  appearing in Mij .  The expression for the function that determines 
the direction of the bifurcation is exceedingly complex, and the results are 
best displayed pictorially. The results are presented graphically in Fig. 4. 
The shaded region in the plot corresponds to values of (A1, X 2 )  for which the 
bifurcation is supercritical, with the periodic orbits at C > Co unstable. The 
unfilled region corresponds to sub-critical bifurcation with stable periodic 
orbits at C < Co. 

Simulations show that even for values of (Al, X2) corresponding to a super- 
critical bifurcation, there are stable periodic orbits. Figure 5 shows a series of 
simulations in the super-critical regime. The critical value of the bifurcation 
parameter is Co = 0.312. Fig. 5a shows stable oscillations for C = 0.30. Fig- 
ures 5b and 5c were both generated from simulations at C = 0.33. These two 
plots show that a stable periodic orbit (5b) and the stable fixed point Xo (5c) 
coexist at this value of C.  Figure 5d shows the convergence to Xo at C = 0.5. 
No periodic solutions were found at this value of the coupling. These sim- 
ulations suggest that the complete bifurcation diagram in the super-critical 
regime is shaped like the bottom of a wine bottle, only the indentation of 
which is shown in Fig. 4. 

4.3 Activity-Dependent Adaptat ion 
As in 53.4, we can improve the stability of the present model by modulating 
the adaptation rate of the lateral connections according to the cell response 
variances. We introduce this change, replacing (36) with 

With this change, the critical sub-blocks of DFo take the form 



and the conditions for stability of the equilibrium Xo now read 

( A ;  - A j ) 2  
C > 1 +  

Af + A; 

the last of which is bounded above by 2. 
Lastly it is desirable to avoid calculating the matrix inversion ( 1  - 7)-' 

that appears in the equation for the output activation (33). Simulations 
approximating this inverse by the first two terms of its series expansion 

provides reasonably good convergence. 

Discussion 

We have introduced two neural models for linear feature discovery that are 
based on a combination of Hebbian learning and recurrent lateral connec- 
tions that develop according to an anti-Hebbian learning rule. Both models 
employ anti-Hebbian learning rules that include a term linear in the lateral 
connections, thus departing from forms previously given in the literature. 

The minimal model in 53 treats the lateral connections in the lowest 
possible order. The signals carried on the lateral connections affect plasticity 
but not the target cell activation. This is advantageous for implementation. 
In a model that uses lateral signal flow to affect cell activation, the values 
of the cell activities would require several cycles to equilibriate. Here we 
calculate the activities from the forward signals alone, and this can be done 
in a single machine cycle. 

Both models have equilibria at which the network performs PCA. There 
is a critical coupling strength below which this equilibrium is unstable. The 
bifurcation analyses and simulations show that both models have ranges of 
the coupling, C, that support several solutions. The minimal model has sta- 
ble secondary equilibria in which the forward weight vectors are combinations 
of the eigenvectors of the input auto-correlation. The complete model has 
solutions in which the forward weight vectors are oscillating combinations of 
the eigenvectors of the input auto-correlation. For the complete model to be 



useful in this regime, learning would have to be turned off after an initial 
period of adaptation. 

Both models expand on earlier work on Hebbian feature discovery and 
principal component analysis. In the limit of fast relaxation of the lateral 
connections, the minimal model reverts to the model given by Yuille et al. 
[16] for the formation of cortical simple cells. Rubner et al. [12] d' iscuss a 
model with cascaded lateral signal paths; the ith cell receives lateral signals 
from all cells j with j < i. The models discussed here have full lateral 
connectivity, which is more consistent with neuroscience. 

Foldiak [ll] discusses an algorithm with full lateral connectivity. The 
adaptation rule that he uses for the lateral connections has no linear term, 
in contrast with our anti-Hebb rule. As discused in 94, removing the linear 
term can result in an instability, so Foldiak's model operates at a bifurcation 
point of our scheme. For a system of two cells, the reduced function at this 
bifurcation is of the form g(z, C)  = a C z + b zn, n > 7. Small pertur- 
bations in the equations of motion, arising for example from imperfections 
in the physical realization, can introduce terms of lower order in z. These 
lower-order terms will dominate the form of the bifurcation and could rad- 
ically change the location of equilibria. Thus, in the absence of the linear 
term, the postion of equilibria could be dominated by imperfections in the 
physical realization. In this sense, the model without the linear term is likely 
to be an incomplete specification of any physical (e.g. biological or analog 
VLSI) implementation. 

This study suggests several areas for further inquiry. The bifurcation 
from the degenerate solution in 53.3.2 was explored analytically only for 
the case of two cells. For networks with more cells, there are presumably 
additional bifurcations along the branches emanating from the degenerate 
solution (Xd, Cd). These would have to be explored numerically. Similarly, 
there may be further bifurcations from the limit cycles in the model of 94. 

We have shown in 53.4 that modulating the adaptation rate of the lat- 
eral connections according to the output cell variances helps to stabilize the 
system. However, there is a bifurcation point at the critical value of the 
coupling constant given in (32). At this bifurcation the kernel of DFo has 
dimension M ( M  - 1)/2, where M is the number of output cells. Analysis of 
this degenerate bifurcation is left for future research. 

Lastly, models that perform PCA employ cells with linear post-synaptic 
response. The role of non-linear response in systems with Hebbian adapta- 



tion is almost completely unexplored (however see [20] for some interesting 
simulation results). We expect that the development of cells with non-linear 
post-synaptic response (e.g. higher-order nodes) is driven by higher order 
moments of the input distribution. This extended information may be useful 
for feature discovery. 
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A Stability Calculations 
This appendix provides details of the stability calculations of section $ 3 .  Recast the 
equations of motion (14 )  and (15)  in the basis of eigenvectors of Q, writing the projection 
of wi onto ej as wij , 

m f i  m 

The PCA equilibrium is at  Xo = {wij = 6 i j ,  qij = 0). 
The derivatives appearing in the linearization are easily evaluated. First, 

Next, 

The derivatives of the q terms are 

and 

The critical 3 x 3  sub-blocks of DFo are given by the Jacobian matrices 

0 
z j ,  j t ,  ~ i j )  = M i j  = a(; w . .  . 

6'(wij, w j i ,  ~ i j )  - d C X j  - d C X i  -d 

The terms in the sub-block { A )  (22)  of DF are from the derivatives of wii .  From (53)  the 
onlv non-zero terms are 

Finally the sub-block (B) (23 )  contains derivatives of wiJ with 1 5 i 5 M and J > M. 
From (54 )  it is clear that all the derivatives with respect to q will vanish. The only 
remaining terms are 

Matrix elements outside the block diagonals are easily seen to vanish. This confirms the 
form of DFo given in $3.3. A similar calculation gives the analogous form in $4.2.  



The block-diagonal form of DFo simplifies the stability calculations since the sub- 
blocks Mij are the only parts where an instability can arise. The characteristic polynomial 
for Mij is 

We applied the Routh-Hurwitz conditions to (60) to derive the stability conditions in 
33.3. As a check, it is straightforward to verify that P(L) develops a simple zero root at 
C = Cijo G l/(Xi + Xj). Furthermore P(L) develops a pair of pure imaginary roots 

ki (Xi - A,) dC(Xi  + Xj) - 1 

at d = dijo r (Xi - Aj)'(Xi + Xj)/(X: +A;). 

B Bifurcation Calculations 
The bulk of the bifurcation calculations were performed with a symbolic manipulation 
program, used both interactively and running code written explicitly for this study. Here 
we sketch the calculations. More details on the Liapunov-Schmidt reduction can be found 
in Golubitsky and Schaeffer (1984). 

The equations of motion for the weights 

x = F(X,  C), 

have an equilibrium at  Xo. We assume that the stability conditions, (25), are violated for 
a single pair of indices (i, j ) .  At C = Co, one of the eigenvalues of Mij becomes zero, 
and so the linear part of the vector field, DFo, has a 1-D kernel. The reduction proceeds 
as follows. Let S denote the M N  + M ( M  - 1)/2- dimensional vector space of variables 
( w ,  77)- 

1. Split S into Ker (DFo) and its orthogonal complement, and also into Range (DFo) 
and its orthogonal complement. The basis for the kernel and the (Range)l are v, 
and vl, the right and left null eigenvectors of DFo. Define the projection E : S I-+ 

Range(DFo), and the complementary projection 1 - E. 

2. Points in the configuration space are given coordinates as X = Xo + z v, + W with 
W E (Ker DFo)l  a solution to 

E F(Xo + z v, + W(z, C), C )  = 0. (61) 

The solution defines (locally) a 2-D submanifold of S. (Note that W(0, Co) = 0 
since F(Xo,  Co) = 0 by assumption.) 



3. Define the reduced function 

The zero set of F is in one-one correspondence with the zero set of g. The latter is 
the bifurcation diagram for the system. 

4. The equilibria correspond to g(z, C) = 0. If vl - v, > 0 and ag(z, C ) / ~ Z  < 0, then 
the equilibrium corresponding to (z, C)  is asymptotically stable, and unstable if 
as(%, c ) / a z  > o. 

In practice (61) is solved for the Taylor series expansion of W. The terms in the series are 
then substituted into a series expansion of (62). 

As an example we carry out the reduction for a network of M = 2 cells in a 3- 
dimensional input space (7 degrees of freedom). Calculations show that the results gener- 
alize to nets of arbitrary size. The coordinates are ordered as 

with the equilibrium at 
XO=[O,O,O,l,l,O,O]. 

The linear part of the vector field at Xo is 

and 

At Co the right and left zero eigenvectors of DFo are given by 

The coefficients in the series expansion for W are found by differentiating (61) and 
solving the resulting expression for the coefficients. The required coefficients are 



where DF- l  is the inverse of DFo restricted to Range (DFo). (DFo is an isomorphism 
from (KerDF0)l  to Range(DFo).) In the present case, Fc(Xo, Co) vanishes so 

Moving on to W,, , 

This is already perpendicular to vr, so the action of E is the identity. Further the preimage 
of D2 Fo[vr, v,] under DFo is trivial and we have 

The terms in the series expansion of the reduced function needed to identify the 
bifurcation are found by differentiating (62), 

gt = vr - DFo[v, + W,] = 0 using (66). 

sc = vr . Fc(Xo, Co) (72) 
SEZ = VI . D2 FO[V~ vr] (73) 

szc = vi - (DFC . vr + D2Fo [v,, we]) (74) 

~ I Z Z  = vi~(D3Fo[v~,vr,vr]+3D2Fo[vr,W,,]) (75) 

To find g,, we note that the only non-zero elements of the matrix DF, are 

Finally, the only non-zero terms in the tensor D3Fo arise from the cubic terms in F. We 
find 

gc = 0 

g,, = 0 using (65) and (70) in (73). 

g,, = -d (A1 + A2) using (65), (67), (76), and in (74). 

szzz = 6d. 

To third order, the reduced function is thus 

1 
g = gcz(C - Co) r + --g,*,r3 + . . . 

3! 
= -d(Xl+A2)(C-Co)z + dr3. (77) 

For C > CO, the roots of g are at  2, = f J(c - Co) (A1 + A2), and r = 0. For C < Co 
the only root of g is at z = 0. Since Xo corresponds to z = 0, the latter is stable for 



C > Co, and unstable for C < Co. By exchange of stability, the secondary equilibria z, 
should be unstable. As a check we note that for d > do ,  v, . vl > 0. Then, 

dglar = 3d z2 - (C - Co) d ( X I  + X 2 ) .  

At r = 0 we have 8glaz < 0 for C > Co indicating stability of Xo.  At r,, we have 
8gld.z > 0 indicating instability. 
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Figure Captions 

1. Bifurcation diagram for the minimal model. Heavy lines are stable 
branches and light lines are unstable branches. Insets show the recep- 
tive fields corresonding to equilibria on the st able branches. 

2. Hysteresis curve obtained by tracing out the bifurcation diagram of 
Fig. 1 for a 2-cell model. 

3. Receptive fields generated in a 3-cell simulation. 
a) Weight vectors at C = 1.0 are the eigenvectors of the autocorrelation. 
b) At C = 0.28, wl = el, w2 = 0.477 e3 - 0.768 e2, 
w3 = 0.477 e3+0.768 e2. c) At C = 0.18, wl = w3 = 0.766 el, w2 = 
0.999 e2. 

4. Regions in the (A1, X2)  plane corresponding to super-critical (shaded) 
and sub-critical (unshaded) Hopf bifurcations in the complete model. 

5. Stable oscillations and equilibria near a super-critical Hopf bifurcation 
in the complete model. See text for explanation. 
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