
A Loop Restructuring Research Tool

Michael Wolfe

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-014

August, 1990

A Loop Restructuring Research Tool

Michael Wolfe

Oregon Graduate Institute of Science and Technology
Department of Computer Science and Engineering

19600 NW von Neumann Drive
Beaverton, OR 97006

(503)-690-1153
mwolfe@cse.ogi .edu

A Loop Restructuring Research Tool

Abstract

Program restructuring, or more precisely, loop restructuring is often proposed as a way to

automatically (or manually) improve the performance of scientific programs on high perfor-

mance computer systems. Loop restructuring transformations have been proposed t o detect

loops t ha t can execute in parallel or vector mode, to interchange loops t o improve parallelism or

memory hierarchy performance, and to regularize interprocessor communication patterns. The

benchmarking process undertaken by the Perfect Club is one of identifying software transforma-

tions tha t will improve performance; many of these are loop restructuring transformations. We

have begun a research program to explore the potential of loop restructuring transformations

from three points of view: (1) What kinds of transformations can be performed? (2) What infor-

mation is necessary t o decide when a transformation is legal? (3) What performance improve-

ment can be attained from each transformation? To support this research we have begun

implementation of a loop restructuring tool. This paper describes the goals of the research and

some experiences with the tool.

A Loop Restructuring Research Tool

I. Introduction

Many loop restructuring transformations have been proposed t o increase parallelism or

otherwise improve performance on advanced computer architectures. We present a table of

some of these below; In each case we give a representative citation (instead of a n exhaustive

list); a summary of many of these transformations is available in [Wo189b].

transformation enhances reference

vectorization parallelism [Sch72]

parallelization parallelism [AlK82]

strip mining vectorization [Lov77]

distribution vectorization [AlK87]

interchanging parallelism [AlK84]

interchanging memory [G JG88]

skewing parallelism [Wo186b]

tiling memory [AKL8 11

reversal interchanging [Wo182]

alignment parallelism [ACK87]

splitting parallelism [Ban791

An entry of "enhances memory" means the transformation enhances the performance of memory

hierarchies. Those listed above with an bullet are implemented in commercial language pro-

ducts (reversal was implemented in one of the TI ASC compilers [Wed75]). Other transforma-

tions have not been shown to be cost-effective, considering the cost t o implement, debug and

support more advanced transformations, the cost t o train users how t o write programs t o take

advantage of the new transformations (and how t o understand or debug the code generated by

the compiler or system), and the compile-time cost of attempting each transformation on each

program. This latter point is especially touchy; the argument tha t spending a little more time

compiling is worth the savings in execution time generally falls on deaf ears. All the good inten-

tions of compiler and programming environment researchers and developers won't sell a slow

tool t o users.

Other transformations have also been defined from time to time, but have not been imple-

mented or have been used only in research. Several research efforts (notably systolic array syn-

thesis research [GoT88,LeK90]) have looked a t the problem of mapping the index set of a nested

loop computation via linear transformations into a transformed index set tha t satisfies certain

properties, generally dealing with parallelism and interprocessor communication patterns.

While linear index set transformations can also be implemented as loop restructuring transfor-

mations, the reverse is not always true; in addition, systolic array and other research into index

set mapping generally assumes some idealized form of the program, such as tightly nested loops

with simple da t a references and constant dependence vectors. It has been shown tha t any sys-

tolic algorithm can be written in the form of a nested loop algorithm, but tha t does not mean

tha t they should be written in such a most primitive form (e.g., we can argue tha t any com-

puter program can be written using an idealized assembler language, but tha t does not mean we

should write all our programs in MIX Knu731).

We believe tha t loop restructuring is a powerful method t o improve the performance

characteristics of a program by matching the program to complex architectures. Elementary

transformations can be combined in interesting ways t o produce dramatic speed enhancements

tha t take advantage of parallelism, novel memory hierarchies and high speed interprocessor con-

nection networks. Some of the research in t o loop restructuring has already found its way into

daily use in the commercial world; however we have not experimented with other potentially

interesting restructuring transformations. In order t o allow experimentation with loop restruc-

turing as a craft in itself (without necessarily worrying about immediate commercial applica-

tions), we have begun work on a loop restructuring research tool.

2. Basic Loop Restructuring: Loop Interchanging

The evolution of loop interchanging is interesting since it was originally conceived as a

method of enhancing parallelism, but has since been used for many other performance enhance-

ment purposes. In the early days of vectorizing compilers, users often manually interchanged

loops t o improve the vectorization. Vectorization typically considers only the innermost loop; in

the program fragment:

f o r i = 1 t o n do
f o r j = 2 t o m do

a (i , j) = a (i , j - 1) + b (i , j)
endfor

endf o r

the j loop cannot be vectorized, since a (i , j -1) will use the value assigned t o a (i , j) from

the previous iteration of the j loop. This is called a data dependence relation, and we say tha t

the statement depends on itself. Of particular interest is the dependence distance, tha t is, the

number of iterations tha t the dependence crosses. In this case, the dependence distance is one,

since a (i, j -1) depends on the value assigned t o a (i, j) from the immediately previous

iteration. Users learned quickly to recognize cases such as this and t o interchange these two

loops:

f o r j = 2 t o m do
f o r i = 1 t o n do

a(i, j) = a(i, j-1) + b (i , j)
endf o r

end f o r

After interchanging, the program has no dependence relations preventing vectorization of the

inner i loop.

In the late 1970's and early 1980's, research efforts a t the University of Illinois and Rice

University developed compiler technology tha t could automatically detect when i t was legal t o

interchange loops [AlK84,Wo178,WoI82]. This technology uses the concept of dependence dis-

tance, but with a separate dependence distance computed for each surrounding loop. In the ori-

ginal program fragment above, for instance, a compiler would find a distance vector comprising

two elements, the first for the I loop and another for the J loop. The distance in the I loop is

zero, while the distance in the J loop is one (as before); the distance vector is then (0 , l) .

Sometimes, due t o complicated subcripting patterns or inexact testing algorithms, a precise dis-

tance vector cannot be computed; in these cases, a compiler might find a direct ion vector which

comprises the signs of the possible distances. Each element of a direction vector would be either

+, 0 or -, or a combination of these. For historical reasons, these are usually called <, = and

>, respectively. If the distance vector comprised all zero entries, then we call tha t a loop-

independent dependence; this corresponds t o a direction vector of all-= entries. Otherwise there

is a non-zero entry in the distance vector; in this case we say tha t the loop corresponding t o the

first (leftmost) non-zero entry in the distance vector carries the dependence, and tha t this is a

loop carried dependence. An loop can be vectorized if the da ta dependence graph is acyclic, and

can be parallelized if tha t loop carries no dependence relations [ACK87,AlK87].

It is shown in the literature tha t two loops cannot be interchanged if the outer loop car-

ries some dependence relation for which the dependence distance in the inner loop is negative.

Compiler research tools then implemented loop interchanging dependence tests, and a significant

(but not overwhelming) amount of additional parallelism was uncovered; a t tha t time, commer-

cial compilers shunned automatic interchanging, claiming i t was too expensive for little or no

real gain in performance.

However, i t soon became obvious tha t interchanging loops could have a dramatic effect on

the execution behavior of the program. For instance, i t not only enables parallelism a t a

different loop level, i t changes the loop limits of the inner loop (allowing longer vector opera-

tions, for instance), changes the memory strides for array accesses, and may even allow addi-

tional code floating. Now almost all commercial vectorizing and parallelizing compilers include

automatic loop interchanging as a standard feature.

Loop interchanging by itself has made it into the commercial world; in combination with

other transformations, i t is even more powerful. Independent work on loop blocking or tiling

found tha t proper partitioning of the iteration space (index set) of a nested loop into blocks or

tiles could greatly enhance the locality of reference for da t a access in the inner loop levels

[AKL81,GJG88]. I t was soon realized tha t tiling could be viewed (from a compiler point of

view) as nothing more than a combination of strip mining (or sectioning) and interchanging

[Lov77,Wo189a]. Additionally, there are loops where neither the inner nor the outer loop can be

executed in parallel; in these cases, the wavejront method or hyperplane method was proposed t o

allow parallel execution of a reindexed loop [Lam75]. I t has been shown tha t the wavefront

method can be viewed as nothing more than a combination of loop skewing and interchanging,

again combining two elementary loop transformations t o achieve a powerful result [Wo186b].

Some of these advanced applications of loop interchanging are now making their way into com-

mercial products.

Loop interchanging is in many ways the first real loop restructuring transformation; inter-

changing can have a dramatic effect on the performance and behavior of a program, and the

benefits far outweigh the costs associated with implementing and supporting it. Other loop res-

tructuring transformations are not so well understood and still seem too costly t o merit much

consideration. We believe further research is justified into these costs and potential benefits by

further experimentation into loop restructuring.

3. Advanced Loops Restructuring Examples

Some early experiments in advanced restructuring were described in a prior paper

[Wo186a]. Our goals now are somewhat more ambitious. (The program examples in this section

are taken from screen dumps of the research tool; the line numbers to the left correspond to

source code line numbers).

First Example. Our first example is a simple three-dimensional 6-point difference equation:

3: f o r k = 2 , n d o
4: f o r i = 2 , n d o
5: f o r j = 2 , n d o
6: a (k,i, j) = a(k, i-1,j) +a(k,i.j-l)+a(k<i,j+l)+

a (k, i+l, j) +a (k-1, i, j) +a (k+l, i, j)
5: e n d f o r
4: e n d f o r
3: e n d f o r

The da t a dependence relations in this loop are shown below; the kind of dependence (anti or

flow), the statements involved (all the same statement in this example), the direction and dis-

tance vector as well as the array references involved are given:

a n t i
a n t i
a n t i
flow
flow
flow

dependence: 6 - -> 6 (=.=, <) (0.0,1) a (k , i , j + l) - -> a (k , i , j)
dependence: 6 - -> 6 (=,<.=) (O,l,O) a (k , i + l , j) - -> a (k , i , j)
dependence: 6 --> 6 (<,=,=) (l , 0 , 0) a (k + l , i , j) - -> a (k , i , j)
dependence: 6 - -> 6 (=,<,=) (O,l ,O) a (k , i , j) - -> a (k , i - l # j)
dependence: 6 - -> 6 (=,=,<) (0.0.1) a (k , i , j) - -> a (k , i # j - l)
dependence: 6 - -> 6 (<,=,=) (1,O.o) a (k , i , j) - -> a (k - l * i t j)

An anti-dependence is a "use-def" ordering, while a flow-dependence is a "def-use" ordering.

While there are no dependence relations preventing interchanging the loops any way we want,

each loop carries two dependence relations; this means none of the loops can execute in parallel.

The standard solution is t o use a wavefront method; we derive the wavefront method of execu-

tion by using program transformations. First, we skew the inner loop with respect t o each of

the outer loops. The first step adds 1 to the lower and upper limits of the J loop (and corrects

within the loop):

3: f o r k = 2 , n do
4: f o r i = 2.n do
5: f o r j = 2 + i , n + i do
6: a (k , i , j - i) = a (k , i - 1 , j - i) + a (k , i , j - i - 1) + a (k , i , j - i + l) +

a (k , i + l , j - i) + a (k - l , i , j - i) + a (k + l , i , j - i)
5: endfor
4: endfor
3: endfor

Forward skew loop j wi th r e s p e c t t o i

The next step adds K t o the J loop limits:

3: f o r k = 2 , n do
4: f o r i = 2,n do
5: f o r j = 2 + i + k , n + i + k do
6: a (k , i , j - k - i) = a (k , i - 1 , j - k - i) + a (k , i , j -k- i -1) + a (k , i , j - k - i + l) +

a (k , i + l , j - k - i) + a (k - l , i , j - k - i) + a (k + l , i , j - k - i)
5: endfor
4: endfor
3: endfor

Eorward skew loop j wi th r e s p e c t t o k

Finally we interchange the J loop all the way outwards; notice tha t since the loop limits for the

J loop depend on I and K, we have to adjust the limits t o cover the same index space:

5: f o r j = 2+2+2,n+n+n do
3: f o r k = max(2,j-(n+n)),min(n,j-(2+2)) do
4: f o r i =max(2,j-(n+k)),min(n.j-(2+k)) do
6: a (k, i, j -k - i) = a (k , i - 1 , j -k - i) + a (k , i , j -k- i -1) + a (k , i , j - k - i + l) +

a (k, i + l , j - k - i) +a (k-1, i, j - k - i) +a (k + l , i , j - k - i)
4: endfor
3: endfor
5: endfor

In te rchanging loops k and j

Inspection of the new dependence graph after these transformations tells us t ha t the outer loop,

the J loop, carries all the dependence relations:

a n t i dependence: 6 - -> 6 (<,=,=) (1.0,O) a (k , i , j - k - i + l) - -> a (k , i , j - k - i)
a n t i dependence: 6 - - 6 (<,=,<) (0 1) a (k , i + l , j - k - i) - -> a (k , i , j - k - i)
a n t i dependence: 6 - -> 6 (<,<,=) (1 0) a (k + l , i , j - k - i) - -> a (k , i , j - k - i)
flow dependence: 6 - -> 6 (<,=,<) (l , O , l) a (k , i , j - k - i) - -> a (k , i - 1 , j - k - i)
flow dependence: 6 - -> 6 (<,=,=) (1.0,O) a (k , i , j - k - i) --> a (k , i , j - k - i - 1)
flow dependence: 6 - -> 6 (<,<,=) (l , l , O) a (k , i , j - k - i) - -> a (k - l , i , j - k - i)

Thus, the two inner loops can be executed in parallel:

5: f o r j = 2+2+2,n+n+n do
3: d o a l l k = max(2,j-(n+n)),min(n,j-(2+2)) do
4: d o a l l i =max(Z,j-(n+k)),min(n,j-(2+k)) do
6: a (k , i , j - k - i) = a (k , i - 1 , j - k - i) + a (k , i , j - k - i - l) + a (k , i , j - k - i + l) +

a (k , i + l , j - k - i) + a (k-1, i , j - k - i) + a (k + l , i, j - k - i)
4: endfor
3: endfor
5: endfor

P a r a l l e l i z e loop k

Second Example. Our Second example problem is t o generate (via loop restructuring) all six

versions of Cholesky decomposition from just one of them. Cholesky decomposition is similar is

the LL= decomposition of a symmetric positive definite matrix, and uses a n algorithm much like

LU decomposition. The base program we use is the KI J form:

f o r k = l , n do
a (k , k) = s q r t (a (k . k))
f o r i = k + l , n do
a (i , k) = a (i , k) / a (k . k)
f o r j = k + l , i do

a (i , j) = a (i , j) - a (i , k) * a (j # k)
end f or

endf o r
end f o r

As with matrix multiplication, there are six distinct forms of the Cholesky decomposition,

named for the 3! possible loop orderings around the innermost assignment. We will attempt t o

derive the other 5 loop orderings via loop interchanging. Unlike matrix multiplication, this pro-

gram has non-tightly nested loops. The standard method t o deal with interchanging non-tightly

nested loops is t o distribute the outer loop around the inner loop, and interchange the generated

tightly nested loops. However, in this program, the distribution of the K loop (for instance) is

not legal. Fortunately we have already devised the da ta dependence tests necessary t o check

for the cases when non-tightly nested loop can legally be interchanged [Wol89b]. Using this

technology, we can interchange the I and K loops directly, giving the I K J form:

f o r i = l , n do
f o r k = 1.i-1 do
a (i , k) = a (i , k) / a (k , k)
f o r j = k + l , i do

a (i , j) = a (i . j) - a (i . k) * a (j , k)
end f o r

endfor
a (i , i) = s q r t (a (i , i))

endfor

In te rchanging loops k and i

Notice now the sqrt statement had to be moved from above the inner loop to below the inner

loop; this was required by the modified data dependence relations after interchanging the loops.

Now we would like t o interchange the K and J loops; as it turns out, there are no data depen-

dence conditions preventing this transformation. The problem here is that the a (i, k) assign-

ment must be executed for k=l : i -1; if the two loops were interchanged, the new loop limits

(according to normal loop interchange rules for triangular and trapezoidal loops) would be:

f o r j = 1.i do
f o r k = 1 , j - 1 do

The index set for the J loop would be either j=l : i or j=2 : i, neither one of these matching

the required 1:i-1 limits. So we must first align these two loops to make them exactly tri-

angular:

f o r i = 1 , n do
f o r k = 1 , i - 1 do
a (i , k) = a (i . k) / a (k , k)
f o r j = k + l - 1 , i - 1 do
a (i , j + l) = a(i,j+l)-a(i,k)*a(j+l,k)

end f o r
endfor
a (i , i) = s q r t (a (i , i))

endfor

Bump loop j by -1

This has no effect on the dependence relations in the loop, and now the two loops can be inter-

changed to produce the IJK form:

f o r i = 1 , n do
f o r j = 1 , i - 1 do
a (i , j) = a (i , j) / a (j # j)
f o r k = 1, j do
a (i , j + l) = a (i , j + l) - a (i , k) * a (j + l , k)

end f o r
end f o r
a (i , i) = s q r t (a (i . i))

end f o r

In te rchanging loops k and j

From this we can interchange the I and J loops, getting the JIK form:

f o r j = 1 .n do
a (j , j) = s q r t (a (j a 1)
f o r i = j + l , n do
a (i , j) = a (i , j) / a (j # j)
f o r k = 1 , j do
a (1, j + l) = a (i , j + l) -a (i , k) * a (j + l . k)

endfor
endfor

endf o r

In te rchanging loops i and j

Notice again how the sqrt statement had to be moved as part of the transformation. We now

want t o get t o the JKI form; unfortunately, we cannot immediately interchange the I and K

loops due t o the same problem with a different index set for I and K and the a (i , j) assign-

ment. This time, we cannot get away with a simple adjustment of the index set, so we must dis-

tribute the 1 loop:

f o r j = 1 , n do

a (j , j) = s s r t (a (j n j))
f o r i = j + l , n do
a (i , j) = a (i , j) / a (j , j)

end f o r
f o r i = j + l , n do

f o r k = 1 , j do
a (i , j + l) = a (i , j+1) - a (i , k) * a (j + l , k)

endf o r
endfor

endf o r

D i s t r i b u t i n g loop i

Now interchanging produces the JKI form:

f o r j = l , n do
a (j , j) = s q r t (a (j e j))
f o r i = j + l , n do
a (i , j) = a (i , j) / a (j # j)

end f o r
f o r k = 1 , j do

fo r i = j + l , n do
a (i , j + l) = a (i , j + l) - a (i , k) * a (j + l , k)

end f o r
endf o r

endf o r

Interchanging loops i and k

To complete the example, we interchange the K and J loops to get the KJI form:

fo r k = 1.n do
a (k , k) = s q r t (a (k , k))
fo r i = k + l , n do
a (i , k) = a (i , k) / a (k , k)

endf o r
f o r j = k , n do

fo r i = j + l , n do
a (i , j + l) = a (i , j + l) - a (i , k) * a (j + l . k)

endf o r
endfor

endfor

Interchanging loops j and k

From this final form we can interchange the 1 and J loops to get the KIJ form; the only

difference from the final state and the initial state is that the I loop would be distributed. The

restructuring sequence we followed is described by the diagram:

interchange J,I

IKJ

I align K,J
interchange K,J

KJI

interchange K,J t
IJK

I

JKI
\ A b u t e I

interchange I,J JIK interchange 1.K

4. b i g n Goals

To further research into loop restructuring, we began the development of a restructuring

research tool. The emphasis was on research, so we wanted t o make i t easy to add new

transformations without worrying (yet) about every last detail and problem when dealing with a

complex programming language which had evolved over 25 years, such as C or Fortran. We

thus designed a tiny programming language comprising loops, assignments and conditionals with

normal expressions involving arrays and scalars; examples of the language syntax were shown in

the previous section. For this reason we call the tool Tiny.

In a compiler, a restructuring transformation has two preconditions: is the transformation

legal and will the transformed program be better? The first condition is objective, and must be

satisfied; most transformations require certain da ta dependence constraints t o be satisfied, and

occasionally there are other conditions having t o deal with (for instance, the form of the loop

limits). Some minor transformations are always legal, though they may modify the dependence

graph. In order to test for these conditions, Tiny builds a da t a dependence graph when i t

parses the input program. Each variable reference in the program is linked t o its dependence

successors and dependence predecessors by a list of da ta dependence arcs. The da ta dependence

arcs in Tiny are augmented with a direction vector and a distance vector [Wo189b]. For most of

the transformations in Tiny, this abstract representation of the dependence relations is precise

enough t o handle the dependence constraints. However, some transformations need even more

precise information, and we will show how Tiny handles these cases. Tiny now includes four

different da t a dependence decision algorithms; we have been using Tiny t o learn how to modify

dependence decision algorithms to extract direction and distance vector information.

The second condition is more subjective, and certainly depends on the goal of this restruc-

turing process (the target machine, for instance). The holy grail of our research is t o find a pro-

cess whereby a designer can describe (parametrically or graphically) his parallel computer sys-

tem, a user can describe his algorithm, and the system will automatically find a n optimal map-

ping of the algorithm t o the computer system. Real computer systems, however, often have

conflicting optimization goals (long vector operations t o amortize vector startup, but short vec-

tor operations t o avoid overflowing the cache memory). Just finding a n appropriate set of

parameters tha t describe the salient performance characteristics of the system is a difficult task;

using these in a n optimization process is yet another unsolved problem. For the time being, we

have avoided this problem entirely by making the restructuring process entirely manual (menu-

driven interactive).

Actually there are many issues dealing with restructured programs, whether they be

automatically, manually or semi-automatically restructured. Performance prediction is useful

t o determine when the restructuring process is "done". Performance prediction is potentially

feasible even when fully automatic restructuring is too difficult. Post-mortem performance and

bottleneck analysis is also very useful. When debugging a restructured program, the user would

rather be able t o deal with his original program, or (a t the very least) be able t o see the

correspondence between his original program and the restructured program being executed.

This is where fully automatic restructuring compilers have a n advantage, since a correct

compiler will not change a correct program into an incorrect one; this allows (in principle) the

original program t o be debugged independently of the restructuring process. Any time the res-

tructured program is exposed t o the user, this problem creeps up. All of these issues are being

ignored in Tiny for the time being. T o reiterate, our goal is t o concentrate on the restructuring

technology itself, and see where tha t takes us.

Limitations. There are inherent limitations in the approach used in the development of Tiny.

Since we are using "correctness-preserving" transformations, we are purposely disallowing any

transformations which would change the results of the program. Our definition of "correctness-

preserving" is tha t the da t a dependence relations are preserved. Note tha t there are perfectly

valid transformations of a program tha t change the dependence relations, such as replacing a

"sort" by a better one, tha t would be "correct" t o an applications programmer but would not be

allowed in this scheme. This is a basic limitation (some would call i t a weakness) of the pro-

gram transformation approach.

Another limitation is tha t we depend on the computed da t a dependence information t o

test for validity of the transformation. The da ta dependence information is only as precise as

the da t a dependence algorithms, and they each have certain weaknesses.

The most serious weakness of Tiny is tha t i t includes only a fixed set of program transfor-

mations. In the best of worlds, we would like t o have a method tha t would allow a user t o

describe abstractly what sort of transformation he would like t o perform to the program, and

have the tool apply tha t transformation (first, of course, testing the da ta dependence graph for

validity of the transformation). Perhaps the interface would be tha t the user would show a

sample application of his transformation by means of "before" and "after" pictures; the tool

would then have t o decipher what the differences were and try t o apply this change. This is an

avenue for future research, if our basic program restructuring research bears any fruit.

We have found tha t the fixed set of transformations often is too limited for the applica-

tions we want. For instance, when first working through the 6 forms of the Cholesky decomposi-

tion (in the previous section), we knew tha t interchanging non-tightly nested loops would be

important. We did not expect tha t we would need t o align the loop limits t o make them exactly

square or triangular; we ended up adding yet another minor transformation just t o handle tha t

case. We also found tha t loop fusion could be useful, though we haven't implemented i t yet.

For the Gaussian elimination (as shown in the following section), we found tha t we couldn't gen-

erate all six f o r m without index set splitting, another minor transformation which has not been

explored very well. Our worst fear is tha t every non-trivial example we attempt will require yet

another minor transformation.

5. Restructuring Transformations

Here we describe the program restructuring transformations implemented in Tiny. Each

transformation is implemented so tha t the dependence relations (and sometimes other condi-

tions) are tested before program is transformed. Each transformation also modifies the depen-

dence graph directly, rather than requiring Tiny t o recompute the dependence relations. Most

of these transformations are described in more detail in [Wo190].

Interchanging. The most basic restructuring transformation is loop interchanging, a well

known optimization now regularly implemented in commercial compilers for parallel and vector

computers. Its first applications were t o exchange sequential inner loops with vectorizable outer

loops; i t has also proven useful for improving the performance of the memory system. The

dependence test for loop interchanging (based on direction vectors) is well known, and the

modified dependence distance and direction vectors are simple t o derive (by interchanging ele-

ments corresponding t o the loop interchange). If the inner loop limits depend on the outer loop

index, interchanging will modify the loop limits; Tiny allows triangular as well as general tra-

pezoidal loop limits [Wo186a]. Loop interchanging is its own inverse.

We have implemented two variations on loop interchanging in Tiny. The first is the abil-

ity t o interchange non-tightly nested loops. We believe this is the first attempt t o implement

this potentially powerful transformation. The dependence test for interchanging non-tightly

nested loops cannot be performed by simple inspection of the dependence direction or distance

vectors. Each element in a dependence direction or distance vector corresponds t o the sign or

value of the difference of the iteration vector elements involved in a dependence; for instance, if

there is a dependence from iteration (i,, il) to iteration (j l , j l) , the distance vector is the

value of (j l - i l , j1 -il) while the distance vector represents the possible signs of these values.

Normal loop interchanging is illegal if il < j1 and il> j a . When interchanging non-tightly

nested loops, however, we can have dependence from some statement outside the inner loop a t

iteration (il) t o iteration (j l , j,) of some statement within the inner loop. After inter-

changing the loops, the inner loop will be reindexed t o (j 2 , j l) . So, in addition t o the normal

dependence test for interchanging, we must look a t the sign of (j , -il), since this will be the

new dependence distance vector element after interchanging. Since this information is not

encapsulated in the distance or direction vectors, Tiny reconstructs the dependence equation

and finds a new solution in these terms. A minor enhancement t o one of the dependence algo-

rithms in Tiny was necessary t o handle this case. Interchanging of non-tightly nested loops can

also create infeasible dependence cycles, since a loop carried dependence can change t o a loop-

independent dependence (and vice versa). Tiny uses the same algorithm as used in loop distri-

bution t o insure t ha t there are no infeasible cycles and the proper placement of statements after

interchanging.

The second variation is a generalized loop interchanging called loop circulation [Bango].

Loop circulation corresponds t o interchanging one loop outwards (or inwards) multiple times

(over tightly nested loops). One advantage of loop circulation is tha t i t requires only a single

dependence test (so is a little faster). Also we believe tha t loop circulation will prove t o be a

more suitable candidate as a n elementary transformation for automatically directed loop res-

tructuring. The problem with automatic restructuring is t o avoid exhaustive search; exhaustive

search may be required if the tool cannot predict whether a transformation will always be good.

With simple pairwise loop interchanging, a tool may not be able t o tell whether interchanging

two deeply nested loops will produce a better program in the end. With loop circulation, the

tool can attempt t o move the innermost loop all the way outwards in a single step, without

visiting a lot of intermediate steps tha t may not in themselves be improvements in the perfor-

mance.

Skewing. Loop skewing is a simple linear reindexing transformation; skewing is always legal

(no dependence test is required), although it does modify the dependence relations. Simple skew-

ing of a n inner loop with respect t o an outer loop modifies the dependence distance vector ele-

ments corresponding t o the inner loop by adding the distance element corresponding t o the

outer loop. In particular, skewing loops may allow loop interchanging (by changing a (1, -1)

dependence distance vector t o (1 ,O)) or may allow parallelization after interchanging (by

changing a (1.0) dependence distance vector t o (1,l)). Loop skewing can be performed

with any integer factor, and skewing by a negative factor is the inverse of positive skewing.

Reversal. Loop reversal (or negation) is simply running a loop backward. Reversal is legal if

the loop carries no dependence relations. Reversal negates the dependence distance and direc-

tion vector elements for tha t loop, and is its own inverse.

Distribution. Loop distribution is useful when attempting t o interchange non-tightly nested

loops, or t o break a loop with a forward loop-carried dependence relation into two separate

parallel loops [BCK79]. Loop distribution partitions the statements of the loop into strongly-

connected regions (treating inner loops like a single statement) based on the dependence graph

(Tar721. Distribution has little affect on the dependence graph (the distance and direction vec-

tors for dependence relations between statements tha t get distributed into separate loops get

shortened a little); its inverse transformation, loop fusion, is not yet implemented in Tiny.

Parallelization. Simple parallelization corresponds t o finding loops with no loop carried depen-

dence relations and marking them parallel [ACK87]. I t is not a restructuring transformation in

the sense of the previous transformations, but simply a recognition of parallelism in the pro-

gram. Tiny can also attempt parallelization of each loop in the program after each transforma-

tion.

Bumping. As mentioned before, we have implemented a minor transformation tha t aligns the

loop limits of one loop with another, which we call bumping. This is used t o enable interchang-

ing of non-tightly nested loops when the loop limits differ by a constant; i t may also be useful

when attempting loop fusion (see below). We expect tha t Tiny could perform bumping automat-

ically when needed, but we want more experience before making the tests yet more complex.

The following transformations are planned for implementation in the near future:

Fusion. Loop fusion is the inverse of loop distribution. In addition t o requiring the loop limits

t o be identical (or the ability t o align the loop limits), fusion requires another dependence test

tha t is not simply an inspection of the direction vectors or distance vectors. Two loops can be

fused only if all dependence relations from the upper loop t o the lower loop would not change

sense after fusion (would not change into loop-carried dependence relations the other way). The

way t o test for this is t o compute a direction (or distance) vector element for the tebe-fused

loop position, and test for a (>) direction (or negative distance) [Wo189b].

Rotation. Loop rotation is useful for mapping loop algorithms onto distributed memory sys-

tems [Wo189c]. Loop rotation corresponds t o skewing the loop around a torus; given a loop such

as:

for i = 0 to N - 1
for j = 0 to M-1

computation (i , j)
endfor

endfor

the picture below shows a rotated iteration space where Cij corresponds t o computation (i, j) ,
and N=3, M=4.

The transformation changes the program to look like:

for i = 0 to N - 1
for j = 0 to M - 1

computation (i , (j -i) mod M)
endfor

endfor

The dependence test for loop rotation requires recognition and representation of loop-carried

dependence relations tha t correspond t o a reduction operation (such as summation of a vector).

This semantic information has never before been proposed in a data dependence abstraction.

Splitting. We also see the need for index set splitting; this has been proposed in the past as a

way of exposing more parallelism in a loop, where the dependence relations change sense half-

way through the execution of the loop [Ban79]. We see the need for splitting the index set t o

enable other transformations. For instance, if we use Tiny to produce the 6 versions of Gaus-

sian Elimination (without pivoting), i t turns out we get stuck in one place. Suppose the initial

version of Gaussian Elimination is the K I J form:

f o r k = 1 , n d o
f o r i = k+l.n do

a (i , k) = a (i , k) / a (k O k)
f o r j = k + l , n d o

a (i , j) = a (i , j) - a (k , j) * a (i # k)
e n d f o r

e n d f o r
e n d f o r

Using the same type of transformations as with the Cholesky decomposition, we can generate 4

of the other 5 orderings, using the transformation tree:

KIJ distribute I interc? \ interchange I,J

IJK?

interchange K,J 1
JKI

But when we try to go from the IKJ form t o the IKJ form, we are stuck.

fo r i = l + l , n do
fo r k = l ,min(n , i -1) do
a (i , k) = a (i , k) / a (k . k)
for j = k + l , n do
a (i , j) = a (i , j) - a (k , j) * a (i , k)

end f o r
endfor

end f o r

Interchanging l o o p s k and i

The K and J loops cannot be interchanged immediately (due to the same index set problem as

in the Cholesky decomposition), and the K loop cannot be distributed. We should be able t o

simplify the loop limits for K and split the J loop into two loops:

fo r i = 1 , n do
fo r k = lei-1 do
a (i , k) = a (i , k) / a (k , k)
fo r j = k + l , i - 1 do
a (i , j) = a (i , j) - a (k , j) * a (i o k)

endfor
fo r j = i , n do
a (i , j) = a (i , j) - a (k , j) * a (i , k)

endf or
endf or

endf o r

From here we can distribute the K loop and interchange each K with its inner J loop:

f o r i = l , n do
f o r j = 1,i-1 do

f o r k = 1.5-1 do
a (1, j) = a (i, j) -a (k, j) *a (i,k)

end f o r
a(i, j) = a(i,j)/a(j*j)

end f o r
f o r j = i,n do

f o r k = 1,i-1 do
a (i , j) = a(i, j) - a (k , j)*a(i,k)

endf o r
end f o r

endf o r

This example shows tha t the loop restructuring method is general enough t o handle this exam-

ple, but our tool needs more elementary transformations in order t o produce satisfactory results

in nontrivial examples. We don't see the need for implementing the inverse t o index set splitting

(though we could be surprised).

Others. We have reason t o believe tha t other interesting transformations will arise and be

worth consideration. In almost every case, the transformation is one tha t is performed manu-

ally in order to optimize performance for some architecture. We formalize the transformation,

discover or invent dependence conditions t o allow the transformation, and implement it.

6. Summary

The Tiny program is a tool used t o support research into program restructuring. Its

interactive menu-driven interface allows a user t o apply a sequence of loop restructuring

transformations t o a nested loop algorithm. Some new and advanced restructuring transforma-

tions are being implemented in Tiny, and more are planned for the near future. Currently this

research is an end in itself, and details such as code generation are left as a n open question.

The first program restructuring transformation is loop interchanging. When first proposed

as a n automatic optimization, i t was considered expensive and unnecessary in most cases; now it

is regularly included in commercial compilers. In fact i t is not an expensive transformation, and

its effects on the execution of a program reach beyond simple enhancement of the parallelism in

a few programs. For instance, i t can dramatically reduce the bandwidth requirements on the

memory system, and can change memory strides and vector lengths. We believe tha t our

research may identify other transformations tha t should (or should not) be included in program-

ming environments and compilers for advanced architecture computer systems.

References

[AKL81] W. A. Abu-Sufah, D. J . Kuck and D. H. Lawrie, On the Performance Enhancement

of Paging Systems Through Program Analysis and Transformations, IEEE Trans. on

Computers C-SO, 5 (May 1981), 341-356.

[AlK82] J. R. Allen and K. Kennedy, PFC: A Program to Convert Fortran t o Parallel Form,

in Supercomputers: Design and Applications, K. Hwang (ed.), E E E Computer Society

Press, Silver Spring, MD, 1982, 186-203.

[AlK84] J. R. Allen and K. Kennedy, Automatic Loop Interchange, in Proc. of the SIGPLAN

84 Symposium on Compiler Construction, New York, June 1984, 233-246.

[ACK87] R. Allen, D. Callahan and K. Kennedy, Automatic Decomposition of Scientific

Programs for Parallel Execution, in Conf. Record of the 14th Annual ACM Symp. on

Principles of Programming Languages, ACM Press, New York, 1987, 63-76.

J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs to Vector

Form, ACM Transactions on Programming Languages and Systems 9, 4 (October

1987), 491-542.

U. Banerjee, S. Chen, D. J. Kuck and R. A. Towle, Time and Parallel Processor

Bounds for Fortran-Like Loops, IEEE Trans. on Computers C-28, 9 (September

1979), 660-670.

U. Banerjee, Speedup of Ordinary Programs, PhD Thesis, Univ. of Illinois, October

1979. (UMI 80-08967).

U. Banerjee, A Theory of Loop Permutations, in Languages and Compilers for

ParaNel Computing, D. Gelernter, A. Nicolau and D. Padua (ed.), Pitman, London,

1990, 54-74.

D. Gannon, W. Jalby and K. Gallivan, Strategies for Cache and Local Memory

Management by Global Program Transformation, J. Parallel and Distributed

Computing 5, 5 (October 1988), 587-616, Academic Press.

M. B. Gokhale and T . C. Torgerson, The Symbolic Hyperplane Transformation for

Recursively Defined Arrays, in Proc. of Supercomputing 88, IEEE Computer Society

Press, Los Angeles, 1988, 207-214. Orlando, FL, November 14-18, 1988.

D. Knuth, The Art of Computer Programming: Fundamental Algorithms, Addison-

Wesley, Reading, MA, 1973.

L. Lamport, The Hyperplane Method for an Array Computer, in Parallel Processing:

Proc. of the Sagamore Computer Conference, vol. 24, T. Feng (ed.), Springer-Verlag,

Berlin, 1975, 113-131.

P. Lee and Z. M. Kedem, Mapping Nested Loop Algorithms into Multidimensional

Systolic Arrays, IEEE Trans. on Parallel and Distributed Systems 1, 1 (January 1990),

64-76.

D. Loveman, Program Improvement by Source-to-Source Transformation, J. of the

ACM 20, 1 (January 1977), 121-145.

P. B. Schneck, Automatic Recognition of Vector and Parallel Operations in a Higher

Level Language, SIGPLAN Notices 7, 11 (November 1972), 45-52.

R. Tarjan, Depth-First Search and Linear Graph Algorithms, in SIAM J. Comput.,

vol. 1, June. 1972, 146-160.

D. Wedel, Fortran for the Texas Instruments ASC System, SIGPLAN Notices 10, 3

(March 1975), 119-132.

M. Wolfe, Techniques for Improving the Inherent Parallelism in Programs,

UIUCDCS-R-78-929, Univ. of Illinois, July 1978.

M. Wolfe, Optimizing Supercompilers for Supercomputers, Ph.D. Thesis, Univ. of

Illinois UIUCDCS-82-1105, Urbana, IL, October 1982. (UMI 83-03027).

M. Wolfe, Advanced Loop Interchanging, in Proc. of the 1986 Intl Conj. on Parallel

Processing, K. Hwang, S. M. Jacobs and E. E. Swartzlander (ed.), St. Charles, IL,

August 19-22, 1986, 536-543.

M. Wolfe, Loop Skewing: The Wavefront Method Revisited, Intl J. Parallel

Programming 15, 4 (August 1986), 279-294.

M. Wolfe, Iteration Space Tiling for Memory Hierarchies, in Parallel Processing for

Scientific Computing, G. Rodrigue (ed.), Society for Industrial and Applied

Mathematics, Philadelphia PA, 1989, 357-361.

M. Wolfe, Optimizing Supercompilers for Supercomputers, Pitman Publishing,

London, 1989.

M. Wolfe, Loop Rotation, CS/E 89-004, Oregon Graduate Institute, Beaverton OR,

May 1989.

M. Wolfe, Data Dependence and Program Restructuring, Journal of Supercomputing,

1990.

