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The Power Test for Data Dependence 
Abstract 

This paper introduces a da ta  dependence decision algorithm, called the Power Test; the 

Power Test is a combination of Banerjee's Generalized GCD dependence algorithm and the 

Fourier-Motzkin method t o  eliminate variables in a system of inequalities. In addition t o  having 

certain advantages over previous dependence algorithms (such as  increased precision, the ability 

t o  handle multiple subscripts simultaneously, the ability t o  handle complex multiple loop limits, 

and others), i t  can also easily generate dependence direction vector information. This paper 

briefly reviews previous work in da ta  dependence decision algorithms, and describes the Power 

Test. Several examples which motivated the development of this test are examined, including 

those which demonstrate additional power of the Power Test. 



1. Introduction 

Vectorizing and parallelizing compilers are common in the supercomputer and mini- 

supercomputer commercial market; these compilers inspect the patterns of da t a  usage in pro- 

grams, especially array usage in loops, often representing these patterns as  a da t a  dependence 

graph. With this information, compilers can often automatically detect parallelism in loops, or 

report t o  the user specific reasons why a particular loop cannot be executed in parallel. Addi- 

tional performance improvement can be attained by using certain program transformations t o  

take advantage of architectural features, such as improving memory locality t o  take advantage 

of cache memories. In order t o  determine what restructuring transformations are legal, da t a  

dependence tests are devised t o  detect those programs or loops whose semantics will be violated 

by the transformation. General literature on this subject is widely available 

[AlK87,ABC87, BCK79,Ban88, BuC86, G JG87, LY90, WoB87, Wo1891. 

In order t o  allow the most freedom in applying restructuring transformations, a compiler 

needs a precise da ta  dependence test. Much of the theory behind da ta  dependence testing for 

array references in loops can be reduced t o  solving simultaneous diophantine equations. The 

da ta  dependence problem for array references can be stated as: 

Given a set of nested loops surrounding two statements (not necessarily distinct) where 

each statement contains a reference t o  an  array: 

L1: f o r  I1 = el t o  ul do 
L,: f o r  I 2  = C2 t o  u2 do 

. . . 
LC : fo r  I, = Cc t o  uc do 

f o r  = CC+, t o  u , + ~  do 
. . . - 

Lc+dl : f o r  Ic+dl - Cc+dl t o  uc+dl  do 
s1 : A ( f l  ( 1 1 ,  . • - , I,, I c + l p  • • • , I c + d l )  , f a  ( 1 1 ,  I c + d l )  ) 

end f o r  
... 

end f o r  - 
L c + d l + l :  f o r  I c + d l + l  - t c + d l + l  t o  Uc+dl+ l  do ... 

- 
Lc+dl+d l :  f o r  I c + d l + d l  - !c+dl+d2 t o  Uc+dl+d2 do 
sa : A ( 9 1  ( 1 1 ,  . . . , Icr  I c + d l + l ,  . . I c + d l + d l )  r . . , 9 s  ( 1 1  . Ic+dl+d2)  ) 

end f o r  
... 

endf o r  
endf o r  
... 

endf o r  
endfor  

We want t o  determine whether there are values of the loop indices tha t  lie within their limits 

such tha t  the subscript functions are simultaneously equal; i.e., we want t o  determine whether 

there exist integer values: 



such that:  

and 

f, ( T )  = g, (3) Vm 

Additional information may be desired if there is a solution, such as  the dependence dis- 

tance in each dimension (the value of jk-ik for 1<k<c), or a dependence direction in each 

dimension (the sign of the dependence distance). Loops L1 through LC are called the common 

loops. 

A great deal of research has gone into the development of various da ta  dependence deci- 

sion algorithms, which vary in generality, precision and complexity. Most decision algorithms 

require the subscript functions t o  be linear combinations of the loop index variables with known 

constant coefficients. A test in common use is Banerjee's Inequalities [BCK79], which is efficient, 

but tests each subscript independently (reducing precision). The array references can be "linear- 

ized" t o  solve for simultaneous solutions, but this does not always improve precision 

[BCK79,BuC86]. The Lambda test was developed as  another method t o  add simultaneity t o  

Banerjee's Inequalities [Gru9O1LY90]. Banerjee's Inequalities have also been extended t o  provide 

direction vector information [Wo182,Wo189]. Banerjee's Inequalities test for real (not integer) 

solutions of the dependence equation; they have recently been extended t o  handle triangular as  

well a s  rectangular loop limits when the coefficients are known constants [Ban88]. 

Another simple dependence test is the single subscript GCD test. Banerjee has also 

developed a Generalized GCD algorithm which tests multiple subscripts simultaneously. These 

decision algorithms test for integer solutions of the dependence equation, but ignore loop limits. 

The Generalized GCD test can also be trivially extended t o  provide dependence distance infor- 

mation, as shown later in this paper. 

Other methods have been attempted for use as  decision algorithms, but are generally more 

expensive, such as  Shostak's loop residue method [Sho81]. For many purposes, a simple single- 

index-variable test will suffice, applied on one subscript a t  a time. For more advanced restruc- 

turing transformations, however, more precision is necessary. 

The Power Test is a combination of Banerjee's Generalized GCD test with the Fourier- 

Motzkin variable elimination method. Its name is derived from the power and precision of the 

method, and from the fact that  in the worst case i t  can take exponential time (in the number of 

loop index variables). The Power Test finds only integer solutions and considers the loop limits, 



and can handle triangular, trapezoidal and complicated convex loop limits; as  we shall see, i t  is 

imprecise in some cases when the loop limits or other conditions cannot be handled exactly and 

an integer solution occurs "near" the solution space boundary. Since it  is derived from the Gen- 

eralized GCD test, i t  solves for all subscripts simultaneously. 

2. Motivation 

The first motivation behind the development of the Power Test was a challenge from a 

colleague. We have recently been constructing a program restructuring research tool, called 

TINY, which parses a tiny language, builds a da t a  dependence graph, then applies (under 

interactive user control) a series of loop restructuring transformations. Among the transforma- 

tions implemented are loop interchanging [A1K84], loop skewing [Wo186a], loop reversal [Wed751 

and loop distribution [BCK79]. While demonstrating the tool t o  a colleague, he asked if i t  could 

build a precise dependence graph for the following program: 

f o r  I = 1 t o  N do 
f o r  J = I+1 t o  N do 

S,: A ( 1 )  = A ( J )  
end f o r  

end f o r  

In particular, this colleague wanted a precise direction vector in addition t o  the correct da t a  

dependence relations (terminology used here is defined in the following section). The first 

attempt failed t o  find any dependence relations whatever. After fixing several serious bugs in 

the tool, a second attempt found the dependence relations, but with a rather imprecise direction 

vector. Looking a t  the iteration space of this loop: 

J = 2  J=3 J=4 J=5 

we find two da ta  dependence relations: an  obvious da ta  output-dependence relation due t o  the 

reassignment of A ( 1 )  on each iteration of the J loop (for the dependence relation 

S, S'&, ,) S,), and a da ta  anti-dependence relation due t o  the use and subsequent assignment of 

element A  (K) from each iteration S, [I :K-1, K] to  each iteration S, [K, K+1 :N] . The 

dependence relation with precise direction vector is S, F(,,,) S1. Note tha t  there is no fixed 

dependence distance here, though the direction vector (corresponding t o  the sign of the depen- 

dence distance) is precise. Note also tha t  "normalizing" the inner loop would change the shape 



of the iteration space, and would affect the direction vector; we do not normalize loops. 

The second motivation also came during the construction of TINY. One of the restructur- 

ing transformations planned was interchanging of non-tightly-nested loops [Wo189]. In particu- 

lar, we wanted t o  be able t o  generate all 6 versions of the Cholesky decomposition program ( L L ~  

factorization of a symmetric matrix) through loop restructuring; the basic KIJ  form of Cholesky 

decomposition is: 

f o r  K  = 1 t o  N do 
s,: A(K,K)  = s q r t ( A ( K , K ) )  

f o r  I = K + 1  t o  N d o  
S,: A ( 1 , K )  = A ( 1 , K )  / A(K,K) 

for  J = K + 1  t o  I d o  
S3 : A ( 1 , J )  = A ( 1 , J )  - A ( I . K ) * A ( J . K )  

e n d f o r  
e n d f  o r  

e n d f  o r  

The da t a  dependence relations just involving S, for this loop are: 

Note the loop-independent dependence relation from S1 t o  S,, requiring S, t o  lexically precede 

S,; also note t ha t  S, is bound in a dependence cycle with the inner loop, preventing distribu- 

tion of the K  loop. T o  generate the IKJ form requires interchanging the imperfectly-nested K  

and I loops t o  get: 

fo r  I = 1 t o  N do 
fo r  K = 1 t o  1-1 d o  

S, : A ( 1 , K )  = A ( 1 , K )  / A(K,K) 
f o r  J = K + l  t o  I do 

S3 : A ( 1 , J )  = A ( 1 . J )  - A ( I , K ) * A ( J , K )  
e n d  f o r  

e n d f  o r  
S,: A ( 1 , I )  = s q r t ( A ( I , I ) )  

e n d  f o r  

Notice where S1 must be placed in relation t o  the inner loop. The dependence relations involv- 

ing S1 in the restructured loop are now: 

Note the loop independent dependence relations coming into S1, requiring its placement below 



the inner loop. In both versions of the loop, there is no option in the placement of S1 

As explained in [Wo186b, Wo189], the da ta  dependence test for interchanging imperfectly 

nested loops (unlike simple loop interchanging) is not a direction vector test. What  we needed 

was a da ta  dependence test which would (1) tell when a da t a  dependence relation would be 

violated by interchanging imperfectly nested loops and (2) what the direction vectors would be 

after interchanging. 

An additional motivation was t o  be able t o  compute dependence for all subscript equa- 

tions simultaneously, which we found to  be critical in some instances. Yet another motivation 

was the result of the ability t o  interchange loops with trapezoidal limits, as  in: 

f o r  I = 2 t o  N-1 do 
f o r  J = 1+2 t o  I+N-1 do 

the interchanged limits of the inner loop involve maxima and minima: 

f o r  J = 4 t o  2*N-2 
f o r  I = max (2, J-N+1) t o  min (N-1, J-2) do 

In order t o  compute dependence relations in the modified loop as  precisely as  possible, we want 

t o  take advantage of the extra knowledge of the simultaneous constraints of the multiple lower 

and upper loop limits. 

In these examples, existing data  dependence decision algorithms fall short. As i t  turns out, 

Banerjee's Inequalities extended with triangular loop limits [Ban881 will correctly handle the 

first example, but they are harder (or impossible) t o  extend t o  the second case. Also, Banerjee's 

Inequalities handle only a single subscript equation a t  a time, and only a single lower and upper 

loop limit. The method for extending Banerjee's multiple-index-variable dependence test 

[Ban79], boldly (and improperly) called the "Exact Algorithm for Multiple Indices" in [Wo189], 

has been shown not only t o  be imprecise, but is incorrect; all attempts t o  correct i t  made it  even 

more expensive (in time and space) and reduced its claims for precision t o  the point where we 

gave up. So we embarked on the search for a unified dependence decision algorithm tha t  would 

properly handle all these potentially important cases. 

3. Definitions and Terminology 

For the purposes of this paper, we are concerned about da ta  dependence between array 

references in loops; we assume imperative language loop semantics (as in Fortran, C or Pascal). 

For instance, in the loop: 



f o r  I = 2 t o  N-2 do 

S1: A ( 1 )  = B ( I )  
S2: C ( 1 )  = A ( I - 1 )  
SO:  D ( 1 )  = C ( I + 2 )  

end f o r  

the array element assigned t o  A  (i) in iteration I=i of statement S1 is fetched by statement 

S 2  in the second subsequent iteration of the loop. On the other hand, array element C  ( i + 2 )  

fetched by statement S3 is reassigned by statement S 2  in the next iteration of the loop. The 

first case is called a def-use ordering, or a pow-dependence;  for shorthand, we say S, 6 S2. The 

second case is a use-def ordering, called anti-dependence; we write S3 F S2. There can also be 

def-def orderings, called output-dependence. 

Saying S 2  depends on both statements S1 and S 3  means tha t  some iteration of S 2  

depends on some iteration of S1 and some iteration of S3 .  For loop vectorization, this may be 

enough information [AlK87]. For other program transformations, more precise information is 

useful. We use the notation S2 [2] t o  mean the instance of S2 when the loop variable 1=2. If 

instance S2 [j] depends on instance S1 [i] , then the dependence distance is defined t o  be j -i. 

In our example above, the dependence distance for S1 6  S 2  is one, while the dependence dis- 

tance for S 3  F S 2  is two. These definitions would have t o  be modified if the loop increment were 

something other than +I. 

In multiple loops, there is an  independent distance in each loop. Take the program: 

f o r  I1 = 1 t o  N  do 
f o r  I2  = 2 t o  N-1 do 

S1 : A ( I l ,  12)  = B ( I l , 1 2 )  
S 2  : C ( I l ,  12)  = A ( 1 1 - 1 , I z )  

endfor  
endfor  

Here we have one da ta  dependence relation, S1 S S2 .  The distance for the I, loop is one, 

while the distance for the 1, loop is zero. We usually write these distances as  a distance vec-  

t o r ;  here the distance vector would be ( 1 , O )  . We sometimes subscript the dependence relation 

with the distance vector, as  in S1 6(,, ,) S2. 

Sometimes the dependence distance is not constant; rather than finding all possible depen- 

dence distances, we simplify the problem by finding the signs of all possible distances. In the 

program: 

f o r  I1 = 1 t o  N do 
S1: X(I1) = A(I1 )  

f o r  I2  = 1 t o  I,-1 do 
S, : C ( I l /  12) = X(12)  

endf o r  
end f  o r  

the value assigned t o  X ( i , )  in S, [ill  is used in S 2  [jl  , j ,] for every j1 such tha t  i,< j,. 



Note tha t  there is no dependence from S1 [ i l l  t o  S2  [ j  , j when il=jl or when i l >  jl. 

Thus, though the dependence distance varies in magnitude, i t  is always strictly greater than 

zero. We can therefore just save the sign of the distance as  a vector; in this case, we would 

save (+) or S1 S ( + )  S2.  Current notational conventions use <, = and > as  direction vector 

elements (instead of +, 0 and -, respectively). We would then write S1 S ( , )  S2,  meaning tha t  

we have dependence from some S1 [ill  to some S2 [ jl , j2] where i, < jl. a s  the possible 

relations between il and j 

Terminology. In the following sections, bold lower case letters refer t o  row vectors and bold 

upper case letters refer t o  matrices; all vector and matrix entries are integers. Let us assume 

the following: 

1) the loop index variables are  numbered from I, through Ic+dl+d2 

2) there are s subscripts, and the subscript functions are linear combinations of the loop 

index variables with constant coefficients, so tha t  the subscript functions are as  below, for 

For simplicity, we assume tha t  any f,,, or g,,, not defined by the subscript functions 

are equal t o  zero (such as f,,c+dl+l or g,,c+l). A subsequent section will argue how to  

deal with unknown variables in the subscript functions. Thus, each subscript will generate 

one dependence equation: 

or, after renaming: 

where n = c + d l + c + d 2  is the total number of index variables involved, and where h is a 

renaming of these index variables: 

3) the lower and upper limits of the loop index variables are also linear combinations of outer 

loop index variables, with constant coefficients: 



The set of dependence equations with the inequalities induced by the lower and upper limits 

together comprise the dependence system. 

4. Review of t h e  Generalieed GCD Algor i thm 

The Power Test begins with the Generalized GCD algorithm given in [Ban88]; we briefly 

review tha t  algorithm here. It will be important tha t  the subscript functions be linearly 

independent, but  since the Generalized GCD algorithm naturally finds linearly-dependent sub- 

script functions, we need not worry about that .  The Generalized GCD Algorithm star ts  by 

filling a n  nXs coefficient matrix A with the coefficients of the subscript functions. 

a,-1 al,l . . -  
a1.1 at, 2 . a . 
a1.3 a1,3 . - a  

a1,4 a,,, . . - 
. . .  . . .  

The goal is t o  discover whether there is an integer vector h tha t  solves all dependence equations 

simultaneously, M = c ,  (where c has s elements, one for each subscript). The algorithm initial- 

izes a n  n x s  matrix D with A,  and an  nxn unimodular matrix U with the identity matrix. 

These two matrices are stored in one combined nX (n+s)  matrix UD. By a series of elemen- 

tary integer row operations (essentially equivalent t o  Gaussian Elimination adapted for 

integers) the D matrix is reduced t o  upper triangular form. This means tha t  column k of D 

will have zero elements in rows k + l  through n (for l<k<n): 

During this phase, if a diagonal element is found to  be identically zero, then tha t  column (sub- 

script equation) must be a linear combination of previous columns (subscript equations), and can 

be eliminated from further consideration (effectively reducing s by one). Applying the same ele- 

meritary integer row operations t o  the U matrix produces a unimodular matrix with the pro- 

perty t ha t  UA=D. 

If we find an  integer solution t such tha t  tD=c, then h= tU  is a solution t o  the dependence 

equations M = c  (as shown in [Ban88]). After finding U, we can solve for t1 through t, by 



solving tD=c using a simple back-substitution algorithm. 

Example. Take the program: 

f o r  I1 = 1 t o  100 
f o r  Ia = 1 t o  100 

Sl : A(4*11-2*11-1, -11-2*Ia)  = . . . 
S,: ... = A ( 1 1 + 2 * I a + 1 ,  -2*11+1) 

e n d f o r  
e n d f  o r  

The dependence equations t o  be solved are: 

or, rewritten to: 

The dependence matrix M = c  is: 

We augment A with the identity matrix t o  get UD: 

(U comprises the first four columns, D the final two.) After performing the elementary row 

operations t o  reduce D to  an upper triangular matrix, we have: 

We can verify tha t  UA=D. Now we solve tD=c,  

Because D is a n  upper triangular matrix, t3 and t, do not figure into the computation. The 

first equation is -t1=2 or t l = - 2 .  The second equation is 2 t l + t a = 1  or t2=5. 



Since there is a feasible solution, Banerjee's Generalized GCD algorithm stops here and 

assumes dependence. 

5. Extens ion  of  the General iaed GCD Algor i thm 

The Generalized GCD algorithm, like the single-subscript GCD test, tells whether there 

can be any integer solution t o  the dependence equation, ignoring loop limits. However, i t  also 

gives formulae tha t  can be used t o  specify the index variables h l ,  h a ,  ..., h, in terms of the 

"free" variables t,,,, t,,,, ..., t,, derived from the equation h=tU. The first extension t ha t  

we make t o  the Generalized GCD algorithm is t o  find all constant dependence distances by sub- 

tracting corresponding equations. Tha t  is, the dependence distance for loop level k (lsksc) 

can be found by subtracting the equations for ik and j,. Suppose tha t  the ik=hak-,,  and 

jk=hZk;  we subtract the equations by looking at :  

(where U. , ,  is column x of the matrix U). If the dependence distance is fixed, this will have 

non-zero coefficients only for t, through t , ,  which were previously solved. If there are non- 

zero coefficients for any other t,, where v>s, the dependence distance is not constant; 

equivalently, if Us+, :,, ,,-, -Us+, :,, is the zero vector, the dependence distance is constant, 

and can be found from t,:. (U1:., ~ k - ~  -U1 :., zk) . 

This allows a dependence distance vector t o  sometimes be constructed from the U matrix 

and the solutions t o  t,, . . . , t,. The dependence direction vector can also be constructed from 

the signs of the distance vector. Of course, if the dependence distance for any loop exceeds the 

maximum trip count (number of iterations) of that  loop, the references are  independent [A1K87]. 

The Generalized GCD algorithm is more precise than linearizing the array references and using 

a single-equation GCD test [BCK79, BuC861. 

Ezample. Take the program: 

f o r  I, = 1 t o  3 d o  
f o r  I, = 1 t o  3 d o  

X ( I l + I 2 + 1 , I 2 + l )  = . . . . . = x ( I ,+I , ,  I , )  
e n d f o r  

e n d f  o r  

The dependence equations are: 

The dependence matrix M=c is: 



After augmenting this with the identity matrix t o  get UD, and reducing D t o  an  upper triangu- 

lar matrix via elementary row operations, we have 

From this we solve tD=c: 

This produces the equations: 

-t,=-1 

-tl+ta=-1 

which we solve t o  get 

Using the equations t o  derive h from tU we get: 

This generates the equations: 

j i=tl -ta +t4 

The dependence distance vector is computed as  ( j ,  -il , ja-il) , which is: ( t 2 ,  tl -tl) . But 

these are already solved quantities, so the dependence distance is ( 0 , l ) .  



This could also be computed by subtracting column U.,, (which corresponds t o  i l )  from 

column U., (which corresponds t o  j ,), and U., from U., , , t o  get: 

6. The Power Test 

The method from the previous section does nothing for more precision in cases where the 

dependence distance is not fixed in one or more index dimensions. Using Fourier-Motzkin vari- 

able elimination [DaE73,Duf74], the Power Test continues from this point. 

We construct a list of upper and lower bounds on each free variable t,,, through t,. 

For a free variable tk, each lower and upper bound will be a linear combination of t,,,, t,,,, 

..., tk-, .  These give the boundaries t o  the solution space of the dependence equation; if the 

solution space is non-empty, then the dependence equation has solutions t ha t  satisfy all the con- 

ditions. For instance, each lower bound for tk will be of the form: 

with lb,>O. Since we are dealing with integers, we can take the ceiling of lower bounds (or the 

floor of upper bounds): 

and similarly for upper bounds. These bounds are  derived from the constraints on the index 

variables, such as  the loop limits. For instance, if the lower limit on index variable h, is 1, we 

have the inequality h,>l. From this we replace h, by its equivalent in terms of the free vari- 

ables: tU., ,21.  This inequality generates a bound for the highest numbered free variable 

which has a non-zero coefficient. It will correspond to  a lower bound if tha t  non-zero coefficient 

is positive, or  a upper bound if the coefficient is negative. 

The ceiling or  floor operators are a source of precision if they can be used t o  advantage; in 

the lower bound above, if lbk divides all of lb,,, through 1bk-, exactly, then the bound can 

be reduced to: 

where all the divisions, including lbo/lbk can be computed by the compiler. This gives a I 1  
more precise bound: 



where lb; is equal t o  one. If the divisions are  not exact, then the ceiling or floor operators will 

be a source of imprecision, since the Power Test will essentially ignore them to  remain in the 

realm of integer computation. The method used t o  handle inexact division, equivalent t o  LP- 

relaxation, essentially solves the linear programming problem rather than the integer program- 

ming problem by enlarging the solution space t o  potentially include some integer points near the 

boundaries. In particular, this method may include some integer points in an  otherwise empty 

solution space. A slightly more general method t o  find a more precise bound would be t o  find 

the GCD of lb,+l, lb,+2, ..., lb,-, and lb,, (let g be the name of this GCD); then make the 

following substitutions: 

Ezample. Take the program: 

for I1 = 1 t o  100 
f o r  I 2  = 11+1 t o  100 

X ( 1 1 , 1 2 )  = ' ' ' . . .  = X ( 1 2 , I l )  
end f o r  

end f or  

The dependence equations are: 

The dependence matrix hA=c is: 

The Generalized GCD algorithm gives the matrix: 

Solving tD = c we get t l = O ,  t2=0 From these solutions and h = tU we get: 



The dependence distance is not constant. 

From the lower limit for I,, we have the inequality i121 from which we derive 

t3 2 1 

Likewise, from j121 we derive 

t4 2 1 

From the lower limit for I we have i72i1 +1 and j 22 j +1 from which we derive 

t4 > t3+l 
and 

t3 2 t4+l 

Note tha t  we will adjust this last inequality t o  create an upper bound for t4: 

t4 5 t3-1 

After adding the inequalities for the upper limit expressions, we have the following lower and 

upper bounds for each free variable: 

1 2 t3 < 100 

Given a list of lower and upper bounds for each free variable, the Power Test visits each 

free variable (from t, down to  t,,,) comparing each lower bound to  each upper bound. Each 

comparison will be of the form: 

from which we can derive: 

(lbk~bo-~bklbo) + (lbk~b1-Ubklbl) tl+ ' . + (lbk~bk-l-~bklbk-l) tk-i>O 

We assume tha t  the floor and ceiling operators have already been handled as  discussed above, if 

possible reducing the magnitude of lb, and ub, t o  one. If lb, and ubk are both one, there is 

no loss of precision here; if either is greater than one, there is a potential loss of precision, which 



may result in finding a solution when in fact there is none. If any of the coefficients are non- 

zero, this will derive another lower or upper limit on another lower-numbered free variable. If 

all the coefficients are zero, then we have the simple inequality: 

lbkub0 -ubk l b o > _ O  

If this inequality is not satisfied (if the left hand side is in fact negative), then there is no solu- 

tion t o  the dependence system, and thus no dependence. 

Example. In the previous example, when we compare each lower bound t o  each upper 

bound for t , ,  we eventually compare 

t3+l < t4 < t3-1 

from which we derive the inequality: 

t,+l _< to-1, or 15-1 

which is clearly inconsistent; thus, this system of equations and limits has no solution, and the 

two references a re  independent. 

Direction Vectors. The Power Test can also be extended t o  test for particular direction vec- 

tors. Each direction vector element being tested corresponds simply t o  another inequality which 

derives a lower or upper bound on one of the free variables. Suppose for instance we are testing 

for a (<) in position k of the direction vector, and tha t  ik=hlk-l and jk=hlk. The (<) 

direction means we want t o  test for dependence when i k < j k ,  or h2k..l<h2k, Or h2k-h2k-l>0, 

or hlk-h2k-l>l.  We then replace the index variables by their formula in terms of the free 

variables: 

This will again derive either a lower or upper bound on one of the free variables, or will produce 

a simple constant inequality which can be tested for consistency. 

Example. Study again one of the examples in the motivation: 

f o r  I1 = 1 t o  N d o  
f o r  I l  = 11+1 t o  N d o  

A(11) = AU2)  
end f o r  

endf o r  

The dependence equation is: 

so the dependence matrix M=c is: 



The Generalized GCD test produces: 

Solving tD=c gives tl=O, so tha t  multiplying out h=tU gives: 

From the loop limits we derive the lower and upper bounds on the free variables. For instance, 

from iz2il+l we get t 4 2 t z ,  while j z> j l+ l  derives t z > t 3 + 1 ,  or equivalently, t3<t,-1. 

In this way we find the following bounds on the free variables: 

With just the constraints implied by the loop limits, the system is still consistent. Now suppose 

we want t o  test for a particular dependence direction, such as  the (<) direction in the first 

dimension. From i, < j , we derive the additional bound: 

This is inconsistent with one of the previous bounds, so there can be no dependence with a (<) 

direction in the first dimension. Likewise, if we test for a (<) direction in the second dimen- 

sion, meaning iz < j we derive the additional bound: 

which again is inconsistent with the lower bounds for t4. Continuing in this way, we find tha t  

the only consistent direction vector is (>, >) , which means tha t  i l >  jl and i z >  j z .  This 

corresponds t o  a (<,<) direction for the negative of the dependence equation, which 



corresponds t o  an  anti-dependence [Wo189]. Thus, the Power Test correctly identifies the anti- 

dependence with the precise direction vector. 

7. The Power of the Power Test 

The previous section showed how the Power Test handled the first example from the 

motivation section. Let us see how the other examples are handled. 

Multiple Loop Limits. As mentioned earlier, some program transformations generate multiple 

lower or  upper limits. As a case in point, take the Gaussian Elimination program: 

f o r  I 1  = 1 t o  N d o  
f o r  I 2  = 11+1  t o  N d o  

S, : A ( 1 2 , I l )  = A ( I 2 #  11) / A ( I l * I l )  
f o r  I 3  = 1 1 + 1  t o  N d o  

S2 : A ( 1 2 ,  1 3 )  = A ( 1 2 ,  13)  - A ( 1 1 , 1 3 )  * A ( 1 2 ,  11) 
e n d f  o r  

e n d f  o r  
e n d f o r  

Using advanced program restructuring techniques, we can reindex this t o  the following loop 

structure: 

f o r  1, = 1 t o  N do 
f o r  I 2  = 2 t o  N d o  

f o r  I 3  = 1 t o  m i n ( 1 , - 1 ,  1 2 - 1 )  d o  
s2: A ( I 2 , I l )  = A ( I 2 , I l )  -A(13 ,11)  *A(I2 ,  13) 

e n d f  o r  
e n d  f o r  
f o r  I 4  = 11+1  t o  N d o  

s1 : A(14 ,11)  = A(14#  I I ) / ~ ( I ~ ,  I l l  
e n d  f o r  

end f o r  

In this case, t o  test for dependence between S, : A  ( I 4 ,  11)  and S, : A  ( I 2 ,  1 3 ) ,  we have t o  

somehow deal with the upper limit of the i3 loop, which is the minimum of two simple expres- 

sions. We shall see tha t  the Power Test handles this case effectively. 

The dependence equations are: 

The dependence matrix M = c  is: 



The Generalized GCD test returns the matrices: 

From the equation tD=c, we solve for t l = t 2 = O ;  the index variables are then defined as: 

j 3  = t 3  

Enforcing the lower and upper limits for each of the five index variables derives the following 

limits on the free variables: 

In particular, the upper limit of i3 derives two bounds: 

j3 5 j,-1 derives t 3 + 1  5 t5 

j, 5 j,-1 derives t 3 + l  5 t4 

When testing for a (2) direction in the i, loop, we add the inequality i, 2 j, which derives 

which generates the inconsistency 



The Power Test correctly decides tha t  this dependence has only the (<) direction vector. 

Non-Direction Vector Constraints. In the example above we skipped over the restructuring 

necessary t o  change one form of the Gaussian Elimination into the other. The series of steps is 

a s  follows: s ta r t  with the normal KIJ form: 

f o r  K = 1 t o  N do 
f o r  I = K+1 t o  N do 

S1 : A(1,K) = A(1,K) / A(K,K) 
f o r  J = K+l t o  N do 

S1 : A(1.J) = A(1.J) - A(K.J)*A(I,K) 
endf o r  

endfor  
endf o r  

We s ta r t  by distributing the I loop. Loop distribution is legal if there are no dependence 

cycles; the only dependence cycle here is carried by the outer loop, so the 1 loop can be distri- 

buted: 

f o r  K = 1 t o  N do 
f o r  I = K+l t o  N do 

S1 : A(1,K) = A(I.K)/A(K,K) 
end f  o r  
f o r  I = K+l t o  N do 

f o r  J = K+l t o  N do 
S2 : A(1,J) = A(1,J)-A(K,J)*A(I,K) 

end f  o r  
end f o r  

endfor  

Next we interchange the tightly nested 1 and J loops. The dependence test for loop inter- 

changing is t ha t  there must be no dependence relations with (<, >) direction vectors in the 

loops being interchanged; this condition is satisfied here, so interchanging is legal: 

f o r  K = 1 t o  N do 
f o r  I = K+1 t o  N do 

S, : A(1,K) = A(I.K)/A(K,K) 
end f  o r  
f o r  J = K+l t o  N do 

f o r  I = K+l t o  N do 
S, : A(1,J) = A(1.J)-A(K,J)*A(I,K) 

end f  o r  
endfor  

endfor  

The next step involves interchanging the J and K loops. Note tha t  these loops are not tightly 

nested, and distribution of the K loop is not legal. We want t o  interchange these loops directly. 

Let us reindex the loops as: 



f o r  I l  = 1 t o  N d o  
f o r  I 2  = 1 1 + 1  t o  N do 

S1 : A ( 1 2 ,  11) = ~ ( 1 2 ,  I i ) / A ( I i ~ I l )  
e n d f  o r  
f o r  I 3  = 1 1 + 1  t o  N do 

f o r  I4 = 11+1  t o  N do 

s2 : A ( I ~ ,  I ~ )  = A ( I ~ ,  I J )  - A ( I ~ , I J )  * A ( I 4 < 1 1 )  
endf  o r  

e n d f o r  
e n d f  o r  

One condition that  must be satisfied for legal interchanging is that there must be no dependence 

relation from iteration ( jl , j j 4 )  of S1 to  iteration ( i l  , i l )  of S1 such that j l < i l  and 

j 3 > i l  [Wo189]. Let us inspect the dependence between S  : ( 1  I )  and Sl : A ( I 2 , I l ) .  

The dependence matrix M = c  is: 

The Generalized GCD test ends with: 

The equation tD=c results in t l = O  and tl=O, so we have 

The loop limits bounds the free variables as follows: 



I t  is easy t o  see tha t  testing for jlril would add the constraint t , > t 3 ,  which is inconsistent. 

Thus, j, must be less than i l ;  this corresponds t o  the dependence Sa F(,) S1. Also, if we add 

the constraint j 3 > i l  we get the inconsistency t 3 > t 3 ,  SO this dependence does not prevent 

interchanging. Moreover, after interchanging, the loops around S2  will be reordered t o  

( j 3 ,  j l ,  j4) ; thus after interchanging, the direction vector should be the sign of the difference 

i,- j,. It is easy t o  realize tha t  this is t 3 - t 3 = 0 .  Thus, the Power Test is easily extended to 

perform non-direction-vector tests. 

Handling Equal Directions. Special handling of the (=) direction is needed for the Power 

Test t o  be precise. Take the example a t  the end of section 4. Tha t  example ended with the 

equation tD=c: 

from which we computed t l = - 2  and t,=5. From the equation j=tU we get: 

from which we compute 

i, = - 2 t 3 + 5  

jl = - 8 t 3 - 2 t 4 + 1 8  

i2 = - 7 t 3 - 2 t 4 + 1 5  

ja = 7 t 3 + 3 t 4 - 1 5  

The loop limits give the bounds: 



The limits for t, can be simplified to: 

Suppose we now want t o  test for the (=) direction in the first dimension, so we want t o  test for 

dependence under the condition i l=jl .  Since the Power Test deals with inequalities, one way 

to  test for a n  (=) direction is with two inequalities il< jl and jl<il. These two inequali- 

ties give rise t o  the bounds: 

which can be simplified to: 

It is immediately obvious tha t  these bounds are inconsistent, so there is no dependence with a n  

(=) direction for tha t  loop. Using this approach for the second loop, we would have the ine- 

qualities: 

from which the floor and ceiling operators cannot be trivially eliminated. The Power Test 

would then ignore them, giving rise t o  potential imprecision. 

Another way t o  test for the (=) direction is t o  set i = j ,  and solve for one of the free 

variables; in the first case, il= j l ,  we get: 

By the GCD test, the GCD(6,2) must divide 13 for an  integer solution; since i t  does not, there 

can be no dependence with an  (=) direction here. In the second loop, ia=ja,  we get: 

Here the GCD test gives no information. Instead, we scale the bounds of t, by a factor of 5 



and replace 5t4 by its equivalent expression: 

From this system of inequalities we can derive other bounds on t3, such as  t 3 2 - 3 9  from 

- 2 0 t 3 - 2 0 5 5 - 1 4 t 3 + 3 0 .  

A third (expensive) method t o  handle an  (=) direction is t o  build a reduced set of depen- 

dence equations using the equality ia=ja: 

with the dependence matrix M=c: 

The Generalized GCD algorithm would give the result UD: 

Solving tD=c results in the assignments: 

The bounds on t3 are: 

which simplifies t o  - l < t 3 < 6 .  Indeed, when t3=-l we have S1 [S, 33 6 S a  [6 ,3 ]  for array 

element A(13 ,  - 1 1 ) ,  and when t 3 = 6  we have S1 [75 ,52 ]  6 Sa [go, 521 for array element 

A (195 ,  - 1 7 9 ) .  This is related t o  the technique of taking advantage of the equal direction for 

the standard GCD test, a s  shown in [AlK87]. 

Handling Unknown Variables. Unknown variables occur in some subscript functions or in 

loop limits. The Power Test can handle many of these cases naturally by treating the unknown 

variables as  additional index variables which have no limits. For instance, suppose we are 



computing dependence in the program: 

f o r  I1 = 1 t o  100 
f o r  I2  = 1 t o  N 

Sl : A ( I l 1 )  = ' ' 

end f  o r  
f o r  I 3  = N + 1  t o  100 

S, : . . .  = A ( I 1 , 1 3 )  
end f o r  

end f  o r  

Rather than ignoring the information in the loop limits where unknown variables occur, or 

treating this as a special case, we can t reat  the unknown variable N as  a n  additional index 

variable and build the dependence system. The dependence equations, in matrix form, are: 

The Generalized GCD returns with UD: 

and ends up with the equations: 

Since the value of N is unknown, there is no bound on t 3 ;  the bounds of the other free vari- 

ables are: 

The bounds for t, are inconsistent, so the Power Test, without any special handling of this 

case, correctly detects independence. 

Another example of where this applies would be a program such as: 



f o r  I = 1 t o  N 
A(1 )  = ' ' ' . . .  = A(I+N) 

e n d f  o r  

which generates the dependence matrix: 

The Generalized GCD produces UD: 

and the equations: 

The loop limits for il are 1 5 il 5 n, which produce 1 5 t2 +t3 5 t 2 ,  or 

while the loop limits for j produce 

which are  clearly inconsistent; thus the two references are independent. Again, the Power Test 

handles this without resorting t o  special case analysis. 

Another important case arises when some unknown variable other than a loop limit 

appears in a subscript function: 

f o r  I = 1 t o  N 
A(1)  = " ' . . . = A(I+INC) 

e n d  f o r  

Depending on the sign of INC, this could correspond t o  a flow or an anti-dependence. Some 

parallelizing compilers now accept assertions about the sign of INC, such as  

assert r e l a t i o n  ( INC > 0 ) 

The Power Test, by treating INC as another index variable and adding the assertion t o  the sys- 

tem of inequalities, will naturally handle this case. 

Not all unknown variables can be handled by this method; when an  index variable is mul- 

tiplied by some unknown value, treating the unknown value as another index variable will make 

the subscript function appear nonlinear: 



f o r  I  = 1 t o  N 
A ( 1 )  = " ' . . .  = A(INC*I)  

endf o r  

This is also true when the loop increment value is unknown; in fact, if the loop limits and incre- 

ment are all unknown values, then the compiler can't even tell if the loop counts up or down 

(for some languages), so any dependence test (including the Power Test) is severely limited. 

8. Comparison with Other Methods 

There exists a large body of work in the field of dependence tests. These tests may be 

categorized based on their precision and on whether they test multiple subscripts simultane- 

ously. Here we compare the Power Test with several single subscript exact tests, as  well as  two 

multi-dimensional tests, the Lambda test and the Constraint Matrix test. 

8.1. Single Subscript Exact Tests 

Since testing linear subscripts for dependence is equivalent t o  finding simultaneous integer 

solutions within loop limits, one approach is t o  employ integer programming techniques such as 

[DaE73,Fea88]. There are even integer programming algorithms based on Fourier-Motzkin elim- 

ination [Wi176,Wi183]. Unfortunately, these tests are expensive since integer programming is 

NP-complete [Coo71]. 

In the realm of exact dependence tests, there is a Single Index Variable exact test for sim- 

ple subscripts with the same index variable in each reference [Ban79,Wo182]. Work has also 

been done towards proving exactness conditions for Banerjee's Inequalities. Banerjee showed 

tha t  his inequalities are exact if the coefficients of the index variables are all 1, 0, or -1 [Ban76]. 

Li e t  a1 recently showed tha t  the Banerjee's Inequalities are exact if the coefficient of one index 

variable is +1 or  -1, and the magnitudes of all other coefficients are less than the range (deter- 

mined by the loop limits) for tha t  index variable [LY90]. Klappholz et  a1 proved tha t  the 

Banerjee's Inequalities are  exact if and only if the coefficient of one index variable is +1 or -1, 

and there exists a permutation of the remaining index variables such tha t  (loosely stated) the 

coefficient of each index variable is less than the sum of the products of the coefficients and 

ranges for all the previous index variables [I(KPSOa]. 

The I Test is a new single subscript test for dependence testing based on refining a combi- 

nation of the GCD and Banerjee tests [KKPSOb]. It is better able t o  detect the lack of integer 

solutions in more cases than simply applying both the GCD and Banerjee tests, and can usually 

prove the existence of integer solutions. 



When comparing the Power Test with these tests, we note tha t  the Power Test totally 

subsumes the Single Index Variable exact test. In addition, we believe tha t  i t  will always be as  

precise as  any combination of GCD or Banerjee tests. The Power Test handles complex loop lim- 

its, as  well a s  multiple dimensions simultaneously. Since exactness conditions for Banerjee's Ine- 

qualities have not been proven for complex loop limits, and in general cannot be extended t o  

multiple subscripts, the Power Test can be considered t o  be more precise than these tests. How- 

ever, for the sake of efficiency i t  is desirable t o  employ simpler tests where they are known to  be 

exact. 

8.2. Lambda Test 

The Lambda test is introduced in [LY90]. Its precision is equivalent t o  a multi- 

dimensional version of Banerjee's Inequalities, since it  checks for simultaneous real-valued solu- 

tions for all subscripts within the loop limits. Like Banerjee's Inequalities, i t  can also be used t o  

test for direction vectors. The Lambda test is applied t o  "coupled subscripts", which are groups 

of subscript sharing identical index variables. The test proceeds by selectively forming linear 

combinations of these subscripts and testing the result. The linear combinations selected are  

exactly those which eliminate one or more instances of index variables. The authors prove t ha t  

when all such combinations have been generated and tested with Banerjee's Inequalities, real- 

valued solutions exist if and only if they exist in in all the linear combinations tested. 

We can enhance the precision of the Lambda test for detecting independence quite simply 

as  follows. When testing each linear combination, the Lambda test uses Banerjee's Inequalities. 

However, where the exactness condition for Banerjee's Inequalities do not hold, we may apply 

the GCD or Single Index Variable tests as appropriate. This will allow us t o  improve the ability 

of the Lambda test t o  detect some cases where no integer solutions exist within the loop limits, 

even though real valued solutions do. 

Unfortunately, there is no obvious method t o  enhance the Lambda test t o  prove the 

existence of simultaneous integer solutions. The Lambda test is not exact even when exact sin- 

gle subscript tests may be applied t o  all linear combinations generated, since the presence of 

constrained integer solutions in all linear combinations does not guarantee simultaneous con- 

strained integer solutions. For two coupled subscripts, Li e t  a1 were able t o  prove tha t  the 

Lambda test is exact if unconstrained integer solutions exist and the coefficients of index vari- 

ables are all +1, 0 or -1. Even with these restrictions, they showed tha t  the Lambda test is not 

always exact for three or more coupled subscripts [LY90]. 

Precision Comparison. When compared with the Power Test, we show tha t  the Power Test 

will detect independence whenever the Lambda test does, even with our suggested 



enhancements. First of all, the Power Test is just a s  precise in detecting the presence of simul- 

taneous real-valued solutions, since it  solves the linear programming problem exactly. As the 

Power Test subsumes the Generalized GCD test, i t  will also capture all the cases where apply- 

ing the GCD test detects the lack of unconstrained integer solutions. Finally, the ability of the 

Power Test t o  create a dense solution space guarantees tha t  i t  succeeds in all the cases where 

applying the Single Index Variable test would show independence in the Lambda test. 

On the other hand, we can show tha t  the the Power Test will be able t o  detect the lack of 

simultaneous integer solutions where the Lambda test cannot, even when the Power Test cannot 

apply exact floor and ceiling operators. We show an example where the Power Test is more pre- 

cise than the Lambda test: 

f o r  I ,  = 1 t o  100 do 
f o r  I 2  = 1 t o  100 do 

A(3*11 + 2*12, 2*12) = A(I1 - I 2  + 6 ,  I1 + 12) 
end  f or  

endf  o r  

The dependence equations are: 

The linear combinations (set of canonical solutions) tha t  the Lambda test would generate are as  

follows: 

Combination equation eliminates dependence equation 

In all cases the GCD test fails t o  detect independence since the GCD of the coefficients is one. 

Banerjee's inequalities applied t o  the three combinations give rise t o  the comparisons: 

For all three combinations, Banerjee's show that  real-valued solutions exist with the loop limits. 

Since the GCD test and Banerjee's inequalities fail for all three combinations, the Lambda test 

would assume dependence. 

In comparison, when we apply the Power Test, we get the dependence matrix hA = c: 



The Generalized GCD test returns the matrices: 

From the equation tD = c we solve for tl = t3 = 6; the index variables are  then defined as: 

j3 =3t3 - 6 

Examining just the lower limits for each of the four index variables derives the following limits 

on the free variables: 

Examining the bounds for t3, we see tha t  

which derives the inconsistent condition - 2  < t3 < -3 ,  proving tha t  no simultaneous integer 

solutions exist. In fact, the Power Test would have detected independence even if the loop 

upper limits were unknown symbolic expressions, since it  only needed t o  use the loop lower lim- 

its. 

Limitations. The Lambda test assumes tha t  no subscript tested can be formed by a linear 

combination of other subscripts. This requires first performing Gaussian elimination t o  detect 

redundant subscripts. The Power Test doesn't assume independence between subscripts; depen- 

dent subscripts are eliminated during the Generalized GCD test. 

Both the Lambda test and the Power Test may be used to  calculate full direction vectors, 

though there is no discussion in the literature on how the Lambda test may be used t o  generate 

distance vectors. 

Since i t  is based on Banerjee's inequalities, the Lambda test is unable t o  handle complex 

loop limits tha t  use min and max functions tha t  may be introduced by advanced loop 



interchanging. In addition, the precision of the Lambda test for simple triangular or trapezoidal 

loops has not been discussed in the literature. We show with a n  example tha t  the Lambda test 

is less precise than the Power Test for non-rectangular loops. In the following triangular loop, 

the Lambda test cannot detect tha t  there is no dependence (because there is only one iteration 

of the I, loop when I1 = 100). 

f o r  I1 = 1 t o  100 do 
f o r  1, = I1 t o  100 do 

A(I1 ,  I , + 1 )  = A ( 1 0 0 ,  I,) 
endfor  

endf o r  

First of all, the Lambda test may not even consider the two subscripts t o  be coupled, since there 

are  no shared index variables. Even if i t  was applied, there is no way for the Lambda test t o  

propagate the constraint on I, from the first subscript into the bounds for I, in the second 

subscript. This example also shows tha t  detecting simultaneous solutions depends on more than 

just coupled subscript functions for non-rectangular loops. 

Complexity Comparison. As with the Power Test, the Lambda test is a n  exponential cost 

algorithm for the general case. The expensive part  of the test is in the number of linear combi- 

nations formed. Given tha t  there are n index variables and s subscripts, there are up t o  

possible linear combinations which must be created and tested. This clearly grows 

exponentially with respect t o  the number of index variables in general. However, if the number 

of subscripts is kept low, the Lambda test is quite efficient. For instance, with only two coupled 

subscripts, the number of linear combinations t o  be tested grows only linearly with the number 

of index variables. The cost of the Lambda test grows much faster with respect t o  the number 

of subscripts (up t o  n/2 subscripts) 

In comparison, the expensive part  of the Power Test is in checking the convex hull through 

Fourier-Motzkin elimination. The cost of this step is exponential with respect t o  the number of 

index variables, but actually decreases with respect t o  the number of subscripts. If efficiency was 

the only factor t o  be considered, i t  seems tha t  the Power Test would be preferable for references 

with large numbers of subscripts and few index variables. 

8.3. Constraint Matrix Test 

The Constraint Matrix test is a modified simplex algorithm for solving integer program- 

ming problems, presented in [Wa188]. Instead of first parameterizing the system and then check- 

ing the consistency of the loop limits as  in the Power Test, the algorithm introduces slack vari- 

ables for each constraint and adds them to  the system. The Constraint Matrix test then itera- 

tively reduces rows in the system using a reduction row pivot method, until the test either 



converges or detects the lack of solutions. Since cycling may result for degenerate cases, the 

Constraint Matrix test also halts after a fixed number of iterations and conservatively assumes 

dependence. 

Limitations. Like the Lambda test, the Constraint Matrix algorithm requires tha t  all sub- 

scripts be independent. Gaussian elimination must thus be performed as  a preliminary step. 

Although not directly stated in [Wa188], the Constraint Matrix test may compute full direction 

vectors by introducing new slack variables for each direction. This requires t ha t  the test be 

applied from scratch for each direction vector tested. The Constraint Matrix test does not com- 

pute distance vectors. [Walt381 also does not mention complex loop limits, but the same tech- 

niques we present for the Power Test may be applied t o  the Constraint Matrix test as  well. 

Comparison. The Constraint Matrix test is a multi-dimensional test, and is guaranteed t o  

detect the lack of simultaneous real-valued solutions (when cycling does not occur). However, i t  

is not an  exact test, and it  is not even clear tha t  i t  matches the ability of the Generalized GCD 

test t o  detect simultaneous unconstrained integer solutions. In addition, the inability of the 

Constraint Matrix Test t o  detect cycling forces it  t o  impose an  arbitrary limit on the number of 

iterations allowed. This has an  unknown impact on the precision of the test, and makes i t  

difficult t o  compare the Constraint Matrix test with the Power Test, especially in its ability t o  

detect the lack of simultaneous integer solutions. 

Since the Constraint Matrix is based on the simplex algorithm, i t  also has worst case 

exponential complexity. For most real linear programming problems, simplex algorithms tend t o  

have near linear time complexity, and cycling is rare. However, [Sch86] states tha t  for combina- 

torial problems, where coefficients tend t o  be 1, 0, or -1, the simplex algorithm is slow and tends 

t o  cycle for certain pivot rules. 

At  this point, more studies are required t o  characterize the behavior of the the dependence 

tests we have examined. In the end, since the actual number of both index variables and sub- 

scripts is likely t o  be small, only experimental results will indicate which test is more efficient. 

9. Proof of the Power Test 

This section proves two important theorems about the Power Test. First, we prove tha t  

the Power Test is conservative; tha t  is, the Power Test will never claim independence if there 

are simultaneous integer solutions tha t  satisfy the constraints of the dependence system. 

Second, we prove tha t  in many well-defined cases, the Power Test is exact; tha t  is, in many 

cases i t  will claim a solution to  the dependence system only if i t  can prove tha t  there are 



simultaneous integer solutions tha t  satisfy the constraints. Moreover, i t  has a simple mechan- 

ism t o  distinguish when i t  is precise and when it  is not. 

We distinguish two sources of imprecision; in the first case, the dependence system itself 

may not be a precise characterization of the data  dependence problem. If the subscript func- 

tions are not linear combinations of the index variables, then the dependence system cannot be 

built; a compiler using the Power Test may assume dependence in these cases even when the 

references are independent. Unknown variables, in loop limits or in the subscript functions, can 

also cause imprecision, a s  in the case: 

f o r  I = 1 t o  N d o  
f o r  J = M t o  100 d o  

A ( 1 . J )  = A ( J , I )  
e n d f  o r  

e n d  f  o r  

The relative values of M and N, will determine whether references are or are not dependent. 

Since the dependence system cannot characterise the relative values, the system will be impre- 

cise; the Power Test (or any other solution method for the dependence system) will assume 

dependence even if they are in fact independent. Some compilers use special case analysis t o  

generate code tha t  detects a t  run time whether there is or is not a dependence relation [BDH87], 

and execute different code if there is not. Although the dependence system may be imprecise, i t  

is always conservative; tha t  is, if there is an  actual solution t o  the da t a  dependence problem, 

tha t  solution will also appear as  a solution t o  the dependence system. The dependence system 

may be imprecise in tha t  a solution t o  the dependence system may not correspond t o  an  actual 

solution t o  the da t a  dependence problem, as  shown above. In this section, we show tha t  the 

Power Test will always conservatively solve the dependence system, and will sometimes exactly 

solve the system. We recognize tha t  the dependence system itself may be imprecise, but tha t  is 

beyond the scope of this work. 

In the Power Test, a second source of imprecision occurs when the floor o r  ceiling opera- 

tors are ignored t o  solve the system of inequalities. This imprecision arises from trying t o  solve 

an  integer system of inequalities with the Fourier-Motzkin method for linear programming. 

However, i t  is also easy for the Power Test t o  detect when a floor or ceiling operator has been 

ignored; when a tool using the Power Test reports t o  the user the presence of a parallelism- 

restricting dependence relation, the tool can also tell the user how confident i t  is tha t  the depen- 

dence actually exists. 

Banerjee's Generalized GCD Algorithm starts by filling an  n x s  coefficient matrix A with 

the coefficients of the subscript functions. The goal is t o  find whether there is an  integer vector 

tha t  solves the dependence system, M=c.  The algorithm finds an  n x s  upper triangular matrix 

D and a nXn unimodular matrix U tha t  satisfy UA=D. If an  integer vector t can be found 



such tha t  tD=c,  then h=tU is a solution t o  the dependence system. Banerjee proved this algo- 

rithm correct. Solving tD=c actually solves for tl through t , ,  leaving only t,+l through t, 

as  free variables; if there is no integer solution t o  tD=c, then there is no integer solution t o  the 

original dependence equations, regardless of the loop limits. If there is a solution, then there is 

a n  integer solution somewhere, but i t  may or may not be within the loop limits. All integer 

solutions t o  the dependence equations can be enumerated by letting the free variables 

t,+,, . . . , t, range through the integers (any integer value of the free variables derives a solu- 

tion t o  the dependence equations). 

Multiplying h=tU gives h in terms of t. These can be substituted into the loop limit and 

direction vector inequalities t o  get inequalities relating the free variables. In the Power Test, 

we rearrange each inequality t o  be an  upper or lower bound on the highest numbered free vari- 

able with a non-zero coefficient. This gives us potentially a list of upper and lower bounds for 

for free variable t,+l through t,. Each upper and lower bound will be expressed as  a linear 

combination of lower-numbered free variables. For instance, each lower bound for t, will be of 

the form: 

lbk,x,ktk 2 ~ b k , x , O ~ l b k , x , ~ + l t ~ + l ~  ' . +lbk,x,k-ltk-1 ( I )  

and each upper bound of the form: 

The first subscript of each l b  or ub coefficient is the free variable for which this is a bound, 

the last subscript is the free variable for which this is a coefficient, and the middle subscript x 

ranges over the number of lower bounds (and y over the number of upper bounds) for t k .  Note 

tha t  1bk,,,,>O and ub,,,,,>O, by construction. 

These bounds express the boundaries of the solution space of the dependence system in 

(n-s)-space exactly; tha t  is, if there are any integer points in the (n-s)-dimensional convex 

region bounded by these inequalities, those integer points are values of the free variables tha t  

will generate (integer) values of the index variables which will solve the original dependence sys- 

tem. If the original dependence system is exact, this solution will be exact. 

The first question is whether the Power is always conservative; tha t  is, is there a case in 

which there is in fact an  integer solution but the Power Test will (incorrectly) show indepen- 

dence. Duffin [Duff41 shows in his Lemma 1 that  Fourier-Motzkin pairwise elimination works. 

We reproduce the statement of his Lemma 1 here: 

Lemma 1 (Duffin). 

Pairwise elimination of the variable x, from a system of linear inequalities gives an  

eliminant system of linear inequalities. Then x i ,  . . . , xk is a solution t o  the eliminant 



system if and only if there is a n  x i  such tha t  x i ,  x i ,  . . . ,xL is a solution of the origi- 

nal system. 

Proof. 

See [Duf74]. 

Given t ha t  the set of linear inequalities of the form shown in (1-2), if there is a n  integer solution 

t o  the inequalities then there must be a real solution; approximating the integer solution by a 

real solution is LP-relaxation. By Lemma 1, pairwise elimination t o  remove the one of the free 

variables, say tk, will generate an  eliminant system which will have real solutions if and only if 

the original system had real solutions. Thus, if the original system had an  integer solution, the 

eliminant system will have a real solution. This gives us the first theorem about the Power 

Test. 

Theorem 1. 

If the Power Test relaxes all the floor and ceiling operators, then it  will be conservative; 

t ha t  is, i t  will not assert independence when there is in fact an  integer solution. 

Proof. 

Immediately from Lemma 1. 

While this is nice, we are really interested only in integer solutions. We use the following two 

Lemmas. 

Lemma 2. 

Given a n  inequality of the form (1) or (2), where all the coefficients are  integers. This 

inequality has integer solutions for the free variables if and only if the corresponding 

inequality (1') or (2') has integer solutions. 

t k  2 1 (ubk,y,otubk,y,s+l ts+l t  . . ' +ubk,y,k-ltk-1) / ~ ~ k , y , k  J (2') 

Proof. 

Directly from the properties of integers. 

Lemma 3. 

If lbk,x,,/lbk,x,k is integer for s+l<rn<k-1, then a n  inequality of the form (1') is 

equivalent to: 



Similarly, if ubk,y,,/ubk,y,, is an  integer for s+l_<m_<k-1, then an  inequality of the 

form (2') is equivalent to: 

Proof. 

Directly from the properties of integers. 

The following theorem is the claim for the proof of correctness of the Power Test, when some or  

all of the floor and ceiling operators are  computable. 

Theorem 2. 

When the Power Test exercises floor and ceiling operators as  in Lemma 3, i t  is conserva- 

tive. 

Proof. 

The Power Test s tar ts  with a linear system of inequalities of the form (1) and (2). Any 

integer solution t o  these inequalities generates a solution t o  the dependence system. 

A t  each elimination step k in the Power Test, where k ranges from n down t o  

s+l, the Power Test eliminates one free variable, t,. Step k star ts  with a set of ine- 

qualities of the form (1) and (2), which we call the primary set for step k, or 

Primary, .  Examine the inequalities bounding t,. Suppose tha t  the floor and ceiling 

operators cannot be exercised as  described in Lemmas 2 and 3. Elimination of t, via 

pairwise elimination will generate an  elirninant system, not involving t,, which will 

have solutions if and only if the "original" system had solutions; the "original" system in 

this case is Pr imary, .  Thus, if there is an integer solution t o  Primary, ,  the elim- 

inant system will also have tha t  same integer solution. Thus, we need only look for 

integer solutions in the eliminant system. Let Primary,.., be this elirninant system, 

and proceed by induction. 

Suppose instead tha t  one or more floor and ceiling operators of tk can be exer- 

cised. By Lemma 2, since we only want integer solutions of t,, we can convert the ine- 

qualities for which the floor or ceiling operators can be exercised t o  the form (1') and 

(2'), and by Lemma 3 and the premise tha t  the floor and ceiling operators can be exer- 

cised, these replacement inequalities can then be converted t o  the form (I") and (2"), 

replacing the original inequalities. After performing the replacement, we have the 

secondary set of inequalities for step k ,  called Secondary, .  Secondary ,  has poten- 

tially a smaller real solution space than the primary set, but the same integer solution 

space. Let 



Then (1") and (2") are equivalent t o  the linear system of inequalities: 

We have taken advantage of the properties of integers t o  change the coefficient of tk 

t o  one in some (perhaps all) of its lower and upper bounds, and t o  (possibly) slightly 

reduce the size of the convex region of the solution space for tk. By Lemma 1, elim- 

inating tk by pairwise elimination will generate an  eliminant system, not involving t k ,  

which will have (real, and hence integer) solutions if and only if the "original" set of ine- 

qualities had solutions; the "original" set of inequalities in this case is Seconda ryk .  

Thus, if there is an  integer solution t o  Seconda ryk ,  the eliminant system will also 

have a n  integer solution. Thus, we need only look for integer solutions in the eliminant 

system, which becomes P ~ i m a r y ~ - ~ .  

By induction, we see tha t  if there is an  integer solution t o  Primary, ,  then there 

will be an  integer solution t o  Pr imary , .  Thus, the Power Test will not assert indepen- 

dence if the original dependence system in fact has a n  integer solution, whether or not 

some or all of the floor or ceiling operators are exercised. 

The final theorem shows when the Power Test is exact. 

Theorem 3. 

When the Power Test exercises all floor and ceiling operators as in Lemma 3, i t  will find 

an  integer solution if and only if there is an  integer solution t o  the original dependence 

system. 

Proof of "if'. 

By Theorem 2, exercising floor and ceiling operators is conservative. 

Proof of "only if'. 

The procedure shown above in Theorem 2 generates a set of simple affine lower and 

upper bounds for each free variable. If the Power Test asserts dependence, then the 

bounds for the final free variable, ts+l, will be simple integers: 



(if some limits are unknown, then t,,, may be unbounded in one or  both directions). 

Thus, t,+x has a t  least one, and perhaps many, known integer values within its bounds; 

choose one such value, say E,,, . Use the value E,,, t o  find lower and upper bounds for 

t,,,; these will be integers, since the bounds for t,,, are simple linear combinations of 

t,,, with integer coefficients. By Lemma 1, any value in the solution range of t,,, can 

be used in the bounds of t,,, and will generate a non-empty solution space. Since the 

lower and upper bounds must be integer, there must be at least one integer value of 

t,,, in this range; choose one, say Fa+,. In such a way, we can find integer values for 
- - 

each of the free variables, E,,,, t ,+,, ..., t,. By the Generalized GCD, any integer 

value of the free variables satisfies the dependence equations. By Lemma 1, only those 

values tha t  lie within the loop limit and direction vector inequalities will appear within 

the final set of bounds. Thus, this set of integer values will generate an  integer solution 

t o  the dependence system tha t  satisfies all the inequalities. 

10. Conclusions 

The Power Test can be useful in advanced program restructuring techniques. Since i t  is 

based on Banerjee's Generalized GCD test, i t  is close t o  the holy grail of solving simultaneous 

subscript equations only for integer solutions within the loop limits. I t  loses some precision 

because i t  might ignore pertinent ceiling and floor operators. This precision loss is equivalent t o  

enlarging the solution space somewhat; in other words, it may return a false positive if there is 

a n  integer solution near the limits of the loop, or near the bounds imposed by other constraints 

such as  direction vector relations. The Power Test is also extensible beyond most other depen- 

dence decision algorithms, allowing non-direction vector tests and simultaneous multiple upper 

and lower loop limits. 

The obvious consideration when implementing the Power Test is the execution cost. The 

worst case cost of the search procedure can be exponential in the number of free variables. This 

cost may be too high for inclusion in a critical component such as  a compiler, but may be 

appropriate when applying certain "power transformations" in a n  interactive environment. 
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