
The Power Test for Data Dependence

Michael Wolfe
Chau- Wen Tseng

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-015

August, 1990

The Power Test for Data Dependence

Michael Wolfe
Chau-Wen Tseng

Oregon Graduate Institute of Science and Technology
Department of Computer Science and Engineering

19600 NW von Neumann Drive
Beaverton, OR 97006

(503)-690-1153
mwolfe@cse.ogi.edu

Rice University
Department of Computer Science

P.O. Box 1892
Houston, TX 77251

(713)-527-8101
tseng@ice.edu

The Power Test for Data Dependence
Abstract

This paper introduces a da ta dependence decision algorithm, called the Power Test; the

Power Test is a combination of Banerjee's Generalized GCD dependence algorithm and the

Fourier-Motzkin method t o eliminate variables in a system of inequalities. In addition t o having

certain advantages over previous dependence algorithms (such as increased precision, the ability

t o handle multiple subscripts simultaneously, the ability t o handle complex multiple loop limits,

and others), i t can also easily generate dependence direction vector information. This paper

briefly reviews previous work in da ta dependence decision algorithms, and describes the Power

Test. Several examples which motivated the development of this test are examined, including

those which demonstrate additional power of the Power Test.

1. Introduction

Vectorizing and parallelizing compilers are common in the supercomputer and mini-

supercomputer commercial market; these compilers inspect the patterns of da t a usage in pro-

grams, especially array usage in loops, often representing these patterns as a da t a dependence

graph. With this information, compilers can often automatically detect parallelism in loops, or

report t o the user specific reasons why a particular loop cannot be executed in parallel. Addi-

tional performance improvement can be attained by using certain program transformations t o

take advantage of architectural features, such as improving memory locality t o take advantage

of cache memories. In order t o determine what restructuring transformations are legal, da t a

dependence tests are devised t o detect those programs or loops whose semantics will be violated

by the transformation. General literature on this subject is widely available

[AlK87,ABC87, BCK79,Ban88, BuC86, G JG87, LY90, WoB87, Wo1891.

In order t o allow the most freedom in applying restructuring transformations, a compiler

needs a precise da ta dependence test. Much of the theory behind da ta dependence testing for

array references in loops can be reduced t o solving simultaneous diophantine equations. The

da ta dependence problem for array references can be stated as:

Given a set of nested loops surrounding two statements (not necessarily distinct) where

each statement contains a reference t o an array:

L1: f o r I1 = el t o ul do
L,: f o r I 2 = C2 t o u2 do

. . .
LC : fo r I, = Cc t o uc do

f o r = CC+, t o u , + ~ do
. . . -

Lc+dl : f o r Ic+dl - Cc+dl t o uc+dl do
s1 : A (f l (1 1 , . • - , I,, I c + l p • • • , I c + d l) , f a (1 1 , I c + d l))

end f o r
...

end f o r -
L c + d l + l : f o r I c + d l + l - t c + d l + l t o Uc+dl+ l do ...

-
Lc+dl+d l : f o r I c + d l + d l - !c+dl+d2 t o Uc+dl+d2 do
sa : A (9 1 (1 1 , . . . , Icr I c + d l + l , . . I c + d l + d l) r . . , 9 s (1 1 . Ic+dl+d2))

end f o r
...

endf o r
endf o r
...

endf o r
endfor

We want t o determine whether there are values of the loop indices tha t lie within their limits

such tha t the subscript functions are simultaneously equal; i.e., we want t o determine whether

there exist integer values:

such that:

and

f, (T) = g, (3) Vm

Additional information may be desired if there is a solution, such as the dependence dis-

tance in each dimension (the value of jk-ik for 1<k<c), or a dependence direction in each

dimension (the sign of the dependence distance). Loops L1 through LC are called the common

loops.

A great deal of research has gone into the development of various da ta dependence deci-

sion algorithms, which vary in generality, precision and complexity. Most decision algorithms

require the subscript functions t o be linear combinations of the loop index variables with known

constant coefficients. A test in common use is Banerjee's Inequalities [BCK79], which is efficient,

but tests each subscript independently (reducing precision). The array references can be "linear-

ized" t o solve for simultaneous solutions, but this does not always improve precision

[BCK79,BuC86]. The Lambda test was developed as another method t o add simultaneity t o

Banerjee's Inequalities [Gru9O1LY90]. Banerjee's Inequalities have also been extended t o provide

direction vector information [Wo182,Wo189]. Banerjee's Inequalities test for real (not integer)

solutions of the dependence equation; they have recently been extended t o handle triangular as

well a s rectangular loop limits when the coefficients are known constants [Ban88].

Another simple dependence test is the single subscript GCD test. Banerjee has also

developed a Generalized GCD algorithm which tests multiple subscripts simultaneously. These

decision algorithms test for integer solutions of the dependence equation, but ignore loop limits.

The Generalized GCD test can also be trivially extended t o provide dependence distance infor-

mation, as shown later in this paper.

Other methods have been attempted for use as decision algorithms, but are generally more

expensive, such as Shostak's loop residue method [Sho81]. For many purposes, a simple single-

index-variable test will suffice, applied on one subscript a t a time. For more advanced restruc-

turing transformations, however, more precision is necessary.

The Power Test is a combination of Banerjee's Generalized GCD test with the Fourier-

Motzkin variable elimination method. Its name is derived from the power and precision of the

method, and from the fact that in the worst case i t can take exponential time (in the number of

loop index variables). The Power Test finds only integer solutions and considers the loop limits,

and can handle triangular, trapezoidal and complicated convex loop limits; as we shall see, i t is

imprecise in some cases when the loop limits or other conditions cannot be handled exactly and

an integer solution occurs "near" the solution space boundary. Since it is derived from the Gen-

eralized GCD test, i t solves for all subscripts simultaneously.

2. Motivation

The first motivation behind the development of the Power Test was a challenge from a

colleague. We have recently been constructing a program restructuring research tool, called

TINY, which parses a tiny language, builds a da t a dependence graph, then applies (under

interactive user control) a series of loop restructuring transformations. Among the transforma-

tions implemented are loop interchanging [A1K84], loop skewing [Wo186a], loop reversal [Wed751

and loop distribution [BCK79]. While demonstrating the tool t o a colleague, he asked if i t could

build a precise dependence graph for the following program:

f o r I = 1 t o N do
f o r J = I+1 t o N do

S,: A (1) = A (J)
end f o r

end f o r

In particular, this colleague wanted a precise direction vector in addition t o the correct da t a

dependence relations (terminology used here is defined in the following section). The first

attempt failed t o find any dependence relations whatever. After fixing several serious bugs in

the tool, a second attempt found the dependence relations, but with a rather imprecise direction

vector. Looking a t the iteration space of this loop:

J = 2 J=3 J=4 J=5

we find two da ta dependence relations: an obvious da ta output-dependence relation due t o the

reassignment of A (1) on each iteration of the J loop (for the dependence relation

S, S'&, ,) S,), and a da ta anti-dependence relation due t o the use and subsequent assignment of

element A (K) from each iteration S, [I :K-1, K] to each iteration S, [K, K+1 :N] . The

dependence relation with precise direction vector is S, F(,,,) S1. Note tha t there is no fixed

dependence distance here, though the direction vector (corresponding t o the sign of the depen-

dence distance) is precise. Note also tha t "normalizing" the inner loop would change the shape

of the iteration space, and would affect the direction vector; we do not normalize loops.

The second motivation also came during the construction of TINY. One of the restructur-

ing transformations planned was interchanging of non-tightly-nested loops [Wo189]. In particu-

lar, we wanted t o be able t o generate all 6 versions of the Cholesky decomposition program (L L ~

factorization of a symmetric matrix) through loop restructuring; the basic KIJ form of Cholesky

decomposition is:

f o r K = 1 t o N do
s,: A(K,K) = s q r t (A (K , K))

f o r I = K + 1 t o N d o
S,: A (1 , K) = A (1 , K) / A(K,K)

for J = K + 1 t o I d o
S3 : A (1 , J) = A (1 , J) - A (I . K) * A (J . K)

e n d f o r
e n d f o r

e n d f o r

The da t a dependence relations just involving S, for this loop are:

Note the loop-independent dependence relation from S1 t o S,, requiring S, t o lexically precede

S,; also note t ha t S, is bound in a dependence cycle with the inner loop, preventing distribu-

tion of the K loop. T o generate the IKJ form requires interchanging the imperfectly-nested K

and I loops t o get:

fo r I = 1 t o N do
fo r K = 1 t o 1-1 d o

S, : A (1 , K) = A (1 , K) / A(K,K)
f o r J = K + l t o I do

S3 : A (1 , J) = A (1 . J) - A (I , K) * A (J , K)
e n d f o r

e n d f o r
S,: A (1 , I) = s q r t (A (I , I))

e n d f o r

Notice where S1 must be placed in relation t o the inner loop. The dependence relations involv-

ing S1 in the restructured loop are now:

Note the loop independent dependence relations coming into S1, requiring its placement below

the inner loop. In both versions of the loop, there is no option in the placement of S1

As explained in [Wo186b, Wo189], the da ta dependence test for interchanging imperfectly

nested loops (unlike simple loop interchanging) is not a direction vector test. What we needed

was a da ta dependence test which would (1) tell when a da t a dependence relation would be

violated by interchanging imperfectly nested loops and (2) what the direction vectors would be

after interchanging.

An additional motivation was t o be able t o compute dependence for all subscript equa-

tions simultaneously, which we found to be critical in some instances. Yet another motivation

was the result of the ability t o interchange loops with trapezoidal limits, as in:

f o r I = 2 t o N-1 do
f o r J = 1+2 t o I+N-1 do

the interchanged limits of the inner loop involve maxima and minima:

f o r J = 4 t o 2*N-2
f o r I = max (2, J-N+1) t o min (N-1, J-2) do

In order t o compute dependence relations in the modified loop as precisely as possible, we want

t o take advantage of the extra knowledge of the simultaneous constraints of the multiple lower

and upper loop limits.

In these examples, existing data dependence decision algorithms fall short. As i t turns out,

Banerjee's Inequalities extended with triangular loop limits [Ban881 will correctly handle the

first example, but they are harder (or impossible) t o extend t o the second case. Also, Banerjee's

Inequalities handle only a single subscript equation a t a time, and only a single lower and upper

loop limit. The method for extending Banerjee's multiple-index-variable dependence test

[Ban79], boldly (and improperly) called the "Exact Algorithm for Multiple Indices" in [Wo189],

has been shown not only t o be imprecise, but is incorrect; all attempts t o correct i t made it even

more expensive (in time and space) and reduced its claims for precision t o the point where we

gave up. So we embarked on the search for a unified dependence decision algorithm tha t would

properly handle all these potentially important cases.

3. Definitions and Terminology

For the purposes of this paper, we are concerned about da ta dependence between array

references in loops; we assume imperative language loop semantics (as in Fortran, C or Pascal).

For instance, in the loop:

f o r I = 2 t o N-2 do

S1: A (1) = B (I)
S2: C (1) = A (I - 1)
SO: D (1) = C (I + 2)

end f o r

the array element assigned t o A (i) in iteration I=i of statement S1 is fetched by statement

S 2 in the second subsequent iteration of the loop. On the other hand, array element C (i + 2)

fetched by statement S3 is reassigned by statement S 2 in the next iteration of the loop. The

first case is called a def-use ordering, or a pow-dependence; for shorthand, we say S, 6 S2. The

second case is a use-def ordering, called anti-dependence; we write S3 F S2. There can also be

def-def orderings, called output-dependence.

Saying S 2 depends on both statements S1 and S 3 means tha t some iteration of S 2

depends on some iteration of S1 and some iteration of S3 . For loop vectorization, this may be

enough information [AlK87]. For other program transformations, more precise information is

useful. We use the notation S2 [2] t o mean the instance of S2 when the loop variable 1=2. If

instance S2 [j] depends on instance S1 [i] , then the dependence distance is defined t o be j -i.

In our example above, the dependence distance for S1 6 S 2 is one, while the dependence dis-

tance for S 3 F S 2 is two. These definitions would have t o be modified if the loop increment were

something other than +I.

In multiple loops, there is an independent distance in each loop. Take the program:

f o r I1 = 1 t o N do
f o r I2 = 2 t o N-1 do

S1 : A (I l , 12) = B (I l , 1 2)
S 2 : C (I l , 12) = A (1 1 - 1 , I z)

endfor
endfor

Here we have one da ta dependence relation, S1 S S2 . The distance for the I, loop is one,

while the distance for the 1, loop is zero. We usually write these distances as a distance vec-

t o r ; here the distance vector would be (1 , O) . We sometimes subscript the dependence relation

with the distance vector, as in S1 6(,, ,) S2.

Sometimes the dependence distance is not constant; rather than finding all possible depen-

dence distances, we simplify the problem by finding the signs of all possible distances. In the

program:

f o r I1 = 1 t o N do
S1: X(I1) = A(I1)

f o r I2 = 1 t o I,-1 do
S, : C (I l / 12) = X(12)

endf o r
end f o r

the value assigned t o X (i ,) in S, [ill is used in S 2 [jl , j ,] for every j1 such tha t i,< j,.

Note tha t there is no dependence from S1 [i l l t o S2 [j , j when il=jl or when i l > jl.

Thus, though the dependence distance varies in magnitude, i t is always strictly greater than

zero. We can therefore just save the sign of the distance as a vector; in this case, we would

save (+) or S1 S (+) S2. Current notational conventions use <, = and > as direction vector

elements (instead of +, 0 and -, respectively). We would then write S1 S (,) S2, meaning tha t

we have dependence from some S1 [ill to some S2 [jl , j2] where i, < jl. a s the possible

relations between il and j

Terminology. In the following sections, bold lower case letters refer t o row vectors and bold

upper case letters refer t o matrices; all vector and matrix entries are integers. Let us assume

the following:

1) the loop index variables are numbered from I, through Ic+dl+d2

2) there are s subscripts, and the subscript functions are linear combinations of the loop

index variables with constant coefficients, so tha t the subscript functions are as below, for

For simplicity, we assume tha t any f,,, or g,,, not defined by the subscript functions

are equal t o zero (such as f,,c+dl+l or g,,c+l). A subsequent section will argue how to

deal with unknown variables in the subscript functions. Thus, each subscript will generate

one dependence equation:

or, after renaming:

where n = c + d l + c + d 2 is the total number of index variables involved, and where h is a

renaming of these index variables:

3) the lower and upper limits of the loop index variables are also linear combinations of outer

loop index variables, with constant coefficients:

The set of dependence equations with the inequalities induced by the lower and upper limits

together comprise the dependence system.

4. Review of t h e Generalieed GCD Algor i thm

The Power Test begins with the Generalized GCD algorithm given in [Ban88]; we briefly

review tha t algorithm here. It will be important tha t the subscript functions be linearly

independent, but since the Generalized GCD algorithm naturally finds linearly-dependent sub-

script functions, we need not worry about that . The Generalized GCD Algorithm star ts by

filling a n nXs coefficient matrix A with the coefficients of the subscript functions.

a,-1 al,l . . -
a1.1 at, 2 . a .
a1.3 a1,3 . - a

a1,4 a,,, . . -
.

The goal is t o discover whether there is an integer vector h tha t solves all dependence equations

simultaneously, M = c , (where c has s elements, one for each subscript). The algorithm initial-

izes a n n x s matrix D with A, and an nxn unimodular matrix U with the identity matrix.

These two matrices are stored in one combined nX (n+s) matrix UD. By a series of elemen-

tary integer row operations (essentially equivalent t o Gaussian Elimination adapted for

integers) the D matrix is reduced t o upper triangular form. This means tha t column k of D

will have zero elements in rows k + l through n (for l<k<n):

During this phase, if a diagonal element is found to be identically zero, then tha t column (sub-

script equation) must be a linear combination of previous columns (subscript equations), and can

be eliminated from further consideration (effectively reducing s by one). Applying the same ele-

meritary integer row operations t o the U matrix produces a unimodular matrix with the pro-

perty t ha t UA=D.

If we find an integer solution t such tha t tD=c, then h= tU is a solution t o the dependence

equations M = c (as shown in [Ban88]). After finding U, we can solve for t1 through t, by

solving tD=c using a simple back-substitution algorithm.

Example. Take the program:

f o r I1 = 1 t o 100
f o r Ia = 1 t o 100

Sl : A(4*11-2*11-1, -11-2*Ia) = . . .
S,: ... = A (1 1 + 2 * I a + 1 , -2*11+1)

e n d f o r
e n d f o r

The dependence equations t o be solved are:

or, rewritten to:

The dependence matrix M = c is:

We augment A with the identity matrix t o get UD:

(U comprises the first four columns, D the final two.) After performing the elementary row

operations t o reduce D to an upper triangular matrix, we have:

We can verify tha t UA=D. Now we solve tD=c,

Because D is a n upper triangular matrix, t3 and t, do not figure into the computation. The

first equation is -t1=2 or t l = - 2 . The second equation is 2 t l + t a = 1 or t2=5.

Since there is a feasible solution, Banerjee's Generalized GCD algorithm stops here and

assumes dependence.

5. Extens ion of the General iaed GCD Algor i thm

The Generalized GCD algorithm, like the single-subscript GCD test, tells whether there

can be any integer solution t o the dependence equation, ignoring loop limits. However, i t also

gives formulae tha t can be used t o specify the index variables h l , h a , ..., h, in terms of the

"free" variables t,,,, t,,,, ..., t,, derived from the equation h=tU. The first extension t ha t

we make t o the Generalized GCD algorithm is t o find all constant dependence distances by sub-

tracting corresponding equations. Tha t is, the dependence distance for loop level k (lsksc)

can be found by subtracting the equations for ik and j,. Suppose tha t the ik=hak-,, and

jk=hZk; we subtract the equations by looking at :

(where U. , , is column x of the matrix U). If the dependence distance is fixed, this will have

non-zero coefficients only for t, through t , , which were previously solved. If there are non-

zero coefficients for any other t,, where v>s, the dependence distance is not constant;

equivalently, if Us+, :,, ,,-, -Us+, :,, is the zero vector, the dependence distance is constant,

and can be found from t,:. (U1:., ~ k - ~ -U1 :., zk) .

This allows a dependence distance vector t o sometimes be constructed from the U matrix

and the solutions t o t,, . . . , t,. The dependence direction vector can also be constructed from

the signs of the distance vector. Of course, if the dependence distance for any loop exceeds the

maximum trip count (number of iterations) of that loop, the references are independent [A1K87].

The Generalized GCD algorithm is more precise than linearizing the array references and using

a single-equation GCD test [BCK79, BuC861.

Ezample. Take the program:

f o r I, = 1 t o 3 d o
f o r I, = 1 t o 3 d o

X (I l + I 2 + 1 , I 2 + l) = = x (I ,+I , , I ,)
e n d f o r

e n d f o r

The dependence equations are:

The dependence matrix M=c is:

After augmenting this with the identity matrix t o get UD, and reducing D t o an upper triangu-

lar matrix via elementary row operations, we have

From this we solve tD=c:

This produces the equations:

-t,=-1

-tl+ta=-1

which we solve t o get

Using the equations t o derive h from tU we get:

This generates the equations:

j i=tl -ta +t4

The dependence distance vector is computed as (j , -il , ja-il) , which is: (t 2 , tl -tl) . But

these are already solved quantities, so the dependence distance is (0 , l) .

This could also be computed by subtracting column U.,, (which corresponds t o i l) from

column U., (which corresponds t o j ,), and U., from U., , , t o get:

6. The Power Test

The method from the previous section does nothing for more precision in cases where the

dependence distance is not fixed in one or more index dimensions. Using Fourier-Motzkin vari-

able elimination [DaE73,Duf74], the Power Test continues from this point.

We construct a list of upper and lower bounds on each free variable t,,, through t,.

For a free variable tk, each lower and upper bound will be a linear combination of t,,,, t,,,,

..., tk-, . These give the boundaries t o the solution space of the dependence equation; if the

solution space is non-empty, then the dependence equation has solutions t ha t satisfy all the con-

ditions. For instance, each lower bound for tk will be of the form:

with lb,>O. Since we are dealing with integers, we can take the ceiling of lower bounds (or the

floor of upper bounds):

and similarly for upper bounds. These bounds are derived from the constraints on the index

variables, such as the loop limits. For instance, if the lower limit on index variable h, is 1, we

have the inequality h,>l. From this we replace h, by its equivalent in terms of the free vari-

ables: tU., ,21. This inequality generates a bound for the highest numbered free variable

which has a non-zero coefficient. It will correspond to a lower bound if tha t non-zero coefficient

is positive, or a upper bound if the coefficient is negative.

The ceiling or floor operators are a source of precision if they can be used t o advantage; in

the lower bound above, if lbk divides all of lb,,, through 1bk-, exactly, then the bound can

be reduced to:

where all the divisions, including lbo/lbk can be computed by the compiler. This gives a I 1
more precise bound:

where lb; is equal t o one. If the divisions are not exact, then the ceiling or floor operators will

be a source of imprecision, since the Power Test will essentially ignore them to remain in the

realm of integer computation. The method used t o handle inexact division, equivalent t o LP-

relaxation, essentially solves the linear programming problem rather than the integer program-

ming problem by enlarging the solution space t o potentially include some integer points near the

boundaries. In particular, this method may include some integer points in an otherwise empty

solution space. A slightly more general method t o find a more precise bound would be t o find

the GCD of lb,+l, lb,+2, ..., lb,-, and lb,, (let g be the name of this GCD); then make the

following substitutions:

Ezample. Take the program:

for I1 = 1 t o 100
f o r I 2 = 11+1 t o 100

X (1 1 , 1 2) = ' ' ' . . . = X (1 2 , I l)
end f o r

end f or

The dependence equations are:

The dependence matrix hA=c is:

The Generalized GCD algorithm gives the matrix:

Solving tD = c we get t l = O , t2=0 From these solutions and h = tU we get:

The dependence distance is not constant.

From the lower limit for I,, we have the inequality i121 from which we derive

t3 2 1

Likewise, from j121 we derive

t4 2 1

From the lower limit for I we have i72i1 +1 and j 22 j +1 from which we derive

t4 > t3+l
and

t3 2 t4+l

Note tha t we will adjust this last inequality t o create an upper bound for t4:

t4 5 t3-1

After adding the inequalities for the upper limit expressions, we have the following lower and

upper bounds for each free variable:

1 2 t3 < 100

Given a list of lower and upper bounds for each free variable, the Power Test visits each

free variable (from t, down to t,,,) comparing each lower bound to each upper bound. Each

comparison will be of the form:

from which we can derive:

(lbk~bo-~bklbo) + (lbk~b1-Ubklbl) tl+ ' . + (lbk~bk-l-~bklbk-l) tk-i>O

We assume tha t the floor and ceiling operators have already been handled as discussed above, if

possible reducing the magnitude of lb, and ub, t o one. If lb, and ubk are both one, there is

no loss of precision here; if either is greater than one, there is a potential loss of precision, which

may result in finding a solution when in fact there is none. If any of the coefficients are non-

zero, this will derive another lower or upper limit on another lower-numbered free variable. If

all the coefficients are zero, then we have the simple inequality:

lbkub0 -ubk l b o > _ O

If this inequality is not satisfied (if the left hand side is in fact negative), then there is no solu-

tion t o the dependence system, and thus no dependence.

Example. In the previous example, when we compare each lower bound t o each upper

bound for t , , we eventually compare

t3+l < t4 < t3-1

from which we derive the inequality:

t,+l _< to-1, or 15-1

which is clearly inconsistent; thus, this system of equations and limits has no solution, and the

two references a re independent.

Direction Vectors. The Power Test can also be extended t o test for particular direction vec-

tors. Each direction vector element being tested corresponds simply t o another inequality which

derives a lower or upper bound on one of the free variables. Suppose for instance we are testing

for a (<) in position k of the direction vector, and tha t ik=hlk-l and jk=hlk. The (<)

direction means we want t o test for dependence when i k < j k , or h2k..l<h2k, Or h2k-h2k-l>0,

or hlk-h2k-l>l. We then replace the index variables by their formula in terms of the free

variables:

This will again derive either a lower or upper bound on one of the free variables, or will produce

a simple constant inequality which can be tested for consistency.

Example. Study again one of the examples in the motivation:

f o r I1 = 1 t o N d o
f o r I l = 11+1 t o N d o

A(11) = AU2)
end f o r

endf o r

The dependence equation is:

so the dependence matrix M=c is:

The Generalized GCD test produces:

Solving tD=c gives tl=O, so tha t multiplying out h=tU gives:

From the loop limits we derive the lower and upper bounds on the free variables. For instance,

from iz2il+l we get t 4 2 t z , while j z> j l+ l derives t z > t 3 + 1 , or equivalently, t3<t,-1.

In this way we find the following bounds on the free variables:

With just the constraints implied by the loop limits, the system is still consistent. Now suppose

we want t o test for a particular dependence direction, such as the (<) direction in the first

dimension. From i, < j , we derive the additional bound:

This is inconsistent with one of the previous bounds, so there can be no dependence with a (<)

direction in the first dimension. Likewise, if we test for a (<) direction in the second dimen-

sion, meaning iz < j we derive the additional bound:

which again is inconsistent with the lower bounds for t4. Continuing in this way, we find tha t

the only consistent direction vector is (>, >) , which means tha t i l > jl and i z > j z . This

corresponds t o a (<,<) direction for the negative of the dependence equation, which

corresponds t o an anti-dependence [Wo189]. Thus, the Power Test correctly identifies the anti-

dependence with the precise direction vector.

7. The Power of the Power Test

The previous section showed how the Power Test handled the first example from the

motivation section. Let us see how the other examples are handled.

Multiple Loop Limits. As mentioned earlier, some program transformations generate multiple

lower or upper limits. As a case in point, take the Gaussian Elimination program:

f o r I 1 = 1 t o N d o
f o r I 2 = 11+1 t o N d o

S, : A (1 2 , I l) = A (I 2 # 11) / A (I l * I l)
f o r I 3 = 1 1 + 1 t o N d o

S2 : A (1 2 , 1 3) = A (1 2 , 13) - A (1 1 , 1 3) * A (1 2 , 11)
e n d f o r

e n d f o r
e n d f o r

Using advanced program restructuring techniques, we can reindex this t o the following loop

structure:

f o r 1, = 1 t o N do
f o r I 2 = 2 t o N d o

f o r I 3 = 1 t o m i n (1 , - 1 , 1 2 - 1) d o
s2: A (I 2 , I l) = A (I 2 , I l) -A(13 ,11) *A(I2 , 13)

e n d f o r
e n d f o r
f o r I 4 = 11+1 t o N d o

s1 : A(14 ,11) = A(14# I I) / ~ (I ~ , I l l
e n d f o r

end f o r

In this case, t o test for dependence between S, : A (I 4 , 11) and S, : A (I 2 , 1 3) , we have t o

somehow deal with the upper limit of the i3 loop, which is the minimum of two simple expres-

sions. We shall see tha t the Power Test handles this case effectively.

The dependence equations are:

The dependence matrix M = c is:

The Generalized GCD test returns the matrices:

From the equation tD=c, we solve for t l = t 2 = O ; the index variables are then defined as:

j 3 = t 3

Enforcing the lower and upper limits for each of the five index variables derives the following

limits on the free variables:

In particular, the upper limit of i3 derives two bounds:

j3 5 j,-1 derives t 3 + 1 5 t5

j, 5 j,-1 derives t 3 + l 5 t4

When testing for a (2) direction in the i, loop, we add the inequality i, 2 j, which derives

which generates the inconsistency

The Power Test correctly decides tha t this dependence has only the (<) direction vector.

Non-Direction Vector Constraints. In the example above we skipped over the restructuring

necessary t o change one form of the Gaussian Elimination into the other. The series of steps is

a s follows: s ta r t with the normal KIJ form:

f o r K = 1 t o N do
f o r I = K+1 t o N do

S1 : A(1,K) = A(1,K) / A(K,K)
f o r J = K+l t o N do

S1 : A(1.J) = A(1.J) - A(K.J)*A(I,K)
endf o r

endfor
endf o r

We s ta r t by distributing the I loop. Loop distribution is legal if there are no dependence

cycles; the only dependence cycle here is carried by the outer loop, so the 1 loop can be distri-

buted:

f o r K = 1 t o N do
f o r I = K+l t o N do

S1 : A(1,K) = A(I.K)/A(K,K)
end f o r
f o r I = K+l t o N do

f o r J = K+l t o N do
S2 : A(1,J) = A(1,J)-A(K,J)*A(I,K)

end f o r
end f o r

endfor

Next we interchange the tightly nested 1 and J loops. The dependence test for loop inter-

changing is t ha t there must be no dependence relations with (<, >) direction vectors in the

loops being interchanged; this condition is satisfied here, so interchanging is legal:

f o r K = 1 t o N do
f o r I = K+1 t o N do

S, : A(1,K) = A(I.K)/A(K,K)
end f o r
f o r J = K+l t o N do

f o r I = K+l t o N do
S, : A(1,J) = A(1.J)-A(K,J)*A(I,K)

end f o r
endfor

endfor

The next step involves interchanging the J and K loops. Note tha t these loops are not tightly

nested, and distribution of the K loop is not legal. We want t o interchange these loops directly.

Let us reindex the loops as:

f o r I l = 1 t o N d o
f o r I 2 = 1 1 + 1 t o N do

S1 : A (1 2 , 11) = ~ (1 2 , I i) / A (I i ~ I l)
e n d f o r
f o r I 3 = 1 1 + 1 t o N do

f o r I4 = 11+1 t o N do

s2 : A (I ~ , I ~) = A (I ~ , I J) - A (I ~ , I J) * A (I 4 < 1 1)
endf o r

e n d f o r
e n d f o r

One condition that must be satisfied for legal interchanging is that there must be no dependence

relation from iteration (jl , j j 4) of S1 to iteration (i l , i l) of S1 such that j l < i l and

j 3 > i l [Wo189]. Let us inspect the dependence between S : (1 I) and Sl : A (I 2 , I l) .

The dependence matrix M = c is:

The Generalized GCD test ends with:

The equation tD=c results in t l = O and tl=O, so we have

The loop limits bounds the free variables as follows:

I t is easy t o see tha t testing for jlril would add the constraint t , > t 3 , which is inconsistent.

Thus, j, must be less than i l ; this corresponds t o the dependence Sa F(,) S1. Also, if we add

the constraint j 3 > i l we get the inconsistency t 3 > t 3 , SO this dependence does not prevent

interchanging. Moreover, after interchanging, the loops around S2 will be reordered t o

(j 3 , j l , j4) ; thus after interchanging, the direction vector should be the sign of the difference

i,- j,. It is easy t o realize tha t this is t 3 - t 3 = 0 . Thus, the Power Test is easily extended to

perform non-direction-vector tests.

Handling Equal Directions. Special handling of the (=) direction is needed for the Power

Test t o be precise. Take the example a t the end of section 4. Tha t example ended with the

equation tD=c:

from which we computed t l = - 2 and t,=5. From the equation j=tU we get:

from which we compute

i, = - 2 t 3 + 5

jl = - 8 t 3 - 2 t 4 + 1 8

i2 = - 7 t 3 - 2 t 4 + 1 5

ja = 7 t 3 + 3 t 4 - 1 5

The loop limits give the bounds:

The limits for t, can be simplified to:

Suppose we now want t o test for the (=) direction in the first dimension, so we want t o test for

dependence under the condition i l=jl . Since the Power Test deals with inequalities, one way

to test for a n (=) direction is with two inequalities il< jl and jl<il. These two inequali-

ties give rise t o the bounds:

which can be simplified to:

It is immediately obvious tha t these bounds are inconsistent, so there is no dependence with a n

(=) direction for tha t loop. Using this approach for the second loop, we would have the ine-

qualities:

from which the floor and ceiling operators cannot be trivially eliminated. The Power Test

would then ignore them, giving rise t o potential imprecision.

Another way t o test for the (=) direction is t o set i = j , and solve for one of the free

variables; in the first case, il= j l , we get:

By the GCD test, the GCD(6,2) must divide 13 for an integer solution; since i t does not, there

can be no dependence with an (=) direction here. In the second loop, ia=ja, we get:

Here the GCD test gives no information. Instead, we scale the bounds of t, by a factor of 5

and replace 5t4 by its equivalent expression:

From this system of inequalities we can derive other bounds on t3, such as t 3 2 - 3 9 from

- 2 0 t 3 - 2 0 5 5 - 1 4 t 3 + 3 0 .

A third (expensive) method t o handle an (=) direction is t o build a reduced set of depen-

dence equations using the equality ia=ja:

with the dependence matrix M=c:

The Generalized GCD algorithm would give the result UD:

Solving tD=c results in the assignments:

The bounds on t3 are:

which simplifies t o - l < t 3 < 6 . Indeed, when t3=-l we have S1 [S, 33 6 S a [6 ,3] for array

element A(13 , - 1 1) , and when t 3 = 6 we have S1 [75 ,52] 6 Sa [go, 521 for array element

A (195 , - 1 7 9) . This is related t o the technique of taking advantage of the equal direction for

the standard GCD test, a s shown in [AlK87].

Handling Unknown Variables. Unknown variables occur in some subscript functions or in

loop limits. The Power Test can handle many of these cases naturally by treating the unknown

variables as additional index variables which have no limits. For instance, suppose we are

computing dependence in the program:

f o r I1 = 1 t o 100
f o r I2 = 1 t o N

Sl : A (I l 1) = ' '

end f o r
f o r I 3 = N + 1 t o 100

S, : . . . = A (I 1 , 1 3)
end f o r

end f o r

Rather than ignoring the information in the loop limits where unknown variables occur, or

treating this as a special case, we can t reat the unknown variable N as a n additional index

variable and build the dependence system. The dependence equations, in matrix form, are:

The Generalized GCD returns with UD:

and ends up with the equations:

Since the value of N is unknown, there is no bound on t 3 ; the bounds of the other free vari-

ables are:

The bounds for t, are inconsistent, so the Power Test, without any special handling of this

case, correctly detects independence.

Another example of where this applies would be a program such as:

f o r I = 1 t o N
A(1) = ' ' ' . . . = A(I+N)

e n d f o r

which generates the dependence matrix:

The Generalized GCD produces UD:

and the equations:

The loop limits for il are 1 5 il 5 n, which produce 1 5 t2 +t3 5 t 2 , or

while the loop limits for j produce

which are clearly inconsistent; thus the two references are independent. Again, the Power Test

handles this without resorting t o special case analysis.

Another important case arises when some unknown variable other than a loop limit

appears in a subscript function:

f o r I = 1 t o N
A(1) = " ' . . . = A(I+INC)

e n d f o r

Depending on the sign of INC, this could correspond t o a flow or an anti-dependence. Some

parallelizing compilers now accept assertions about the sign of INC, such as

assert r e l a t i o n (INC > 0)

The Power Test, by treating INC as another index variable and adding the assertion t o the sys-

tem of inequalities, will naturally handle this case.

Not all unknown variables can be handled by this method; when an index variable is mul-

tiplied by some unknown value, treating the unknown value as another index variable will make

the subscript function appear nonlinear:

f o r I = 1 t o N
A (1) = " ' . . . = A(INC*I)

endf o r

This is also true when the loop increment value is unknown; in fact, if the loop limits and incre-

ment are all unknown values, then the compiler can't even tell if the loop counts up or down

(for some languages), so any dependence test (including the Power Test) is severely limited.

8. Comparison with Other Methods

There exists a large body of work in the field of dependence tests. These tests may be

categorized based on their precision and on whether they test multiple subscripts simultane-

ously. Here we compare the Power Test with several single subscript exact tests, as well as two

multi-dimensional tests, the Lambda test and the Constraint Matrix test.

8.1. Single Subscript Exact Tests

Since testing linear subscripts for dependence is equivalent t o finding simultaneous integer

solutions within loop limits, one approach is t o employ integer programming techniques such as

[DaE73,Fea88]. There are even integer programming algorithms based on Fourier-Motzkin elim-

ination [Wi176,Wi183]. Unfortunately, these tests are expensive since integer programming is

NP-complete [Coo71].

In the realm of exact dependence tests, there is a Single Index Variable exact test for sim-

ple subscripts with the same index variable in each reference [Ban79,Wo182]. Work has also

been done towards proving exactness conditions for Banerjee's Inequalities. Banerjee showed

tha t his inequalities are exact if the coefficients of the index variables are all 1, 0, or -1 [Ban76].

Li e t a1 recently showed tha t the Banerjee's Inequalities are exact if the coefficient of one index

variable is +1 or -1, and the magnitudes of all other coefficients are less than the range (deter-

mined by the loop limits) for tha t index variable [LY90]. Klappholz et a1 proved tha t the

Banerjee's Inequalities are exact if and only if the coefficient of one index variable is +1 or -1,

and there exists a permutation of the remaining index variables such tha t (loosely stated) the

coefficient of each index variable is less than the sum of the products of the coefficients and

ranges for all the previous index variables [I(KPSOa].

The I Test is a new single subscript test for dependence testing based on refining a combi-

nation of the GCD and Banerjee tests [KKPSOb]. It is better able t o detect the lack of integer

solutions in more cases than simply applying both the GCD and Banerjee tests, and can usually

prove the existence of integer solutions.

When comparing the Power Test with these tests, we note tha t the Power Test totally

subsumes the Single Index Variable exact test. In addition, we believe tha t i t will always be as

precise as any combination of GCD or Banerjee tests. The Power Test handles complex loop lim-

its, as well a s multiple dimensions simultaneously. Since exactness conditions for Banerjee's Ine-

qualities have not been proven for complex loop limits, and in general cannot be extended t o

multiple subscripts, the Power Test can be considered t o be more precise than these tests. How-

ever, for the sake of efficiency i t is desirable t o employ simpler tests where they are known to be

exact.

8.2. Lambda Test

The Lambda test is introduced in [LY90]. Its precision is equivalent t o a multi-

dimensional version of Banerjee's Inequalities, since it checks for simultaneous real-valued solu-

tions for all subscripts within the loop limits. Like Banerjee's Inequalities, i t can also be used t o

test for direction vectors. The Lambda test is applied t o "coupled subscripts", which are groups

of subscript sharing identical index variables. The test proceeds by selectively forming linear

combinations of these subscripts and testing the result. The linear combinations selected are

exactly those which eliminate one or more instances of index variables. The authors prove t ha t

when all such combinations have been generated and tested with Banerjee's Inequalities, real-

valued solutions exist if and only if they exist in in all the linear combinations tested.

We can enhance the precision of the Lambda test for detecting independence quite simply

as follows. When testing each linear combination, the Lambda test uses Banerjee's Inequalities.

However, where the exactness condition for Banerjee's Inequalities do not hold, we may apply

the GCD or Single Index Variable tests as appropriate. This will allow us t o improve the ability

of the Lambda test t o detect some cases where no integer solutions exist within the loop limits,

even though real valued solutions do.

Unfortunately, there is no obvious method t o enhance the Lambda test t o prove the

existence of simultaneous integer solutions. The Lambda test is not exact even when exact sin-

gle subscript tests may be applied t o all linear combinations generated, since the presence of

constrained integer solutions in all linear combinations does not guarantee simultaneous con-

strained integer solutions. For two coupled subscripts, Li e t a1 were able t o prove tha t the

Lambda test is exact if unconstrained integer solutions exist and the coefficients of index vari-

ables are all +1, 0 or -1. Even with these restrictions, they showed tha t the Lambda test is not

always exact for three or more coupled subscripts [LY90].

Precision Comparison. When compared with the Power Test, we show tha t the Power Test

will detect independence whenever the Lambda test does, even with our suggested

enhancements. First of all, the Power Test is just a s precise in detecting the presence of simul-

taneous real-valued solutions, since it solves the linear programming problem exactly. As the

Power Test subsumes the Generalized GCD test, i t will also capture all the cases where apply-

ing the GCD test detects the lack of unconstrained integer solutions. Finally, the ability of the

Power Test t o create a dense solution space guarantees tha t i t succeeds in all the cases where

applying the Single Index Variable test would show independence in the Lambda test.

On the other hand, we can show tha t the the Power Test will be able t o detect the lack of

simultaneous integer solutions where the Lambda test cannot, even when the Power Test cannot

apply exact floor and ceiling operators. We show an example where the Power Test is more pre-

cise than the Lambda test:

f o r I , = 1 t o 100 do
f o r I 2 = 1 t o 100 do

A(3*11 + 2*12, 2*12) = A(I1 - I 2 + 6 , I1 + 12)
end f or

endf o r

The dependence equations are:

The linear combinations (set of canonical solutions) tha t the Lambda test would generate are as

follows:

Combination equation eliminates dependence equation

In all cases the GCD test fails t o detect independence since the GCD of the coefficients is one.

Banerjee's inequalities applied t o the three combinations give rise t o the comparisons:

For all three combinations, Banerjee's show that real-valued solutions exist with the loop limits.

Since the GCD test and Banerjee's inequalities fail for all three combinations, the Lambda test

would assume dependence.

In comparison, when we apply the Power Test, we get the dependence matrix hA = c:

The Generalized GCD test returns the matrices:

From the equation tD = c we solve for tl = t3 = 6; the index variables are then defined as:

j3 =3t3 - 6

Examining just the lower limits for each of the four index variables derives the following limits

on the free variables:

Examining the bounds for t3, we see tha t

which derives the inconsistent condition - 2 < t3 < -3 , proving tha t no simultaneous integer

solutions exist. In fact, the Power Test would have detected independence even if the loop

upper limits were unknown symbolic expressions, since it only needed t o use the loop lower lim-

its.

Limitations. The Lambda test assumes tha t no subscript tested can be formed by a linear

combination of other subscripts. This requires first performing Gaussian elimination t o detect

redundant subscripts. The Power Test doesn't assume independence between subscripts; depen-

dent subscripts are eliminated during the Generalized GCD test.

Both the Lambda test and the Power Test may be used to calculate full direction vectors,

though there is no discussion in the literature on how the Lambda test may be used t o generate

distance vectors.

Since i t is based on Banerjee's inequalities, the Lambda test is unable t o handle complex

loop limits tha t use min and max functions tha t may be introduced by advanced loop

interchanging. In addition, the precision of the Lambda test for simple triangular or trapezoidal

loops has not been discussed in the literature. We show with a n example tha t the Lambda test

is less precise than the Power Test for non-rectangular loops. In the following triangular loop,

the Lambda test cannot detect tha t there is no dependence (because there is only one iteration

of the I, loop when I1 = 100).

f o r I1 = 1 t o 100 do
f o r 1, = I1 t o 100 do

A(I1 , I , + 1) = A (1 0 0 , I,)
endfor

endf o r

First of all, the Lambda test may not even consider the two subscripts t o be coupled, since there

are no shared index variables. Even if i t was applied, there is no way for the Lambda test t o

propagate the constraint on I, from the first subscript into the bounds for I, in the second

subscript. This example also shows tha t detecting simultaneous solutions depends on more than

just coupled subscript functions for non-rectangular loops.

Complexity Comparison. As with the Power Test, the Lambda test is a n exponential cost

algorithm for the general case. The expensive part of the test is in the number of linear combi-

nations formed. Given tha t there are n index variables and s subscripts, there are up t o

possible linear combinations which must be created and tested. This clearly grows

exponentially with respect t o the number of index variables in general. However, if the number

of subscripts is kept low, the Lambda test is quite efficient. For instance, with only two coupled

subscripts, the number of linear combinations t o be tested grows only linearly with the number

of index variables. The cost of the Lambda test grows much faster with respect t o the number

of subscripts (up t o n/2 subscripts)

In comparison, the expensive part of the Power Test is in checking the convex hull through

Fourier-Motzkin elimination. The cost of this step is exponential with respect t o the number of

index variables, but actually decreases with respect t o the number of subscripts. If efficiency was

the only factor t o be considered, i t seems tha t the Power Test would be preferable for references

with large numbers of subscripts and few index variables.

8.3. Constraint Matrix Test

The Constraint Matrix test is a modified simplex algorithm for solving integer program-

ming problems, presented in [Wa188]. Instead of first parameterizing the system and then check-

ing the consistency of the loop limits as in the Power Test, the algorithm introduces slack vari-

ables for each constraint and adds them to the system. The Constraint Matrix test then itera-

tively reduces rows in the system using a reduction row pivot method, until the test either

converges or detects the lack of solutions. Since cycling may result for degenerate cases, the

Constraint Matrix test also halts after a fixed number of iterations and conservatively assumes

dependence.

Limitations. Like the Lambda test, the Constraint Matrix algorithm requires tha t all sub-

scripts be independent. Gaussian elimination must thus be performed as a preliminary step.

Although not directly stated in [Wa188], the Constraint Matrix test may compute full direction

vectors by introducing new slack variables for each direction. This requires t ha t the test be

applied from scratch for each direction vector tested. The Constraint Matrix test does not com-

pute distance vectors. [Walt381 also does not mention complex loop limits, but the same tech-

niques we present for the Power Test may be applied t o the Constraint Matrix test as well.

Comparison. The Constraint Matrix test is a multi-dimensional test, and is guaranteed t o

detect the lack of simultaneous real-valued solutions (when cycling does not occur). However, i t

is not an exact test, and it is not even clear tha t i t matches the ability of the Generalized GCD

test t o detect simultaneous unconstrained integer solutions. In addition, the inability of the

Constraint Matrix Test t o detect cycling forces it t o impose an arbitrary limit on the number of

iterations allowed. This has an unknown impact on the precision of the test, and makes i t

difficult t o compare the Constraint Matrix test with the Power Test, especially in its ability t o

detect the lack of simultaneous integer solutions.

Since the Constraint Matrix is based on the simplex algorithm, i t also has worst case

exponential complexity. For most real linear programming problems, simplex algorithms tend t o

have near linear time complexity, and cycling is rare. However, [Sch86] states tha t for combina-

torial problems, where coefficients tend t o be 1, 0, or -1, the simplex algorithm is slow and tends

t o cycle for certain pivot rules.

At this point, more studies are required t o characterize the behavior of the the dependence

tests we have examined. In the end, since the actual number of both index variables and sub-

scripts is likely t o be small, only experimental results will indicate which test is more efficient.

9. Proof of the Power Test

This section proves two important theorems about the Power Test. First, we prove tha t

the Power Test is conservative; tha t is, the Power Test will never claim independence if there

are simultaneous integer solutions tha t satisfy the constraints of the dependence system.

Second, we prove tha t in many well-defined cases, the Power Test is exact; tha t is, in many

cases i t will claim a solution to the dependence system only if i t can prove tha t there are

simultaneous integer solutions tha t satisfy the constraints. Moreover, i t has a simple mechan-

ism t o distinguish when i t is precise and when it is not.

We distinguish two sources of imprecision; in the first case, the dependence system itself

may not be a precise characterization of the data dependence problem. If the subscript func-

tions are not linear combinations of the index variables, then the dependence system cannot be

built; a compiler using the Power Test may assume dependence in these cases even when the

references are independent. Unknown variables, in loop limits or in the subscript functions, can

also cause imprecision, a s in the case:

f o r I = 1 t o N d o
f o r J = M t o 100 d o

A (1 . J) = A (J , I)
e n d f o r

e n d f o r

The relative values of M and N, will determine whether references are or are not dependent.

Since the dependence system cannot characterise the relative values, the system will be impre-

cise; the Power Test (or any other solution method for the dependence system) will assume

dependence even if they are in fact independent. Some compilers use special case analysis t o

generate code tha t detects a t run time whether there is or is not a dependence relation [BDH87],

and execute different code if there is not. Although the dependence system may be imprecise, i t

is always conservative; tha t is, if there is an actual solution t o the da t a dependence problem,

tha t solution will also appear as a solution t o the dependence system. The dependence system

may be imprecise in tha t a solution t o the dependence system may not correspond t o an actual

solution t o the da t a dependence problem, as shown above. In this section, we show tha t the

Power Test will always conservatively solve the dependence system, and will sometimes exactly

solve the system. We recognize tha t the dependence system itself may be imprecise, but tha t is

beyond the scope of this work.

In the Power Test, a second source of imprecision occurs when the floor o r ceiling opera-

tors are ignored t o solve the system of inequalities. This imprecision arises from trying t o solve

an integer system of inequalities with the Fourier-Motzkin method for linear programming.

However, i t is also easy for the Power Test t o detect when a floor or ceiling operator has been

ignored; when a tool using the Power Test reports t o the user the presence of a parallelism-

restricting dependence relation, the tool can also tell the user how confident i t is tha t the depen-

dence actually exists.

Banerjee's Generalized GCD Algorithm starts by filling an n x s coefficient matrix A with

the coefficients of the subscript functions. The goal is t o find whether there is an integer vector

tha t solves the dependence system, M=c. The algorithm finds an n x s upper triangular matrix

D and a nXn unimodular matrix U tha t satisfy UA=D. If an integer vector t can be found

such tha t tD=c, then h=tU is a solution t o the dependence system. Banerjee proved this algo-

rithm correct. Solving tD=c actually solves for tl through t , , leaving only t,+l through t,

as free variables; if there is no integer solution t o tD=c, then there is no integer solution t o the

original dependence equations, regardless of the loop limits. If there is a solution, then there is

a n integer solution somewhere, but i t may or may not be within the loop limits. All integer

solutions t o the dependence equations can be enumerated by letting the free variables

t,+,, . . . , t, range through the integers (any integer value of the free variables derives a solu-

tion t o the dependence equations).

Multiplying h=tU gives h in terms of t. These can be substituted into the loop limit and

direction vector inequalities t o get inequalities relating the free variables. In the Power Test,

we rearrange each inequality t o be an upper or lower bound on the highest numbered free vari-

able with a non-zero coefficient. This gives us potentially a list of upper and lower bounds for

for free variable t,+l through t,. Each upper and lower bound will be expressed as a linear

combination of lower-numbered free variables. For instance, each lower bound for t, will be of

the form:

lbk,x,ktk 2 ~ b k , x , O ~ l b k , x , ~ + l t ~ + l ~ ' . +lbk,x,k-ltk-1 (I)

and each upper bound of the form:

The first subscript of each l b or ub coefficient is the free variable for which this is a bound,

the last subscript is the free variable for which this is a coefficient, and the middle subscript x

ranges over the number of lower bounds (and y over the number of upper bounds) for t k . Note

tha t 1bk,,,,>O and ub,,,,,>O, by construction.

These bounds express the boundaries of the solution space of the dependence system in

(n-s)-space exactly; tha t is, if there are any integer points in the (n-s)-dimensional convex

region bounded by these inequalities, those integer points are values of the free variables tha t

will generate (integer) values of the index variables which will solve the original dependence sys-

tem. If the original dependence system is exact, this solution will be exact.

The first question is whether the Power is always conservative; tha t is, is there a case in

which there is in fact an integer solution but the Power Test will (incorrectly) show indepen-

dence. Duffin [Duff41 shows in his Lemma 1 that Fourier-Motzkin pairwise elimination works.

We reproduce the statement of his Lemma 1 here:

Lemma 1 (Duffin).

Pairwise elimination of the variable x, from a system of linear inequalities gives an

eliminant system of linear inequalities. Then x i , . . . , xk is a solution t o the eliminant

system if and only if there is a n x i such tha t x i , x i , . . . ,xL is a solution of the origi-

nal system.

Proof.

See [Duf74].

Given t ha t the set of linear inequalities of the form shown in (1-2), if there is a n integer solution

t o the inequalities then there must be a real solution; approximating the integer solution by a

real solution is LP-relaxation. By Lemma 1, pairwise elimination t o remove the one of the free

variables, say tk, will generate an eliminant system which will have real solutions if and only if

the original system had real solutions. Thus, if the original system had an integer solution, the

eliminant system will have a real solution. This gives us the first theorem about the Power

Test.

Theorem 1.

If the Power Test relaxes all the floor and ceiling operators, then it will be conservative;

t ha t is, i t will not assert independence when there is in fact an integer solution.

Proof.

Immediately from Lemma 1.

While this is nice, we are really interested only in integer solutions. We use the following two

Lemmas.

Lemma 2.

Given a n inequality of the form (1) or (2), where all the coefficients are integers. This

inequality has integer solutions for the free variables if and only if the corresponding

inequality (1') or (2') has integer solutions.

t k 2 1 (ubk,y,otubk,y,s+l ts+l t . . ' +ubk,y,k-ltk-1) / ~ ~ k , y , k J (2')

Proof.

Directly from the properties of integers.

Lemma 3.

If lbk,x,,/lbk,x,k is integer for s+l<rn<k-1, then a n inequality of the form (1') is

equivalent to:

Similarly, if ubk,y,,/ubk,y,, is an integer for s+l_<m_<k-1, then an inequality of the

form (2') is equivalent to:

Proof.

Directly from the properties of integers.

The following theorem is the claim for the proof of correctness of the Power Test, when some or

all of the floor and ceiling operators are computable.

Theorem 2.

When the Power Test exercises floor and ceiling operators as in Lemma 3, i t is conserva-

tive.

Proof.

The Power Test s tar ts with a linear system of inequalities of the form (1) and (2). Any

integer solution t o these inequalities generates a solution t o the dependence system.

A t each elimination step k in the Power Test, where k ranges from n down t o

s+l, the Power Test eliminates one free variable, t,. Step k star ts with a set of ine-

qualities of the form (1) and (2), which we call the primary set for step k, or

Primary, . Examine the inequalities bounding t,. Suppose tha t the floor and ceiling

operators cannot be exercised as described in Lemmas 2 and 3. Elimination of t, via

pairwise elimination will generate an elirninant system, not involving t,, which will

have solutions if and only if the "original" system had solutions; the "original" system in

this case is Pr imary, . Thus, if there is an integer solution t o Primary, , the elim-

inant system will also have tha t same integer solution. Thus, we need only look for

integer solutions in the eliminant system. Let Primary,.., be this elirninant system,

and proceed by induction.

Suppose instead tha t one or more floor and ceiling operators of tk can be exer-

cised. By Lemma 2, since we only want integer solutions of t,, we can convert the ine-

qualities for which the floor or ceiling operators can be exercised t o the form (1') and

(2'), and by Lemma 3 and the premise tha t the floor and ceiling operators can be exer-

cised, these replacement inequalities can then be converted t o the form (I") and (2"),

replacing the original inequalities. After performing the replacement, we have the

secondary set of inequalities for step k , called Secondary, . Secondary , has poten-

tially a smaller real solution space than the primary set, but the same integer solution

space. Let

Then (1") and (2") are equivalent t o the linear system of inequalities:

We have taken advantage of the properties of integers t o change the coefficient of tk

t o one in some (perhaps all) of its lower and upper bounds, and t o (possibly) slightly

reduce the size of the convex region of the solution space for tk. By Lemma 1, elim-

inating tk by pairwise elimination will generate an eliminant system, not involving t k ,

which will have (real, and hence integer) solutions if and only if the "original" set of ine-

qualities had solutions; the "original" set of inequalities in this case is Seconda ryk .

Thus, if there is an integer solution t o Seconda ryk , the eliminant system will also

have a n integer solution. Thus, we need only look for integer solutions in the eliminant

system, which becomes P ~ i m a r y ~ - ~ .

By induction, we see tha t if there is an integer solution t o Primary, , then there

will be an integer solution t o Pr imary , . Thus, the Power Test will not assert indepen-

dence if the original dependence system in fact has a n integer solution, whether or not

some or all of the floor or ceiling operators are exercised.

The final theorem shows when the Power Test is exact.

Theorem 3.

When the Power Test exercises all floor and ceiling operators as in Lemma 3, i t will find

an integer solution if and only if there is an integer solution t o the original dependence

system.

Proof of "if'.

By Theorem 2, exercising floor and ceiling operators is conservative.

Proof of "only if'.

The procedure shown above in Theorem 2 generates a set of simple affine lower and

upper bounds for each free variable. If the Power Test asserts dependence, then the

bounds for the final free variable, ts+l, will be simple integers:

(if some limits are unknown, then t,,, may be unbounded in one or both directions).

Thus, t,+x has a t least one, and perhaps many, known integer values within its bounds;

choose one such value, say E,,, . Use the value E,,, t o find lower and upper bounds for

t,,,; these will be integers, since the bounds for t,,, are simple linear combinations of

t,,, with integer coefficients. By Lemma 1, any value in the solution range of t,,, can

be used in the bounds of t,,, and will generate a non-empty solution space. Since the

lower and upper bounds must be integer, there must be at least one integer value of

t,,, in this range; choose one, say Fa+,. In such a way, we can find integer values for
- -

each of the free variables, E,,,, t ,+,, ..., t,. By the Generalized GCD, any integer

value of the free variables satisfies the dependence equations. By Lemma 1, only those

values tha t lie within the loop limit and direction vector inequalities will appear within

the final set of bounds. Thus, this set of integer values will generate an integer solution

t o the dependence system tha t satisfies all the inequalities.

10. Conclusions

The Power Test can be useful in advanced program restructuring techniques. Since i t is

based on Banerjee's Generalized GCD test, i t is close t o the holy grail of solving simultaneous

subscript equations only for integer solutions within the loop limits. I t loses some precision

because i t might ignore pertinent ceiling and floor operators. This precision loss is equivalent t o

enlarging the solution space somewhat; in other words, it may return a false positive if there is

a n integer solution near the limits of the loop, or near the bounds imposed by other constraints

such as direction vector relations. The Power Test is also extensible beyond most other depen-

dence decision algorithms, allowing non-direction vector tests and simultaneous multiple upper

and lower loop limits.

The obvious consideration when implementing the Power Test is the execution cost. The

worst case cost of the search procedure can be exponential in the number of free variables. This

cost may be too high for inclusion in a critical component such as a compiler, but may be

appropriate when applying certain "power transformations" in a n interactive environment.

11. Acknowledgements

The authors thanks Jaspal Subhlok, Paul Havlak and Ken Kennedy of Rice University,

Utpal Banerjee of Intel Corporation, and David Callahan of Tera Computer Corporation for

their comments and discussions during the preparation of this paper.

This work was supported in part by NSF Grants CCR-8906909 and CCR-8809615, by DARPA

Grant MDA972-88-J-1004, and by the Cray Research Foundation.

References

[coo7 11

[DaE73]

[Duff 41

J. R. Allen and K. Kennedy, Automatic Loop Interchange, in Proc. of the SIGPLAN

84 Symposium on Compiler Construction, New York, June 1984, 233-246.

J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs t o Vector

Form, ACM Transactions on Programming Languages and Systems 9, 4 (October

1987), 491-542.

F. Allen, M. Burke, P. Charles, R. Cytron and J. Ferrante, An Overview of the

PTRAN Analysis System for Multiprocessing, in Supercomputing, 1st International

Conference, vol. 297, Springer-Verlag, Berlin, 1987, 194-211.

U. Banerjee, Data Dependence in Ordinary Programs, UIUCDCSR-76-837, Univ.

Illinois, Dept. Computer Science, Urbana, IL, November 1976.

U. Banerjee, Speedup of Ordinary Programs, PhD Thesis, Univ. of Illinois, October

1979. (UMI 80-08967).

U. Banerjee, S. Chen, D. J. Kuck and R. A. Towle, Time and Parallel Processor

Bounds for Fortran-Like Loops, IEEE Trans. on Computers C-28, 9 (September

1979), 660-670.

U. Banerjee, Dependence Analysb for Supercomputing, Kluwer Academic Publishers,

Norwell, MA, 1988.

M. Burke and R. Cytron, Interprocedural Dependence Analysis and Parallelization,

in Proc. of the SIGPLAN 86 Symp. on Compiler Construction, Palo Alto, CA, June

25-27, 1986, 162-175.

M. Byler, J. Davies, C. Huson, B. Leasure and M. Wolfe, Multiple Version Loops, in

Proc. of the 1987 International Conf. on Parallel Processing, S. K. Sahni (ed.), Penn

State Press, University Park, PA, 1987, 312-318. August 17-21, 1987.

S. Cook, The Complexity of Theorem-Proving Procedures, in Proceedings of the Third

Annual ACM Symposium on Theory of Computing, ACM, New York, 1971, 151-158.

G. B. Dantzig and B. C. Eaves, Fourier-Motzkin Elimination and Its Dual, Journal of

Combinatorial Theory (A) 14(1973), 288-297.

R. J. Duffin, On Fourier's Analysis of Linear Inequality Systems, in Mathematical

Programming Study 1, North-Holland, 1974, 71-95.

[Fea88] P. Feautrier, Parametric Integer Programming, RAIRO Recherche Operationnelle 22,

3 (September 1988), 243-268.

[GJG87] D. Gannon, W. Jalby and K. Gallivan, Strategies for Cache and Local Memory

Management by Global Program Transformation, in Supercomputing, 1st

International Conference, vol. 297, Springer-Verlag, Berlin, 1987, 229-254.

[GrugO] D. Grunwald, The Lambda Test Revisited, in Proc. of the 1990 International

Conference on Parallel Processing, 1990.

[KKPgOa] D. Klappholz, X. Kong and K. Psarris, On the Perfect Accuracy of an Approximate

Subscript Analysis Test, in Proceedings of the 1990 International Conference on

Supercomputing, ACM, June 1990. Amsterdam, Holland.

[KKPSOb] X. Kong, D. Klappholz and K. Psarris, The I Test: A New Test for Subscript Data

Dependence, in Proceedings of the 1990 International Conference on Parallel

Proc easing, August 1990.

[LYSO] Z. Li, P. C. Yew and C. Q. Zhu, An Efficient Data Dependence Analysis for

Parallelizing Compilers, IEEE Trans. on Parallel and Distributed Systems 1, 1

(January 1990), 26-34.

[Sch86] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons,

Chichester, Great Britain, 1986.

[Sho81] R. Shostak, Deciding Linear Inequalities by Computing Loop Residues, J. of the ACM

28, 4 (October 1981), 764779.

[Wa188] D. R. Wallace, Dependence of Multi-Dimensional Array References, in Proc. of the

1988 International Conf. on Supercomputing, ACM, 1988, 418-428. St. Malo, France,

July 4-8, 1988.

[Wed751 D. Wedel, Fortran for the Texas Instruments ASC System, SIGPLAN Notices 10, 3

(March 1975), 119-132.

[Wi176] H. P. Williams, Fourier-Motzkin Elimination Extension to Integer Programming

Problems, Journal of Combinatorial Theory (A) 21(1976), 118-123.

[Wi183] H. P . Williams, A Characterisation of All Feasible Solutions to an Integer Program,

Discrete Applied Mathematics 5(1983), 147-155.

[Wo182] M. Wolfe, Optimizing Supercompilers for Supercomputers, Ph.D. Thesis, Univ. of

Illinois UIUCDCS-82-1105, Urbana, IL, October 1982. (UMI 83-03027).

[Wo186a] M. Wolfe, Loop Skewing: The Wavefront Method Revisited, Intl J. Parallel

Programming 15, 4 (August 1986), 279-294.

[Wo186b] M. Wolfe, Advanced Loop Interchanging, in Proc. of the 1986 Intl Conf. on Parallel

Processing, K . Hwang, S. M. Jacobs and E. E. Swartzlander (ed.), St. Charles, IL,

August 19-22, 1986, 536543.

[WoB87] M. Wolfe and U. Banerjee, Data Dependence and Its Application to Parallel

Processing, Intl Journal of Parallel Programming 16, 2 (April 1987), 137-178.

[Wo189] M. Wolfe, Optimizing Supercompilers for Supereomputera, Pitman Publishing,

London, 1989.

