
Experiences with
Data Dependence and Loop Restructuring

in the Tiny Research Tool

Michael Wolfe

Oregon Graduate Institute of Science and Technology
Department of Computer Science and Engineering

19600 NW von Neumann Drive
Beaverton, OR 97006

(503)-690-1153
mwolfe@cse.ogi.edu

Experiences with
Data Dependence and Loop Restructuring

in the Tiny Research Tool
Abstract

Program restructuring, or more precisely, loop restructuring is often proposed as a way to

automatically (or manually) improve the performance of scientific programs on high performance com-

puter systems. The most commonly used loop restructuring transformation is loop interchanging, which

can improve parallelism or memory hierarchy performance. The benchmarking process undertaken by

the Perfect Club is one of identifying software transformations tha t will improve performance; many of

these are loop restructuring transformations. Our research program is exploring the potential of loop

restructuring transformations from three points of view: (1) What kinds of transformations can be per-

formed? (2) What information is necessary to decide when a transformation is legal? (3) What perfor-

mance improvement can be attained from each transformation? To support this research we have

begun implementation of a loop restructuring tool. This paper describes our experiences with the second

question above; in particular, we will describe somewhat disappointing results with respect t o current

data dependence abstractions and more advanced loop restructuring transformations.

Experiences with
Data Dependence and Loop Restructuring

in the Tiny Research Tool

1. Introduction

Many loop restructuring transformations have been proposed to increase parallelism or otherwise

improve performance on advanced computer architectures. We present a table of some of these

transformations below; in each case we give a representative citation (instead of an exhaustive list); a

summary of many of these transformations is available in the monograph [Wo189].

transformation enhances reference

vectorization parallelism [Sch72]

parallelization parallelism [ACK87]

strip mining vectorization [Lov77]

distribution vectorization [AlK87]

interchanging parallelism [AlK84]

interchanging memory [GJG88]

skewing parallelism [Wo186]

tiling memory [Am811

fusion overhead [AKL81]

reversal interchanging [Wo189]

alignment parallelism [ACK87]

splitting parallelism [Ban791

rotation communication [Wol9Oa]

An entry of "enhances memory" means the transformation enhances the performance of memory hierar-

chies. Those listed above with an bullet are implemented in commercial language products (loop rever-

sal, or running a loop backwards, was implemented in the TI ASC NX Fortran compiler, where it was

called "loop inversion" [Wed75]). Other transformations have not been shown to be cost-effective, con-

sidering the cost to implement, debug and support more advanced transformations, the cost t o train

users how to write programs to take advantage of the new transformations (and how to understand or

debug the code generated by the compiler or system), and the compile-time cost of attempting each

transformation on each program. Even loop interchanging, which is included in nearly all current com-

mercial vectorizing and parallelizing compilers and generally considered essential, was initially shunned

due to its perceived cost and limited benefits.

Other transformations have also been defined from time to time, but have not been implemented

or have been used only in research. Several research efforts (notably systolic array synthesis research

[GoT88,LeK90]) have looked a t the general problem of mapping the index set of a nested loop computa-

tion via linear transformations into a transformed index set tha t satisfies certain properties, generally

dealing with parallelism and interprocessor communication patterns. Loop restructuring (in some sense)

subsumes this work since linear index set transformations can always be implemented as loop restructur-

ing transformations (some combination of loop interchanging, skewing and reversal). The converse is

not true; there are loop restructuring transformations tha t correspond to nonlinear transformations of

the index set, and so are outside the scope of tha t work.

Many of the interesting transformations developed for high performance computers can be formu-

lated as a combination of multiple elementary transformations. For instance, the wavefront method or

hyperplane method was proposed t o allow parallel execution of a reindexed loop [Lam751 in cases where

neither the inner nor outer loop could be executed in parallel. Previous work has shown tha t the wave-

front method can be viewed a s a combination of loop skewing and interchanging [Wo186]. Another

example is the independent work on loop blocking or tiling which found tha t proper partitioning of the

iteration space (index set) of a nested loop into blocks or tiles would greatly enhance the locality of

reference for da t a access in the inner loop levels [AKL81,GJG88]. I t was quickly realized tha t from a

compiler point of view, tiling could be viewed as a combination of strip mining (or sectioning) [Lov77]

and interchanging, once again combining two elementary loop transformations t o achieve a powerful

result.

We believe tha t loop restructuring is a powerful method t o improve the performance characteris-

tics of a program by matching the program to complex architectures. Elementary transformations can

be combined in interesting ways t o produce dramatic speed enhancements tha t take advantage of paral-

lelism, novel memory hierarchies and high speed interprocessor connection networks. Some of the

research in loop restructuring has already found its way into daily use in the commercial world; however

little experimentation has been done with other potentially interesting advanced restructuring transfor-

mations. In order t o allow this experimentation with loop restructuring as a craft in itself (without

necessarily worrying about immediate commercial applications), we have begun work on a loop restruc-

turing research tool, called Tiny.

The initial goal of the research is t o develop a tool tha t allows a user t o interactively restructure

the loops in a program. The eventual goal will t o be have performance metrics by which the tool will

advise the user as t o the predicted performance of the restructured loop vis-a-vis the original loop, or

even t o attempt a series of transformations automatically; while we feel these metrics are crucial t o the

eventual success of any restructuring process, we are initially concentrating on developing a number of

loop restructuring transformations. In every case, a restructuring transformation is discovered because

some human expert found it necessary t o perform tha t transformation manually in order t o improve

performance, or to enable some subsequent transformation. The automation of a transformation

comprises the development of the rules to test when the transformation is legal and the mechanics of

implementation.

In the Tiny tool, the legality rules are usually tests of the data dependence relations in the pro-

gram [PaW86], and the mechanics of implementation include generating modified dependence relations

[Wo190]. Tiny uses an abstract syntax tree data structure, where each node in the tree can have an

associated list of data dependence successors; each dependence relation in the list is annotated with

direction and distance vector information. These dependence abstractions were originally developed

with particular transformations in mind, and have proven to be useful for many common applications.

However, when looking a t more advanced transformations, we have found that these abstractions are

not sufficient; in fact, it is not clear if there is a single general and efficient abstraction to support all

the transformations we envision.

2. Direction and Distance Vector Abstractions

In the early days of vectorizing compilers, users often manually interchanged loops to improve the

vectorization. Vectorization typically considers only the innermost loop; in the following program frag-

ment:

f o r i = 1 t o n d o
f o r j = 2 t o m d o

a (i , j) = a (i , j-1) + b (i , j)
endf o r

e n d f o r

the j loop cannot be vectorized, since a (i, j - 1) will use the value assigned to a (i , j) from the pre-

vious iteration of the j loop. This is called a data dependence relation, and we say that the statement

depends on itself. Of particular interest is the dependence distance, that is, the number of iterations

that the dependence crosses. In this case, the dependence distance is one, since a (i, j -1) depends on

the value assigned to a (i , j) from the immediately previous iteration. Users learned quickly to recog-

nize cases such as this and to interchange these two loops:

f o r j = 2 to m do
f o r i = 1 t o n d o

a (i , j) = a (i , j - 1) + b (i , j)
e n d f o r

end f or

After interchanging, the program has no dependence relations preventing vectorization of the inner i

loop.

In the late 1970's and early 1980's, research efforts a t the University of Illinois and Rice University

developed compiler technology that could automatically detect when it was legal to interchange loops

[A1K84]. This technology uses the concept of dependence distance, but with a separate dependence

distance computed for each surrounding loop. In the original program fragment above, for instance, a

compiler would find a distance vec tor comprising two elements, the first for the I loop and another for

the J loop. The distance in the I loop is zero, while the distance in the J loop is one (as before); the

distance vector is then (0 , l) . Sometimes, due to complicated subcripting patterns or inexact testing

algorithms, a precise distance vector cannot be computed; in these cases, a compiler might find a direc-

t ion vector which comprises the signs of the possible distances. Each element of a direction vector

would be either +, 0 or -, or a combination of these. For historical reasons, these are usually called

<, = and >, respectively. If the distance vector comprised all zero entries, then we call that a loop-

independent dependence; this corresponds to a direction vector of all-= entries. Otherwise there is a

non-zero entry in the distance vector; in this case we say that the loop corresponding to the first (left-

most) non-zero entry in the distance vector carriee the dependence, and that this is a loop carried

dependence. An loop can be vectori ted if the data dependence graph is acyclic, and can be parallelired if

that loop carries no dependence relations [ACK87,AJK87].

It is shown in the literature that two loops cannot be interchanged if the outer loop carries some

dependence relation for which the dependence distance in the inner loop is negative. Thus, for a doubly

nested loop, a dependence with a direction vector of (<, >) will prevent interchanging those loops. In a

triply nested loop, a dependence with a direction vector of (=, <, >) will prevent interchanging of the

inner two loops, while a dependence with a direction vector of (<, <, >) will not prevent interchanging

(since it is carried by the outer loop). For loop interchanging, the direction vector seemed like a natural

dependence abstraction; if the direction vector is implemented as a bit-vector, with three bits per loop,

then the test for loop interchanging can be implemented as an efficient bit mask test. In contrast, using

the dependence distance information to test for interchanging would require more storage (one word for

each loop) and a (slightly) more complicated test.

Loop skewing is designed to be used with interchanging to implement the wavefront method

[Wo186]. By itself, skewing is always legal; however since the purpose of skewing is to enable interchang-

ing to find more parallelism, it must be done with the dependence relations in mind. The canonical

example for skewing is the following loop:

f o r i = 2 t o n - 1 do
f o r j = 2 t o m - 1 do

a (i , j) = 0.25* (a (i , j - l) + a (i - 1 , j) + a (i , j + l) + a (i + l , j))
end f o r

endf o r

In this loop there are four dependence relations with two distinct dependence distance vectors: (0 , l)

and (1,O). Since each loop carries a dependence relation, neither loop can be executed in parallel.

Skewing the loop generates the program:

f o r i = 2 t o n-1 do
f o r j = i + 2 t o i + m - 1 do

a (i , j) = 0.25* (a (i , j-1-11 + a (i - 1 , j - i) + a (i , j - i + l) + a (i + l , 3-1))
endfor

endf o r

by adding i t o the limits of j (and correcting within the loop); the dependence relations are modified

by adding the distance for the i loop t o the distance for the j loop, producing the dependence distance

vectors: (0.1) and (1 , l) . Now, after loop interchanging:

f o r j = 2+2 t o n-l+m-1 do
f o r i = max (2, j-m+l) t o min (n-1, j-2) do

a (i , j) = 0.25* (a (i , j - i - l) + a (1-1, j - i) +a (i , j - i + l) + a (i + l , j-1))
endf o r

endf o r

the dependence distance vectors are (1,O) and (l,l) ; in both cases, the dependence is carried by the

outer loop, so the inner loop can be executed in parallel.

In this example, the dependence distances were simple and skewing by a factor of one (adding

1Xi t o the j loop limits) was sufficient t o get to the desired result; in fact, the information in the direc-

tion vector would have been sufficient t o decide tha t skewing would be satisfactory here. In the general

case, however, dependence distance information is necessary in order t o decide the skewing factor. This

is a transformation tha t needs distance information in the general case.

3. Why Use Abstractions

One may ask "Why use dependence abstractions a t all?" Consider the process of constructing a

da ta dependence graph. For every pair of references (where one is a n output reference) t o the same

variable (or potentially aliased variables) the compiler or programming tool must find whether there is a

da t a dependence relation between them. Standard dataflow analysis will suffice for most scalar vari-

ables. For array references, current compiler techniques derive a set of dependence equations from the

subscript functions, then use a decision algorithm to discover (a) whether there is any solution t o the

dependence equation a t all (if not, the two references are completely independent), and (b) how to

characterize the solutions t o the dependence equation (with distance or direction vectors, for instance).

Several decision algorithms are in common use today (such as Banerjee's Inequalities [Ban76,BCK79]

and the GCD test [AlK87,Ban76,Coh73]) and recently there has been significant work in the develop-

ment of new decision algorithms [Ban88,KKP9O,LY9O,Wa188,WoT90]. A single compiler may imple-

ment two or more of these tests, plus additional special case tests for important cases not handled by

these general algorithms. By using some sort of dependence abstraction such a s a direction vector, each

decision algorithm can be formulated t o find the potential dependence directions; each transformation

can then be formulated t o inspect the direction vector when testing for legality. This achieves a kind of

orthagonality between the decision algorithms and the transformations, allowing new transformations or

new decision algorithms to be added without having to add or change other parts of the compiler.

An alternative would be to derive a specific dependence test for each transformation, and apply

that test whenever the transformation is required; this is suggested, for instance, by the development of

a specific decision algorithm for loop interchanging, as in Allen and Kennedy's paper [AlK87]. One

problem with this approach is the increase in the cost of the development of the compiler as a whole.

Each of the decision algorithms implemented in a compiler would then have to be specially formulated

to see how i t could be customized for each transformation. This might be satisfactory if only a single

decision algorithm is used; our experience is that where one decision algorithm is satisfactory (in preci-

sion and speed) a t certain times (perhaps when testing single-subscript, single-loop cases), i t is inap-

propriate for other cases (i.e., testing multiple-subscript or multiple-loop), whereas a decision algorithm

appropriate for the latter case would be too expensive for the former.

In comparing the two alternatives, we find several trade-offs. Using a dependence abstraction can

sometimes lose information; for instance, using direction vectors exclusively loses distance information

that could be very useful for some transformations. Avoiding any particular abstraction allows the

development of specialized tests that might be more precise for a particular transformation (we will see

an example of this in the next section). Using a dependence abstraction may require computing infor-

mation that will never be used during the restructuring process; for instance, the compiler may find the

full precise direction vector for each dependence relation, but may (for other reasons) never even

attempt loop interchanging or any transformation that needs that information. On the other hand,

using transformation-specific tests may require computing information redundantly. Interchanging an

inner loop outward twice will require testing for (=, C, >) directions for the first step, then for

(c , >, *) directions for the second step; if there is no dependence with a (>) direction in that inner

loop, then in fact only a single test is really needed for both steps. Using a dependence abstraction may

require modifying the dependence graph after performing a transformation, or even recomputing a new

dependence graph in the worst case. Using transformation-specific tests is essentially equivalent t o com-

puting a new dependence graph after each transformation, since no dependence information is carried

from step to step.

Tiny uses the first approach; i t eagerly computes a full dependence graph saving both direction

vectors and distance vectors for each dependence relation between array references. In the cases where

the dependence distance for a particular loop cannot be determined precisely, or where the distance is

not a constant, Tiny stores the value zero in the distance; this is a flag that the distance is unknown

and the direction vector should be inspected. If the actual distance is zero, the direction vector element

for that loop will be (=) , so no information is lost. In the cases where the direction vector element for

a particular loop cannot be determined to be either (<), (=) or (>), Tiny stores imprecise directions,

such as (5) , (2) or (*) , where the latter means no information is known about the dependence

direction. Determination of which loop "carries" a dependence can be done directly from the direction

vector [AJK87], and many of the transformations need only the information available in the direction

and distance vectors.

4. Where the Abstractions Fail

Given that the data dependence decision algorithms in Tiny compute direction and distance vector

information, we formulated the dependence tests for each transformation to use that information.

Unfortunately, we found several cases where these dependence abstractions fail, or where they lack cer-

tain characteristics. The table below gives the dependence abstraction to support each elementary

transformation considered, and where additional information is necessary or useful:

necessary additional

transformation information information

vectorization carrier loop reductions

parallelization carrier loop reductions

strip mining none thresholds

distribution carrier loop

interchanging direction vector reductions

skewing distance vector

reversal carrier loop reductions

fusion extended direction

splitting crossing threshold

non-tight interchanging cross-direction

Extended Directions: As has been noted in the literature [WoB87,Wo189], the data dependence

test for loop fusion requires dependence direction or distance information about relative iterations in

adjacent, but distinct, loops. For instance, in the loop:

f o r i = 1 t o n do
f o r j = 1 t o m do
b (i , j) = a (i , j) + 1

endfor
f o r k = 1 t o m do
c (i , k) = b (i , k + l)

endf o r
end f o r

the dependence relation from the first assignment to the second will have only a single direction (or dis-

tance) vector entry, for the single loop surrounding both statements (in this case, the direction will be

(=) meaning that the dependence goes from iteration i' to iteration i" where i'=it'). The test for

the legality of loop fusion must find a direction relating the j and k loops; in this case, the dependence

goes from iteration j' to iteration k" where j'=kV-1, or j'>kN . Since the extended direction is (>) ,
loop fusion is illegal in this case. The direction vector abstraction used in Tiny does not compute this

information, so implementing loop fusion requires a special decision algorithm. The problem with

attempting to compute this information ahead of time is that with the possibility of loop interchanging,

statement and loop reordering, and multiple fusion steps, it is not clear what loops are candidates for

fusion and what are not; potentially, Tiny could attempt fusing every loop with every other, making

eager dependence computation very expensive. Since fusion has not been a high priority, we did not

even attempt to speed up the dependence test for fusion.

Crossing Thresholds: Index set splitting is usually used within Tiny to enable other transforma-

tions, such as interchanging non-tightly nested loops [Wol9Ob], and so dependence information is not

needed. Sometimes index set splitting is used to break a dependence cycle. In a loop such as:

f o r i = 1 t o 100 do
a (i) = E(a(lO1-1))

endfor

there is a dependence cycle, but every dependence relation "crosses" the 51st iteration. Splitting the

index set into the two pieces:

f o r i = 1 t o 50 do
a (1) = F (a (101-i))

endf o r
f o r i = 51 t o 100 do
a (i) = F (a (101-1))

endf o r

allows parallel execution of the iterations of both loops, though not parallel execution of the two loops

with each other. The point a t which to split the index set is called the crossing threshold [MK87], and

its computation is shown in Banerjee's thesis (Ban791. Since most of the index set splitting is not done

to break these crossing dependences, Tiny does not compute crossing thresholds.

Reduction Directions: The dependence test for vectorizing an innermost loop is that there must

be no dependence cycle (after ignoring dependence relations carried by outer loops). The direction or

distance vector information is necessary only to determine which dependence relations are carried by

outer loops, and so can be ignored while vectorizing the innermost loop. For almost all applications,

however, reduction operations can be handled differently. For instance, in the loop:

f o r i = 1 t o n do
a (i) = b (i) + c (i)
s = s + a (i)

endf o r

the second assignment exhibits a self-cycle of dependence, with dependence distance one or direction vec-

tor (<) . From inspection of the dependence relations alone, this would appear to prevent full vectori-

zation of the loop; looking a t the assignment itself, it is obvious that the statement is a summation.

Most of the time the order of the summation is not important, and the compiler is allowed to reorder

the summation in order t o achieve better performance. The information necessary to determine whether

vectorization of this loop is not available in the dependence graph, however.

Other transformations also should be able to treat reductions as a special case. Loop reversal, for

instance, is legal if the loop carries no dependence relations; the naive direction or distance vector

abstraction for a reduction, such as the loop shown above, would prevent reversing the loop. Again, if

the order of the reduction does not matter, then reversing a reduction should be allowed. Similarly,

parallelization is legal if the loop carries no dependence relations; some parallel computers have efficient

methods to compute reduction operations, so such a loop should be considered parallelizable, even

though (strictly speaking) the loop carries the reduction dependence. A more interesting case arises

when a compiler is presented with a two-dimensional reduction, such as:

f o r i = 1 t o N do
f o r j = 1 t o M do

s = s + b (i , j)
endf o r

endf o r

Strictly speaking, the dependence relations for this loop have direction (=, <) , for the dependence from

iteration of the (i, j) loop to (i, j +I), and direction (<, >) , for the dependence from iteration

(i, M) to (i+l, 1) . This latter dependence direction prevents interchanging the two loops. Again, if

the order of the reduction does not matter, then interchanging should be allowed, and we would like this

to be reflected in the dependence abstraction.

The problem is that the dependence abstraction lacks any semantic information about the pro-

gram; only the flow of data or use of storage in the program is reflected. In Tiny, we added a new type

of data dependence direction, called the reduction direction. With this abstraction, each dependence

relation is annotated with a direction vector, where the direction vector has one element for each loop

surrounding both references linked by the relation. Each direction vector element is a member of

(<, =, > ,I, 2, * , R). A reduction operation, such as the two-dimensional summation above, would be

represented with a dependence relation with direction vector (R,R) . With this information, the depen-

dence tests for vectorization, parallelization, reversal, interchanging and other transformations can

separate loop-carried dependence relations that correspond to reductions, (where reordering is allowed)

and those that correspond to other dependence relations (where the order must be observed). In prac-

tice, a reduction direction corresponds to a dependence distance of one, and i t seems to only make sense

to have a reduction direction when all direction vector elements are either (R) or (=) (i.e., no (<,R)

directions).

Non-Tightly Nested Loops: One of the early goals of Tiny was to be able t o generate all six

forms of the Cholesky decomposition algorithm (L L ~ decomposition of a positive definite symmetric

matrix) given one of the forms; the six forms are named after the order of the three loops around the

innermost statement, so the program below is the K I J form:

for k = 1 t o n do
a (k ,k) = s q r t (a (k , k))
for i = k + l t o n do
a (i , k) = a (i , k) / a (k , k)
for j = k + l t o i do
a(i, j) = a (i , j) - a (i , k) * a (j , k)

endf or
endf or

endfor

In order t o generate the IKJ form of the program, the non-tightly nested k and i loops must be

directly interchanged; the normal process of interchanging non-tightly nested loops (distributing the

outer loop, then interchanging) is prevented by a dependence cycle which disallows the loop distribution.

The generated form of the program is:

for i = 1 t o n do
for k = 1 t o i -1 do
a (i , k) = a (i . k) / a (k , k)
for j = k + l t o i do
a (i , j) = a (i , j) - a (i , k) * a (j , k)

endfor
end f or
a (i , i) = s q r t (a (i , i))

endf or

The dependence test for interchanging (normal) tightly nested loops involves inspecting the direction or

distance vector, which contains information about the relative values of indices (kN-kt, i t ' - i t) for

dependence from iteration (k', i f) t o iteration (k", i") ; in contrast, the dependence test for inter-

changing non-tightly nested loops involves inspecting the relative values of (k"-k', iM-kf) for depen-

dence from the non-tightly nested statement a t iteration (kt) to a statement within the inner loop a t

iteration (kt', i") . Of particular importance is the fact that the relative iteration numbers of diflerent

index variables must be known to test for the legality of the transformation. This differs from the

extended direction vectors needed for loop fusion; there the different loop indices being compared were

for adjacent loops a t the same nest level, while here the different loop indices are for nested loops. This

information is not contained in the direction vector or distance vector abstraction. As with loop fusion,

it is hard to know beforehand which non-tightly nested loops might be tempting to interchange, and so

which cross-index directions should be precomputed. Thus, Tiny has a special decision algorithm just to

compute this dependence information on demand when interchanging non-tightly nested loops is

requested.

5. Summary

The Tiny program is a tool used to support research into program restructuring. We believe that

our research will identify other transformations that should (or should not) be included in programming

environments and compilers for advanced architecture computer systems. One aspect of this research is

the discovery of methods to calculate and represent the data dependence information necessary to test

for the legality of different restructuring transformations.

The examples in the previous section show some of the weaknesses of the data dependence abstrac-

tions used in Tiny; these same abstractions are also widely used in other research and commercial pro-

ducts. In one case, we propose extending direction vectors to include some semantic information about

reduction operations; this seems sufficiently general t o warrant implementation. PFC, the research

parallelizing compiler developed a t Rice University, finds crossing thresholds and implements the

transformations necessary to take advantage of them. It is not clear whether they occur frequently

enough to warrant inclusion in the general data dependence abstraction. In the other two cases, we

have taken the approach that no current data dependence abstraction is both sufficiently powerful t o

expose the necessary information and relatively efficient (in space, computation time and access time) to

warrant implementation. Tiny uses the approach that this information is computed as necessary ("on

demand") when the appropriate transformation is requested. Note that in all such cases, the original

data dependence graph serves as a starting point; that is, the new decision algorithm need only be

applied where the more general data dependence graph already shows a dependence relation.

References

W. A. Abu-Sufah, D. J. Kuck and D. H. Lawrie, On the Performance Enhancement of Paging

Systems Through Program Analysis and Transformations, IEEE Trans. on Computers C-90, 5

(May 1981), 341-356.

J. R. Allen and K. Kennedy, Automatic Loop Interchange, in Proc. of the SIGPLAN 84

Symposium on Compiler Construction, New York, June 1984, 233-246.

R. Allen, D. Callahan and K. Kennedy, Automatic Decomposition of Scientific Programs for

Parallel Execution, in Conf. Record of the 14th Annual ACM Symp. on Principles of

Programming Languages, ACM Press, New York, 1987, 63-76.

J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs t o Vector Form,

ACM Transactions on Programming Languages and Systems 9, 4 (October 1987), 491-542.

U. Banerjee, Data Dependence in Ordinary Programs, UIUCDCS-R-76-837, Univ. Illinois,

Dept. Computer Science, Urbana, IL, November 1976.

U. Banerjee, S. Chen, D. J. Kuck and R. A. Towle, Time and Parallel Processor Bounds for

Fortran-Like Loops, IEEE Trans. on Computers C-28, 9 (September 1979), 660-670.

U. Banerjee, Speedup of Ordinary Programs, PhD Thesis, Univ. of Illinois, October 1979.

(UMI 80-08967).

U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Publishers, Norwell,

MA, 1988.

W. L. Cohagan, Vector Optimization for the ASC, in Proc. of the Seventh Annual Princeton

Conj. on Information Sciences and Systems, Princeton University, Princeton, NJ, 1973, 169-

174.

D. Gannon, W. Jalby and K. Gallivan, Strategies for Cache and Local Memory Management

by Global Program Transformation, J. Parallel and Distributed Computing 5, 5 (October

1988), 587-616, Academic Press.

M. B. Gokhale and T. C. Torgerson, The Symbolic Hyperplane Transformation for

Recursively Defined Arrays, in Proc. of Supercomputing 88, IEEE Computer Society Press,

Los Angeles, 1988, 207-214. Orlando, FL, November 14-18, 1988.

X. Kong, D. Klappholz and K. Psarris, The I Test: A New Test for Subscript Data

Dependence, in Proceedings of the 1990 International Conference on Parallel Processing,

August 1990.

L. Lamport, The Hyperplane Method for an Array Computer, in Parallel Processing: Proc. of

the Sagamore Computer Conference, vol. 24, T . Feng (ed.), Springer-Verlag, Berlin, 1975,

113-131.

P. Lee and Z. M. Kedem, Mapping Nested Loop Algorithms into Multidimensional Systolic

Arrays, IEEE Trans. on Parallel and Distributed Systems 1, 1 (January 1990), 6476.

Z. Li, P. C. Yew and C. Q. Zhu, An Efficient Data Dependence Analysis for Parallelizing

Compilers, IEEE Trans. on Parallel and Distributed Systems 1, 1 (January 1990), 26-34.

D. Loveman, Program Improvement by Source-to-Source Transformation, J. of the ACM 20,

1 (January 1977), 121-145.

D. A. Padua and M. Wolfe, Advanced Compiler Optimizations for Supercomputers, Comm. of

the ACM 29, 12 (December 1986), 11841201.

P. B. Schneck, Automatic Recognition of Vector and Parallel Operations in a Higher Level

Language, SIGPLAN Notices 7, 11 (November 1972)) 45-52.

D. R. Wallace, Dependence of Multi-Dimensional Array References, in Proc. of the 1988

International Conf. on Supercomputing, ACM, 1988, 418-428. St. Malo, France, July 4 8 ,

1988.

D. Wedel, Fortran for the Texas Instruments ASC System, SIGPLAN Notices 10, 3 (March

1975), 114132.

M. Wolfe, Loop Skewing: The Wavefront Method Revisited, Intl J. Parallel Programming 15,

4 (August 1986), 279-294.

M. Wolfe and U. Banerjee, Data Dependence and Its Application to Parallel Processing, Intl

Journal of Parallel Programming 16, 2 (April 1987), 137-178.

M. Wolfe, Optimizing Supercompilers for Supercomputers, Pitman Publishing, London, 1989.

M. Wolfe, Data Dependence and Program Restructuring, Journal of Supercomputing, 1990.

M. Wolfe and C. Tseng, The Power Test for Data Dependence, J. Supercomputing, to appear,

1990.

M. Wolfe, Loop Rotation, in Languages and Compilers for Parallel Computing, D. Gelernter,

A. Nicolau and D. Padua (ed.), Pitman, London, 1990, 531-553.

M. Wolfe, A Loop Restructuring Research Tool, CS/E 90-014, Oregon Graduate Institute,

Beaverton OR, 1990.

