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Experiences with 
Data Dependence and Loop Restructuring 

in the Tiny Research Tool 
Abstract 

Program restructuring, or more precisely, loop restructuring is often proposed as a way to 

automatically (or manually) improve the performance of scientific programs on high performance com- 

puter systems. The most commonly used loop restructuring transformation is loop interchanging, which 

can improve parallelism or memory hierarchy performance. The benchmarking process undertaken by 

the Perfect Club is one of identifying software transformations tha t  will improve performance; many of 

these are loop restructuring transformations. Our research program is exploring the potential of loop 

restructuring transformations from three points of view: (1) What kinds of transformations can be per- 

formed? (2) What information is necessary to  decide when a transformation is legal? (3) What perfor- 

mance improvement can be attained from each transformation? To support this research we have 

begun implementation of a loop restructuring tool. This paper describes our experiences with the second 

question above; in particular, we will describe somewhat disappointing results with respect t o  current 

data dependence abstractions and more advanced loop restructuring transformations. 



Experiences with 
Data Dependence and Loop Restructuring 

in the Tiny Research Tool 

1. Introduction 

Many loop restructuring transformations have been proposed to increase parallelism or otherwise 

improve performance on advanced computer architectures. We present a table of some of these 

transformations below; in each case we give a representative citation (instead of an  exhaustive list); a 

summary of many of these transformations is available in the monograph [Wo189]. 

transformation enhances reference 

vectorization parallelism [Sch72] 

parallelization parallelism [ACK87] 

strip mining vectorization [Lov77] 

distribution vectorization [AlK87] 

interchanging parallelism [AlK84] 

interchanging memory [GJG88] 

skewing parallelism [Wo186] 

tiling memory [Am811 

fusion overhead [AKL81] 

reversal interchanging [Wo189] 

alignment parallelism [ACK87] 

splitting parallelism [Ban791 

rotation communication [Wol9Oa] 

An entry of "enhances memory" means the transformation enhances the performance of memory hierar- 

chies. Those listed above with an bullet are implemented in commercial language products (loop rever- 

sal, or running a loop backwards, was implemented in the TI ASC NX Fortran compiler, where it was 

called "loop inversion" [Wed75]). Other transformations have not been shown to be cost-effective, con- 

sidering the cost to implement, debug and support more advanced transformations, the cost t o  train 

users how to  write programs to take advantage of the new transformations (and how to  understand or 

debug the code generated by the compiler or system), and the compile-time cost of attempting each 

transformation on each program. Even loop interchanging, which is included in nearly all current com- 

mercial vectorizing and parallelizing compilers and generally considered essential, was initially shunned 

due to  its perceived cost and limited benefits. 



Other transformations have also been defined from time to  time, but have not been implemented 

or have been used only in research. Several research efforts (notably systolic array synthesis research 

[GoT88,LeK90]) have looked a t  the general problem of mapping the index set of a nested loop computa- 

tion via linear transformations into a transformed index set tha t  satisfies certain properties, generally 

dealing with parallelism and interprocessor communication patterns. Loop restructuring (in some sense) 

subsumes this work since linear index set transformations can always be implemented as  loop restructur- 

ing transformations (some combination of loop interchanging, skewing and reversal). The converse is 

not true; there are loop restructuring transformations tha t  correspond to  nonlinear transformations of 

the index set, and so are outside the scope of tha t  work. 

Many of the interesting transformations developed for high performance computers can be formu- 

lated as  a combination of multiple elementary transformations. For instance, the wavefront  method or 

hyperplane method  was proposed t o  allow parallel execution of a reindexed loop [Lam751 in cases where 

neither the inner nor outer loop could be executed in parallel. Previous work has shown tha t  the wave- 

front method can be viewed a s  a combination of loop skewing and interchanging [Wo186]. Another 

example is the independent work on loop blocking or tiling which found tha t  proper partitioning of the 

iteration space (index set) of a nested loop into blocks or tiles would greatly enhance the locality of 

reference for da t a  access in the inner loop levels [AKL81,GJG88]. I t  was quickly realized tha t  from a 

compiler point of view, tiling could be viewed as a combination of strip mining (or sectioning) [Lov77] 

and interchanging, once again combining two elementary loop transformations t o  achieve a powerful 

result. 

We believe tha t  loop restructuring is a powerful method t o  improve the performance characteris- 

tics of a program by matching the program to  complex architectures. Elementary transformations can 

be combined in interesting ways t o  produce dramatic speed enhancements tha t  take advantage of paral- 

lelism, novel memory hierarchies and high speed interprocessor connection networks. Some of the 

research in loop restructuring has already found its way into daily use in the commercial world; however 

little experimentation has been done with other potentially interesting advanced restructuring transfor- 

mations. In order t o  allow this experimentation with loop restructuring as  a craft in itself (without 

necessarily worrying about immediate commercial applications), we have begun work on a loop restruc- 

turing research tool, called Tiny. 

The initial goal of the research is t o  develop a tool tha t  allows a user t o  interactively restructure 

the loops in a program. The eventual goal will t o  be have performance metrics by which the tool will 

advise the user as  t o  the predicted performance of the restructured loop vis-a-vis the original loop, or 

even t o  attempt a series of transformations automatically; while we feel these metrics are  crucial t o  the 

eventual success of any restructuring process, we are initially concentrating on developing a number of 

loop restructuring transformations. In every case, a restructuring transformation is discovered because 

some human expert found it  necessary t o  perform tha t  transformation manually in order t o  improve 



performance, or to  enable some subsequent transformation. The automation of a transformation 

comprises the development of the rules to  test when the transformation is legal and the mechanics of 

implementation. 

In the Tiny tool, the legality rules are usually tests of the data dependence relations in the pro- 

gram [PaW86], and the mechanics of implementation include generating modified dependence relations 

[Wo190]. Tiny uses an abstract syntax tree data structure, where each node in the tree can have an 

associated list of data dependence successors; each dependence relation in the list is annotated with 

direction and distance vector information. These dependence abstractions were originally developed 

with particular transformations in mind, and have proven to be useful for many common applications. 

However, when looking a t  more advanced transformations, we have found that  these abstractions are 

not sufficient; in fact, it  is not clear if there is a single general and efficient abstraction to support all 

the transformations we envision. 

2. Direction and Distance Vector Abstractions 

In the early days of vectorizing compilers, users often manually interchanged loops to improve the 

vectorization. Vectorization typically considers only the innermost loop; in the following program frag- 

ment: 

f o r  i = 1 t o  n d o  
f o r  j  = 2 t o  m d o  

a ( i ,  j) = a ( i ,  j-1) + b ( i ,  j )  
endf  o r  

e n d f  o r  

the j  loop cannot be vectorized, since a  (i, j  - 1) will use the value assigned to  a  ( i ,  j )  from the pre- 

vious iteration of the j loop. This is called a data dependence relation, and we say that the statement 

depends on itself. Of particular interest is the dependence distance, that is, the number of iterations 

that the dependence crosses. In this case, the dependence distance is one, since a  (i, j  -1) depends on 

the value assigned to a ( i ,  j) from the immediately previous iteration. Users learned quickly to recog- 

nize cases such as this and to interchange these two loops: 

f o r  j = 2 to m do 
f o r  i = 1 t o  n d o  

a ( i , j )  = a ( i , j - 1 )  + b ( i , j )  
e n d f o r  

end f or  

After interchanging, the program has no dependence relations preventing vectorization of the inner i 

loop. 

In the late 1970's and early 1980's, research efforts a t  the University of Illinois and Rice University 

developed compiler technology that could automatically detect when it was legal to  interchange loops 

[A1K84]. This technology uses the concept of dependence distance, but with a separate dependence 



distance computed for each surrounding loop. In the original program fragment above, for instance, a 

compiler would find a distance vec tor  comprising two elements, the first for the I loop and another for 

the J loop. The distance in the I loop is zero, while the distance in the J loop is one (as before); the 

distance vector is then ( 0 , l ) .  Sometimes, due to  complicated subcripting patterns or inexact testing 

algorithms, a precise distance vector cannot be computed; in these cases, a compiler might find a direc- 

t ion vector  which comprises the signs of the possible distances. Each element of a direction vector 

would be either +, 0 or -, or a combination of these. For historical reasons, these are usually called 

<, = and >, respectively. If the distance vector comprised all zero entries, then we call that a loop- 

independent dependence; this corresponds to  a direction vector of all-= entries. Otherwise there is a 

non-zero entry in the distance vector; in this case we say that the loop corresponding to  the first (left- 

most) non-zero entry in the distance vector carriee the dependence, and that this is a loop carried 

dependence. An loop can be vectori ted if the data dependence graph is acyclic, and can be parallelired if 

that loop carries no dependence relations [ACK87,AJK87]. 

It is shown in the literature that two loops cannot be interchanged if the outer loop carries some 

dependence relation for which the dependence distance in the inner loop is negative. Thus, for a doubly 

nested loop, a dependence with a direction vector of (<, >) will prevent interchanging those loops. In a 

triply nested loop, a dependence with a direction vector of (=, <, >) will prevent interchanging of the 

inner two loops, while a dependence with a direction vector of (<, <, >) will not prevent interchanging 

(since it  is carried by the outer loop). For loop interchanging, the direction vector seemed like a natural 

dependence abstraction; if the direction vector is implemented as a bit-vector, with three bits per loop, 

then the test for loop interchanging can be implemented as an efficient bit mask test. In contrast, using 

the dependence distance information to  test for interchanging would require more storage (one word for 

each loop) and a (slightly) more complicated test. 

Loop skewing is designed to be used with interchanging to  implement the wavefront method 

[Wo186]. By itself, skewing is always legal; however since the purpose of skewing is to  enable interchang- 

ing to  find more parallelism, it must be done with the dependence relations in mind. The canonical 

example for skewing is the following loop: 

f o r  i = 2 t o  n - 1  do 
f o r  j = 2 t o  m - 1  do 

a ( i ,  j )  = 0.25* ( a ( i ,  j - l ) + a ( i - 1 ,  j ) + a ( i ,  j + l ) + a ( i + l ,  j ) )  
end f o r  

endf o r  

In this loop there are four dependence relations with two distinct dependence distance vectors: ( 0 , l )  

and (1,O).  Since each loop carries a dependence relation, neither loop can be executed in parallel. 

Skewing the loop generates the program: 



f o r  i = 2  t o  n-1 do 
f o r  j = i + 2  t o  i + m - 1  do 

a  ( i ,  j )  = 0.25* ( a ( i ,  j-1-11 + a ( i - 1 ,  j - i )  + a ( i ,  j - i + l )  + a ( i + l ,  3-1))  
endfor  

endf o r  

by adding i t o  the limits of j (and correcting within the loop); the dependence relations are modified 

by adding the distance for the i loop t o  the distance for the j loop, producing the dependence distance 

vectors: (0.1) and ( 1 , l )  . Now, after loop interchanging: 

f o r  j = 2+2 t o  n-l+m-1 do 
f o r  i = max (2, j-m+l) t o  min (n-1, j-2) do 

a ( i ,  j )  = 0.25* (a  ( i ,  j - i - l ) + a  (1-1, j - i )  +a  ( i ,  j - i + l )  + a ( i + l ,  j-1)) 
endf o r  

endf o r  

the dependence distance vectors are (1,O) and (l,l) ; in both cases, the dependence is carried by the 

outer loop, so the inner loop can be executed in parallel. 

In this example, the dependence distances were simple and skewing by a factor of one (adding 

1Xi  t o  the j loop limits) was sufficient t o  get to  the desired result; in fact, the information in the direc- 

tion vector would have been sufficient t o  decide tha t  skewing would be satisfactory here. In the general 

case, however, dependence distance information is necessary in order t o  decide the skewing factor. This 

is a transformation tha t  needs distance information in the general case. 

3. Why Use Abstractions 

One may ask "Why use dependence abstractions a t  all?" Consider the process of constructing a 

da ta  dependence graph. For every pair of references (where one is a n  output reference) t o  the same 

variable (or potentially aliased variables) the compiler or programming tool must find whether there is a 

da t a  dependence relation between them. Standard dataflow analysis will suffice for most scalar vari- 

ables. For array references, current compiler techniques derive a set of dependence equations from the 

subscript functions, then use a decision algorithm to  discover (a) whether there is any solution t o  the 

dependence equation a t  all (if not, the two references are completely independent), and (b) how to  

characterize the solutions t o  the dependence equation (with distance or direction vectors, for instance). 

Several decision algorithms are in common use today (such as  Banerjee's Inequalities [Ban76,BCK79] 

and the GCD test [AlK87,Ban76,Coh73]) and recently there has been significant work in the develop- 

ment of new decision algorithms [Ban88,KKP9O,LY9O,Wa188,WoT90]. A single compiler may imple- 

ment two or more of these tests, plus additional special case tests for important cases not handled by 

these general algorithms. By using some sort of dependence abstraction such a s  a direction vector, each 

decision algorithm can be formulated t o  find the potential dependence directions; each transformation 

can then be formulated t o  inspect the direction vector when testing for legality. This achieves a kind of 

orthagonality between the decision algorithms and the transformations, allowing new transformations or 



new decision algorithms to  be added without having to add or change other parts of the compiler. 

An alternative would be to  derive a specific dependence test for each transformation, and apply 

that  test whenever the transformation is required; this is suggested, for instance, by the development of 

a specific decision algorithm for loop interchanging, as  in Allen and Kennedy's paper [AlK87]. One 

problem with this approach is the increase in the cost of the development of the compiler as  a whole. 

Each of the decision algorithms implemented in a compiler would then have to  be specially formulated 

to  see how i t  could be customized for each transformation. This might be satisfactory if only a single 

decision algorithm is used; our experience is that  where one decision algorithm is satisfactory (in preci- 

sion and speed) a t  certain times (perhaps when testing single-subscript, single-loop cases), i t  is inap- 

propriate for other cases (i.e., testing multiple-subscript or multiple-loop), whereas a decision algorithm 

appropriate for the latter case would be too expensive for the former. 

In comparing the two alternatives, we find several trade-offs. Using a dependence abstraction can 

sometimes lose information; for instance, using direction vectors exclusively loses distance information 

that  could be very useful for some transformations. Avoiding any particular abstraction allows the 

development of specialized tests that  might be more precise for a particular transformation (we will see 

an example of this in the next section). Using a dependence abstraction may require computing infor- 

mation that  will never be used during the restructuring process; for instance, the compiler may find the 

full precise direction vector for each dependence relation, but may (for other reasons) never even 

attempt loop interchanging or any transformation that  needs that  information. On the other hand, 

using transformation-specific tests may require computing information redundantly. Interchanging an  

inner loop outward twice will require testing for (=, C,  >) directions for the first step, then for 

(c ,  >, *) directions for the second step; if there is no dependence with a (>) direction in that  inner 

loop, then in fact only a single test is really needed for both steps. Using a dependence abstraction may 

require modifying the dependence graph after performing a transformation, or even recomputing a new 

dependence graph in the worst case. Using transformation-specific tests is essentially equivalent t o  com- 

puting a new dependence graph after each transformation, since no dependence information is carried 

from step to step. 

Tiny uses the first approach; i t  eagerly computes a full dependence graph saving both direction 

vectors and distance vectors for each dependence relation between array references. In the cases where 

the dependence distance for a particular loop cannot be determined precisely, or where the distance is 

not a constant, Tiny stores the value zero in the distance; this is a flag that  the distance is unknown 

and the direction vector should be inspected. If the actual distance is zero, the direction vector element 

for that  loop will be (=) , so no information is lost. In the cases where the direction vector element for 

a particular loop cannot be determined to be either (<), (=) or (>), Tiny stores imprecise directions, 

such as (5)  , (2) or ( * )  , where the latter means no information is known about the dependence 

direction. Determination of which loop "carries" a dependence can be done directly from the direction 



vector [AJK87], and many of the transformations need only the information available in the direction 

and distance vectors. 

4. Where the Abstractions Fail 

Given that  the data dependence decision algorithms in Tiny compute direction and distance vector 

information, we formulated the dependence tests for each transformation to  use that  information. 

Unfortunately, we found several cases where these dependence abstractions fail, or where they lack cer- 

tain characteristics. The table below gives the dependence abstraction to  support each elementary 

transformation considered, and where additional information is necessary or useful: 

necessary additional 

transformation information information 

vectorization carrier loop reductions 

parallelization carrier loop reductions 

strip mining none thresholds 

distribution carrier loop 

interchanging direction vector reductions 

skewing distance vector 

reversal carrier loop reductions 

fusion extended direction 

splitting crossing threshold 

non-tight interchanging cross-direction 

Extended Directions: As has been noted in the literature [WoB87,Wo189], the data dependence 

test for loop fusion requires dependence direction or distance information about relative iterations in 

adjacent, but distinct, loops. For instance, in the loop: 

f o r  i = 1 t o  n do 
f o r  j = 1 t o  m do 
b ( i , j )  = a ( i , j )  + 1 

endfor  
f o r  k  = 1 t o  m do 
c ( i , k )  = b ( i , k + l )  

endf o r  
end f o r  

the dependence relation from the first assignment to the second will have only a single direction (or dis- 

tance) vector entry, for the single loop surrounding both statements (in this case, the direction will be 

(=) meaning that the dependence goes from iteration i' to iteration i" where i'=it'). The test for 



the legality of loop fusion must find a direction relating the j and k loops; in this case, the dependence 

goes from iteration j' to  iteration k" where j'=kV-1, or j'>kN . Since the extended direction is (>) , 
loop fusion is illegal in this case. The direction vector abstraction used in Tiny does not compute this 

information, so implementing loop fusion requires a special decision algorithm. The problem with 

attempting to compute this information ahead of time is that with the possibility of loop interchanging, 

statement and loop reordering, and multiple fusion steps, it is not clear what loops are candidates for 

fusion and what are not; potentially, Tiny could attempt fusing every loop with every other, making 

eager dependence computation very expensive. Since fusion has not been a high priority, we did not 

even attempt to  speed up the dependence test for fusion. 

Crossing Thresholds: Index set splitting is usually used within Tiny to  enable other transforma- 

tions, such as interchanging non-tightly nested loops [Wol9Ob], and so dependence information is not 

needed. Sometimes index set splitting is used to  break a dependence cycle. In a loop such as: 

f o r  i = 1 t o  100 do 
a ( i )  = E(a(lO1-1)) 

endfor  

there is a dependence cycle, but every dependence relation "crosses" the 51st iteration. Splitting the 

index set into the two pieces: 

f o r  i = 1 t o  50 do 
a (1) = F (a (101-i) ) 

endf o r  
f o r  i = 51 t o  100 do 
a (i) = F (a (101-1) ) 

endf o r  

allows parallel execution of the iterations of both loops, though not parallel execution of the two loops 

with each other. The point a t  which to split the index set is called the crossing threshold [MK87], and 

its computation is shown in Banerjee's thesis (Ban791. Since most of the index set splitting is not done 

to break these crossing dependences, Tiny does not compute crossing thresholds. 

Reduction Directions: The dependence test for vectorizing an innermost loop is that there must 

be no dependence cycle (after ignoring dependence relations carried by outer loops). The direction or 

distance vector information is necessary only to determine which dependence relations are carried by 

outer loops, and so can be ignored while vectorizing the innermost loop. For almost all applications, 

however, reduction operations can be handled differently. For instance, in the loop: 

f o r  i = 1 t o  n do 
a (i) = b (i) + c (i) 
s = s + a ( i )  

endf o r  

the second assignment exhibits a self-cycle of dependence, with dependence distance one or direction vec- 

tor (<) . From inspection of the dependence relations alone, this would appear to  prevent full vectori- 

zation of the loop; looking a t  the assignment itself, it is obvious that the statement is a summation. 



Most of the time the order of the summation is not important, and the compiler is allowed to  reorder 

the summation in order t o  achieve better performance. The information necessary to determine whether 

vectorization of this loop is not available in the dependence graph, however. 

Other transformations also should be able to treat reductions as  a special case. Loop reversal, for 

instance, is legal if the loop carries no dependence relations; the naive direction or distance vector 

abstraction for a reduction, such as the loop shown above, would prevent reversing the loop. Again, if 

the order of the reduction does not matter, then reversing a reduction should be allowed. Similarly, 

parallelization is legal if the loop carries no dependence relations; some parallel computers have efficient 

methods to compute reduction operations, so such a loop should be considered parallelizable, even 

though (strictly speaking) the loop carries the reduction dependence. A more interesting case arises 

when a compiler is presented with a two-dimensional reduction, such as: 

f o r  i = 1 t o  N do 
f o r  j = 1 t o  M do 

s = s + b ( i ,  j) 
endf o r  

endf o r  

Strictly speaking, the dependence relations for this loop have direction (=, <) , for the dependence from 

iteration of the (i, j) loop to  (i, j +I), and direction (<, >) , for the dependence from iteration 

(i, M) to (i+l, 1) . This latter dependence direction prevents interchanging the two loops. Again, if 

the order of the reduction does not matter, then interchanging should be allowed, and we would like this 

to be reflected in the dependence abstraction. 

The problem is that  the dependence abstraction lacks any semantic information about the pro- 

gram; only the flow of data or use of storage in the program is reflected. In Tiny, we added a new type 

of data dependence direction, called the reduction direction. With this abstraction, each dependence 

relation is annotated with a direction vector, where the direction vector has one element for each loop 

surrounding both references linked by the relation. Each direction vector element is a member of 

(<, =, > ,I, 2, * , R). A reduction operation, such as the two-dimensional summation above, would be 

represented with a dependence relation with direction vector (R,R)  . With this information, the depen- 

dence tests for vectorization, parallelization, reversal, interchanging and other transformations can 

separate loop-carried dependence relations that  correspond to reductions, (where reordering is allowed) 

and those that  correspond to other dependence relations (where the order must be observed). In prac- 

tice, a reduction direction corresponds to  a dependence distance of one, and i t  seems to  only make sense 

to have a reduction direction when all direction vector elements are either (R) or (=) (i.e., no (<,R) 

directions). 

Non-Tightly Nested Loops: One of the early goals of Tiny was to  be able t o  generate all six 

forms of the Cholesky decomposition algorithm ( L L ~  decomposition of a positive definite symmetric 

matrix) given one of the forms; the six forms are named after the order of the three loops around the 



innermost statement, so the program below is the K I  J form: 

for k  = 1 t o  n  do 
a (k ,k )  = s q r t ( a ( k , k ) )  
for i = k + l  t o  n  do 
a ( i , k )  = a ( i , k ) / a ( k , k )  
for j = k + l  t o  i do 
a(i, j )  = a ( i ,  j ) - a ( i , k ) * a ( j , k )  

endf or 
endf or 

endfor 

In order t o  generate the IKJ form of the program, the non-tightly nested k  and i loops must be 

directly interchanged; the normal process of interchanging non-tightly nested loops (distributing the 

outer loop, then interchanging) is prevented by a dependence cycle which disallows the loop distribution. 

The generated form of the program is: 

for i = 1 t o  n do 
for k  = 1 t o  i -1  do 
a ( i , k )  = a ( i . k ) / a ( k , k )  
for j = k + l  t o  i do 
a ( i ,  j) = a ( i ,  j ) - a ( i , k ) * a ( j , k )  

endfor 
end f or 
a ( i , i )  = s q r t ( a ( i , i ) )  

endf or 

The dependence test for interchanging (normal) tightly nested loops involves inspecting the direction or 

distance vector, which contains information about the relative values of indices (kN-kt, i t ' - i t )  for 

dependence from iteration (k', i f )  t o  iteration (k", i" ) ;  in contrast, the dependence test for inter- 

changing non-tightly nested loops involves inspecting the relative values of (k"-k', iM-kf)  for depen- 

dence from the non-tightly nested statement a t  iteration (kt) to  a statement within the inner loop a t  

iteration (kt', i") . Of particular importance is the fact that  the relative iteration numbers of diflerent 

index variables must be known to  test for the legality of the transformation. This differs from the 

extended direction vectors needed for loop fusion; there the different loop indices being compared were 

for adjacent loops a t  the same nest level, while here the different loop indices are for nested loops. This 

information is not contained in the direction vector or distance vector abstraction. As with loop fusion, 

it is hard to  know beforehand which non-tightly nested loops might be tempting to  interchange, and so 

which cross-index directions should be precomputed. Thus, Tiny has a special decision algorithm just to 

compute this dependence information on demand when interchanging non-tightly nested loops is 

requested. 



5. Summary 

The Tiny program is a tool used to support research into program restructuring. We believe that  

our research will identify other transformations that should (or should not) be included in programming 

environments and compilers for advanced architecture computer systems. One aspect of this research is 

the discovery of methods to  calculate and represent the data dependence information necessary to test 

for the legality of different restructuring transformations. 

The examples in the previous section show some of the weaknesses of the data dependence abstrac- 

tions used in Tiny; these same abstractions are also widely used in other research and commercial pro- 

ducts. In one case, we propose extending direction vectors to include some semantic information about 

reduction operations; this seems sufficiently general t o  warrant implementation. PFC, the research 

parallelizing compiler developed a t  Rice University, finds crossing thresholds and implements the 

transformations necessary to take advantage of them. It is not clear whether they occur frequently 

enough to  warrant inclusion in the general data dependence abstraction. In the other two cases, we 

have taken the approach that  no current data dependence abstraction is both sufficiently powerful t o  

expose the necessary information and relatively efficient (in space, computation time and access time) to 

warrant implementation. Tiny uses the approach that  this information is computed as necessary ("on 

demand") when the appropriate transformation is requested. Note that  in all such cases, the original 

data dependence graph serves as  a starting point; that  is, the new decision algorithm need only be 

applied where the more general data dependence graph already shows a dependence relation. 
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