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Abstract

This thesis is concerned with the statistical properties of the random

processes describing optical wave propagation through the turbulent atmos-

phere. Of specific interest are the effects of short time averaging,

necessitated by various circumstances, on the statistical measures of the

random processes, most significantly the variances C 2, the atmosphericn
structure constant, and 0 2, the normalized variance of the log opticalX
amplitude fluctuations. Details of the statistical properties, including

probability distribution functions, power spectra and correlation functions

are presented. These include the following results. Small scale atmospheric

fluctuations, in the present work differential temperature fluctuations, are

seen to be highly non-Gaussian, with flatness factors as high as 14. The

square of the temperature difference fluctuations, related to C 2, are nearlyn
lognormally distributed in well developed turbulence, over a range of short

averaging times. The fluctuations in the logarithm of the optical irradiance

after propagation through turbulence were similarly analyzed. These fluctuations

are normally distributed over a wide range of turbulence conditions. Measure-

ments of the two point conditional distributions show that the log irradiance

fluctuations may be multidimensional Gaussian only when the turbulence level

is low enough that 0 2 is much less than the saturation value.X
The averaging time dependence of the mean square error in the above vari-

ance measurements due to finite averaging time is described analytically as a

simple liT relationship. The magnitude of this 'error', the data spread,

depends on characteristics of the unaveraged random process, the flatness

factor and the integral scale of the correlation function. A number of

characteristics of the data spread of C 2 and 0 2 are presented including then X
dependence on turbulence level, mean wind speed and averaging time. The re-

lationship between the data spreads in measured C 2 and 0 2 is investigated.n X
This relationship involves a measure of the large scale structure of the C 2n
field along the propagation path. Measurements of the various data spreads

and the spatial correlation function of C 2 support the analytically derivedn
relationships.

Finally the effects of intermittent turbulence conditions on the various

statistical measurements are discussed. These results include increased



relative data spread in short time averaged C 2 measurements and deviationn
from lognormality of the probability distribution function of the temperature

differential squared. The effects of intermittency on the propagation problem

appear to be limited to the resultant increased data spread of the a 2X
measurements.
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CHAPTER I. INTRODUCTION

The possibility of extremely high rates of information trans~

mission over optical electromagnetic waves and the recent development of

lasers and associated hardware have stimulated a stronp, interest in the

field of optical communications. The earth's atmosphere, as one of the

possible communication channels, has been the object of intense study

with regard to its effect on optical propagation. One of the fundamental

problems encountered in the propagation of an optical wave through the

atmosphere involves fluctuations in the optical field at a remote receiver

induced by the small local fluctuations in the index of refraction asso~

ciated with atmospheric turbulence. A great number of theoretical and

experimental investigations concerning optical scintillation and turbu-

lence have been undertaken in the past decade. It is through these

efforts that this phenomena has become understood to the point that

general techniques in transmitter and receiver design have been developed

for cancelling and correcting for the effects of the turbulent atmosphere

on the propagating laser beam.

Throughout the brief recent history of the propagation problem,

the assumptions of isotropy, homogeneity and stationarity of the atmos-

phere have been invoked, explicitly in the theoretical work to allow solu-

tions of the complex equations encountered and implicitly in the experi~

ments to allow comparison with the theoretical models. It is to the

practical aspects of the temporal and spatial behavior of the atmospheric

turbulence and the consequent effects on optical propagation that the

present work is addressed. Before proceeding with these problems, however,

a brief introduction to the propagation problem and the required turbulence

parameters is presented.

The basic propagation scheme of interest here is best described in

terms of the simple block diagram of Fig. 1.1. The first block is the

transmitter consisting of a stahle laser and necessary optical components

to form a beam of given geometric characteristics (e.g. plane wave, spheri-

cal wave, or focused beam). The second block is the communications channel



I I~. 1 i~E:~::ng1
Transmitter

Figure 1.1. Block diagram of basic propagation experiment.
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which in this work consists of a horizontal path through the lower bound-

ary layer of the atmosphere.* The final block is the receiver which

detects the fluctuating optical signal. The receiver block also includes

all necessary processing equipment to measure the desired parameters

describing the received optical signal.

The solution of the optical propagation problem involves solving

the wave equation, in this case the scalar wave equation in a charge-

free region

2 2 2
V E(r,t) + k n (r,t)E(r,t) = 0 (1.1)

Here n(r,t), the index of refraction, is a randomly fluctuating function

of position and time. A successful approach to the solution of this

equation over a range of conditions has been a perturbation method

developed by Rytov, in which the optical field E(r,t) is transformed

according to the transformation E(r,t) = exp (~(r,t» = exp (X + is).

X is the logarithm of the amplitude (log amplitude) and S is the phase of

the wave. Following this transformation, both n(r,t) and ~(r,t) are

expanded in perturbation series. This results in a hierarchy of coupled

equations to which spectral analysis has been applied to calculate the

spatial power spectra and structure functions (Tatarskii, 1971) of the

log amplitude and phase of the optical signal after propagation through

the turbulent atmosphere. The general propagation case results in a solu-

tion for the spatial power spectral density F(K,k,L) of the form

F(K,k,L) = G(K,k,L) <I>(K)
n (1.2)

where <I>(K) is the power spectral density associated with the fluctuatingn
index of refraction, G(K,k,L) is a filter function which describes how

the distribution of energy in the different turbulence scales is trans-

formed into the distribution of energy in the received optical signal,

K is the spatial wavenumber, k is 2n divided by the optical wavelength,

and L is the propagation distance. The form of G(K,k,L) of course depends

------------

*It should be noted that propagation in the vertical direction such as

for earth to satellite communications is also an area of active interest.



on the geometry of the optical wave being propagated. Integration of the

power spectral density over all spatial wavenumbers yields the corres-

ponding variance. In the case of a point source producing a spherical

wave propagating through the turbulence, the variance of the log ampli-

tude is given as

(1.3)

J

x 2

J

x 2

where C(x) - 0 cos (Xt-)dt and S(x) = 0 sin (x~) dt. Finally then,

to calculate the log amplitude variance, an expression for ~ (K) isn
needed.

One form of the spectrum, $ (K), which is commonly employed andn

will be further discussed in a later chapter is

= 0.033 C 2 K -11/3
n

exp (-
(1.4)

where C2 is the index of refraction structure parameter, a measure ofn

the intensity of the fluctuation in the refractive index, and K is givenm
a small scale

is implicitly an ensemble averaged
£ 2

Eq. (1.3),allowing for L » ~
which will be true for wavelengths in the visible over a path length Aof

by 5.92/~ where £o 0

limjt at which viscosity effects begin

energy. We note that in Eq. (1.4) C2n
quantity. Substituting Eq. (1.4) into

to effect the transfer of turbulent

is the inner scale of the turbulence,

1 kilometer or more, results in the following relationship between the

ensemblevariables <0 2> and <C 2>
X n

2
<0 >

X (1.5)
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If C2 is allowed to be a function of the position along the path, whichn
allows for propagation through inhomogeneous turbulence such as in the

vertical direction, Eq. (1.5) becomes (for spherical wave propagation)

2
<<1 >
X

J

L 5/6

= 0.14 k7/6 dl1<C; (11» (~)
o

(1. 6)

Eqs. (1.5) and (1.6) being the results of a perturbation analysis

are in fact found to be valid over a limited range. As the path inte-

grated turbulence increases, that is, as <c2>, L or k increase, then
measured value of <<12> increases as in Eq. (1.5), until approximately

<<12> = 0.3, when th~ intensity of the fluctuations saturate, and the

me;sured <<12> becomes nearly independent of that predicted on the basisX
of Eq. (1.5). Recent experimental and theoretical investigations have

led to some understanding of the saturation phenomena, and final confirma-

tion of the saturation models is awaiting results of experiments currently

being performed in the range of very large path integrated turbulence

levels. The present work is confined primarily to the low turbulence

regime in which Eq. (1.5) is valid.

Eqs. (1.5) and (1.6) form the fundamental relationships between

the ensemble measures of the turbulent field and the measures describing

the observed effects on the optical signal. In practice, however, it is

finite and in some cases very short time averages which are of practical

interest and which are readily measurable. In attempting to understand

the short time averaging effects, we will present models which have been

developed of the turbulence and propagation problems, and experiments

which we have designed and carried out to verify and extend these models.

In addition, we have compiled results of atmospheric turbulence observa-

tions and optical propagation results over a very wide range of atmos-

pheric conditions. These results are primarily in the form of statistical

properties such as probability distribution functions, central moments,

correlation functions, and power spectral densities of the random processes

which characterize the atmospheric fluctuations and the optical field's

fluctuations.

-5-



In Chapters II and III, we present results of these characteri-

zations for the index of refraction or temperature fluctuations and the

log irradiance fluctuations respectively. In the time averaged measure-

ments of quantities such as the variance of these random processes, a

large spread in the data is often observed even under homogeneous atmos-

pheric conditions. Chapter IV presents a detailed inquiry into the data

spread in short time averaged variance measurements, of the turbulence

and optical fluctuations. We shall see the dependence of the observed

data spread in the turbulence measurements on such parameters as turbu-

lence level, wind velocity and averaging time under a number of atmospheric

conditions. The relationship between the observed data spre~ds in the

optical and the turbulence. measurements will be shown to be dependent on

large scale structures of the turbulent intensity (C 2), and modelsn

describing this relationship will be presented. A number of measurements

of the large scale correlation function of the turbulent intensity will

be described and related to the phenomenological models presented.

Finally, in Chapter V, we focus on one particularly identifiable,

frequently observed characteristic of atmospheric turbulence, its inter-

mittent nature. Of specific interest are the relationships of inter-

mittency of turbulence to the observed large data spread in the measure-

ments and to the statistical characteristics of turbulent fluctuations

described in Chapter II. We present a number of experimental results

aimed at quantifying turbulence intermittency and relating it to statistical

measures of the atmospheric turbulence fluctuations in addition to some

observations of the causes of such intermittency.

-6-



CHAPTER II. Atmospheric Turbulence Fluctuations

11.1. Introduction

In this chapter we begin a description of the statistical proper-

ties of the fluctuations in the local index of refraction of the atmos-

phere due to clear air turbulence. The first section presents the basic

physical models generally used to describe the observed fluctuations in

atmospheric turbulence parameters and their associated statistical proper-

ties, power spectral densities and probability distribution functions.

We proceed with a description of the experimental equipment used to

observe these fluctuations and to measure the relevant statistical

properties. Finally, examples of observations of the fluctuations and

measurements of the statistical functions are presented. This data pro-

vides quantitative evidence in support of our phenomenological understand-

ing of the randomly fluctuating index of refraction.

11.2. Models of Small Scale Atmospheric Turbulence

As the direct measurement of the fluctuating index of refraction

over the small scales of interest in the atmosphere (several millimeters

up to a meter) would be an extremely difficult problem, we first express

the actual index of refraction of the atmosphere. N is simply related to

thermodynamic quantities via the relation

N ex: pIT (11.1)

where P is the pressure and T the absolute temperature. The contribu-

tion of humidity fluctuations is neglected throughout this work, although

recent investigations (Friehe & LaRue 1972, 1973, 1974) have shown that

under certain conditions, both direct humidity fluctuations and correla-

tions between humidity and temperature fluctuations may significantly

influence the intensity of index of refraction fluctuations. Neglecting

also pressure fluctuations which are small and short-lived (Lawrence, Dchs,

& Clifford 1970) compared to fluctuations in the temperature, the fluctua-

these fluctuations in terms of more readily measurable quantities. At

the optical wavelengths of interest here, the index of refraction is best

described by the use of the refractivity, N = (n - 1) x 106 where n is



tions in the index of refraction are given by

(II.2)

Thus, under atmospheric conditions, measurements of the local

temperature fluctuations can be directly related to the fluctuations in

the index of refraction. As presented in the introduction, it is the

spatial spectrum ~ (K), its transform, the structure function D (r),n n
(Strohbehn 1968) and the related structure parameter C2 which relate ton

the problem at hand. Translating to the temperature domain, the atmos-

pheric variables of interest are the following:

tJ.T

tJ.T12 = T(!.l) - T(r2)

Temrerature fluctuations at a point

Two point temperature difference

fluctuations

DT(r) = <[T(r1)-T(r1+r)]2> Temperature structure function

(11,3)

The mechanisms of production of temperature fluctuations under

atmospheric conditions are very difficult to describe in that they depend

on such inhomogeneous processes as large scal~ wind patterns, solar

heating, and surface characteristics. It is the dependence of the fluc-

tuating optical field parameters of interest on the relatively small

scale sizes of the turbulence that makes the problem tractable. Through

the use of dimensional analysis and similarity arguments, simple models

of the turbulence over the scales of interest have been developed which

are in general agreement with experimental observations. In the following

we briefly review some of the arguments and results of the models of

atmospheric turbulence.

The most successful model of atmospheric turbulence was developed

primarily by Kolmogorov (see Hinze 1959). It is assumed that the range

of scale sizes of eddies can, under certain conditions, be broken into

three distinct regimes. In the range of the largest scales, energy is

put into the turbulent flow field through the nonisotropic, large scale

processes mentioned above. This large scale, low wavenumber range, in

which there is no universal form for the energy spectral density, extends

from the largest scale sizes in the flow down to what is called the outer

-8-



scale of the turbulence, L , below which it is assumed that there are noo
mechanisms of energy input into the turbulent field. In the lower bound-

ary layer of the atmosphere it is generally agreed that the outer scale

is some fraction of the order of one half of the height above the ground.

In the upper atmosphere, outer scale measurements are surely non-isotropic,

possibly being hundreds of meters in the horizontal direction while on the

order of meters in the vertical direction due to layering of the atmos-

phere. The second regime lies between the outer scale and a small scale

limit referred to as the inner scale of the turbulence, t. In thiso
regime, the energy input at the larger scales is assumed to be transferred

without dissipation from the largest scales to the smaller through an

energy cascade process. Eddies of the size of the outer scale, because of

instabilities, continually break down into eddies of smaller and smaller

sizes. This range of intermediate scale sizes is known as the inertial

subrange, and the spatial spectrum is predicted to be universal to all

flows and independent of the particular conditions influencing the pro-

duction of the turbulence. Finally in the third regime, that is for scale

sizes less than the inner scale, the energy in the turbulent field is dis-

sipated through viscous processes, and the spectral density falls off

quickly with increasing wavenumber, or decreasing eddy size. We note

that this general model of isotropic turbulence and its spectral distri-

bution as developed originally applied to turbulent velocity fluctuations

(a vector field), but it has been shown (Tatarskii 1961) that it is applicable

to temperature fluctuations and other "passive additives" that are mixed

by the velocity field.

It is the inertial subrange region of the spectrum that is of par-

ticular importance here, because as seen in equation (1.3), the spectral

filter function for optical amplitude fluctuations goes to zero at small

wavenumbers, and thus the large scale temperature fluctuations are "filtered

out" in this problem. We note, however, that for optical phase effects,

the large scale temperature fluctuations may playa significant role.

In the inertial subrange, it is postulated that the structure func-

tion of the temperature fluctuations, D (r) is isotropic, and depends onlyT-
on the separation r and the amount of energy input into the turbulence

at scales larger than the outer scale. As the energy put into the turbu-

-9-



lence flow beyond the outer scale is equal to the energy dissipated in

eddies smaller than the inner scale (the cascade process conserves energy

in the inertial subrange) the structure function can be expressed as some

function of the dissipation rate of thermal fluctuations due to diffusion

N, the rate of energy dissipation of the mechanical turbulence €, and the

separation r. Thus

ex 13 y

DT(r) = constant r N €
(II.4)

Using dimensional analysis, DT(r) can be shown to be given by

DT(r) = constant N€-1/3r2/3

= C 2 2/3T r (II.5)

where c; the temperature structure parameter is effectively defined by

this relation. The index of refraction structure parameter is related

directly to C~ by

(II. 6)

where P is the pressure in millibars, and T is the temperature in

Kelvins. Transforming the structure function yields the three dimensional

spatial power spectrum of the temperature fluctuations (Strohbehn 1968)

4>T(K) ex: K-11/3
(II. 7)

known as the Kolmogorov spectrum of turbulence. Eq.(I.4) of the introduc-

tion included an additional factor eXP(_K2/K2) to describe the fast decaym
of the power spectral density for scale sizes less than the inner scale

due to viscous dissipation. Transforming Eq. (11.4) for isotropic turbu-

lence to the one dimensional spectral density which is most amenable to

measurement we find in the inertial subrange,

-5/3
K (II. 8)

-]0-



One further assumption is often made concerning the turbulent

flow which allows for comparison of the theoretically derived results

with relatively easily measured parameters. This involves a transforma-

tion of the spatial parameters to temporal parameters through the rela-

tionship x = t .u where ~ is the mean wind velocity and is referred to

commonly as Taylor's hypothesis (Taylor 1938, Hinze 1959). The substitu-

tion of tu for x may be valid only if the mean wind velocity u is

much greater than the fluctuating part of the velocity and is generally

applied only to turbulent scale sizes less than the outer scale. The

physical interpretation of this hypothesis, also referred to as the

frozen flow hypothesis, is that the turbulent field observed at a fixed

point in space as a function of time may be assumed to be the result of

a 'frozen in' turbulence field that is swept by the observation point

with the mean wind velocity u. Thus a temporal trace of the turbulent

field is equivalent to the instantaneous distribution of the turbulent

fluctuations along some spatial axis parallel to u. We shall employ

this assumption throughout our discussion of small scale turbulent fluc-

tuations, and in a later chapter we shall see explicit limits to its

applicability.

Soon after the work of Ko1mogorov in developing the above model

of turbulent fluctuations and their spectral properties, it was pointed

out by Landau (1959) that the energy dissipation rates € and N were

themselves random functions of time. Not until 1961 however, was the

turbulent model reformulated taking these fluctuations into account

(Kolmogorov 1961, Obukov 1961). This work has led to a number of impor-

tant results concerning the probability distributions of certain small

scale fluctuation parameters. The basic agruments which again were for-

mulated in terms of velocity fluctuations proceed from the consideration

of some non-negativemeasure of the turbulence ~ averaged over somer
small volume of dimension r (Gurvich and Yaglom 1967). The similarity

hypothesis of turbulence then implies that the probability distribution

of the ratio of ~ ,/~" where both r' and r" are within the 'inertial
. r r

subrange', 1.e., .Q,<r', r"<L is dependent only on the ratio r' /r". ~o 0 r

is then expressed as

-11-



~ =r
.....

~N-k
(II.9)

where the decreasing subscripts on the ~'s indicate averaging of ~ over

volumes of decreasing size, and ~N-k indicates ~

small volume that the fluctuations can be neglected.

yields

averaged over

Letting aN =

such a

~N

~N-l

~r = ~N-k

r

TI
i=N-k+l

(11.10)

Taking the logarithm of Eq. (11.10) produces finally

+ r

i
a.
1.

(11.11)

As the a. are independent random variables with the same distribution
1.

function by the similarity argument, the Central Limit theorem implies

that the distribution function of log ~ will approach a normal distribu-r
tion for a large enough number of elements in the sum of Eq. (11.11). Thus

~r and in the case of interest here (~Tl~) averaged over some range of

volumes whose scales are less than the outer scale should have a lognormal

distribution. Further arguments suggest the form of the variance of the

distribution of log ~ asr

2
(1~ = A + ~ logr

Lo
r (11.12)

where L is the outer scale, Ao

scale flow, and ~

a non-universal function of the large

a universal constant referred to as Ko1mogorov's con-

stant and observed to be approximately 0.5 for velocity derivative fluc-

tuations.

Extensions of this theory of fluctuations in the dissipation rates

for temperature fluctuations have also led to predictions of modifications

of the '2/3' power law behavior of the structure function and consequent

modification of the '5/3' law for the power spectrum. Van Atta (1971) cal-

culates the exponent of r in the structure function for a scalar charac-

teristic of turbulence such as the temperature, allowing for fluctuations
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in the dissipation rates as described above. The calculations are

dependent on the correlation between the dissipation rate of the kinetic

energy € and the scalar dissipation rate N. For the correlation

coefficient p, independent of the scale size within the inertial range,

th .. d.
d

.
h 1 f k-l.39e var1at1onspre 1cte 1n t e power aw spectrumrange rom to

k-l.72 depending on the actual value of the correlation coefficient.

Variations of this order are often within experimental error, and as such

are difficult to verify but have been reported (see for example Kerr

1972, Kruspe 1974).

11.3. Experimental

The observations of the temperature fluctuations of interest here

and the accurate measurement of c; or c; require a thermal sensor able

to resolve fluctuations of the temperature of the order of several milli-

degrees, over scale sizes of the order of millimeters. A micro thermal

amplifier capable of performing these measurements is built by Contel(Model No.

MT~2~ and a number of these sensors, each capable of operating in either

a single probe mode or a two probe differential mode, were available for

this work.

The temperature sensitive element of the MT-2 micro thermal ampli-

fier is a length of Wollaston processed platinum wire etched to a diameter

of 1.5 microns and approximately 2.5 millimeters in length soldered to

the end of an extended probe assembly mounted on the amplifier itself.

Two of these probes make up two legs of an AC bridge through which a small

current is run. The current through the probe wires themselves is kept

to less than 100 microamps to prevent the probes from heating above the

ambient temperature level. This ensures that they are relatively insen-

sitive to fluctuations in the local wind velocity. Temperature fluctua-

tions at the probe wires then induce small resistance changes in the wire

resulting in a fluctuating current through the bridge proportional to the

fluctuating temperature difference between the two probes. This current

is converted to a fluctuating voltage and amplified and filtered as indi-

cated in the block schematic diagram of the amplifier in Fig. 11.1. The

slow feedback loop to the bridge acts as a high pass filter and as a

stabilizer for the system to allow continuous operation over long periods

with drifts in the ambient temperature level. The outputs of the unit

consist of voltages proportional to the fluctuations in the temperature at

-13-
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a single probe or the difference temperature between two probes, and a

variable time constant, low pass filtered voltage proportional to the

mean square temperature fluctuation between the two probes.

As the thermal coefficient of the probe wire is known, calibra-

tion of the system is simply accomplished by adding a known small resist-

ance into one of the legs of the bridge. This simulates a calculable

temperature change at the probe, and results in a calibration voltage

at the output of the unit. This calibration procedure is further simpli-

fied by having each unit equipped with an internal calibration circuit.

These amplifiers require a careful setup and balancing procedure,

but will operate essentially unattended continuously if the atmospheric

conditions do not change drastically. The probes themselves being of

est, 2 meters above the ground, each amplifier was mounted on a portable

tripod which permitted orientation of the probes relative to the wind.

Data from the microthermal amplifier, which consists of single or

double probe temperature fluctuations and mean square values of the

temperature fluctuations from up to five of the sensors, were recorded

on an FM tape recorder (HP 3960A) with a bandwidth of 1.25 kilohertz.

These field recordings were then returned to the lab where they were

digitized, fed into a PDP-ll digital computer, and recorded

on 9 track digital magnetic tapes for further analysis on the computer.

The computer processing is outlined in Appendix 1.

The field site at which all experimental measurements were made

is located approximately 35 miles south of Portland, Oregon amid the

farmland of the Willamette valley. Th2 site used for the turbulence

measurements themselves is situated about 300 meters east of a road and a

small cluster of large trees. The prevailing winds at the site are gen-

erally either northerly or southerly. The only obstacle to the atmos-

pheric flow is a small building which houses the recording and other

electronic instruments for the experiments. As the microthermal sensors

are portable, they are placed such that the building is downwind of them.

-15-

the order of microns in diameter, are quite fragile and an attempt to

keep them from the path of raindrops, large dust particles, and insects

must be made. Finally, to facilitate measurements at the height of inter-



11.4. Experimental Results

11.4a. Spectral Properties and Correlation Functions

Figure 11.2 shows a typical trace of temperature fluctuations

observed with a single thermal probe when the average wind speed was 1.5

meters per second. The vertical scale indicates maximum peak-to-peak

fluctuations of the order of 0.40K. We note the nearly continuous appear-

ance of rapid fluctuations in the temperature in addition to significant

slower trends. The power spectrum associated with the single probe fluc-

tuations is seen in Figure 11.3. The solid line indicates the predicted

5/3 power law dependence over the inertial subrange. Note that this

spectrum is plotted versus the temporal frequency as measured although

in the inertial subrange we could use Taylor's hypothesis to transform

to the spatial frequency. This spectrum shows rather clearly a break

at the high frequency end of the inertial subrange indicating the onset

of the dissipation regime. From the frequency of the breakpoint and the

wind velocity, we can calculate the inner scale, in this case - 1 cm.

Figure 11.4 shows a trace of two probe differential temperature

fluctuations. In this case, the low frequencies, as expected are not

seen as in the single probe case. The probes were separated approximately

small scale intermittency, a characteristic common to small scale atmos-

pheric turbulence variables in general.

The power spectrum of the two probe differential measurements

shown in Figure 11.4 is seen in Figure 11.5. Also shown for later refer-

ence is the power spectrum of the square of these two probe fluctuations

which shows enhanced low frequency components. Figure 11.6 shows the auto-

correlation functions calculated from the low frequency spectrum of this

same data for the temperature difference fluctuations and their square.

The use of the log scale on the abscissa is to allow the correlation func-

tion to be displayed over a wide range of its argument. This graph illus-

trates a number of important points with regard to the correlation fur.c-

tion peT) and the integral scale (which will be seen below to be important

in predicting errors in short time averaged measurements of certain sta-

-16-

10 cm which should filter out all fluctuations whose scale is appreciably

larger than that separation. The 'spikiness' of these traces, indicating

fluctuations over a wide range of magnitudes, is often referred to as
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Figure 11.2. Trace of temperature fluctuations at a single point in the atmosphere.
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Figure 11.3. Temporal Power Spectrum of single point temperature fluctuations. u = 1.5 m/sec.
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tistical properties of random processes) defined as

CD

I =1 p(T)dT (1I.9)o

Since the correlation function p(T) is the Fourier transform of the

power spectrum ~(w), we know immediately that the integral of the correla-

tion function, the integral scale, will be directly related to the value

of the spectrum at zero frequency. The exact relationship will depend

of course on the normalization used in defining the spectrum. From this

relation it can be easily shown that the integral scale of the derivative

of a process with finite integral scale, is zero. As the two probe dif-

ferential temperature measurement is related to the average of the tem-

perature derivative, its integral scale should also be zero. Figure 11.6

shows the correlation function of ~T12 fluctuating about zero at large T

allowing for the possibility of a zero integral scale. Actual calculation

of the integral scales of these processes becomes difficult because the

correlation function is significantly different from zero over such a wide

range of T. In the case of the (~TI2)2 the autocorrelation function is

nearly everywhere positive and thus the integral scale may be comparatively

large.

Lumley (1970) discusses a theorem of Samarov (1958) relating to

the above discussion of integral scales and correlation functions. Con-

sidering Gaussian processes, which in fact is not the case here as we

shall see, Samarov proved that a process x(t) is better correlated than

any function of it with the following exception: if the correlation func-

tion is anywhere negative, then the correlation function formed by taking

the absolute value of the original correlation function is maximal. In

terms of integral scales, the integral scale calculated from the absolute

value of the original correlation function is greater than that of any

function of the original process. This theorem could be very useful in

making estimates of the integral scales of high order processes once the

correlation function of the basic process is known.

II.4b. Probability Distribution Functions and Moments

The probability density function of the fluctuations ~T at a single
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point such as in Figure 11.2 is asymmetric, amorphous and dependent on

large scale, or low frequency fluctuations which are not of interest in

this work. The PDF of the two probe differential temperature measurement

however, is of particular interest in that it describes the distribution

of the magnitude of index of refraction fluctuations in the size range of

importance to the optical propagation problem. Figures 11.8 and 11.9 show

cumulative probability distributions for the data shown in Figure 11.7a and

b respectively. On each graph a normal distribution of the same mean and

variance is shown by the straight line for comparison. The PDF's of the

temperature difference fluctuations are decidedly non-normal. There is

a much larger probability in these distributions for very small values of

~T12 and similarly for very large values of ~T12 than in the corresponding

normal distributions. This latter behavior, a large probability of extreme

values, is of course the result of the small scale intermittent nature of

the turbulence mentioned in regard to Figure 11.4. These comments may

be made more quantitative by investigating the central moments associated

with the various distribution functions.

Also commonly used as descriptors of the probability distribution

function are the 3rd and 4th central moments normalized by the variance,

respectively the skewness S and the kurtosis K, defined as follows:

We note that for a normal distribution and in fact any symmetric distribu-

tion, S=O and for a normal distribution, K=3. The calculated skewness

and kurtosis of the distributions shown in Figures 11.8 and 11.9 are shown

in the figures. We note that other turbulence parameters such as velocity

and velocity derivatives have been observed with kurtoses as high as 40

(Gurvich 1967, Gibson, Stegen and Williams 1970, and Gibson and Masiello

1972).

Calculation of high order moments of distributions of atmospheric

fluctuations are complicated by the necessity of long observation times

for accurate estimates. Statistical errors in the calculation of the moments

-23-
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from a finite time sample of the data depend on two characteristics of

the random process under investigation; the shape of the true distribu-

tion function and the temporal behavior of the random process described

by the autocorrelation function. Tennekes and Wyngaard (1972) give

formulae for the mean square error in the measurement of the variance

(see also Ogura 1957 and Collins 1971) and fourth central moments

averaged over a time T as

2 2
€ (0 )T = 2(K-l) T2/T

2 4 2
€ (~ )T = 2(MS/K -1)T4/,

(11.13)

(II.14)

where T is the integral scale of the autocorrelation function of the
th n

n order process

Pn(T)dT

=[

n n n 2
<X (t)X (t+T» - <X (t) >dT

n
Var[x (t)]

(11.15)

and Ma is the eighth central moment non-dimensionalized by the variance.

These formulae are valid for T»T. An obvious problem that develops inn

attempting to apply Eqs. (11.13) and (11.14) is that the error in the

measurement of the second moment for example is dependent on (1) the inte-

gral scale of the squared process, itself an ensemble averaged quantity,

and (2) the fourth moment of the process which will have a statistical

error in its ~easurements given by Eq. (11.14).

Considering the discussion of the previous section indicating pos-

sible large values of T2 and the large values of K seen here for turbu-

lent temperature fluctuations, we might anticipate large errors in short

time averages of the variance of 6T12. These short time effects will be

discussed in Chapter IV.

The probability distribution of (6T1;) when averaged over some

small volume or time period was predicted by Gurvich and Yag10m (1967) to
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be lognormal (see section
2

tributions of (8T12)T for

ferent averaging times.

11.2 above). Figures 11.10 and 11.11 show dis-

the data of Fi~ure 11.7 with a number of dif-

The solid lines indicate lognormal distributions

with the same mean and variance as the experimentally determined distri-

butions. The data of Figure 11.11 was taken under very light w~nd condi-

tions and we note a strong deviation from lognormality at both large and

small values of (8T{2). In Figure 11.10 we see similar deviations although

to a much lesser degree. The deviations from lognormality at high and

low values of (8Tl;) and of the similarly distributed velocity derivative

2

(~~) have been observedand reportednumerous times in the literature

(see Stewart, Wilson and Burling 1970, Gibson and Masiello 1972, and Chen

1971). Stewart et al suggest that the low probability density observed

at large values of the fluctuations may arise from the cascade process,

that is, the breakdown of large eddies into smaller eddies, consisting

of too few steps because of low Reynolds number. Thus in the sum over

ratios of the fluctuating parameter averaged over different volumes in

Eq. (11.7), r is not large enough for the central limit theorem to apply

and indicate a Gaussian distribution for 10~ ~. They show that thisr

assumption could account for the deviation of the distribution from log-

normal at large values of the argument. We point out additionally there

are inherent difficulties in attempts to experimentally verify that a

process is lognormally distributed. These include the wide dynamic range

over which the probability density is significantly different from zero

necessitating extreme care in the design of experimental procedures

(Tennekes and Wyngaard 1970), and the well known inability to strictly

determine that a process is lognormal from the measurements of its mom-

ents (Orszag 1970). Whether or not the distribution of (8T12); is in

fact exactly lognormal under any conditions cannot be answered. It is

clear, however, that this distribution is highly asymmetric, has a large

flatness factor, and is qualitatively similar to a lognormal. Again by

the central limit theorem, we would expect that with long enough averag-

ing times or distances, the distribution should approach a normal. It has

been pointed out, however, that this approach may be exceedingly slow in

the case of the fundamental distribution being lognormal, or excessively
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skewed (Barakat and Blackman 1974, Mitchell 1968). We can illustrate

the approach to a normal distribution by plotting the kurtosis K and

the skewness S for a series of averaging times. Figure II.lZ shows

such a plot for distributions of (6TZ) . We see that even for averagingT

times as long as 5 seconds, the distribution is extremely skewed and

far from normal. The implications of the skewed distribution include the

fact that the mode differs from the mean and thus a small number of

short time measurements may yield an inadequate sample from which the true

mean may not be derived with an acceptable accuracy.

11.5. Conclusion

The results presented above include the statistical properties of

certain functions of the randomly fluctuating local temperature in the

atmosphere which under certain conditions relate directly to those proper~

ties of the index of refraction. In general, atmospheric temperature

fluctuations (two point differential measurements, 6TlZ) are characterized

by non-gaussian probability distribution functions (flatness factors much

greater than 3). Additionally, the autocorrelation functions show signifi-

(of the order of one second) large compared

of the fluctuations (of the order of milli-

seconds). The square of this process 6Tl;, whose mean is the variance

of the temperature difference fluctuations, has a distribution which is

cant correlation at time lags

to the fundamental time scale

highly skewed. When this process is time averaged over some short time,

its probability distribution function appears nearly lognormal and very

slowly approaches a normal distribution with increasing averaging time.

The skewness and large flatness factors associated with the distribution

of (AT;2)T and the long time correlation (low freqnency components in

the power spectrum) combine to make short time averaged measurements of

characteristics of this process subject to relatively large fluctuations.

We will see further evidence of this in Chapter IV.
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CHAPTER III. Irradiance Fluctuations

111.1. Introduction

The fundamental statistical characteristics of amplitude

fluctuations of an optical electromagnetic wave after propagation

through the turbulent atmosphere are the subjects of this chapter. To

begin, a brief review of the phenomenological models used to describe

the measured statistical properties of amplitude scintillation are pre-

sented. This is followed by a description of the experimental propaga-

tion facility at which the measurements were made. We then present the

results of observations and calculations of various statistical proper-

ties of the fluctuating optical amplitude. These include spectra and

correlation functions, single point probability distribution function,

and two point (in time) conditional probability distribution functions.

111.2. Background

The problem of amplitude scintillation, especially under low

turbulence conditions has been reviewed extensively in the past (Law-

rence and Strohbehn 197Q, Tatarskii 1971, Kerr 1972). We mention here

specifically a number of investigations relevant to the specific ques-

tions of interest. The problem of calculating the temporal frequency

spectra of scintillation was described in detail by Tatarskii (1971)

for the case of plane wave propagation. The basic assumption employed

in the calculations was that the temporal variations in the optical field

observed at a receiver are the result of a 'frozen in' turbulence field

translated across the path with the mean wind velocity. Thus calculation

of the power spectrum of these fluctuations basically involves calculation

of the spatial covariance function of the irradiance at the receiver

plane, transformation with Taylor's hypothesis to the temporal autocor-

relation function and finally Fourier transforming to yield the power

spectrum. Clifford (1971) extended the calculation to spherical wave

propagation. The results of these calculations indicate a normalized

- II?
spectrum dependent on a single parameter Q = flf where f = U:,L/(2TIAL) -,

_ 0 0

where u~ is the wind speed transverse to the path.



The form of the probability distribution function of the

fluctuating optical amplitude has been the subject of more intense

study. Under very low turbulence conditions excellent agreement with

the lognormal distribution has been observed (Kerr 1972 and Fried,

Meyers and Kuster 1967). This distribution has also been predicted

on the basis of a very simple physical argument (Strohbehn 1968).

Recently however there has been increased st~dy of the distribution

function under high turbulence conditions. Prediction of a lognormal,

Rayleigh and various modifications of these distributions have been

made (deWolf 1973, Strohbehn, Wang and Speck 1975, Wang and Strohbehn

1974 a,b). In fact, Wang and Strohbehn (1974 a,b) have shown that

over certain ranges of the 'turbulence level' the assumptions of Ray-

leigh or lognormal statistics of the amplitude fluctuations lead to

unphysica1 results. Experimental investigations of these questions in

the range of observable high turbulence conditions are currently in

progress (Dunphy and Kerr, private communication).

111.3. Experimental

The optical experiments performed in this program were carried

out at two wavelengths, 10.6 microns from a C02 laser (Sylvania Model

No. 948) and 0.488 microns from an Ar ion laser (Coherent Radiation

Model No. 52). The beams from the two lasers were formed into diverging

beams such that at the receiver they appeared as effective point sources.

The beams were also mechanically chopped at 9 kilohertz to avoid problems

of the detection of DC light in the presence of ambient daytime light

levels and to achieve better signal-to-noise characteristics in the

receiver amplifiers. Following the chopping and the beam-forming optics,

the two beams were combined spatially, such that all experiments were

conducted with simultaneous, coaxial beams.

The atmospheric channel through which the beams travelled is

1.6 kilometers long and approximately 2 meters (+ 0.5 meters) above the

ground. The terrain is extremely flat agricultural land with very few

physical obstacles to the atmospheric flow within significant distance of

the path, two exceptions being two small buildings at the ends of the
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path, one housing the transmitter laser and optics and the other, the

receiver and associated electronics. For point source (spherical wave)

propagation the major contribution to the turbulence-induced amplitude

fluctuations will arise from turbulence near the center of the path,

with the contribution falling to zero near the ends of the path, so that

the effects of the buildings are minimal.

The receivers for the two beams are effective point receivers,+

under low turbulence conditions and are essentially coincident. The

signals from the photodiodes are amplified and filtered to yield an

information bandwidth of 1 kilohertz with a dynamic range of 80 db. The

signal, representing the intensity of the optical field is passed through
-

a log amplifier yielding a signal proportional to the normalized log

intensity. This signal is then recorded on analog magnetic tape simul-

taneously with the atmospheric temperature fluctuations for later computer

processing. Figure 111.1 is a schematic block diagram of the propagation

experiment.

111.4. Experimental Results

III.4a. Spectral Properties and Correlation Functions

Examples of the irradiance fluctuations observed over the 1.6

kilometer path are shown in the traces of Figure 111.2. In the high

b 1 C
2

1 7 10-13 -2/3 h . f h . .

tur u ence case, =. x m ,t e saturat10n0 t e 1ntens1tyn
of the fluctuations of the 0.488 micron beam is indicated by the value of

the log amplitude variance,0.32,

dicted by Eq. 1.5, a 2 = 3.15.
X

exhibits saturation for this path length. Figure 111.3 shows the normalized

weighted power spectra for the low turbulence case. It is obvious from

being substantially below the Rytov value pre-

In the low turbulence case, neither beam

Figure 111.2 that the 0.488 micron beam has higher frequency components than

------------

+The covariance length, under low turbulence conditions, is approximately

1:lL»d where d is the size of the receiver. At high turbulence, how-r r
ever, the covariance length decreases, and to avoid averaging over more

than one covariance patch size, the detector size must decrease.
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the 10.6 micron beam. This is clearly indicated by the locations of

the peak positions of the two spectra in Figure 111.3. The ratio of

frequencies of the corresponding maxima is approximately 4.8 while the

results of Clifford'sanalysispredict a ratio of ~ _ ~_
/ ~ -/ :488 - 4.66.

Also sho\~ in the figure are calculated values of f for the two wave-o

lengths. These values are approximately one half the peak frequency

also in agreement with Clifford's conclusions. From the calrulated power

spectra we can derive the autocorrelation function. For later reference

we show three examples of the autocorrelation functions over a range of

wind and turbulence conditions (Figure 111.4).

III.4b. Probability Distribution Function and Moments

The expected probability distribution of the log amplitude and

thus also the log irradiance fluctuations under low turbulence conditions

is normal. Figures 111.5 and 111.6 show probability distributions of

log I for the 10.6 micron beam under two turbulence conditions. Also

indicated in the figure are the calculated log amplitude variance, skew-

ness and kurtosis, the wind speed and a true normal distribution of the

same mean and variance as the experimental distribution (solid line).

Except for the slight skewness in the high turbulence example, the dis-

tributions and associated parameters indicate qualitative agreement with

the lognormal hypothesis over a range of at least several standard devia-

tions about the mean.

The distributions of the square of the log irradiance fluctuations

averaged over various averaging times are related to the short time

measurements in the log amplitude variance. As an example, Figure 111.7

shows a series of such distributions for the high turbulence log irradi-

ance fluctuations of Figure Ill.2a with averaging times ranging from one

millisecond to one second. In this figure, a straight line would indicate

a lognormal distribution. We point out that over the limited range shown
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there is little apparent difference between a lognormal distribution of

very small variance9 as in the case of the one second averaged square

log irradiance fluctuations9 and a normal distribution. Thus 9 in Figure

111.8 showing the K-S diagram for these distributions, we see that for

one second averaging9 the parameters indicate agreement with those of a

normal distribution. Note specifically the different scale for the kur-

tosis in this figure from the scale used in Figure 11.12, for the squared

temperature fluctuations. Here we see a much faster approach toward a

normal distribution with increasing averaging time.

III.4c. Level Crossing and Conditional Probability

A further topic of interest regarding the statistical properties

of the received optical signal is that of conditional statistics and level

crossing. In terms of the irradiance fluctuations9 we can state one

practical problem as follows: given that the intensity of the received

signal is equal to or greater than some given level Y at a time t 9o 0

what is the probability distribution of the intensity at some time later9

t + T. One particular application of the results of this problem mighto

involve 'probing' the communication channel with an optical beam to deter-

mine when the channel is 'open', that is when the received signal is above

some acceptable threshold level. In the 'open' condition, then, the

channel is used to transmit a burst of information. Knowledge of the

marginal probability density described above would allow prediction of the

reliability versus use rate for such transmission.

The level crossing problem has been treated theoretically in detail

(Rice 1954, and Blake and Lindsey 1973) specifically with regard to two

general classes of random processes, Markov and Gaussian. (A Gaussian

process is one for which for all n, the n-dimensional probability distri-

bution function is an n-dimensional normal.) Doob (1953) defines, opera-

tional1y, a Markov process as follows: a process X is Markov in the widet

sense if and only if the expectation value of Ix 12 is finite and the cor-t
relation function C satisfies the relation

C(r,t) = C(r,s)C(s,t) r<s<t (111.1)
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If the process is real and stationary, this requires

(III. 2)

Thus

C(T) = C(Q) exp (-CT). (III. 3)

The correlation functions of the log irradiance fluctuations are not of

the exponential form, and thus we may conclude that these fluctuations

are not Markoffian. We thus investigate the multidimensional probability

distributions limiting our work here to the two point distributions which

from a practical standpoint are most important. We have seen that under

low turbulence conditions at least, the one point distributions of the

log irradiance fluctuations are normal. Let us assume then that the two

point or joint probability distribution is a bivariate normal. Thus

21T0"
o

1
2 2

21T0" (l-p(T»
o

P(y(t),y(t+T» =

2 2

}
Iy(t) -2p(T)y(t)y(t+T)+y(t+T) ] (III. 4)

where y(t) is the log irradiance fluctuation, a normally distributed

random variable with zero mean, variance 0"2 and autocorrelation functiono

<y(t)y(t+T»
2

0"
o

(111.5)

The conditional distribution of y(t), the probability distribution of

y(t+T) given that y(t) = Y is theno

P(y(t+T)ly(t) = Y )o
1
z 2

21T0" (l-p)o

[ y (th) -p (T )Yo ] 2}

(III. 6)
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which is in fact a Gaussian distribution with a mean equal to p(.)Y and
2 2 0

a variance of 0 (l-p(.».o
We have measured conditional distributions of the log irradiance

fluctuations over a range of turbulence levels. For each experimental

run, autocorrelation functions and conditional distributions for a number

of different values of Y and. were calculated. We point out that for
o

each run, 400,000 data points sampled at one millisecond intervals were

employed in the calculation. Table 1 indicates the turbulence con-

ditions of the different experimental runs under consideration here.

The correlation functions calculated for three of the runs analyzed here

were shown in Figure 111.4. Figure 111.9 shows examples of the conditional

distributions calculated for one of the low turbulence cases, in this

case the log amplitude variance, 0 2 = 0.0015. Again the solid lines inX
the figure indicate normal distributions with the same means and variances

as the experimental distributions. The values of the skewness and kur-

tosis for the conditional distributions of this low turbulence condition

are given in Table 2. Here Y is the given threshold level (intensity)o

normalized by the standard deviation of the single point probability

distribution. These values confirm the general qualitative agreement

of the experimental distributions with Gaussian distributions seen in the

figure. Finally we compare the observed mean and variance of the observed

conditional distributions with those calculated from the assumption of the

joint distribution being a bivariate Gaussian. Table 3 shows this com-

Again the values of Y and the
. 0

calculated means and variances have been normalized by the standard devia-

parison for the same low turbulence case.

tion of the one dimensional distribution. Here we see excellent agreement

between the observed and predicted values indicating that the assumption

that the log irradiance fluctuations are 'Gaussian', may be valid. It

should be emphasized that we cannot prove that the fluctuations are

Gaussian to all orders, but merely that our observations are not inconsis-

tent with this assumption.

We next investigate a higher turbulence case, 02 = 0.14. AgainX

the distributions appear qualitatively Gaussian, and the skewness and

kurtosis parameters of the conditional distributions seen in Table 4
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Table1

-50-

C 2
Mean
Wind 2 Opticaln
Speed Wavelength

(m-2/3)

(J
Run (meters/see)

X
(Microns)

1 0.4 x 10-14 9 0.0015 10.6

2 0.14 x 10-13 3.5 0.010 10.6

3 0.4 x 10-14 9 0.076 0.488

4 0.17 x 10-12 1.5 0.14 10.6

5 0.59 x 10-12 1 0.307 10.6



Table 2

Skewness (S) and Kurtosis (K) of Pr(x(t+T)lx(t))for Run 3

S

K

-1
o
1
2

4.2
3.20
3.27
2.83

3.59
3.16
3.21
2.84

3.83
3.089
2.69
2.95

3.29
3.05
2.77
2.98

3.18
3.04
3.17
3.08

-51-

Y0Z(ms) 1 2 4 8 16
a

0

-1 .29 .13 .2 .022 .012
0 .03 .051 .056 .061 .068
1 -.12 -.017 .01 .13 -.055
2 -.0039 .047 .0080 -.0065 -.036



Comparison of Predicted and Observed Mean of Pr X(t+T) X(t) = Yo
(J (J
o 0

For Run 3

-52-

Table 3

Comparison of Predicted and Observed Variance of Pr X(t+T) X(t) = Y
(J2 0

(J (J
0 0

For Run 3

:0 "'(ms)
2 4 8 16

0

-1 Pred. 0.243 0.392 0.675 0.942
Obs. 0.239 0.414 0.651 0.936

0 Pred. 0.243 0.392 0.675 0.942
Obs. 0.236 0.406 0.686 0.961

1 Pred. 0.243 0.392 0.675 0.942
Obs. 0.278 0.402 0.77 1.01

2 Pred. 0.243 0.392 0.675 0.942
Obs. 0.254 0.439 0.765 0.99

-1 Pred. -0.87 -0.78 -0.57 -0.24
Obs. -0.89 -0.75 -0.60 -0.24

0 Pred. 0 0 0 a
Obs. -0.016 -0.016 -0 .001 0.008

1 Pred. 0.87 0.78 0.57 0.24
Obs. 0.85 0.72 0.50 0.21

2 Pred. 1.74 1.56 1.14 0.48
Obs. 1.70 1.51 1.09 0.45



Table 4

Skewne.ss

Kurtosis

-.92
-.04
1.07
2.03

3.06
3.27
3.4
2.96

3.81
3.59
3.19
2.78

2.4
3.69
3.02
2.68

4.04
3.39
3.2
2.95
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Yox<ms) 2 4 8 16
a0

-.92 9x10-4 0.075 0.193 0.13
-.04 0.013 0.085 .055 0.107
1.07

0.048_3
0.074 0.048 0.06

2.03 -2.6x10 -6.6x10-3 -3.6x10-3 0.013



generally support this assertion. A comparison of observed and predicted

variances of these distributions, Table 5, however shows large deviations

of the measured variances froE the variances expected assuming a 'Gaus-

sian' process. In fact, the root mean square error between the observed

and predicted variances in this case is 0.13, an average 13% error.

Table 6 shows results of root mean square error calculations for the

other experimental runs. The high turbulence cases (02) 0.1) for thisX

sample show significantly higher deviations from the joint Gaussian

behavior than the low turbulence cases.

More detailed error analysis appears to confirm the non-Gaussian

behavior in the high turbulence cases. Eq. 18 describes the expected

statistical error in a finite time measurement of the variance of a pro-

cess. In this equation, 2T2/T, the integral scale divided by the observa-

ti~n time may be interpreted as the inverse of the number of uncorrelated

samples in the data. In the above measurements we have in fact much fewer

than the original 400,000 data points because of the conditional sampling.

. We might then modify Eq. (18) to account for the conditional sampling.

This may be accomplished by changing T, the total sampling time to reflect

the number of samples actually used in the calculation. When this is done,

the analysis in the low turbulence cases shows the observed variances to

be within the probable statistical error of the variance predicted for a

Gaussian process. In the High turbulence cases the results clearly indi-

cate the deviations are, particularly for large values of Y , greater thano
the probable error. This would indicate non-Gaussian behavior of the

unsaturated log intensity fluctuations under conditions of high turbulence.

111.5. Conclusion

In the previous sections we have presented the results of a basic

statistical analysis of the observed fluctuations in the log irradiance

of an optical wave which has propagated through the turbulent atmosphere.

The qualitative picture that arises, at least from the low turbulence

results, is that this random process is in a physical sense, a well behaved

random process. It is for practical purposes normally distributed (a

Gaussian process under very low turbulence conditions) with a correlation

function which decays smoothly to zero in a time short compared to aver-
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Comparison of Predicted and Observed Variance of P(X(t+T) Ix(t) = Y )
2 0

a
o

-55-

Table 5

Comparison of Predicted and Observed Mean of P(x(t+T)lx(t) = Y )- 0
a
0

Y (ms)
2 4 8 16

a
0

-.92 Pred. -.856 -.761 -.544 -.215
Obs. -.869 -.77 -.547 -.20

-.04 Pred. .037 .033 .024 -.0094

Obs. 4x10-3 .033 .051 . .01

1.07 Pred. .995 .885 .632 .250

Obs. 1.00 .896 .626 .248

2.03 Pred. 1.89 1.67 1.19 .475

Obs. 1.87 1.54 .962 .314

-.92 Pred. .134 .32 .651 .945

Obs. .101 .314 .679 .94

-.04 Pred. .034 .32 .651 .945

Obs. .088 .255 .615 .96

1.07 Pred. .134 .32 .651 .945

Obs. .19 .47 .80 1.00

2.03 Pred. .134 .32 .651 .945

Obs. .268 .603 .95 .99



Table 6

-56-

Run
2

RMS Error0-
X

1 0.0015 0.04

2 0.010 0.037

3 0.070 0,027

4 0.14 0,13

5 0,307 0.11



aging times of practical interest. In the next chapter we specifically

investigate the effects of short time averaging on a measure of this

process, the variance, and the relationships between this variance and

the atmospheric parameters.
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CHAPTER IV.

IV.1. Introduction

In the previous two chapters, certain statistical characteristics

of the random processes describing atmospheric temperature fluctuations

and amplitude scintillation of an optical electromagnetic wave propagated

through atmospheric turbulence have been presented. In this chapter we

discuss with further experimental results, the relationship between these

two random processes. We begin with the relationship between the measures

of the intensity of these random processes, their variance, C 2 character-n
izing the atmospheric turbulence and a 2, the received optical field. DataX
spread in the short time averaged measurements of these characteristics is

then presented and finally, the relationship between the observed data

spreads in C 2 and a 2 is discussed.
n X

IV.2. Experimental Observation of the Relationship Between a 2 and C 2X n

Equations (1.5)and (1.6) give the relationship,under conditions

of low path integrated
. 2

var1ance, a ,X
equations were

turbulence, of measurements of the log amplitude

and the index of refraction structure parameter C 2. These. n
derived with the assumption of ensemble or equivalently,

long time averaging in the measurement of these variables. Figure IV.l

shows the results of relatively long time averaging, on the order of 10

minutes, on the measurements of a 2 and C 2. In this figure, a 2 is the
X n m

measured log amplitude variance (one quarter of the variance in the

logarithm of the intensity of the optical signal) and a 2 is the log ampli-t
tude variance predicted by Eq. (1.5) using the long time averaged value of

C 2 measured at a point near the receiver. These experiments were per-n

formed on the 1.6 kilometer propagation facility described in Section 111.3.

In the figure, the open circles indicate data from the C02 laser with a

wavelength of 10.6 microns and the solid circles are data from the Argon

ion laser at 0.488 microns.

The straight line in the figure shows the expected linear relation-

ship under low turbulence conditions between a 2 and C 2. Excellent agree-X n
ment is observed between the measured and predicted variances in the low

turbulence region below a 2 = 0.3. We note the saturation effect of the
X

log amplitude variance mentioned earlier for nearly all the data taken at

the visible wavelength. It should be noted that the only requirement for
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selecting this data was that the sky cover was homogeneous during the

experimental run, i.e., a clear sky or a uniform cloud cover in the

absence of rain. Partially cloudy conditions generally produce data

with very large fluctuations in the measured parameters dependent on

such difficult-to-measure factors as the percentage of the sky covered

by clouds and the motion of the clouds as they block the sun over the

path. In these cases, extremely long averaging times would be necessary

to yield data with the appearance of stationarity.

The results of Figure IV.l are of interest primarily in that

they show experimentally that with practical averaging times, the mea-

surements agree quite well with the theoretical predictions. Of par-

ticular interest here however, are the effects on these same measure-

ments of much shorter averaging times, of the order of seconds. Figure

IV.2 shows the same data from the 10.6 micron laser as in Figure IV.l

for which the total observation time has been broken into successive

short time averaging periods, in this case 10 second intervals, in each

of which (02) and (02) '\Terecalculated. The mean and tl1e standard
m T t T

deviation of the short time measurements were then calculated. The

crossing point of the 'error bars' in the figure gives the mean value

of the short time measurements, and the length of the bar on either side

of the mean is equal to the standard deviation of the short time mea-

surements. The means of the short time measurements are of course in

exact agreement with the long time averages seen in

fluctuations in short time measurements of 0 2 aret
tions in short time averaged measurements of C 2 .n

on as

Figure IV.!. The

again due to fluctua-

We indicate short

2 2
(0 ) and (C ).
X TnT

Figure IV.2 shows the possibilities of very large relative data

spreads (standard deviation/mean = R) in the short time measurements,

especially for (C 2). In the past a number of authors have commented onn T

the large data spreads observed in short time measurements of optical

time measurements of the variance from here

propagation variables. In particular, Kerr (1972) suggests that under

poorly developed turbulence conditions (generally very low wind speed

situations) deviations from the Kolmogorov spectrum of the turbulence

may contribute to the data spreads observed in the optical measurements.

Kleen and Ochs (1970) indicate that in well developed turbulence~ for wind

speeds greater than 2 meters per second, the effect of turbulence spectrum

variations is minimal ~ompared to the fluctuations in the turbulent inten-
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sHy, C2, in contributing to the spread in the optical measurements.n

(C2)n TIV.3.

Before proceeding, we define specifically what is meant by

short term averaging, particularly in regard to C2. The definition ofn
C2 comes from the expression of either the structure function or the

s~atial spectrum of the index of refraction fluctuations, where C 2 is an

coefficient of some power law dependence (see Eq. (11.5». In practice

we generally measure one point on the structure function of the tempera-

ture fluctuations with the spatial separation within the limits of the

inner and outer scales of the turbulence. Thus

C 2 = D (r )/r 2/3n n 0 0

T(r+r »
2
/

2/3
o > ro (IV.I)

In order to write this expression or the equivalent spectral definition,

it must be assumed that the measurement of the structure function is

averaged over a scale size larger than the bounds of the inertial sub-

range. To be physically meaningful, the spatial averaging of C 2 must ben
over a scale greater than the outer scale, L , or equivalently, timeo
averaging of a localized measurement must be greater than T = (L /U)o
where U is the mean wind speed. For our experimental site, the outer

scale should be of the order of one meter, and thus for wind speeds

greater than one meter per second, time averaging of the microthermal

measurements of the order of one second should yield physically meaningful

values of short time averaged C 2 .n

IV.4. Characteristics of Data Spread

We now consider some of the properties of the spread observed in

the short term C 2 measurements. Figure IV. 3 is a plot of the normalizedn
standard deviation of (C 2) for T = 10 seconds versus the mean value of
2 n T

C obtained from long time average. We would expect that assuming non

bias in the selection of the data, the data spread should be independent

of the turbulence level. In facti-the data of Figure IV.3 visually con-

firms the ind~endence of R and C~ and a simple linear regression analysisn
of R on log (C 2) from this data yields the equationn
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2
R = -0.013 log C + .50n (IV.2)

with a correlation coefficient of -0.06, giving a dependence of approxi-

mately 1% per decade change in C2. This is within experimental error ofn
a zer~slope which would describe a uniform distribution of data spread

2
with C .n

Non trivial dependence of the spread in (C2) occurs in itsn T

relationships to the wind speed and the averaging time. Let us assume

for the moment that the profile of (C 2) over some area has some givenn T

'frozen' spatial structure, that is we might assume that the Taylor

frozen flow hypothesis be valid over distances much larger than the outer

scale. A point measurement over some short averaging time will then 'see'

some portion of the spatial profile of (~T12)2 blown by the sensor with

the mean wind speed. As the wind speed increases, with a given structure

of (C2) , more of that structure will be seen by the sensor and conse-n T

quently the deviations in short time measurements should decrease. Of

course the Taylor hypothesis is not strictly valid over very large dis-

tances and the spatial structure is certainly dependent on wind speed;

nonetheless, we expect a decrease in data spread with wind speed for a

given averaging time. Figure
2

second measurements of (C )n T
deviation of the measurements

IV.4 is a plot of the data spread in 10

again indicated by the normalized standard

versus the mean wind speed, U. vfuile there

is a great deal of
2 1/2

log car :n2~)n

scatter in the data, a linear regression analysis of

versus log (U) yields

2

(

var(Cn )T

)
log - 2

C2n

1/2

=-1.01 log U + 0.053 (IV.3)

with a correlation coefficient of 0.59. Taking the antilog of Eq.(IV.3)

gives
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1.13
V

(IV. 4)

As described in Section II.4b the averaging time dependence of

the variance of a set of short time measurements of the second moment of

a process y(t) for averaging times, T, long compared to the integral scale

TZ of the square process y2(t) is given by

2
Var (y )T

-22
y

20<-1)T2
(IV.5)

T

where k is the kurtosis of y(t).

ments of the data spread in (C 2) andn T

aging time for a number of atmospheric

Figures IV.5 and IV.6 show measure-

(0-2) respectively versus aver-
X T

conditions over a range of aver-

aging times between 0.4 and 30 seconds. The wind conditions associated

with each data run are listed in Table 7. In both figures, the slopes

of the curves of log (normalized variance) versus the log (T) range from

near zero to a value of -1 for long averaging times in agreement with

Eq. (IV.5). This range of behaviorwill be furtherdiscussedbelow.

Analytical Relationship Between Data Spreads in (0-2) andX T
(C2)n T

IV.5.

In this section we describe the relationship between the observed

data spreads measured in short term averaged (C 2) and (0-2) describedn T X T

above and seen in Figure IV.b. We begin by rewriting Eq. (1.6) relating

ensemble values of the indicated variances as

2
<0- >
X =fo

2
dT)f(T))<C (T))>

n
(IV. 6)

where f(n) is a general path weighting function dependent on the propaga-

ting beam geometry, given specifically for point source propagation in Eq.
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Table 7

Data Run Symbol
V

(m/sec)

Wind Direction
Relative to N-S

Optical Path

-69-

A 0 3.5 Oo-S 1. 89x10-12

B 0 <1 Oo-S 0.59x10-12

C 0 3 Oo_S 2.9x10-13
D 6 3.5 OO-N 1.5x10-14

E + 9 '\J15°-S-SE 4.0x10-13

F * 3.5 '\J15°-N-NE 1. 37xlO-14
G . 4 '\145° SE 2.1xlO-13
H . 0.5-2 90° W 3.2xlO-13
I . 1.5 90° W 1. 7xlO-13



(1.6). This equation is rewritten again where it is now assumed that

the relationship holds for short time averaged measurements of (C 2 )
2 n L

and (0 ) describedabove. Thus
X L

2
dn f(n)(C (n»n L

(IV. 7)

The viewpoint adopted here is that the path is considered to be a homo-

geneous field with regard to <C 2 >, but that (C 2) is dependent on 11n n L
the position along the path due to the averaging time used in the mea-

surement of the structure parameter being smaller than some time scale

of significant fluctuations of C 2 .

n 2
One now considers that a large number of measurements of (0 )

2 X L
and (C ) at some point along the path are made. The average of thesen L
individual measurements, being in a sense an ensemble average, will yield

results described by Eq. (IV.6), as evidenced by Figure IV.2. The

spread in the data will be described by the normalized variance or stan-

dard deviation of the short time measurements. Starting with Eq. (IV.7)

one calculates the variance of (0 2) .X L

2
Var(o )

X L

2
Var (0 )

X L

2 2

}
-<C (11»<C (11»n 1 n 2 (IV.8)

With the assumption of long term homogeneity, and defining a normalized

spatial correlation function of short time averaged (C2) asn L

2 2 2 2
«C (111» (C (112»>-<C >n T n n

2
Var (C )n T

(IV.9)

one finds that the normalized variance in measurements of the log amplitude

variance is given by
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2

Var (O'~
2 2

<0' >
X

2
Var (C )n T-

C
2 2< >

n

Thus the observed data spread in the optical measurements (normalized

variance of (0'2)) should be directly related to the observed spread in
X T

the measurements of (C 2) (normalized variance of (C 2) ) times a factor
n T 2 n T

related to the spatial correlation of (C ) along the propagation pathn T

and the specific beam geometry. Before presentingmeasureme~tsof the

spatial correlation function and application of Eq. (IV.lO), a simplified,

but useful approximation to this equation is described.

IV.6. Discrete Model of Path-Data Spread

Let the propagation path be broken into a number of discrete slabs

of turbulent activity. Within each slab (C2) has a constant value overn T

the slab, and the correlation between (C 2) measured in any two differentn T

slabs is assumed to be zero. Thus in equation (IV.lO) the integrals over

the path are replaced by summations over N discrete slabs along the path

and the correlation function Cc 2 (nl-n2) is replaced by a Kronecker delta
n

yielding

2
Var (0' )

L-'I

<0' 2 > 2
X

2
Var (C )

_ n T-
C 2 2< >

n

2
Var (C )n T-

C 2 2< >
n

(IV. 11)

(IV.12)

Here f. is the discretized version of the path weighting function. If we1
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consider the case of a uniform path weighting function (f. = constant),1

the ratio of sums in Eq. (IV.12) is l/N, and one has the simple, physically

intuitive result that the normalized variance of (a2) is equal to the
X T

normalized variance of (C2) reduced by the number of independent slabsn T

of turbulence along the path. For any given physically realizable path

weighting function, one has

IIN' (IV.13)

where N' will be less than N, the total number of slabs along the path and

thus

2
Var (aD

2 2
<cr >
X

2
Var (C )

_ n T

- <C 2 >2
n

I
N' (IV.14)

N' is then the effective number of turbulent slabs along the path which

contribute to the decrease in the optical data spread.

This simple physical picture can now be compared with the experi-

mental results. N, the total number of uncorrelated slabs along the path,

is equal to L, the path length, divided by twice the correlation length

of (C2) along the path. The correlation length, £ , will be given byn T z

the mean wind speed along the path times the correlation time T2 of (C2) .n T

For T, the averaging time long compared to the integral scale of the un-

averaged fluctuations of (C2) , Appendix II yieldsn T

(IV.IS)

Thus

N = LI (U_ T) (IV.16)

Table 8 gives representative results of the determination of N from
2

7
2

Var (C) Var (cr )
n T X T

2 2 2 2
<C > <cr >
n X

for 10 second averaging time used in the short time variance measurements.

Eq. (IV.16) and of N' from measurements of
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Table 8

-73-"

c2
U

z
Run No. n m/ see N N' N' /N

1 1.3 x 10-14 5.4 29.6 40 1.38

2 1.8 x 10-13 0.8 20 29.6 1.4

3 8.3 x 10-14 2.2 71.4 22.8 .32

4 8.0 x 10-13 1.8 88.9 61.5 .69

5 1.0 x 10-13 7.8 20.5 24.2 1.18

6 2.9 x 10-13 5.0 32.0 12.1 .38

7 1. 9 x 10-12 3.2 50.0 33.0 .66

8 3.9 x 10-13 1.8 88.9 80 .9

9 1.5 x 10-14 5.4 29.6 19.0 .64



There is qualitative agreement with the above picture in that N' is of

the same order of N, a1tho~Eh there is much scatter in the ratio N'IN

and in a number of cases, the measured N' exceeds the value of N esti-

mated from Eq. (IV.16), an unphysica1 result indicating a breakdown in

this discrete description, or errors in the measurements, for example,

of the mean wind speed along the path.

Onecan also compare the averaging time dependence of N' pre-

dicted under the above simple picture with observed results. One must

first distinguish two cases depending on the relationship of the wind

direction to the path. In the first case, with the mean wind along the

path direciton,one expectsthe 'z' or path direction correlation of

(C
2
)

. . h . . .. 'fh N L .

n T to 1ncrease W1t 1ncreas1ng averag1ng t1me. us = UT as 1n

Eq. (IV.16). N' from Eq. (IV.13) will then decrease essentially as liT.

Figure IV.7 is a plot of 1/~' calculated from Eq. (IV.13) versus the

averaging time for data taken with the wind along the path. Again the

symbols refer to the conditions listed in Table IV.1. In all cases but

one as the averaging time increases beyond 5 seconds there is an increase

of 11N' with increasing averaging time, in qualitative agreement with

the above discrete model.

In the second case the wind is transverse to the path. Under this

condition one wou1dnot expect the 'z' (path) correlation length of (C 2 )n T
to be dependenton T, for T much greater than L Iu. This is because theo
effective spatial averaging will be along the same direction as the wind,

in this case, transverse to the direction along which the spatial correla-

tion is measured. Thus the z correlation length and N should be

relatively independent of T. From Eq. (IV.13) then, N' will be independent

of T. Figure IV.8 shows calculations of 11N' versus T for the wind

transverse to the path. Again the expected behavior is qualitatively

observed for large T. :Note that Run H showing 11N' decreasing with

T was observed under particularly low and variable wind conditions which

may have contributed to the observed anomalous behavior.

Returning to the averaging time dependence of the spread in (0 2) ,

X T

one cannow employ the above discussion on the T dependence of N' and

Eq. (IV.14) to complete the discussion of Section IV.4. Eq. (11.12) again
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gives the T dependence of variance of (C2) as lIT for long averagingn T
times and in the two wind direction conditions discussed above, N' varies

as lIT for the wind along the path and is independent of T for the wind

transverse to the path. Thus Eq. (lV.14) implies that in this simple

model, the variance of (02) should vary as lIT for the wind transverse
X T

to the path and be independent of T for the wind along the path. The

results of Fig. lV.6 however are not in agreement with this conclusion.

A number of factors may account for the discrepancy. Probably the most

important factors are that the above discrete model assumed a constant

wind field and a frozen flow field of the turbulence strength. The actual

wind velocity is a locally fluctuating quantity as is the local tempera-

ture. Even over the large scales of interest, there will be significant

fluctuations in wind velocity. (A number of possibilities for causes of

such large scale fluctuations arise from such known atmospheric turbulence

structures as convective plumes, dust devils and vortex rolls). Similarly,

the turbulence field is constantly undergoing decay and production pro-

cesses and the frozen flow model is unrealistic over distances many times

the outer scale. This randomness of the wind velocity and the turbulent

field will cause a tendency for the basic statistical relationship de-

scribed by Eq. (lV.S) to dominate and the slopes of all the curves in

Figure lV.6 will tend toward minus one. There is also the question of the

magnitude of the integral scale of these processes defining (C2) . Then T

dependence indicated in Eq. IV.S is of course only valid for T much

greater than the integral scale of the second order process, which under

conditions of large scale correlations in (C2) could become invalid forn T

T on the order of several seconds. By returning to Eq. (lV.IO) and measur-

ing the actual spatial correlation function of short time averaged (C2)n T

along the path,one should be able to relate the measured spreads in the

optical and turbulent parameters without the necessity of assumptions such

as a frozen flow and constant wind velocity.

IV.7. Measurement of Spatial Structure of (C 2 )n T

Measurement of the spatial correlation function of (C2) ,
n T

CCZ (~1-n2)(assuming long time homogeneity of the turbulent structure along

th~ path) requires the use of a number of thermal sensors and the ability to
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process simultaneous signals from the different sensors. For this work,

five units equivalent to the one described in section 11.3 for measuring

C 2 were available. Short time averaged signals proportional to (C 2 )n n T
from each unit along with calibration signals and a signal proportional

to the averaged wind speed were multiplexed onto a single channel of the

FM magnetic tape recorder and later demultiplexed and processed by the

PDP-ll computer.

The processing of interest here involves calculation of the auto-

correlation functions of the individual (~T2) signals, and cross-correla-T

functions among the different signals from the spatially separated thermal

sensors. From the correlation coefficient or zero lag value of the cross-

correlation function of different pairs of sensors and the spatial separa-

tion of the pair, the actual spatial correlation function can be generated.

Additionally, the effect of increased time averaging on the various correla-

tion functions can be observed by digital filtering of the 'signals' stored

in the computer.

Typical configurations of the thermal sensors for these measure-

ments are indicated in Figure IV.9. In case a, the temperature probes are

oriented into the wind and the sensor units are stationed nearly along the

wind. In fact an angle of 150-300 was allowed between the line along the

sensors and the observed wind direction to attempt to minimize the effects

of the turbulent wakes produced by the upwind sensors. In this configura-

tion, one measures the spatial structure along the wind and the motion of

the structure with the wind. In case b the sensors lie along a line per-

pendicular to the wind and the spatial structure of the turbulence trans-

verse to the mean motion is observed,

Figure !V.lO shows a portion of the demultiplexed signals from

four sensor units with 0.4 second averaging time. These sensors were con-

figured as in Figure IV.9a along the optical path, with spatial separations

as indicated in the caption to the figure. The mean wind speed was 3.5

meters per second. Figures IV.ll and IV.12 show the calculated cross-

correlation functions for the signals from the different pairs of sensors

separated by the indicated distances. The general characteristics of each

of the cross-correlation functions is similar. Each peaks at some nonzero

time lag, with the position of the peak moving toward longer time lags as
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the spatial separation of the sensors increases. Thus the 'turbulence'

which appears at one sensor at time t appears at another sensor down-

wind at a time t + T. Of course the turbulent structure is continually

evolving as it moves with the wind. Were the turbulence field a 'frozen

in' structure, each cross-correlation function would peak to a value of

unity. The decrease in the peak heights from unity indicates the aver-

age decay or evolution of the turbulent structure with distance. The

spatial correlation function constructed from the zero lag values as

described above, for these data is shown in Figure IV.13. Also shown

in this figure is the temporal autocorrelation function calculated from

the individual (C2) signals. The time lag axis has been transformedn T

to a spatial lag by multiplication by the mean wind speed. The separa-

tion of the two correlation functions at about 8 meters indicates abso-

1ute1y the breakdown of the frozen flow hypothesis.

Using the calculated spatial correlation function one can return

to Eq. (IV.10) to compare the predicted and observed data spread in the

variance of the log amplitude of the optical fluctuations. The path

weighting function f, for a spherical wave propagation is defined in

Equation (I.6) , The integrations of Eq. (IV.10) were performed numerically

with a grid spacing along the path of 2 meters and an averaging time for

the variance calculation of 0.4 seconds. The following indicates the

numerical results of those calculations for this particular example:

Var (02) /<02>2
X-!

(C 2) /<C 2 >2n T n

0.015
Var

ITo 0
2 = 0.0115

While this example shows good agreement between the experimental measure-

ments of data spread in short time averages of (02) and (C 2) , the spa-
2 XT n T

tia1 structure of (C ) , and fue derived re1ationshiu between these quan-n T .

tities, further attempts at such measurements yielded significantly higher

deviations between observed and predicted data spread in (02). Under con-
X T
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ditions of low wind speed, the agreement was particularly poor due pos-

sibly to inho100geneity of the spatial profile of (C 2) along the path.n ,.

Finally a number of examples of spatial correlation functions ob-

served under the two configurations illustrated in Figure IV.9 are displayed.

Figures IV.14 and IV.15 show spatial correlation functions under two dif-

ferent wind speeds with the wind along the sensors. In addition each

figure includes results with three different averaging times. As the

averaging time increases, the values of the correlation function increase,

and thus the integral scale increases as shown in Appendix II. In the

case of correlations measured transverse to the mean wind direction, one

expectsminimal increase in the correlation function with averaging time

as discussed above. Figure IV.16 shows such transverse correlations

with a wind speed of 1.5 meters per second and one notes that at large sepa-

ratioas there is little increase in the correlation with averaging time.

Figure IV.17 also shows transverse correlations. In this case, however,

there is significant correlation at large separations and a tendency to

increase with averaging time.
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CHAPTER V. Atmospheric Intermittency

V.I. Introduction

In this chapter one observed property of atmospheric turbulence

mentioned in previous chapters, namely its large scale intermittent

nature is discussed. This property is best described pictorially

as in Figure V.I showing traces of two probe differential temperature

fluctuations and their absolute magnitude. An important difference is

noted between Figure V.l and, for example, Figure 11.4, depicting tempera-

ture difference fluctuations under different atmospheric conditions. In

Figure V.I the fluctuations appear to occur in 'bursts' between one and

five seconds in length followed by relatively quiet periods of similar

duration. This sporadic character in the temperature fluctuations on

such a time ~cale is denoted as large scale intermittency. This is in

fact a pragmatic viewpoint. An intermittent process defined here is one

in which the 'envelope' of the process, or its average intensity varies

slowly compared to the fundamental fluctuating process, but which varies

significantly over observation times of interest. Thus in Figure V.l,

measurements of the variance of the temperature fluctuations over five

second intervals for example, would yield very different results as the

observation intervals were moved along the trace. Questions of station-

arity of the process are not of practical concern here because the

interest is primarily in short time averages.

V.2. Background

The first report of intermittency in turbulent flows appears to

be that of Batchelor and Townsend (1947) in their observation of small

scale turbulent velocity fluctuations. Since then the problem of spatial

intermittency of turbulent variables has been described repeatedly from

different viewpoints. The work of Kolmogorov (1962), Oboukhov (1962)

and finally Gurvich and Yaglom (1967) described in Chapter II arose from

the problem of small scale intermittency of velocity fluctuations and the

resultant dissipation rates of the turbulence. Kuo and Corrsin (1971)

experimentally investigated small scale intermittency of velocity fluctua-

tions including measurements of the intermittency factor, y, the fraction

of space or time occupied by the fine structure turbulence. Their work
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was at relatively low Rej~olds numbers compared to the atmospheric

flows of interest here. Of particular interest though, is their dis~

cussion of the lognormal distribution (as the distribution of the aver-

age dissipation rate of the turbulence, s) and intermittency. Their

concluding remark, that for a lognormal distribution, as the variance

increases, "the probability density at very large and very small values

of s will increase and that at intermediate values of s will decrease"

depicts precisely one of the characteristics of observed intermittency.

Thus a lognormally distributed variable with a large variance may in

itself tend to appear intermittent. More recently work has progressed

on describing the origins of intermittency. Mollo-Christensen (1973)

reviewed this aspect of the problem indicating that the observed inter-

mittency is caused by 'bursts' in the generation of turbulence rather

than continuous production of turbulence followed by aggregation of

regions of high turbulent activity. The bursting generation of the

turbulence is the result of a coupling of instabilities of the flow of

a number of different scale sizes. Experimental measurements concerning

bursting phenomena of turbulence and coupling of different size insta-

bilities have been made under laboratory controlled conditions (Lu and

Willmarth 1973, Lauffer and Narayanan 1971).

Discussions of larger scale intermittency with which we are

principally concerned are more limited in the literature. Lawrence,

Ochs and Clifford (1970) noted intermittent turbulence as seen in Figure

V.l and modeled the observed fluctuations as the product of two random

processes, one a Gaussian process with zero mean describing the rapid

small scale fluctuations and the other, a slow two level process acting

as a modulation function. They noted some qualitative agreement with a

predicted probability distribution function under this model and their

measured distribution of the temperature difference fluctuations. Kerr

(1973) discussed some implications of modeling the intermittent turbulent

process as the product of two processes with widely disparate time scales,

noting particularly problems associated with short time averaged measure-

ments. Further comments on large scale intermittency and data spread

were made by deWolf (1973 b). He derives an expression for the data spread

in optical propagation parameters similar to(Eq. IV.lQ)above in terms of

the spectrum of the large scale or intermittent fluctuations in C 2n
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He concludes that it is "unclear whether intermittent phenomena can

be distinguished from random sampling of a statistical process with a

known probability distribution", especially because the large scale

phenomena are not universal but rather dependent on terrain and atmos-

pheric conditions. This is essentially true; however in this case, of

intermittent thermal fluctuations, one has phenomena occurring quali-

tatively over widely separated frequency regions and one may expect to

gain some understanding of the consequences of strong intermittency

by modelling it as a process separate from the 'fundamental temperature

fluctuations'. The descriptions of a two level multiplicative process

of Lawrence, Ochs and Clifford (1970) and Kerr (1973) provide such a

model.

V.3. Plumes

A possible physical mechanism for the simple model of inter-

mittent temperature fluctuations described above may be found in the

phenomena of convective plumes. These structures of the lower boundary

layer of the earth's atmosphere are near vertical parcels of air with

well defined boundaries, within which both the air temperature and the

intensity of the thermal turbulence are significantly greater than that

in the surrounding air. Boston (1971) described the appearance of 'ramp-

like' structures in traces of temperature fluctuations at a single point

in the atmosphere, and attributed these to the passage of convective

plumes by the sensor. Kaimal (1974) and Kaimal and Businger (1970)

present details of their observations of plumes including characteristics

of their shape and motion. These plumes are columns of rising warm air,

slightly tipped in the downwind direction and are easily recognized by

the sharp drop in the temperature at the upwind edge. This of course

contributes to the appearance of ramp-like structures in the temperature

traces. Following the drop in the temperature, thus after the plume passes

the sensor, and until the appearance of the next plume, the turbulence

level may appear to be extremely low. This description of the temperature

fluctuations at a single point, when translated into that expected from

the two probe differential measurements corresponds well with the fluctua-

tions observed under intermittent conditions (Figure V.l).
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Several examples are shown of observations of single point thermal

fluctuations indicating the presence of convective plumes. In these

examples four independent probes were operated simultaneously at a height

of two meterst situated as shown in Figure V.2.

Wind
direction

o
4

o
I

o
2

o
3

Figure V. 2

During the observation periodt the wind speed variea between three and

five meters per second. Figures V.3 and V.4 show the results of two

separate observations of the temperature fluctuations at the four sensors.

The arrows indicate the times of the probable passage of the upwind edge

of plumes sequentially by the three sensors. The fourth sensor is sepa-

rated from the others in a direction transverse to the wind direction and

the temperature trace from this sensor does not appear correlated with

the other traces. From the known spatial separation of the sensors, and

the measured time delay between the appearance of the plume at each

sensor, the translation speed of the plume can be calculated. Table 9

shows the results of such calculations for the two examples of plumes

indicated in the figures. The observed translation speeds are approxi-

mately 3.5 and 5 meters per second, consistent with the independent mea-

sure of the wind speed. Kaima1 (1974) observed plume passage at two

heights (4 m and 16 m) and found the translation speed of the plume to

be essentially independent of height unlike the mean wind velocity which

increases with height. Only at the lower boundary of the plume does

its translation speed equal the mean wind speed.
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Figure V.4. Traces of single point temperature fluctuations. Plume No.2.
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Table 9

Plume2

1-2
2-3
1-3

2
2.9
4.9

0.64
0.8
1.44

3.1
3.6
3.4
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Plume 1

Sensor Velocity
Sensor Separation Observed time lag of Plume

pair (m) (see) (m/see)

1-2 2 0.4 5
2-3 2.9 0.6 4.83
1-3 4.9 1.0 4.9
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V.4. Effects of Intermittency on Turbulence Spectra and Probability
Distribution Functions

Despite the fact that the two level plume model of Lawrence, Ochs

and Clifford and Kerr is an oversimplification of the physical situation,

it does provide a framework within which one can investigate the effects

of strong intermittency on various finite time statistical measures of

turbulence described in the previous chapters. One denotes the observed

intermittent temperature fluctuations as z(t) and assume z(t) = x(t).y(t),

where x(t) is a zero mean random process describing the non-intermittent

rapid temperature fluctuations and y(t) is a non-negative essentially two

level process describing the on-off character of the intermittency.

These processes are schematically illustrated in Figure V.S. Also

shown in Figure V.S is z2(t) which translated into the temperature fluc-

tuation domain corresponds to the intensity of the fluctuations, and

whose average over some short time is related to (C2) . Figure V.Sn T

additionally indicates the power spectral representations of each of these

processes. x(t) .is essentially a bandpass limited function whose cutoff

points are determined by the high frequency cutoff of the thermal sensing

equipment or the temperature fluctuations themselves and the low frequency

cutoff characteristic of the differential measurement technique. y(t)

should contain only very low frequency components indicative of the inter-

mittency time scale in the range one to ten seconds.

The power spectrum of z(t) will be related to the convolution of

the power spectra of x(t) and y(t). The effect of the modulation of x(t)

by y(t) is simply to 'broaden' the spectrum of z(t) over that of x(t)

(introduction of narrow sidebands around a carrier frequency by amplitude

modulation). Essentially no significant amount of energy is introduced

into the low frequency region of the spectrum of z(t) by the slow modula-

tion of the intermittency. This is important in that the correlation

function of z(t), at long time lags which is sensitive to the low frequency

portions of the spectrum, will not be significantly affected by the inter-

mittency. In particular, the integral scale of the intermittent process

will not differ from that of the non-intermittent process. In the case of

z2(t) however, there is energy in the low frequency region of the spectrum

and the added intermittency increases the energy density and thus conse-

quently increases the integral scale of the process.
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Figure V.5. Pictorial description of intermittent random process.
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The effects of intermittency on the probability distribution func-

tion can be similarly described. The probability distribution function of

x(t), p~x), is symmetric about zero, and qualitatively bell shaped. Thus

the skewness is zero and the flatness factor will be greater than or equal

to three (the deviation from three is one possible measure of the deviation

of the distribution from gaussian). The distribution function of yet),

P (y), depends on the description of the modulating function. If the inter-y

mittency is described by a two level process, then ~(y) would equal the

sum of two delta functions, their relative weights depending on the rela-

tive probabilities of the two levels. The distribution function of z=x.y,

P (z), is then given byz

P (z)z ~ro
P (z/y) P (y)l/y dyx Y

The distribution of z will qualitatively be described by zero skewness,

and generally a higher flatness factor than the distribution of x due to

the increased probability density at small absolute values of z which gives

the distribution function a relatively wider extent.

The distribution function of the squared non-intermittent process,

x2,p 2(x2), will have the same characteristics as the distribution of thex
absolute magnitude of x, with a change in scale. As the distribution of

x is symmetric about zero, the distribution of Ixl will be proportional to

the distribution function of x for x greater than zero and equal to zero

for x less than zero. This of course yields a highly asymmetric distribu-

tion function with a very large flatness factor for P 2(x2). In the inter-x

mittent case, the same holds true, and the distribution of z2, P 2(z2),z
will be related to the distribution P (z), with an appropriate scale change,z
for z greater than zero and equal to zero for z less than zero. Again this

yields a highly asymmetric distribution function with a very large flatness

factor, and non-zero probability density at z equal to zero.

The effect of time averaging of x2 or z2 leads to a narrowing of

the distribution function and specifically to a decrease in the probability
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density at x2 or z2 equal to zero. Section 11.2 included a dis-

cussion of the probability distribution function of (6T12)2 including

the prediction of lognormality for a certain range of averaging times
2 2

T. The probability density must go to zero at x or z equal to zero

for the distribution to be lognormal. Referring to examples in Chapter

II, Figure II.7a is an example of relatively non-intermittent fluctua-

tions, while those in Figure II.7b are intermittent. The distribution

function of 6Ti2 for the non-intermittent case, which appears in Figure

11.10 shows good agreement with lognormality. With the added slow

modulation of intermittency, figure II.7b, the equivalent distribution

in Figure 11.11 is decidedly not lognormal.

Another effect of time averaging of a process such as z2 is to

filter out the high frequency components associated with the fundamental

fluctuating process x and reveal the nature of the modulation function y.

Figures V.6 and V.7 show actual examples of two point intermittent

temperature fluctuations, 6T12' their absolute magnitude, 16T121(which

behaves similarly to their square, (6T12)2) and the effect of time aver-

aging. In figure V.6, the time averaging is a digital RC filter which

tends to smooth out the sharp boundaries between regions of different

levels of turbulent activity. Figure V.7 shows the same fluctuations

now averaged using a 'boxcar' or 'tophat' averaging scheme. This involves

simply an unweighted average of a seque~tia1 sample of data. This method,

at least visually, yields a better example of the intermittent envelope

process. The probability density function of samples of this boxcar

averaged data are shown in Figure V.B. In the case of averaging for 500

milliseconds, the distribution function has a tendency toward a double

humped appearance, but is not a simple two level function as discussed

above.

V.5. Quantitative View of Intermittent Turbulence

In Table 10 are tabulated a number of statistical properties of

two probe differential temperature fluctuations observed under different

conditions. After the mean wind speed, we see the normalized standard

deviation in short time measurements of (C 2 )n T

St. Dev.
R =

C2
n

-101-



a

b

c

d

--- _ _ u - ,+-

.

1

~ 5 sec -I

Figure V.6. Intermittent turbulence with time averaging: RC
filtering.

a, T = 0
b, T = 5 ms
c, T = 50 ms
d, T = 500 IDS

:~

,.

-102-



.,ub
a~~~

I
.-
o
w
,

b ~~.,I~JlfiII 1iI;1I~'."~ ~~_.
Ai~\~jj,

.,n'.~~1f~~r~ :t-

c

d

1--5 sec~

Figure V.7. Intermittent turbulence with time averaging: boxcar filter.
a, L = 0; b, L = 5 ms; c, L = 50ms; d, L = 500 ms.



0.014

0.0014

.

~'..."
"

..."x_,...._
..........-............

.........-,
"?C

\,
\ ,
",,,

\
\ ,,,

10 20 30 40 50 60

Figure V~8. Probability density function of intermittent temperature
fluctuations for various averaging times.

-104-

0.14 fI O\
x T = 0
. T = 50 ms

PDF If .. -Po
0 T = 500 ms" .\



for T = 10 seconds. This is again tbe definition of finite time data

spread as seen in Figure IV.2 and has served as the operational measure

of turbulent intermittency. There is negative correlation between wind

speed and intermittency level (the more pronounced the intermittency,

the larger the relative standard deviation in (C2) for a given averagingn T

time). As discussed above, the integral scale of the square of an inter-

mittent process should be larger than in the equivalent non-intermittent

case due to increased spectral density in the low frequency region of

the spectrum. This is evident in the table. Also shown is the kurtosis

measured from the distribution function of the unaveraged temperature

fluctuations, K6T . This shows a strong tendency to incrc~se with increas-
i . ° 12 do d bng 1nterm1ttency as 1scusse a ove.

V.6. Conclusion

Finally, a comment on the effects of intermittent turbulence on

the optical propagation problem, particularly amplitude scintillation.

Experimentally, at least for the case of spherical wave propagation, there

have been no anomolous effects due to the intermittent nature of the

turbulence. There is no evidence that intermittency causes saturation

effects or the observed probability distribution functions of the optical

amplitude fluctuations. Intermittency will playa strong role in deter-

mining data spread in both the atmospheric and optical measurements,

through Eq. (IV.lO). For spherical wave propagation over long paths, the

problems of intermittency will however he relatively minor in the optical

measurements because of the broad path weighting function. In the case

of focused beam propagation or other schemes where the path weighting

function may be more strongly localized, and thus the effective number of

'turbulent slabs' (see Chapter IV) is small, strong intermittency may cause

large fluctuations in the observed scintillation level.
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Table 10

Mean Wind

Speed
u

(m/see)

'2 .
St.Dev. (C )n T

C2
n

T = 10 sec.

I~T2
T = 1 sec.

(see)

Corr.Length

u.I~T2
(m)
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9 .270 0.8 7.2 5.5

5.5 .261 1.38 7.6 8.35

4.5 .457 1.47 6.6 11.15

3.8 .468 1.49 5.7 13.4

1.5 .767 3.48 5.2 12.3



CHAPTER VI.

Sunnnary

A detailed inquiry has been presented into the short time

averaged statistical properties of certain random processes associated

with the propagation of light through the turbulent atmosphere. The

random processes of concern are the small scale temperature fluctuations,
2

which relate to the index of refraction structure parameter C ,andn

fluctuations in the log amplitude of the received optical signal. One

of the primary goals of this work has been to investigate the

accuracy of short time averaging on measurements of the moments

of these random processes, specifically the variance. This problem was

approached by considering the normalized variance (or standard deviation)

of the short time variance measurements, referred to above as the data

spread. Eq. 11.13 describes the predictedaveraging time dependence of

this normalized variance. In practical terms, Eq. 11.13 describes the

expected statistical error in short time averaged measurements of the

variance of a given st3tionary process. It depends on certain fundamental

statistical properties of the basic random process: the kurtosis or nor-

malized fourth moment and the integral scale, a measure of the extent of

significant correlation of the process.

In Chapters II and III, we have compiled results of the statistical

analysis of the random processes characterizing the atmospheric tempera-

ture fluctuations and the optical amplitude fluctuations.

These results included the probability distribution function and associ-

ated moments, of long time averaged measurements and power spectral densities

and autocorrelation functions under a variety of homogeneous atmospheric

conditions. From these analyses have been derived specific results useful

in predicting time averaging effects and general properties of the random

processes 6T and log amplitude fluctuations X under varied atmospheric

conditions.

The temperature difference fluctuations, even under the most well

developed turbulence conditions were observed to be significantly non-

Gaussian by virtue of the high flatness factors associated with their

probability distribution functions. This in itself suggests the possibility

of large data spreads in short time averaged variance measurements from



Eq. 11.13. In addition, the possibility of large integral scales, T2,

(see Eq. 11.14) due to large scale spatial correlation which can also

lead to large data spreads have been demonstrated. Finally with regard

to temperature fluctuations, the probability distribution function of

(6T12)2 was shown to be essentially lognormal in agreement with the theory

presented by Gurvich and Yaglom over a range of short averaging times. Under

conditions of poorly developed turbulence, stable light winds and intermittency,

deviations from lognormality have been observed.

The log amplitude fluctuations of the received optical signal were

the subject of Chapter III. These fluctuations were seen to be normally

distributed under most atmospheric conditions with some slight deviations

from normality in the tails of the distribution under the highest turbulent

conditions observed. These observations and the measurements of the power

spectra of the log amplitude fluctuations are in agreement with previous

observations and theories. Additionally the autocorrelation functions of

these fluctuations have been calculated. The decorrelation time was seen

to be more dependent on the wind speed, as expected in low turbulence than

on the turbulence level, which should dominate under very high turbulence

conditions. Finally in Chapter III an investigation of the two point joint

probability distribution function of the log amplitude fluctuations was pre-

sented. As pointed out in Chapter III, knowledge of these functions would

aid in the design of certain types of communication systems. Measurement

of conditional distribution functions was described. The results indicate

that under low turbulence conditions, log amplitude fluctuations are at

least two-dimensional Gaussian. Thus the literature on Gaussian processes

is directly applicable and could yield useful results in areas such as fading

statistics, level crossing, and conditional sampling.

The actual effects of short time averaging on the variance measure-

ments described above were investigated experimentally. Figures IV.l and IV.2

show the results of long time averaging (- 10 minutes) and short time averaging

(10 seconds) respectively on measurements of 02 (~C2) and 02. With longL n m
time averaging there was excellent agreement between theory and experiment

below the saturation value while in the short time averaged case there are

large fluctuations in C2. These fluctuations indicate large probablen
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errors in single short time averaged measurements and this data spread

must be recognized in the design of atmospheric propagation experiments.

The dependence of the data spread on wind speed and averaging time was

demonstrated to be as expected. In the next section the relationship be-

tween the normalized variance (data spread) of the short time measurements
2 2. 2

of a and C has been descr1bed. The variance of (a ) was seen
X n 2 X L

to be equal to the variance of (C ) times a factor (less than unity)
n T 2

dependent of the spatial structure of (C ) and the propagation pathn T

weighting function. Experimental test of this dependence was made both

with the assumption of a discrete, uncorrelated slab model of the turbu-

lence along the path and without this assumption by directly measuring

the large scale spatial correlation function of (C 2) . While somen T

of the derived relationships were verified. measurements, particularly

under low wind speed, intermittent conditions showed large deviations

from the analytical results. This intermittency was considered in Chapter

V.

Intermittency in a practical sense, was defined here as the exist-

ence of a slow modulation of varying envelope function on the observed

atmospheric fluctuations as seen in Figure V.I. Intermittent atmos-

pheric turbulence has been observed under a variety of conditions

but it is most extreme in light wind conditions. The causes of inter-

mittency include 'bursting' generation of the turbulence and thermal

'structures' in the flow. One form of these structures is a thermal con-

vective plume. Examples of these plumes were shown indicating how

they may account for the observed intermittency. Of more direct interest,

however, is the effect of such intermittency on short time averaged mea-

surements of C 2 and a 2. The increase in data spread due to increasedn X
intermittency will depend on the parameters of Eq. 11.13 and mechanisms

for both large integral scales and large kurtoseswithintermittent turbu-

lence were derived. These results are supported by experimental observa-

tions. Finally, it is observed that the primary effect of intermittency

of the optical propagation measurements is the increase in the data spread

in short time measurements of a 2 through Eq. IV.lO.X
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APPENDIX I

'.

Digital computer processing of data of a random nature now permits

fast reliable calculation of statistical properties from large data bases.

With the computing power available, care must be exercised to avoid proces-

sing beyond fundamental limits set by the characteristics of the data, such

as signal-to-noise ratio, resolution of digitizing procedure, and bandwidth.

The general procedures for statistical time series analysis are discussed

in Bendat and Piersol (1971), and many other references dealing with spe-

cific topics and problems of analysis. One in particular, Tennekes and

Wyngaard (1972) deals specifically with hazards of data pro~essing related

to signals with characteristics seen in the small scale atmospheric tur-

bulent fluctuations. We outline the basic methods used in the processing

of the data presented in the previous chapters.

All digital processing was performed on a PDP-ll/20 computer with

programs specifically written for this project in machine language. Analog

data was introduced onto the computer through a 12 bit A/D converter at a

computer controlled rate and either processed directly or recorded on 9

track digital tape for later processing. The sampling rate of the data

should be dependent on the bandwidth of the signal (for accurate spectral

representation without aliasing, the sampling rate must be at least twice

the highest frequency at which there is significant energy in the signal.)

Sampling rates of one and four kilohertz were employed depending on the

signal and the particular processing to be performed.

A fast fourier transform algorithm described by Cooley and Tukey

(see Brigham 1974 for a description of the method and further references)

was used in the calculation of all spectra and correlation functions

reported here. The power spectra were obtained by calculating the complex

fourier transform of a block of data representing the signal. This yields

the real and imaginary fourier components from which the power spectrum is

derived by summing the squares of the real and imaginary parts at each fre-

quency. The standard block size used was 1024 points. Spectra of long

records of data were calculated by repeating this procedure for successive

data blocks and then averaging the resultant spectra from each block.



Additionally, the final spectra were smoothed over a small frequency

interval. (The effects of frequency smoothing and segment averaging

are discussed in Bendat and Piersol (197l)p329.) For a sampling rate of

f(hertz) and N points in the transform, this procedure results in spectral

estimates over the frequency range fiN (hertz) to f/2 (hertz). To extend

the low frequency cutoff, with a given block size, the sampling rate must

be decreased. This may be accomplished without aliasing by low pass

filtering the signal before it is sampled. A simple first order recursive

digital filter was constructed for this purpose. Thus with an appropriate

filter time constant, the low frequency cutoff of the spectra was limited

only by the total length of the data sample.

The autocorrelation functions were calculated directly from the

power spectral estimates through the use of the fast fourier transform

again. Direct application of the FFT, calculating the cosine transform,

yields however a 'circular correlation function' which is particularly

contaminated for large lag times, rather than the desired correlation

function (Bendat and Piersol 1971, 313). This problem may be avoided by

adjusting the original data from which the power spectral density estimates

were made. This procedure which involves appending a number of zeros to

each original data block, was made a routine part of the processing.

Numerical probability densityfunctibnmeasurements are particularly

adaptable to digital processing. If the digitization procedure yields sig-

nal values between -L and +L, and the total number of samples is N, then

the probability density estimate P(I) for a signal level I is

P(I) = N(I)/N

where N(I) is the number of samples of the data equal to I.

probability distribution function is then

The cumulative

CP(I) =
L

L: P(J)
J = -L
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and the mth moment of the distribution is

L

1..1'm = L: P(J)*Jm
J = -L

The central moments ~ may be calculated fromm

1..1=m

L

L:
J = -L

the skewness then are defined as

is the mean,or directly from the ~' .mwhere ~

K= s=
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APPENDIX II

We show here that for a process with nonzero integral scale,

the integral scale of the correlation function of the process averaged

over a time T approaches 1/2 T as the averaging time becomes much

greater than the integral scale of the original process. Consider a

process f(t), with zero mean, variance 02, autocorrelation function p(t),X
and integral scale I defined as

co

I - 1 P(t) dto

Defining an averaged processed g (t) asT

gT(t)
1

f

T/2

f(t+t')dt'

-T/2
T

we investigate the integral scale of g(t). The correlation function of

g (t) isT

p (t') =
g

<g (t) g (t+t'»T T
2

<g >T

where

<g (t) g (t+t'» = < -1
T T 2

T f

T/2

f

T/2

f (t+t' ,')dt' ,, f (t+t '+t")dt">

-T/2 -T/2

Interchanging the ensemble and time averaging yields

<g (t) g (t+t'» =T T
1
2
T f

T/2

f

T/2

d t "d t ' , , < f ( t+t ' , ') f ( t +t '+t ") >

-T/2 T/2



2o
= "2

T J
T/2

f
T/2

dt lidt ' , 'p (t '+t "+t ' , ')

-T/2 -T/2

2
o

= "2
T J

'T/2

J

T/2+t

dt dt" P(t '+t")

-T/2 -T/2-t

Integrating by parts,

2

i
T

<g (t) g (t+t'» = ~ (l-t/T)[p(t'+t) + p(t'-t)]dtT T T

o

Setting t' = 0, yields the variance of g (t)T

<gT2> = 202T i' (l-th)p(t) dto

Thus the correlation function of g(t) is

Pg(t') =
~2 I' (1-t/,)[p(t'+t)+ p(t'-t)]dto

2~2 Jr' (l-t/,)p(t)dto

Calculating the integral scale by integrating over t' gives
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I' (l-th)dtI
T

0
g = TT

202

J (l-th)p(t)dtT
0'



= TI
T

2 J (l-t/T)p(t)dt
o

If T is very large compared to the integral scale, I, of f(t), then

the integral in the denominator reduces to I and

as stated.
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