
A Survey of Categorical Computation:
Fixed Points, Partiality, Combinators,

... Control?

Dwight Spencer

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-017

September, 1990

A Survey of Categorical Computation:

Fixed Points, Partiality, Combinators,

... Control?

Dwight Spencer
Oregon Graduate Institute *

August, 1990

Abstract

There has been much recent activity to develop foundational theories and mechanisms of
computation based solely on category theory, e.g. the typed lambda calculus becomes derivable
in this new computational realm. Unfortunately, the "no-holds-barredn world of the untyped
lambda calculus is not also easily subsumed by categorical axiomizations: the computationally
attractive closed cartesian category is fraught with the danger of degenerate collapse if we
insist upon both strong termination properties, e.g. universal fixed points, and flexible data
structures, such as infinite lists and direct sums. Several recent attempts to bypass the CCC's
limitations either by internal or external means that can mutually support reasonable recursion
with reasonable data structures are surveyed in this paper.

1 Introduction

Probably the first major effort to implement a categorical model of computation is the Categorical
Abstract Machine by Curien [Cur86]. It is based upon a weak categorical combinatory logic, viz.
lacking surjective pairing and extensionality, that arose as a direct semantic-to-syntactic transla-
tion of the lambda calculus of tuples. The computational mode was combinator term reduction
through rewriting using a direct left-to-right parse algorithm, initially making the evaluation strat-
egy inefficiently eager1. Application is therefore simply juxtaposition, losing the full expressiveness
of @-reduction that computes via substitution. Its overly strong bias towards the lambda calculus
was another factor that limited its expressiveness. On one hand the CAM demanded the exis-
tence of categorical products but on the other it had no coproducts for developing many useful
data structures. Nevertheless, the high acceptance and efficiency of the CAM-based ML compiler,
CAML, gives significant encouragement towards developing a highly-programmable categorical com-
puting paradigm. Some prominent workers in categorical computing now believe "category theory

"Author's address: Department of Computer Science and Engineering, Oregon Graduate Institute, Beaverton,
Oregon, 970081999. Electronic mail: d o i g h t s Q c s e . o g i . e d u

'Lazy implementations now exist.

comes, logically, before the A-calculus" [Mog89a, Mog89bI. This author is thereby motivated to
find A-calculi-independent models of computation in categories expressive enough to build machines
capable of a variety of evaluation strategies.

There seem to be several reasonable directions in the search for such computational models.
Section 2 points out some baseline categorical constraints we must always keep in mind if we wish
to mix convergent computation with rich data structures of sums and products. Sections 3 through
5 present a sample of recent work that passes successively through a spectrum starting from a very
"internal" or object-based view and ending with a very "external" or morphism-based approach.
This direction very likely corresponds also to increasing implementability. The final section states
the thesis that to build a true categorical machine, we must categorically include control, or contin-
uations, including both its bounded and unbounded forms.

This paper should be accessible to a reader having approximately the categorical experience that
might be offered by one of the Pierce or Srinivas tutorials, the well-developed new category theory
text by Barr and Wells, and the first three chapters of Barr and Wells' monograph on toposes,
triples, and theories [Piego, BW90, BW851. It is intended to introduce and guide students to some
current research activity in categorical computation and to raise new questions concerning how one
might interpret powerful control mechanisms with a categorical model.

2 The Closed-Cartesian Straitjacket

Lambek's [Lam861 demonstration of the exact correspondence of cartesian closed categories with
typed lambda calculi brings forth a naive suggestion of cartesian closure as a setting adequate for
implementating a general categorical computation paradigm based on beta reduction. The reducing
map would be eval, representing the morphism component of the universal arrow from the - x A
functor to the result object B, viz.

Extending the suggestion, it would seem critical for a CCC to possess a natural number object
(NNO) to always provide primitive recursion. That is, an NNO N is an object N along with two
specified morphisms 0 : 1 -+ N and s : N + N having the universal property that for any pair
f : A 4 B and g : B -* B there exists a unique h : A x N -+ B such that the diagram

commutes. This yields the familiar equations h(x, 0) = f (x) and h(x, n + 1) = g(h(x, n)) where
x : 1 + A, n is the composition of n s's with the 0-morphism, and x + 1 is the map h,+ o s o 0
derived from the universal NNO map h,+ for the case f = x and g = s.

Yet reasonably expressive computation demands data structures constructed from both products
and coproducts. Also, it often demands convergence being expressible as computational fixed points.
Unfortunately, the combined presence of useful properties with fixed points within any category often
forces its collapse to the trivial category 1.

An object A is said to have the fixed point property if for every morphism f : A --+ A there exists
a morphism Y (f) : 1 -* A such that f o Y(f) = Y (f) . A category is said to have fixed points if every
object has the the fixed point property. In particular, there is a global element LA - Y(idA) : 1 -+ A
for each object A. Thus the fixed point operator Y makes the terminal object 1 a weak initial object
that potentially can make many objects isomorphic to l! The major collapse result is given below.

Theorem 2.1 [HP86] A cartesian closed category with fixed points collapses to the trivial category
1 if it contains any of the following:

an initial object

a boolean algebra (coproduct) object, 2 (= 1 + 1)

equalizers for any pair of morphisms

a natural number object (NNO)

Much of the impact of this theorem has been experienced in domain theory where domains and
continuous functions are cartesian-closed and all objects have the fixed point property [GMS89].
Not permitting an initial object implies a domain cannot be an empty set, i.e. all domains must
be lifted. Not allowing a boolean algebra object prohibits true categorical coproducts in domain
categories: the coexistence of coalesced and separated sums - neither a coproduct - in domains are
alternative means by which summed structures can be built. If equalizers are not guaranteed, then
neither are finite categorical limits, particularly pullbacks. In domains, this is exemplified by the
possible occurrence of multiple incoherent minimal sets of information that individually determine
the same result value (least fixed point) of a continuous function. Also, unlike an NNO, a recursive
definition of continuous function over domains does not always uniquely define a function.

By inspecting Huwig and Poigne's proofs of Theorem 2.1, we can isolate the key condition that
will collapse any category having fixed points:

Theorem 2.2 If any category with fixed points has a natural isomorphism 2 x A E A + A for every
object A, then the category collapses to the trivial category 1.

The rest of this paper mainly discusses ways in which the CCC "straitjacket" might be loosened
to provide meaningful computation.

3 Computing Fixed Points

Having the fixed point property for every object, or more precisely every endomorphism, in a CCC is
by itself an unnecessarily rigid model for computation. Often we want the convergence of only well-
behaved morphisms - such as continuous ones - between ordered objects. A well-known approach

to directly characterize terminating computation using "complete partial orders" and "continuity"
in CCCs having finite limits and a natural numbers object has been recently consolidated by Barr
[Bargo]. This section sketches the key concepts and results of that work.

The definition of a partially ordered object in C, a CCC possessing the above-stated properties,
follows closely the use of relations to define orders in domain theory. A partial order on an object C
in C is a subobject Gc of C x C , i.e. a monic C_ from Gc to C x C exists, that induces a partial
order for any homset Hom(A, C) in the following way: if f , g : A + C, then f < g in Hom(A, C)
if and only if (j, g) factors through <c (see the diagram below). Since the elements of C are the
morphisrns going to C , then the partial order definition establishes a partial order for the set of
elements of C. Thus to say for morphisms f and g that f < g requires that they have common
domains and codomains, and their mutual codomain is a partially ordered object.

With this definition, we will take full advantage of exponentials to build objects that internalize
order-preserving maps and 1.u.b.-preserving (continuous) maps. To capture the order-preservation of
a morphism f : A -+ B, we need to express the statement "x < y implies f(x) < f(y)" categorically
by somehow internally factoring f x f : A x A + B x B through the object [<A*<B]. We there-
fore automatically assume that A and B are partially ordered objects for which special factorizing
subobjects <A and G B exist.

The object that contains f and all other order-preserving morphisms from A to B, designated
as [A j BIG, can be built as a pullback:

The bottom and lower right morphisms are the ones induced from the canonical morphisms
between the corresponding hom-sets via the product - exponential adjunction and Yoneda's Lemma.
For example,

I
Yoneda embedding

1

The upper right morphism (A -i A) of the pullback internalizes the map that diagonalizes
f : A + B to f x f : A x A + B x B. That map is the exponential transpose of the following
composition:

1 eval x eval

B x B

The definition pullback can now be directly interpreted. If f is an element of [A + B], then
it is also an element of [A BIG if and only if f x f , when restricted to the order relation G A ,
maps into the order relation on B, i.e. f preserves order. Note that this pleasant situation depends
significantly on the fact that pullbacks preserve monics, and so by the definition [A + BIG is a
subobject of [A 3 B].

Along with a partial ordering for an object A we define a bottom for A. It is a map I: 1 + A
that possesses the following leastness property: for any object B and any morphism f : B + A,
I oOB < f, where OB denotes the unique terminal map B -+ 1. An intuition for the bottom
condition can be reached by loosely interpreting the OB as a "A a: : B." binding operator, so that
I o OB can be thought of as the bottom constant function on B.

We now consider how to form a partial ordering for a particular object, the natural number
object N. It is well-known that a commutative associative map + : N x N --, N is derivable from
the NNO's universal property which satisfies the laws of primitive recursive arithmetic. Derivations
of +, pred, - (monus), the basic arithmetic identities and algebraic cancellation properties were

performed by Lambek [Lam861 for a CCC with an NNO and improved by Roman [Rom89] for the
weaker case of categories with an NNO having only finite products.

A suitable natural number ordering is the subobject p : N x N H N x N where p 2 (i d N , +).
That is, if n, m : A - N are two elements of N (intuitively, the natural numbers) then (n, m) A
(n, n + m). The partial ordering property can be seen in the diagram below for a pair of "numbers"
n and m':

A x A (n,m1)

Clearly the map (n, m') factors through the partial order object of N (here N x N itself) if and
only if m' = n + m, i.e. exactly whenever n < m'. We denote the natural numbers object N as the
partial ordered object w and the object [w + A]< of increasing sequences of A b y AW. Under the
abbreviated notation we can say that AW is a subobject of AN, the object of sequences of A.

Barr proves the following basic and hoped-for result solely from this fundamental definition of
partial ordered object:

Theorem 3.1 Let D be a partially ordered object in a CCC with finite limits and an NNO. Then
i f f : N -+ D is a morphism such that f(n) < f (s n) for every element n : A + N of N . Then f is
order-preserving2.

Corollary 3.1 With the same general hypotheses above, let f , g : N --+ D have the properties that

f(0) ,< g(0) and f(n) < g(n) implies f(sn) < g(sn), then f < 9.

We finally come to the categorical definition of an w-CPO. D is said to be an w-complete partial
order if there exists a (1.u.b.) map V : DW + D that satisfies two properties: (1) for any arrow
f : A + D" with its exponential transpose f : A x w + D, we have f < V o f o ?rl and (2) if
g :A - D is any morphism such that f < g o all then V o f < g. The composition of (1) is precisely

To reassure ourselves that this definition corresponds exactly to the conventional least-upper-
bound conditions, consider each of the two properties. The first one can be written as

and read as "any member of the increasing sequence is < the 1.u.b. of the sequence". The second
one can be expressed as

2We write f (n)" because the Yoneda embedding implies f (n) = f o n.

6

and read as "if every member of the increasing sequence is < the value of g at a, then the 1.u.b. of
the sequence is < the value of g at a."

We would now expect a definition of a continuous morphism f between w-CPOs to express the
commutativity of f with the 1.u.b. operator V. This is exactly what is expressed in the diagram
below that defines the object of w-continuous morphisms from a w-CPO D to an w-CPO E:

[ow =+ EW]

This object, ID + Elv, is defined as the equalizer of the two compositions forming the diamond
at the right. Since equalizers are monics, [D * Elv is a subobject of [D + ElG. The interpretation
of the diagram is straightforward. The map (-)" is induced by taking an order-preserving morphism
f from [D * Elr and using it to map increasing sequences on D, for example idi), to increasing
sequences on E , here {f(di)). The [DW + V] morphism post-composes the sequences-to-sequences
map with the 1.u.b. operation. Thus the result of the top of the diamond is a morphism in [DW 3 E]
that maps an increasing sequence into the 1.u.b. of its f-image. The bottom of the diamond simply
pre-composes f with the 1.u.b. operation, i.e. the result is a morphism that first "1.u.b'~" an
increasing sequence in D and then maps the bound via f . Finally, if f were to be chosen from
the equalizer, [D + Elv, of the top and bottom of the diamond, then the result morphisms are
the same: f commutes with V. By the universal property of the equalizer, this subobject of the
order-preserving morphisms from D to E represents precisely these w-continuous ones.

We can now inspect Barr's main result: the existence of a least fixed point operator for w-

continuous endomorphisms on w-CPOs:

Theorem 3.2 Suppose D is an w-CPO with a bottom element I : 1 -. D. Then there exists a
morphism fix:[D* Dlv such that (1) f(fix(f)) = fix(f) and (2) if f(d) = d , then f iz(f) < d .

The proof requires several distracting technical lemmas, but a brief hint of the argument is
appropriate since it shows in a categorical setting the conventional construction of a least fixed point.
Let f : A --+ [D * Dlv be an element of [D + Dlv. The product-exponential adjunction permits
this element to correspond to its w-continuous - and consequently order-preserving - transpose
j : A x D -+ D where A is provided with the discrete ordering and A x D with the resultant product
ordering.

We now construct a morphism 5 : A x N -, A that imitates internally the effect of successive
applications off to I. We use the NNO to define g according to the following recursive specification:

Computing the first few values of g shows us that the recursive computation a t the transpose
level corresponds to the iterations of f against I at the exponential level:

The universal property of the NNO forces the uniqueness of the morphism h below. By the
commutativity of this diagram, the second component of h is seen to be the desired map i j .

_ I h = (idA, 5) _ 1 h = (idA, j)

A A x D A x D
(idA, 1 0 OA) (TI, i)

The proof proceeds to show that because I o OA is the least element of D based on A, then i j is
order-preserving. This is equivalent to saying the curry of ij, g : A + D~ factors through P. The
fixed point of f is then definable as V o g : A -* D. That is, we are simply computing the 1.u.b. of the
sequence I , f (I) , f (f (I)) , ... ! The proof concludes by verifying the least fixed point properties of

v o s .

4 Categories of Partial Maps

Recursive programming is intrinisically a partial computation: the domain of definition is often only
a sub-domain of a computation's domain. Yet the classical [Mac711 categorical view of a function
is unrealistically a to tal function. This narrow philosophy has motivated many authors to build
categories from a partial morphism foundation. The loss of totality precludes general cartesian
products3, so these categories are accompanied by some "near" or tensor product to provide real
data structure. This idea contrasts with the preceding section where computation is extracted from
a CCC by building within it special objects that internally capture the well-behaved computable
functions, i.e. a recursion theory that "uses elements". On the other hand, the partial map categories
encourage "element-free" approaches to computation.

Various significant constructions of categories of partial maps include the dominical categories
of DiPaola and Heller [DH87], the concrete categories of domains of Moggi [Mog86, Mog88b], the
partial cartesian closed categories of Asperti, Longo, and Moggi [LM84, AL861, and the partial

3Uniqueness properties disappear.

8

cartesian categories of Curien and Obtulowicz [C089]. These constructions are complex and not
easy to express. This section discusses the work of Robinson and Rosolini [Ros86, RR881 that
unifies these above-mentioned categories (and others) and the general category of partial maps with
a fundamental axiomization: the p-category 4.

First we will explain the basic category of partial maps Pt l (A) over a category A from which all
special partial morphism theories are motivated. The objects of P t l (A) are those of A. A partial
map [m, 41: A - B between the objects A and B of A is an equivalence class of pairs

where all equivalent pairs are related by isomorphisms between their respective domain objects
(shown here as D) such that the obvious triangles commute. Note that the domain of definition is
represented as a subobject of the partial morphism's domain.

The composition of two partial maps [m, 41 : A - B and [n, $1 : B - C is completed by pulling
back n along 4 to achieve the morphism pair representing a composite partial morphism5:

It is immediate that the composition is well-defined under the equivalence and that the identity
map for each object A is id^, id^]. It should also be clear that the original category A embeds
into P t l (A) where A I+ A and f :A + B I+ [idA, f] :A -- B. Its image is called the total maps of
P tl(A).

However, the generality problem of the category of partial maps is evident: it's too big! We often
wish to restrict our focus to classes of partial morphisms (continuous, monotonic, etc.) of particular
interest that are defined on an appropriate set of domains (open sets, natural number object, etc.).
Thus we form a subcategory of P t l (A) with a selected admissible class M of subobjects that - as
we can now easily infer from the definition of composition above - must be closed under identities6,
composition in A, and pullbacks. In the particular case that A has cartesian products, the admissible
class is called a dominion. Therefore the new category, M-Pt l (A) , are those partial maps whose
domains of definition lie in M.

'The invention of the pcategory first appeared in Rosolini's thesis.
'The category A must possess pullbacks, of course.
'That is, M must include all the identity maps of A. This permits A to exist as an embedded category within

this new subcategory.

Another important assumption is the presence of a categorical product (i.e. cartesian) on the
generating category A. It provides an algebraic richness sufficient for axiomization without creating
much loss in generality. In fact, it is straightforward to show that M is also closed under the assumed
product of A and that any category of partial maps can be fully embedded in a category of partial
maps over a category with categorical products7.

Now consider the extension of the A-product to all of M-Pt l (A) by defining for pairs of partial
maps [m, 41 x [n, +] A [m x n, 4 x $1. The extended product bifunctor is no longer necessarily
cartesian. hbinson and Rosolini point out that the crux is that the projections are no longer
natural8 in both of its arguments. Suppose that the map 4 is truely partial. Because the carte-
sian product of A induces the naturality of a1 within M-Pt l (A) in its first argument, we would
have in M - P t l (A) the truely partial composition al(id x 4) = id o a1 = al, contradicting the
totality of a1 (embedded as [id, nl]). Fortunately the diagonal map A : (-) + (-) x (-), the asso-
ciativity map a = ((id x al) x a2n2)A : X x (Y x Z) + (X x Y) x Z, and the commutativity map
T = (a2 x al)A: X x Y +Y x X remain natural in all variables under the extension. With all these
observations, we are motivated to present the following definition:

Definition 4.1 A p-category is a category C having a near-product bifunctor x : C x C + C, a
natural diagonal map A, two families of projections {al, : (- x Y) -+ (-) I Y E Obj(C)) and

: (X x -) + (-) I X E Obj(C)) natural only in the indicated arguments, and the associativity
and commutativity maps a and T (defined above) as isomorphisms natural in all arguments, where

a lA = id = a2A (nl x n2)A = id
al(id x s l) = a1 ?rl(id x a2) = a1
a2(7r1 x id) = a 2 a2(a2 x id) = a2

As we would demand from this definition, the category of partial maps, M-Pt l (A) , is indeed a
pcategory induced by the canonical embedding of A and the extension of A's cartesian product, as
described earlier. We should also note that being a pcategory indicates the existence of an auxiliary
product structure on the category that may or may not coincide with any native product structure
of the category.

But to complete the abstraction of partiality, we must now decide what are the total maps of
a pcategory! With our example of M-Pt l (A) , they are the maps of A embedded as [id, 41. The
pathological example of nl(id x 4) for a non-total map 4 suggested to Di Paola and Heller a new
way to describe the domain of 4.

Definition 4.2 For a map 4 : A + B in a p-category C, the domain dorn(4) : A + A of 4 is the
composition nl(id x q5)A.

Let us first apply this definition to our pcategory example M-Pt l (A) . The computation of
dom[m, 41 is shown below where the outermost oblique composition is dom([id, 4]), accomplished by
the three pullback squares. The outermost vertical composition is its first component (domain of

'Simply apply the Yoneda embedding of A into the topos Func(AoP, Set) where each object A maps to the functor
Horn(-, A). From its definition, a topos has cartesian products.

'A functional programmer might say "no longer independent of evaluation strategy".

definition), and the uppermost horizontal composition is its second component. The parenthetical
legends identify the corresponding morphisrns as morphisms in M-Ptl(A). By using the properties
of the cartesian product in A we quickly see dom([id, 41) = [m, m].9 Thus our partial map [m, 41 is
total, i.e. m = id, if and only if dom([m, 41) = [id, id] = id. This example motivates classifying a
map 4 of a pcategory as total whenever dom(4) = id.

The near product of the pcategory is sufficiently powerful to provide the domain operator with
many easy-to-prove properties that imitate very closely what a domain of definition would be ex-
pected to have, say, in the familiar pcategory Ptl(Sets).

Theorem 4.1 The following properties hold for a domain operator of a p-category:

1. ul (id x 4) = q (i d x dom(4))

2. (id x dom(4))A = A dom(4)

9. dom(id) = id, dom(u1) = id, dom(u2) = id, dom(A) = id

9Technically, the equality is between equivalence classes.

11

12. t$ = dom(4) i f and only i f 4 = dom(4)

Robinson and Rosolini interpret property (1) as showing the amount by which naturality of the
second variable of ?rl fails. Property (2) serves as an indication that domains can have properties
that are typically satisfiable only by identity maps, i.e. domains behave like identities. Property (3)
show the totality of the identity, the projections, and the diagonal. The remaining properties can be
intuitively verified from our past experiences with partial functions, especially property (10) which
states a partial function operating only on its domain of definition is simply the same function.

Now that we have an algebraic notion of partial function, it is proper to ask how well does it fit
with the classic notion based on categories of the form M - P t l (A) . We saw earlier that M - P t l (A)
is a pcategory if A is cartesian. However, does any pcategory behave as a category of the form M-
P t l (A) where A has merely a product bifunctor, possibly non-cartesian? Rephrased, the question
becomes: is there a direct correspondence of the properties of pcategories with the properties of
the categories of partial maps relative to admissible classes of domains? The answer by Robinson
and Rosolini is mostly positive. Starting with a pcategory C , they constructed a category with a
weak product and an admissible class to form a partial category into which C could be embedded.
A sketch of that construction is described in the following paragraphs.

The category of domains, D o m (C) , that will generate the desired partial map category has as
objects the maps of C of the form dom(4) : X -, X. Such an object is said to be a domain on X.
A map 4 : dom(P) + dom(y) in Dom(C) is a map 4 : X + Y in C where dom(P) = dom(4) and
4 = (dom(7))4. This is an algebraic way of saying 4 is defined on dom(P) and produces values
in dom(y). The composition in D o m (C) is defined as the composition in C . By the definition
of morphism for D o m (C) and Property (l o) , the identity on dom(P) is dom(P) itself, giving us
a category in which some of objects and morphisms coincide! Finally, Property (6) shows that
D o m (C) has a product.

In preparation for finding an admissible class of subobjects in D o m (C) , we now follow the hint
offered by the identity maps and characterize those morphisms that coincide with the objects in
D o m (C) . First, back in C , we define the extension order on maps from X to Y by

Expanding the order definition and using TI'S naturality in its first argument we can equivalently
state

This immediately yields the intuitively satisfying fact that P is a domain, i.e. /3 = dom(P) by
Property (12), if and only if P < id. Consequently we always have dom(P) < id. For another
example of the consistency of the extension ordering with our set-theoretic intuition, it is easy to
show that if 4 dom(rl,) = 6 and dom(0) < dom(rl,), then 0 < 4 . This says that if 4 behaves as 6 on
the domain of rl, and rl, is defined whenever 0 is, then 4 must be an extension of 6.

We can now state the characterization of morphisms-as-objects in Dom(C). Its proof is straight-
forward from the properties of domains listed earlier.

Theorem 4.2 Let P, 7, and 6 be domains on the object X . Then 6 : dom(P) -+ dom(7) is a
morphism in Dom(C) if and only if 6 = @ and p & 7. When P & 7, then the morphism dom(P) :
dom(P) --+ dom(7) is a monomorphism in Dom(C).

Since we are seeking an admissible class of subobjects, we consider VC, the collection of monics
as-objects in Dom(C). Consequently, these monics have the form P = dom(P) :dom(P) H dom(y).
The verification of VC's admissibility is direct, but the reader should note while checking that the
pullback of /3 along any morphism +:dom(6) -+ dom(7) in Dom(C) also lies in DC that we do not
confuse composition in C with that in Dom(C). The resultant pullback below is annotated with
names of inducing morphisms of C, thereby allowing the indicated composition Pq5 to be sensible:

With this in hand, the representation theorem for pcategories can be stated:

Theorem 4.3 Any p-category C can be fully embedded into VC-Ptl(Dom(C)) in a p-structure
preserving way.

Such an embedding Ehzb : C + PC-Ptl(Dom(C)) is defined as X I+ dom(idx) and q5 :
X + Y H [dom(d), d] : dom(idx) - dom(idy), where the component maps are dom(q5) : dom(q5)
H dom(idx) and 4 : dom(q5) + dom(idy). Note that dom(6) is clearly in VC because of Theo-
rem 4.2 and dom(4) < id.

So we have a correspondence of the properties of pcategories to those of categories of partial
maps. To go the opposite direction, we need to determine what particular circumstances cause a
pcategory to be exactly of the form M-Ptl(A). Robinson and Rosolini exploit a definition and
theorem of Freyd to establish the opposite correspondence.

Definition 4.3 [Fre74, FS90] Let Z be a class of idempotent morphisms in a category C. Define
the category Split(C,Z) where the objects are the elements of ZU {idx I X E a j (C)) and f : e + d
is a morphism i f f is a map in C such that d fe = f .

Observe that the objects of VC-Ptl(Dom(C)) are the domains of C , including the identities,
which are all idempotent by property (8). By the definition of Dom(C) and V, every morphism
is of the form [dom(d), 61 : dom(P) - dom(7). First note that this form is completely and uniquely

determined by 4, so that [dam($), $1 can be identified with 4 . Second, [dam(+), $1 is a map in VC-
Pt l (Dom(C)) if and only if 4 < P (by Theorem 4.2) and dom(y)+ = 4. The properties of domains
and the definition of < easily show this equates to the condition that (dona(y))q5(dom(@)) = 4. That
is, VC-Ptl(Dom(C)) is actually Split(C,Obj(Dom C)) .

We now make use of F'reyd's result.

Theorem 4.4 [Fre74, FS90] Let C be a category containing a class Z of splitting idempotentslO.
Then C i s equivalent t o Split(CJ).

Hence we have immediately a second representation theorem that states properties of partial maps
correspond exactly to those properties of pcategories that are independent of domains splitting.

Theorem 4.5 A p-category C is equivalent t o VC -Ptl(Dom(C)) if and only if all domains of C
split.

To end this section, it is relevant to briefly refer the reader to the recent work of C. Barry Jay
[Jay901 who takes a different point of view of characterizing categories of partial maps. Instead of
building auxiliary structures, such as the pcategory structure, Jay takes advantage of the intrinsic
ordering of a partial map category's hom-sets induced by the ordering of domains of definition to
define lax" versions of product, adjunction, functor, and natural transformation from which the
structure of categories of partial maps can be fully and uniformly described.

5 Combinat or Reduction

We move our attention to "real" computation within a category, or what has been generally termed
categorical programming. Two major foci of research have been data structures and combinator
reduction. This section will restrict its discussion to the very recent work in the latter area by Cockett
and Chen on developing a methodology for directly specifying and building abstract machines that
compute with categorical combinators to solve specific problems [CC90].

The Cockett/Chen viewpoint has been influenced heavily by the experiences of Hagino in cat-
egorical data structures [Hag87]. Hagino elegantly developed a categorical programming language
entirely from the minimal foundation of mixed-variance multi-arity functors and adjunctions. He
was able to produce a reasonable but limited variety of useful data structures. Cockett and Chen
adapted Hagino's chain-reduction methods for their own reduction algorithms and extended signifi-
cantly the breadth of data structures possible to be specified. A particular improvement is that the
new methodology can be applied to computing in distributive and list-arithmetic settings, two data
structure environments important to programmers.

They have been motivated from several directions. Inspiration and encouragement came from (1)
noting the implementations of Hagino-like data structures in the polymorphic Xcalculus by Wraith

1°The splitting of an idempotent is equivalent to its being a retraction.
llLaxity is the weakest sense of commutativity. Instead of equality (strict commutativity) or isomorphism (pseudo

commutativity), we merely require the existence of a morphism.

[Wra89], (2) observing the highly intuitive aspects of programming with the equational logics of
categories to specify computational environments for combinator systems, and (3) discovering the
flexibility in selecting strongly-normalizing categorical settings to solve particular computational
problems. We will outline their methodology for both constructing combinator systems (called
theories) from the equations of categories and computing with them.

First, a combinator theory has three parts: a type stack, a combinator base, and a set of axioms.
The type stack1= serves as a graded term algebra for expressing the type signatures of combinators
(special morphisms) and higher categorical constructs such as products and exponentiation. It is
"stacked", or nested, because we wish to take advantage of the categorical hierarchy: the bottom
level lo of the stack should be thought of as the objects of a category, the second and next higher
level 7' as categories, the third level I2 as 2-categories, and so on. The terms in ?;. are generated by
a finite collection of function symbols 3i and a countable collection of variables Xi. One may loosely
relate the function symbols to type constructors. Within the stack a type assignment associates each
stack level with the next higher level, making the type stack a directed graph of typing assignments.
Also defined for the type stack is provision for multi-level substitution to effect type instantiation
that permits a Milner-style algorithm to find the most general unifier of two type terms. The type
stack thus becomes the authors' method of avoiding the awkward complexity of the functor calculus
used to build type signatures for Hagino's categorical data structures. Here the type stack becomes
the type structure for the combinators.

A couple of examples should illuminate the definition of type stack. First we see a prospective
type stack for a combinator theory that is based on a cartesian closed category:

A list of three function symbols is presented along with the use of a single type variable of level Tl
that will be eventually assigned a category from which to draw objects13. The assignment of the
type signatures to the function symbols is shown as well. For example, the product type constructor
accepts a pair of two objects (in the authors' notation, a list of two category variables), both from
the same category because the common variable X is used. The function 1 has arity14 0 and can
therefore be identified with a particular constant object. Some type expressions constructible from
objects, say X , Y, and 2 , from this stack include:

(X * Y) * Z X X Y 1 * z

The other type stack example below is more interesting because it demonstrates more of the
categorical nesting facility and the flexibility in narrowing the stack to a specific class of problems.
This stack could be used by a combinator theory for an adjunction where the functor F is specified

12Cockett and Chen's definition is extensive. Only an informal explanation is appropriate here.
13Typically the variable assignment arises from a type unification phase during "compilation" of the type stack.
I4Arity is being abused here. We refer only to parameter-arity, not input-arity.

below to map objects from a category assigned to the variable C to objects in a category assigned
to the variable D. Clearly the functor G travels in the opposite direction to F.

Note that both category variables, C and D , are type-assigned as constants with the same 2-category
via X. As would be sensible, our functors should be between categories belonging to the same class
of categories. Here are some correct type expressions:

The second major component of a combinator theory, the combinator base, is defined to be a set
of combinators with signatures, expressed in type terms from 70, of the form ([A1 -+ B1, ..., A, -+

B,], C -+ D) for n > 0. The type-pair constructor "-+" is technically a binary function symbol
implicitly assumed for every type stack's 3 0 . It is used to build the map types of morphisms, i.e. the
source and target objects correspond to the domains' types and codomains' types, respectively. A
combinator with n > 0 corresponds to the usual notion of a parameterized (polymorphic) combinator.
So if we have morphisms gi : Ai -+ Bi and f is a combinator with the signature of the general form
expressed above , we say that f (gl, ..., g,) has type C -+ D and write f (91, ..., g,) : C -+ D.

Combinator expressions are inductively defined in the usual manner. We postulate that the iden-
tity combinators idx : X 4 X implicitly belong to every combinator base15. The set of combinators
is also to be closed under instantiations that are consistent with the type stack and under a binary
composition operator ".". Note that all compositions will be written in diagrammatic order, a detail
that becomes important in the discussion on combinator term reduction.

Examples are again demanded here, so we continue the two earlier examples. First, we have a
conventional set of combinators for a CCC16

terminal map 0 (o , X + l)
first projection nl I+ (O , X x Y - + X)

second projection n, I+ (1 , X x Y - + Y)
product pairing () I+ ([Z -+ X, Z -+ Y], Z X x Y)

curry maps curry(-) I+ ([X x Y -+ Z],Y 4 X J Z)
evaluation eval I+ (O , X X X J Z - + Z)

Second, a set of combinators for manipulating adjunctions is presented:

15Note at this point we have to wait for the axiom discussion to determine exactly the implicit behavior of an
"identity".

160ur notation is somewhat categorical for clarity, even though a programming language environment is intended
here by Cockett and Chen.

left adjoint functor L w ([X -+ Y], L(X) -+ L(Y))
right adjoint functor R w ([X -+ Y], R(X) -+ R(Y))

factorizer A w ([X --+ R(Y)], L(X) -+ Y))
unit P I-+ (0 , X + R(L(X)))

These examples supports the authors' claim of increased flexibility of their approach over Hagino's
system. Now our combinators are not required to be natural transformations and function (type-
former) symbols not to be functors.

The last major part of a combinator theory, the axioms, are an explicit set of equational inference
rules for the combinators. As we might now anticipate, there is an additional set of rules implicit in
every combinator theory. These implicit rules simply state that equality is a substitutive congruence,
composition is associative, and the identity combinators behave as identities.

So we now complete the two examples of combinator theories. First, a set of CCC axioms1':

(term) f.0 = 0
(prod - left) (f,g).m = f

(prod - right) (f,g).n2 = 9
(prod - sur) (x . i ~ ~ , x . ~ ~) = x

(prod - dist) z.(x, y) = (z.2, z.y)
(exp - inj) (x, ~.curry(z)) .eval = (x, y) .z

(nl, sz.g) .eval = z
(exp - sur)

curry(%) = g

Now the adjunction axioms:

(funct - id) L(i) = i and R(i) = i
(funct - comp) L(x.y) = L(x).L(y) and R(x.Y) = R(x)-R(Y)

(fact - inj) P.R(A(x)) = x

(fact - sur)

After choosing a combinator theory appropriate for the computing problem a t hand, the cat-
egorical programmer must now form a reduction system from the theory. Of course, the axioms
must be oriented to form rewriting rules and in many categorical situations, the proper orientation
is natural.

However, the reduction system differs in three ways from standard term rewriting reduction: (1)
there are notions of closed ("well-formed program or arbitrary element") and canonical ("minimal
program or canonical element") expressions, (2) reduction may be applied to closed terms, and
(3) the auxiliary task during reduction of carrying out distributive operations between the main

" ~ o t minimal, this set has the redundant (prod-dist) rule. However, we will see later that we need to be aware of

the distributivity in such systems.

rewriting steps must be done to supply "outer scopes", or context, to all subterms that are intended
to have access to it.

The initial step in setting up a reduction system is classifying the combinators into three groups.
The active combinators are those that cause a rewrite rule to be invoked. More precisely, all rewrite
rules will have the form t.a r where a is an active combinator, t is the prefix (in a canonical
form) of a in the overall expression that serves as a's context, and the subterm t . a is analogous to
a closure of context (t) and code (a) . The distributive combinators are those that satisfy the left
distributive rule: z.S(xl, ..., x,) = S(z.xl, ..., z.2,). Here z acts as a context that directly affects, by
composition, the processing of the arguments of the distributive. The remainder of the combinators
are called constructives. Usually a constructive can be thought of as a constructor of data that
contributes to the final result of a reduction.

In our two examples, the classification results as follows:

CCC Adjunction

actives

TI, u2, eval L, R

distributives

(-9 -), 0 (none)

constructives

curry (-) A, P

We then select corresponding sets of rewrite rules as follows:

Adjunction

(f , 9) . ~ 1 f P.R(A(z)) D z
(f , g).*z D g L(i) D i

(x, y.curry(z)) .eval D (z, y) .z R(i) D i

L(x.9) D L(x).L(y)
R(x.Y) D R(x).R(y)

At this point we should observe that the reduction rules above, when converted back to equalities,
would not necessarily reproduce the original combinator theory. This apparent loss of proof strength
should be weighed against the goals of computing only with the elements of the theory and of achieving
a terminating reduction procedure for the particular problems we wish to solve. These goals should
guide this mildly but purposeful ad-hoc selection of actives and orientation of axioms.

We will next outline the general reduction of a closed expression by an abstract machine proposed
(and partially implemented [CCS89]) by Cockett, et.al., for computing with categorical combinators.
We do so before giving formal definitions and explanations of the reduction theory in order to
introduce the intuitive roles of standard forms of combinator expressions used in the processing.

This should aid the reader in understanding the technical definitions that follow. The machine
performs the following steps:

The machine scans the closed expression left-to-right, reducing actives along the main "spine",
or composition path, of the expression, creating an expression having only non-actives on
its spine. After each active is detected, but prior to matching and applying a rewrite rule
to evaluate the closure, the preceding prefix subexpression (termed a precanonical because it
clearly has no actives with context to operate upon), is traversed right-to-left to collapse any
distributives. It is easy to see the collapsing causes the prefix to become a canonical expression
by itself.

The machine then changes direction and scans right-to-left, looking for any distributives on the
spine. Possibly new distributive could have been introduced via the rewritings. Nevertheless,
if one is found, the entire prefix sub-expression immediately to the left of the distributive, i.e.
the distributive's context or outer scope, is distributed to the distributive's arguments. Each
of the arguments is then processed as an entire closed expression, each time starting again with
the left-to-right mode to reduce actives and finishing with the right-to-left mode to collapse
distributives.

Thus the recursive procedure percolates downward through netings of distributives with left-
to-right passes, transforming the overall expression into a weakly canonical form having only
non-actives on its spines and sub-spines (the branching of compositional paths caused by
distributives). In this way, all actives that are reachable from the original outermost scope are
reduced. Note also that only reachable distributive are being collapsed.

The machine then eventually percolates upward, making final right-to-left passes to collapse
all remaining reachable distributives, and terminates. The resulting expression is canonical.

We now elaborate the forms of combinator expressions.

Definition 5.1 A closed expression is inductively defined as

Any 0-ari ty distributive is closed.

If the expression has the form 6(el, ..., e,).yl.yz ym for m 2 0 where 6 is a distributive,
all the ej's are closed and all the yj 's are ground (contain no variable parameters), then it is
closed.

Definition 5.2 A weakly canonical expression is inductively defined as

Any 0-ari ly distributive is weakly canonical.

If the expression has the form 6(el, ..., e,).yl.yz ym for m 2 0 where 6 is a distributive,
all the ei's are weakly canonical and all the y, 's are ground non-actives, then it is weakly
canonical.

Definition 5.3 A canonical expression is inductively defined as

19

Any 0-an'ty distributive is canonical.

If the expression has the form 6(el, ..., e,).yl.y2 y, for m 2 0 where 6 is a distributive, all
the ej 's are canonical and all the y, 's are ground constructives, then it is canonical.

The evaluation strategy is partly top-down and therefore somewhat lazy. The role of the 0-arity
distributive should be noted here as well. These distributives, called terminal combinators because
they are left-absorbing (f.60 = SO), act as A abstractors and binders to close off the expression
from the external context or environment. We see the CCC terminal combinator example of 0,
and we also note the absence of distributors in the adjunction theory. The latter observation simply
means we cannot compute with elements involving adjunctions, unless the categories involved contain
terminal objects. By the definitions above, canonical terms are weakly canonical, weakly canonical
are closed, closed terms are left-absorbing, and from what we have just said, left-absorbing terms
are representatives of programs, morphisms, values, or elements.

We now tie together the reduction discussions with a computation example from the CCC com-
binator theory. The element below reduces to the canonical first projection element of [X x Y + XI.

precanonical

1
((O.al,O.?rz) . (~ 2 , TI), (O.?r1,0.~2) .curry (nl .az)) .evaI -

weakly canonical

1
(((O.?rl,O.~2) .n2, (0 .171 ,O.~~) .TI), (0 . ~ 1 , O . x z) .curry(?rl .Q)) .eval -

precanonical .-
closure

1
((0 . ~ 2 , (0 . ~ 1 , 0.7r2) .TI), (O.nl,O.1~2) .curry (r l .7r2)) .eval -

precanonical -
closure

1
((0 . r2 , O.?rl), (O.?rl, 0 . ~ 2) .curry (TI .7r2)) .eval
\ / +

canonical
\ d +

closure

1
((0.7r2,0.*1), (O m , 0 . ~ 2)) .TI . 7 ~

"
canonical

\ d +
closure

1
(O.7r2,0.T1) .A2 -

canonical -
closure

1
o.7r1
v

canonical

The first active (eval) is reached moving left-to-right. Its precanonical prefix is collapsed moving
right-to-left, eventually creating an eval-closure. Note that the first collapse within the prefix creates
one argument without any actives to be found moving left-to-right, i.e. it is already weakly canonical.
Therefore it can be collapsed immediately into a precanonical form, moving right-to-left. The
remaining steps are applications of CCC rewriting rules to closures as the algorithm travels back up
the distributive nestings.

The term rewriting underpinnings of the CockettIChen methodology are completeness and lin-
earity of the reduction rules, deterministic reduction, and separability of canonical expressions. A
complete set of reduction rules allows every closure that is legal, or type-correct, to be reducible. To
avoid the complexity of matching closures with the left sides of reduction rules in which variables
are allowed to occur in both reachable (i.e. with context) and unreachable (i.e. without context)
positions, reduction rules must be chosen to be linear (singly-occuring) in each variable. Reducing
deterministically means having only one reduction rule applicable to each legal closure. Together
determinism and linearity imply uniqueness of a canonical expression if one exists. Finally, sep-
arability means that two canonical expressions that are equal outermost syntactically except for
unreachable subexpressions (essentially uninvolved in computation) cannot be proved equal in the
underlying combinator equational theory. This will permit the characterization of canonicals as the
irreducible expressions. With the selection of rewrite rules following these requirements, we say we
have a categorical combinator reduction system. Thus directly from well-known results in equational
systems by Huet and O'Donnell [HL79, O'D771, the authors state the convergence theorem for the
abstract combinator machine:

Theorem 5.1 In a categorical combinator reduction system, reduction is confluent on closed ex-
pressions and an ezpression is irreducible i f and only if it i s canonical.

6 What's Next: Control?

This author is particularly interested in pushing category theory even more "externally" towards
implementation of an abstract machine that captures control categorically in its varied forms -
go-tos, raising exceptions, handling exceptions, while-loops, and more exotic and powerful context-
transformation mechanisms such as Felleisen's prompt and control operators [Fe188, FWFD88, SFSO].

A keystone work in this area is Filinksi's SCL-category (SCL for symmetric combinatory logic)
that expresses several dualities: totality versus strictness of functions, call-by-name versus call-
by-value evaluation, and values versus continuations [Fi189a, Fi189bl. His categorical view of a
continuation is a morphism A --+ 0 where 0 is a weak initial object. This dualizes the concept of a
value as a morphism, or element, 1 + A where 1 is a weak terminal object. The intuition here is to
think of a continuation as an non-returning computation18 that accepts A-typed values.

We also must add that Filinski develops a simply-typed "symmetric" lambda calculus (SLC) that
allows equal status for continuations and values. He follows the program of Lambek in developing
exact translations in both directions between the SLC and the SCL-category. Thus, in a technically
awkward sense, by using these translations Filinski has produced the first abstract machine that

18Hence continuations cannot be composed as procedures.

2 1

computes with categorical continuations as first-class objects.

The axioms of the SCL-category are listed below. The 0 and are the (specified) terminal
and initial morphisms, respectively. There are also value variables xi : 1 -+ A, continuation variables
yi :A -+ 0 , the co-application pa, f+ as the curry o f f , and f, as the co-curry of f . It is important to
see that the initial object, terminal object, products, coproducts, exponentials and coexponentials
satisfy universality properties weakly, i.e. only the existence of factorizing morphisms is guaranteed.
The strange morphisms 4 : A x [C B] -+ [C -& A x B] and 6 : [C + A + B] -+ A + [C + B] are
primarily for achieving functional completeness that allows the translation from abstractions in the
symmetric lambda calculus to the categorical combinators of the SCL. Finally, the SCL condition
of totality for the morphism f is 0 o f = 0 where 0 is the terminal maplg. The dual, f o 0 = 0 ,

serves as the strictness condition.

primitives are total
id is total

o of totals is total
0 is total

(-, -) of totals is total
ni is total

is total
[-, -1 of totals is total

ri is total
4 is total
0 is total
z i is total
pa is total
f* is total

primitives are strict
id is strict

o of stricts is strict
0 is strict

(-, -) of stricts is strict
.~ri is strict

is strict
[-, -1 of stricts is strict

~i is strict
4 is strict
6 is strict
yi is strict
ap is strict
f, is strict

g is total

T l O (f1g) = f
f is total

g is strict

[f,glo Ll = f
f is strict

lgInterestingly, this same representation of totality had been earlier used in the partial cartesian categories of Curien
and Obtulowicz.

h is total h is strict

(f , 9) 0 I&= (f c2 h , g " h, h " [f,g] = [h" f , h " g]
h, k are total h, k are strict

(h x k) 0 (f ,g) = (h o f , k o s) [f ,g I0 (h + k) = [f o h , g o kl

a p o (fC x i d) = f (f* + id) 0 pa = f
f is total f is strict

(ap o (f x id))* = f ((f + id) 0 pa), = f

There are some suggestions about control within the SCL category if Filinski's CBV denota-
tional tnorphism semantics are followed. For example, consider how the coapplication pa invokes
the cocurry f, in a manner dual t o the invoking of the curry f' with the application ap. The
allowed strategies of evaluation are illustrated below. Note that CBV evaluates the morphisms in
diagrammatic order while CBN evaluates them in compositional order. Here v and k represent the
evaluated value and continuation, and v and K the unevaluated value and continuation.

CBN

YV
I

CBV

Pa

f* + idg
k n

A + B

The applicable semantics are

M[f 0 g]vn = M[g]v(At.M[f]tn)
M[pa]vn = n in* (contx(v, At. n inz(t)))
M[f*]vn = let contx(a,c) = v in M[fla(At.case t of inl(r) : K T inz(s) : c s esac)

Following these SCL CBV semantics, the elements of the coexponential [B + C] are continuations
that accept a C-value/B-accepting continuation pair. These elements are termed as context values.
The computation proceeds in detail as follows:

1. pa injects (tags) the context pair (c, kg) into [B + C] + B , where c is a C-value and kg is a
B-accepting bridging continuation.

2. Control then passes to the [B (: q + B-accepting continuation k[geC1+g following pa, i.e.

the continuation starting with f, + i dB . As a result, f, + i d runs and sees its input tagged as

a context, viz. (c, ha), allowing only f, to process it.

3. If f,(c) is in A, then the continuation k A + ~ following f, + i d computes the answer from f,(c).

4. Otherwise f,(c) is in B, so f, returns to pa with the value f*(c)-

5. pa then executes the bridging continuation k g . This continuation first injects f,(c) into the
B summand of [B e C] + B.

6. Then kB re-executes the k[BeCl+B continuation. Again f, + i d runs and sees only the injected
f,(c), causing ids to pass g,(c) directly on to the k A + ~ continuation to compute the answer.

What this all amounts to is:

a The pa processing sets up a bridging continuation for the B (f, result) case, i.e. it "suspends"
the B-related continuation prior to the cocurry processing.

a The cocurry processing sets up the continuation for the A (f, result) case.

a The cocurry processing does all the tag checking.

a The cocurry processing backtracks from the [B e C]-accepting sub-continuation of k[BeCl+B
via the bridging continuation to the B-accepting sub-continuation if a B tag of the f,-result
is detected.

a Rephrasing the preceding point, pa requests that f, "try" the "A-related'' continuation first,
and iff, cannot continue, "doesn the " B-relatedn continuation.

The difference between currying and cocurrying can now be expressed in a new way. In currying,
all the parameter values - evaluated one at a time - must be applied to by the function, while in
cocurrying the parameter continuations must be successively attempted with only one being selected.
Thus the cocurry side of the composition of pa and f, + idB provides the "initial" continuation,
and the co-application side provides the ordering of the attempts and the "bridge" to the alternative
continuation.

Also, the co-application morphism does no tag checking, or performs any other discriminatory
functions.

Another intuition that is consistent with the Filinski semantics is to consider the pa morphism as a
CBV-version of "call with exception propagate". The call and exception return state is represented
by the co-exponential [B e C] and the exception propagation mechanism is represented by the
bridging to the B summand and i dB . Thus f,'s tag checking corresponds to exception-detection
and a backtrack to pa "raises" the exception.

But the Filinski result is only an initial step towards categorical computation using control
morphisms. There are serious shortcomings in attempting to use an SCL-category for reasonable
direct computation.

First, the SCL-category is quite minimal with respect to the three dualities stated earlier. In
particular, the SCL definition of a continuation morphism is one-ended or global, while most control

constructs are two-ended or local: a new context - a value-continuation pair - is computed in
some manner in terms of the current context to replace the current context. Also, the concept of
a continuation that "goes on forever, never returning", i.e. without knowledge of if and when it
will end, seems overly simplified for the sake of categorical and semantic convenience. The general
need to raise, propagate, and handle exceptions demands a local or bounded continuation that is
two-ended and composable in nature. Support for such "procedural" or "operator" continuations
has come forth not only from Felleisen, who provides a dynamic semantics for his control operators,
but also in new work by Danvy and Filinski that establishes a static semantics for them as well

[DF90], and by Griffin who showed that a simpler but very expressive form of the Felleisen context-
shifting operator - which possesses a classical type - has a precise interpretation in constructive
logic [GrigO] .

Second, the axioms of the category are conditionally based on the totality or strictness of mor-
phisms. This negates the possibility of a Cockett-style term rewriting reduction. One might consider
applying conditional term rewriting theory, including Knuth-Bendix completion, to an SCL-category
[Kap84, Kap87, Gan871. However, (1) as claimed above, the SCL-category appears not rich enough
to be computationally useful in the first place (an opinion shared by Filinski [Fi190]), and (2) severe
constraints on the premises of conditional rules are required to avoid undecidability. It is for this
reason that categories possessing weak products/coproducts - such as the SCL-category - along
with a more sophisticated and fully equational structure similar to the pcategory of Robinson and
Rosolini might hold promise as a new venue for computing with control morphisms.

Third, computation is defined not entirely by the equational logic of the SCL category - the
axioms are strategy-independent - but by two sets of denotational semantics, one for CBV and the
other for CBN. This represents both a severe coarseness in the strategy spectrum and a weakness in
the direct programmability of the SCL category. Although there are continuations in the category,

they play little direct role in the control of the categorical computation itself.

Each of the papers principally surveyed in this report has influenced our pondering on the
possibilities for embedding a useful set of control constructs within a category. Here are some
examples. Could local continuations be internalized as some kind of "control-closed" category or
a "control-enriched" category? Is a pcategory, which shares many similar properties as the SCL
category, a starting point for including control? Does the dual of the pcategory's dom-operator
have any relationship to control? If such a category is found, could the Cockett methodology be
extended, if necessary, to deal with actives that have contexts either as prefixes (evaluation of values)
or postfixes (evaluation of continuations), as a technique to include control operations?

And what about other categories? One example of possible relevance is the Girard category that
is essentially a closed symmetric monoidal category with tensor products and exponentials, finite
categorical products and sums, and an involution functor that intuitively corresponds to converting
back and forth between values and continuations [See89]. In fact, a Girard category is a special brand
of *-automonous category [Bar79]. This category contains both weak and categorical products and
sums depending on the "non-strictness" and "non-totality" of arguments, properties similar to those
of the SCL category. It has been proved by Seely to correspond directly to Girard's linear logic
[Laf88, Sce901, which in turn has been shown to fit hand-in-glove with computation using Petri
nets [MOM89, EW901. Since this relationship has strong implications for parallel computation, the
Girard category is so far only mildly promising for categorizing control.

Another farther-fetched possibility is higher-order categories such n-categories. Seely has ex-
pressed the typed lambda calculus as a 2-category where the 2-cells express beta/eta-reductions of
terms with a single free variable [See87]. Carrying the analogy farther, a higher-order cell might
express some kind of reduction transformation that switches contexts and exchanges continuations,
with each cell level representing the next-higher local context of the current computation.

7 Acknowledgement

The author wishes t o thank Edmund Robinson and James Hook for their critical review of an early
draft and excellent recommendations for improvements in this presentation.

References

[AL86] A. Asperti and G. Longo, Categories of Partial Morphisms and the Relation between
Type-Structures, Nota Scientifica S-7-85, Dipartimento di Informatica, Universiti di
Pisa, 1985.

[Bar791 *-Autonomous Categories, Lecture Notes in Mathematics 752, 1979.

[Bar901 M. Barr, Fixed Points in Cartesian Closed Categories, Theoretical Computer Science
70, 1990.

[BW85] M. Barr and C. Wells, Toposes, Trzples and Theories, Springer-Verlag, 1985.

[BW90] M. Barr and C. Wells, Category Theory for Computing Science, Prentice-Hall, 1990.

[CC90] J. R. B. Cockett and H. G. Chen, Categorical Combinators, Preprint, May, 1990.

[CCS89] J . R. B. Cockett, H. G. Chen, L. R. Chen and L. R. Smith, Preliminary Users Manual
for Charity, Technical Report CS-89-82, University of Tennessee, 1989.

[C089] P.-L. Curien and A. Obtulowicz, Partiality, Cartesian Closedness, and Toposes, In-
formation and Computation 80, No. 1, 1989.

[Cur861 P.-L. Curien, Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming, John Wiley, 1986.

[DF90] 0. Danvy and A. Filinski, Abstracting Control, In Proc. ACM Lisp and Functional
Programming Conference, 1990.

[DH87] R. A. Di Paola and A. Heller, Dominica1 Categories: Recursion Theory without
Elements, J. Symbolic Logic 52, 3, 1987.

[EW90] U. Engberg and G. Winskel, Petri Nets as Models of Linear Logic, In Proc. CAAP,
Lecture Notes in Computer Science 431, 1990.

[Re741 P. J. Freyd, Allegories, mimeographed notes.

[FS90] P. Freyd and A. Scedrov, Categories, Allegories. Forthcoming book, North-Holland,
1990.

M. Felleisen, The Theory and Practice of First-Class Prompts. In 15th Symposium
on Principles of Programming Languages, 1988.

A. Filinski, Declarative Continuations: An Investigation of Duality in Programming
Language Semantics, Summer Conference on Category Theory and Computer Sci-
ence, Lecture Notes in Computer Science 389, 1989.

A. Filinski, Declarative Continuations and Categorical Duality, Master's thesis, Uni-
versity of Copenhagen, 1989.

A. Filinski, private communication, 1990.

M. Felleisen, M. Wand, D. Friedman, and B. Duba, Abstract Continuations: A Math-
ematical Semantics for Handling Full Functional Jumps. In ACM Conference on Lisp
and Functional Programming, 1988.

H. Ganzinger, A Completion Procedure for Conditional Equations. In 1st Intl. Work-
shop Conditional Term Rewriting Systems, Lecture Notes in Computer Science 308,
1987.

T. Griffin, A Formulae-as-Types Notion of Control. In Symposium on Logic in Com-
puter Science, 1990.

C. Gunter, P. Mosses, and D. Scott, Semantic Domains and Denotational Semantics,
Technical Report MS-CIS-89-16, University of Pennsylvania, 1989.

T . Hagino, A Categorical Programming Language, Ph. D. thesis, University of Edin-
burgh, 1987.

G. Huet and J-J. Levy, Call by Need Computations in Non-Ambiguous Linear Term
Rewriting Systems, INRIA, Technical Report 359, 1979.

H. Huwig and A. Poigne, A Note on the Inconsistencies Caused by Fixpoints in a
Cartesian Closed Category, Theoretical Computer Science 73, 1990.

C. Barry Jay, Extending Properlies to Categories of Partial Maps, Technical Report
ECS-LFCS-90-107, University of Edinburgh, 1990.

S. Kaplan, Conditional Rewrite Rules, Theoretical Computer Science 33, 1984.

S. Kaplan, Simplifying Conditional Term Rewriting Systems: Unification, Termina-
tion and Confluence, J. Symbolic Computation 4, 1987.

Y. Lafont, Introduction to Linear Logic, Summer School on Constructive Logics and
Category Theory, 1988.

J . Lambek, Cartesian Closed Categories and Typed X-Calculi, In Combinators
and Functional Programming Languages, Lecture Notes in Computer Science 242,
Springer-Verlag, 1986.

G. Longo and E. Moggi, Cartesian Closed Categories of Enumerations for Effective
Type Structures. In Intl. Symposium of Data Types, Lecture Notes in Computer
Science 173, Springer-Verlag, 1984.

S. MacLane, Categories for the Working Mathematician, Springer-Verlag, 1971.

E. Moggi, Categories of Partial Morphism and the Xp-calculus, In Category The-
ory and Computer Programming, Lecture Notes in Computer Science 240, Springer-
Verlag, 1986.

E. Moggi, Computational Lambda-Calculus and Monads, Technical Report ECS-
LFCS-88-66, University of Edinburgh, October, 1988.

E. Moggi, Partial Morphisms in Categories of Effective Objects, Information and
Computation 76, 1988.

E. Moggi, Computational Lambda-Calculus and Monads. In Proceedings of the 16th
Symposium on Principles of Programming Languages, Austin,Texas, 1989.

E. Moggi, Lecture notes on An Abstract View of Programming Languages, July, 1989.

E. Moggi, Notions of Computatdons and Monads, Preprint, April, 1990.

N. ~ a r t i - 0 l i e t and J . Meseguer, From Petri Nets to Linear Logic, In Category Theory
in Computer Science, Lecture Notes in Computer Science 389, 1989.

M. O'Donnell, Computing in Systems Described by Equations, Lecture Notes in Com-
puter Science 58, 1977.

B. Pierce, A Taste of Category Theory for Computer Scientists, Technical Report
CMU-CS-90-113, Carnegie Mellon University, 1990.

L. Romin , Cartesian Categories with Natural Numbers Object, J. Pure Appl. Aieg-
bra, 1989.

G. Rosolini, Continuity and Effectiveness in Topoi, D. Phil. thesis, University of
Oxford, 1986.

E. Robinson and G. Rosolini, Categories of Partial Maps, Information and Compu-
tation, 79, 1988.

A. Scedrov, A Brief Guide to Linear Logic, Bulletin of the EATCS 41, June, 1990.

R. Seely, Modelling Computations: A 2-Categorical Approach. In Symposium on
Logic in Computer Science, 1987.

R. Seely, Linear Logic, *-autonomous Categories and Cofree Coalgebras, Contempo-
rary Mathematics 92, 1989.

D. Si taram and M. Felleisen, Control Delimiters and their Hierarchies, Lisp and
Symbolic Computation 3, 1990.

Y. V. Srinivas, Category Theory: Definitions and Examples, Technical Report 90-14,
University of California, Irvine, February, 1990.

G. C. Wraith, A Note on Categorical Data Types. In Category Theory in Computer
Science, Lecture Notes in Computer Science 389, 1989.

