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Abstract 

There has been much recent activity to develop foundational theories and mechanisms of 
computation based solely on category theory, e.g. the typed lambda calculus becomes derivable 
in this new computational realm. Unfortunately, the "no-holds-barredn world of the untyped 
lambda calculus is not also easily subsumed by categorical axiomizations: the computationally 
attractive closed cartesian category is fraught with the danger of degenerate collapse if we 
insist upon both strong termination properties, e.g. universal fixed points, and flexible data 
structures, such as infinite lists and direct sums. Several recent attempts to bypass the CCC's 
limitations either by internal or external means that can mutually support reasonable recursion 
with reasonable data structures are surveyed in this paper. 

1 Introduction 

Probably the first major effort to implement a categorical model of computation is the Categorical 
Abstract Machine by Curien [Cur86]. It is based upon a weak categorical combinatory logic, viz. 
lacking surjective pairing and extensionality, that arose as a direct semantic-to-syntactic transla- 
tion of the lambda calculus of tuples. The computational mode was combinator term reduction 
through rewriting using a direct left-to-right parse algorithm, initially making the evaluation strat- 
egy inefficiently eager1. Application is therefore simply juxtaposition, losing the full expressiveness 
of @-reduction that computes via substitution. Its overly strong bias towards the lambda calculus 
was another factor that limited its expressiveness. On one hand the CAM demanded the exis- 
tence of categorical products but on the other it had no coproducts for developing many useful 
data structures. Nevertheless, the high acceptance and efficiency of the CAM-based ML compiler, 
CAML, gives significant encouragement towards developing a highly-programmable categorical com- 
puting paradigm. Some prominent workers in categorical computing now believe "category theory 
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comes, logically, before the A-calculus" [Mog89a, Mog89bI. This author is thereby motivated to 
find A-calculi-independent models of computation in categories expressive enough to build machines 
capable of a variety of evaluation strategies. 

There seem to be several reasonable directions in the search for such computational models. 
Section 2 points out some baseline categorical constraints we must always keep in mind if we wish 
to mix convergent computation with rich data structures of sums and products. Sections 3 through 
5 present a sample of recent work that passes successively through a spectrum starting from a very 
"internal" or object-based view and ending with a very "external" or morphism-based approach. 
This direction very likely corresponds also to increasing implementability. The final section states 
the thesis that to build a true categorical machine, we must categorically include control, or contin- 
uations, including both its bounded and unbounded forms. 

This paper should be accessible to a reader having approximately the categorical experience that 
might be offered by one of the Pierce or Srinivas tutorials, the well-developed new category theory 
text by Barr and Wells, and the first three chapters of Barr and Wells' monograph on toposes, 
triples, and theories [Piego, BW90, BW851. It is intended to introduce and guide students to some 
current research activity in categorical computation and to raise new questions concerning how one 
might interpret powerful control mechanisms with a categorical model. 

2 The Closed-Cartesian Straitjacket 

Lambek's [Lam861 demonstration of the exact correspondence of cartesian closed categories with 
typed lambda calculi brings forth a naive suggestion of cartesian closure as a setting adequate for 
implementating a general categorical computation paradigm based on beta reduction. The reducing 
map would be eval, representing the morphism component of the universal arrow from the - x A 
functor to the result object B, viz. 

Extending the suggestion, it would seem critical for a CCC to possess a natural number object 
(NNO) to always provide primitive recursion. That is, an NNO N is an object N along with two 
specified morphisms 0 : 1 -+ N and s : N + N having the universal property that for any pair 
f : A 4 B and g : B -* B there exists a unique h : A x N -+ B such that the diagram 

commutes. This yields the familiar equations h(x, 0) = f (x) and h(x, n + 1) = g(h(x, n)) where 
x : 1 + A, n is the composition of n s's with the 0-morphism, and x + 1 is the map h,+ o s o 0 
derived from the universal NNO map h,+ for the case f = x and g = s. 



Yet reasonably expressive computation demands data structures constructed from both products 
and coproducts. Also, it often demands convergence being expressible as computational fixed points. 
Unfortunately, the combined presence of useful properties with fixed points within any category often 
forces its collapse to the trivial category 1. 

An object A is said to have the fixed point property if for every morphism f : A  --+ A there exists 
a morphism Y ( f )  : 1 -* A such that f o Y( f )  = Y ( f ) .  A category is said to have fixed points if every 
object has the the fixed point property. In particular, there is a global element LA - Y(idA) : 1 -+ A 
for each object A. Thus the fixed point operator Y makes the terminal object 1 a weak initial object 
that potentially can make many objects isomorphic to l! The major collapse result is given below. 

Theorem 2.1 [HP86] A cartesian closed category with fixed points collapses to  the trivial category 
1 if it contains any of the following: 

an initial object 

a boolean algebra (coproduct) object, 2 (= 1 + 1) 

equalizers for any pair of morphisms 

a natural number object (NNO) 

Much of the impact of this theorem has been experienced in domain theory where domains and 
continuous functions are cartesian-closed and all objects have the fixed point property [GMS89]. 
Not permitting an initial object implies a domain cannot be an empty set, i.e. all domains must 
be lifted. Not allowing a boolean algebra object prohibits true categorical coproducts in domain 
categories: the coexistence of coalesced and separated sums - neither a coproduct - in domains are 
alternative means by which summed structures can be built. If equalizers are not guaranteed, then 
neither are finite categorical limits, particularly pullbacks. In domains, this is exemplified by the 
possible occurrence of multiple incoherent minimal sets of information that individually determine 
the same result value (least fixed point) of a continuous function. Also, unlike an NNO, a recursive 
definition of continuous function over domains does not always uniquely define a function. 

By inspecting Huwig and Poigne's proofs of Theorem 2.1, we can isolate the key condition that 
will collapse any category having fixed points: 

Theorem 2.2 If any category with fixed points has a natural isomorphism 2 x A E A +  A for every 
object A, then the category collapses to  the trivial category 1. 

The rest of this paper mainly discusses ways in which the CCC "straitjacket" might be loosened 
to provide meaningful computation. 

3 Computing Fixed Points 

Having the fixed point property for every object, or more precisely every endomorphism, in a CCC is 
by itself an unnecessarily rigid model for computation. Often we want the convergence of only well- 
behaved morphisms - such as continuous ones - between ordered objects. A well-known approach 



to directly characterize terminating computation using "complete partial orders" and "continuity" 
in CCCs having finite limits and a natural numbers object has been recently consolidated by Barr 
[Bargo]. This section sketches the key concepts and results of that work. 

The definition of a partially ordered object in C, a CCC possessing the above-stated properties, 
follows closely the use of relations to define orders in domain theory. A partial order  on an object C 
in C is a subobject Gc of C x C ,  i.e. a monic C_ from Gc to C x C exists, that induces a partial 
order for any homset Hom(A, C) in the following way: if f ,  g : A + C, then f < g in Hom(A, C) 
if and only if (j, g) factors through <c (see the diagram below). Since the elements  of C are the 
morphisrns going to C ,  then the partial order definition establishes a partial order for the set of 
elements of C.  Thus to say for morphisms f and g that f < g requires that they have common 
domains and codomains, and their mutual codomain is a partially ordered object. 

With this definition, we will take full advantage of exponentials to build objects that internalize 
order-preserving maps and 1.u.b.-preserving (continuous) maps. To capture the order-preservation of 
a morphism f : A -+ B, we need to express the statement "x < y implies f(x) < f(y)" categorically 
by somehow internally factoring f x f : A x A + B x B through the object [<A*<B].  We there- 
fore automatically assume that A and B are partially ordered objects for which special factorizing 
subobjects <A and G B  exist. 

The object that contains f and all other order-preserving morphisms from A to B, designated 
as [A  j BIG, can be built as a pullback: 

The bottom and lower right morphisms are the ones induced from the canonical morphisms 
between the corresponding hom-sets via the product - exponential adjunction and Yoneda's Lemma. 
For example, 



I 
Yoneda embedding 

1 

The upper right morphism (A -i A) of the pullback internalizes the map that diagonalizes 
f : A + B to f x f : A x A + B x B. That map is the exponential transpose of the following 
composition: 

1 eval x eval 

B x B  

The definition pullback can now be directly interpreted. If f is an element of [A + B], then 
it is also an element of [A BIG if and only if f x f ,  when restricted to the order relation G A ,  
maps into the order relation on B, i.e. f preserves order. Note that this pleasant situation depends 
significantly on the fact that pullbacks preserve monics, and so by the definition [A + BIG is a 
subobject of [A 3 B]. 

Along with a partial ordering for an object A we define a bottom for A. It is a map I: 1 + A 
that possesses the following leastness property: for any object B and any morphism f : B + A, 
I oOB < f, where OB denotes the unique terminal map B -+ 1. An intuition for the bottom 
condition can be reached by loosely interpreting the OB as a "A a: : B." binding operator, so that 
I o OB can be thought of as the bottom constant function on B. 

We now consider how to form a partial ordering for a particular object, the natural number 
object N. It is well-known that a commutative associative map + : N x N --, N is derivable from 
the NNO's universal property which satisfies the laws of primitive recursive arithmetic. Derivations 
of +, pred, - (monus), the basic arithmetic identities and algebraic cancellation properties were 



performed by Lambek [Lam861 for a CCC with an NNO and improved by Roman [Rom89] for the 
weaker case of categories with an NNO having only finite products. 

A suitable natural number ordering is the subobject p :  N x N H N x N where p 2 ( i d N ,  +). 
That is, if n, m : A - N are two elements of N (intuitively, the natural numbers) then (n, m) A 
(n, n + m). The partial ordering property can be seen in the diagram below for a pair of "numbers" 
n and m': 

A x A  (n,m1) 

Clearly the map (n, m') factors through the partial order object of N (here N x N itself) if and 
only if m' = n + m, i.e. exactly whenever n < m'. We denote the natural numbers object N as the 
partial ordered object w and the object [w + A]< of increasing sequences of A b y  AW. Under the 
abbreviated notation we can say that AW is a subobject of AN, the object of sequences of A. 

Barr proves the following basic and hoped-for result solely from this fundamental definition of 
partial ordered object: 

Theorem 3.1 Let D be a partially ordered object in a CCC with finite limits and an NNO. Then 
i f f  : N -+ D is a morphism such that f(n) < f ( s n )  for every element n : A  + N of N .  Then f is 
order-preserving2. 

Corollary 3.1 With the same general hypotheses above, let f ,  g : N --+ D have the properties that 

f(0) ,< g(0) and f(n) < g(n) implies f(sn) < g(sn), then f < 9. 

We finally come to the categorical definition of an w-CPO. D is said to be an w-complete partial 
order if there exists a (1.u.b.) map V : DW + D that satisfies two properties: (1) for any arrow 
f : A + D" with its exponential transpose f : A x w + D, we have f < V o f o ?rl and (2) if 
g :A - D is any morphism such that f < g o all then V o f  < g. The composition of (1) is precisely 

To reassure ourselves that this definition corresponds exactly to the conventional least-upper- 
bound conditions, consider each of the two properties. The first one can be written as 

and read as "any member of the increasing sequence is < the 1.u.b. of the sequence". The second 
one can be expressed as 

2We write f (n)" because the Yoneda embedding implies f (n )  = f o n. 
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and read as "if every member of the increasing sequence is < the value of g at  a,  then the 1.u.b. of 
the sequence is < the value of g at  a." 

We would now expect a definition of a continuous morphism f between w-CPOs to express the 
commutativity of f with the 1.u.b. operator V. This is exactly what is expressed in the diagram 
below that defines the object of w-continuous morphisms from a w-CPO D to an w-CPO E: 

[ow =+ EW] 

This object, ID + Elv,  is defined as the equalizer of the two compositions forming the diamond 
at  the right. Since equalizers are monics, [D * Elv is a subobject of [D + ElG.  The interpretation 
of the diagram is straightforward. The map (-)" is induced by taking an order-preserving morphism 
f from [D * Elr and using it to map increasing sequences on D, for example idi), to increasing 
sequences on E ,  here {f(di)). The [DW + V] morphism post-composes the sequences-to-sequences 
map with the 1.u.b. operation. Thus the result of the top of the diamond is a morphism in [DW 3 E] 
that maps an increasing sequence into the 1.u.b. of its f-image. The bottom of the diamond simply 
pre-composes f with the 1.u.b. operation, i.e. the result is a morphism that first "1.u.b'~" an 
increasing sequence in D and then maps the bound via f .  Finally, if f were to be chosen from 
the equalizer, [D + Elv, of the top and bottom of the diamond, then the result morphisms are 
the same: f commutes with V. By the universal property of the equalizer, this subobject of the 
order-preserving morphisms from D to E represents precisely these w-continuous ones. 

We can now inspect Barr's main result: the existence of a least fixed point operator for w- 

continuous endomorphisms on w-CPOs: 

Theorem 3.2 Suppose D is  an w-CPO with a bottom element I : 1 -. D. Then there exists a 
morphism fix:[D* Dlv such that (1) f(fix(f)) = fix(f) and (2) if f(d) = d ,  then f iz(f)  < d .  

The proof requires several distracting technical lemmas, but a brief hint of the argument is 
appropriate since it shows in a categorical setting the conventional construction of a least fixed point. 
Let f : A  --+ [D * Dlv be an element of [D + Dlv. The product-exponential adjunction permits 
this element to correspond to its w-continuous - and consequently order-preserving - transpose 
j :  A x D -+ D where A is provided with the discrete ordering and A x D with the resultant product 
ordering. 

We now construct a morphism 5 : A x N -, A that imitates internally the effect of successive 
applications off  to I. We use the NNO to define g according to the following recursive specification: 



Computing the first few values of g shows us that the recursive computation a t  the transpose 
level corresponds to  the iterations of f against I at the exponential level: 

The universal property of the NNO forces the uniqueness of the morphism h below. By the 
commutativity of this diagram, the second component of h is seen to be the desired map i j .  

_ I h = (idA, 5) _ 1 h = (idA, j) 

A A x D  A x D  
(idA, 1 0 OA) (TI,  i) 

The proof proceeds to  show that because I o OA is the least element of D  based on A, then i j  is 
order-preserving. This is equivalent to  saying the curry of ij, g : A  + D~ factors through P. The 
fixed point of f  is then definable as V o g : A -* D. That is, we are simply computing the 1.u.b. of the 
sequence I ,  f ( I ) ,  f (f ( I ) ) ,  ... ! The proof concludes by verifying the least fixed point properties of 

v o s .  

4 Categories of Partial Maps 

Recursive programming is intrinisically a partial computation: the domain of definition is often only 
a sub-domain of a computation's domain. Yet the classical [Mac711 categorical view of a function 
is unrealistically a to tal  function. This narrow philosophy has motivated many authors to build 
categories from a partial morphism foundation. The loss of totality precludes general cartesian 
products3, so these categories are accompanied by some "near" or tensor product to provide real 
data structure. This idea contrasts with the preceding section where computation is extracted from 
a CCC by building within it special objects that internally capture the well-behaved computable 
functions, i.e. a recursion theory that "uses elements". On the other hand, the partial map categories 
encourage "element-free" approaches to computation. 

Various significant constructions of categories of partial maps include the dominical categories 
of DiPaola and Heller [DH87], the concrete categories of domains of Moggi [Mog86, Mog88b], the 
partial cartesian closed categories of Asperti, Longo, and Moggi [LM84, AL861, and the partial 

3Uniqueness properties disappear. 
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cartesian categories of Curien and Obtulowicz [C089]. These constructions are complex and not 
easy to express. This section discusses the work of Robinson and Rosolini [Ros86, RR881 that 
unifies these above-mentioned categories (and others) and the general category of partial maps with 
a fundamental axiomization: the p-category 4.  

First we will explain the basic category of partial maps Pt l (A)  over a category A from which all 
special partial morphism theories are motivated. The objects of P t l (A)  are those of A. A partial 
map [m, 41: A - B between the objects A and B of A is an equivalence class of pairs 

where all equivalent pairs are related by isomorphisms between their respective domain objects 
(shown here as D) such that the obvious triangles commute. Note that the domain of definition is 
represented as a subobject of the partial morphism's domain. 

The composition of two partial maps [m, 41 : A - B and [n, $1 : B - C is completed by pulling 
back n along 4 to achieve the morphism pair representing a composite partial morphism5: 

It is immediate that the composition is well-defined under the equivalence and that the identity 
map for each object A is   id^,  id^]. It should also be clear that the original category A embeds 
into P t l (A)  where A I+ A and f :A + B I+ [idA, f] :A -- B. Its image is called the total maps of 
P tl(A). 

However, the generality problem of the category of partial maps is evident: it's too big! We often 
wish to restrict our focus to classes of partial morphisms (continuous, monotonic, etc.) of particular 
interest that are defined on an appropriate set of domains (open sets, natural number object, etc.). 
Thus we form a subcategory of P t l (A)  with a selected admissible class M of subobjects that - as 
we can now easily infer from the definition of composition above - must be closed under identities6, 
composition in A, and pullbacks. In the particular case that A has cartesian products, the admissible 
class is called a dominion. Therefore the new category, M-Pt l (A) ,  are those partial maps whose 
domains of definition lie in M. 

'The invention of the pcategory first appeared in Rosolini's thesis. 
'The category A must possess pullbacks, of course. 
'That is, M must include all the identity maps of A. This permits A to exist as an embedded category within 

this new subcategory. 



Another important assumption is the presence of a categorical product (i.e. cartesian) on the 
generating category A. It provides an algebraic richness sufficient for axiomization without creating 
much loss in generality. In fact, it is straightforward to show that M is also closed under the assumed 
product of A and that any category of partial maps can be fully embedded in a category of partial 
maps over a category with categorical products7. 

Now consider the extension of the A-product to all of M-Pt l (A)  by defining for pairs of partial 
maps [m, 41 x [n, +] A [m x n, 4 x $1. The extended product bifunctor is no longer necessarily 
cartesian. hbinson and Rosolini point out that the crux is that the projections are no longer 
natural8 in both of its arguments. Suppose that the map 4 is truely partial. Because the carte- 
sian product of A induces the naturality of a1 within M-Pt l (A)  in its first argument, we would 
have in M - P t l ( A )  the truely partial composition al(id x 4) = id o a1 = al, contradicting the 
totality of a1 (embedded as [id, nl]). Fortunately the diagonal map A : (-) + (-) x (-), the asso- 
ciativity map a = ((id x al)  x a2n2)A : X x (Y x Z) + (X x Y) x Z,  and the commutativity map 
T = (a2 x al)A: X x Y +Y x X remain natural in all variables under the extension. With all these 
observations, we are motivated to present the following definition: 

Definition 4.1 A p-category is a category C having a near-product bifunctor x : C x C + C, a 
natural diagonal map A, two families of projections {al, : (- x Y) -+ (-) I Y E Obj(C)) and 

: (X x -) + (-) I X E Obj(C)) natural only in the indicated arguments, and the associativity 
and commutativity maps a and T (defined above) as isomorphisms natural in all arguments, where 

a lA  = id = a2A (nl x n2)A = id 
al(id x s l )  = a1 ?rl(id x a2) = a1 
a2(7r1 x id) = a 2  a2(a2 x id) = a2 

As we would demand from this definition, the category of partial maps, M-Pt l (A) ,  is indeed a 
pcategory induced by the canonical embedding of A and the extension of A's cartesian product, as 
described earlier. We should also note that being a pcategory indicates the existence of an auxiliary 
product structure on the category that may or may not coincide with any native product structure 
of the category. 

But to complete the abstraction of partiality, we must now decide what are the total maps of 
a pcategory! With our example of M-Pt l (A) ,  they are the maps of A embedded as [id, 41. The 
pathological example of nl(id x 4) for a non-total map 4 suggested to Di Paola and Heller a new 
way to describe the domain of 4. 

Definition 4.2 For a map 4 : A  + B in a p-category C, the domain dorn(4) : A + A of 4 is the 
composition nl(id x q5)A. 

Let us first apply this definition to our pcategory example M-Pt l (A) .  The computation of 
dom[m, 41 is shown below where the outermost oblique composition is dom([id, 4]), accomplished by 
the three pullback squares. The outermost vertical composition is its first component (domain of 

'Simply apply the Yoneda embedding of A into the topos Func(AoP, Set) where each object A maps to the functor 
Horn(-, A). From its definition, a topos has cartesian products. 

'A functional programmer might say "no longer independent of evaluation strategy". 



definition), and the uppermost horizontal composition is its second component. The parenthetical 
legends identify the corresponding morphisrns as morphisms in M-Ptl(A). By using the properties 
of the cartesian product in A we quickly see dom([id, 41) = [m, m].9 Thus our partial map [m, 41 is 
total, i.e. m = id, if and only if dom([m, 41) = [id, id] = id. This example motivates classifying a 
map 4 of a pcategory as total  whenever dom(4) = id. 

The near product of the pcategory is sufficiently powerful to provide the domain operator with 
many easy-to-prove properties that imitate very closely what a domain of definition would be ex- 
pected to have, say, in the familiar pcategory Ptl(Sets). 

Theorem 4.1 The following properties hold for a domain operator of a p-category: 

1. ul (id x 4) = q ( i d  x dom(4)) 

2. (id x dom(4))A = A dom(4) 

9. dom(id) = id, dom(u1) = id, dom(u2) = id, dom(A) = id 

9Technically, the equality is between equivalence classes. 
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12. t$ = dom(4) i f  and only i f  4 = dom(4) 

Robinson and Rosolini interpret property ( 1 )  as showing the amount by which naturality of the 
second variable of ?rl fails. Property (2) serves as an indication that domains can have properties 
that are typically satisfiable only by identity maps, i.e. domains behave like identities. Property (3) 
show the totality of the identity, the projections, and the diagonal. The remaining properties can be 
intuitively verified from our past experiences with partial functions, especially property (10) which 
states a partial function operating only on its domain of definition is simply the same function. 

Now that we have an algebraic notion of partial function, it is proper to ask how well does it fit 
with the classic notion based on categories of the form M - P t l ( A ) .  We saw earlier that M - P t l ( A )  
is a pcategory if A is cartesian. However, does any pcategory behave as a category of the form M- 
P t l ( A )  where A has merely a product bifunctor, possibly non-cartesian? Rephrased, the question 
becomes: is there a direct correspondence of the properties of pcategories with the properties of 
the categories of partial maps relative to admissible classes of domains? The answer by Robinson 
and Rosolini is mostly positive. Starting with a pcategory C ,  they constructed a category with a 
weak product and an admissible class to form a partial category into which C could be embedded. 
A sketch of that construction is described in the following paragraphs. 

The category of domains, D o m ( C ) ,  that will generate the desired partial map category has as 
objects the maps of C of the form dom(4) : X -, X. Such an object is said to be a domain on X. 
A map 4 : dom(P) + dom(y) in Dom(C)  is a map 4 : X + Y in C where dom(P) = dom(4) and 
4 = (dom(7))4. This is an algebraic way of saying 4 is defined on dom(P) and produces values 
in dom(y). The composition in D o m ( C )  is defined as the composition in C .  By the definition 
of morphism for D o m ( C )  and Property ( l o ) ,  the identity on dom(P) is dom(P) itself, giving us 
a category in which some of objects and morphisms coincide! Finally, Property (6) shows that 
D o m ( C )  has a product. 

In preparation for finding an admissible class of subobjects in D o m ( C ) ,  we now follow the hint 
offered by the identity maps and characterize those morphisms that coincide with the objects in 
D o m ( C ) .  First, back in C ,  we define the extension order on maps from X to Y by 

Expanding the order definition and using TI'S naturality in its first argument we can equivalently 
state 

This immediately yields the intuitively satisfying fact that P is a domain, i.e. /3 = dom(P) by 
Property (12), if and only if P < id. Consequently we always have dom(P) < id. For another 
example of the consistency of the extension ordering with our set-theoretic intuition, it is easy to 
show that if 4 dom(rl,) = 6 and dom(0) < dom(rl,), then 0 < 4 .  This says that if 4 behaves as 6 on 
the domain of rl, and rl, is defined whenever 0 is, then 4 must be an extension of 6. 



We can now state the characterization of morphisms-as-objects in Dom(C).  Its proof is straight- 
forward from the properties of domains listed earlier. 

Theorem 4.2 Let P, 7, and 6 be domains on the object X .  Then 6 : dom(P) -+ dom(7) is a 
morphism in Dom(C) if and only if 6 = @ and p & 7. When P & 7, then the morphism dom(P) : 
dom(P) --+ dom(7) is a monomorphism in Dom(C). 

Since we are seeking an admissible class of subobjects, we consider VC, the collection of monics 
as-objects in Dom(C).  Consequently, these monics have the form P = dom(P) :dom(P) H dom(y). 
The verification of VC's admissibility is direct, but the reader should note while checking that the 
pullback of /3 along any morphism +:dom(6) -+ dom(7) in Dom(C) also lies in DC that we do not 
confuse composition in C with that in Dom(C).  The resultant pullback below is annotated with 
names of inducing morphisms of C,  thereby allowing the indicated composition Pq5 to be sensible: 

With this in hand, the representation theorem for pcategories can be stated: 

Theorem 4.3 Any p-category C can be fully embedded into VC-Ptl(Dom(C)) in a p-structure 
preserving way. 

Such an embedding Ehzb : C + PC-Ptl(Dom(C)) is defined as X I+ dom(idx) and q5 : 
X + Y H [dom(d), d] : dom(idx) - dom(idy), where the component maps are dom(q5) : dom(q5) 
H dom(idx) and 4 : dom(q5) + dom(idy). Note that dom(6) is clearly in VC because of Theo- 
rem 4.2 and dom(4) < id. 

So we have a correspondence of the properties of pcategories to those of categories of partial 
maps. To go the opposite direction, we need to determine what particular circumstances cause a 
pcategory to be exactly of the form M-Ptl(A).  Robinson and Rosolini exploit a definition and 
theorem of Freyd to establish the opposite correspondence. 

Definition 4.3 [Fre74, FS90] Let Z be a class of idempotent morphisms in a category C. Define 
the category Split(C,Z) where the objects are the elements of ZU {idx I X E a j ( C ) )  and f : e  + d 
is a morphism i f f  is a map in C such that d fe  = f .  

Observe that the objects of VC-Ptl(Dom(C)) are the domains of C ,  including the identities, 
which are all idempotent by property (8). By the definition of Dom(C) and V, every morphism 
is of the form [dom(d), 61 : dom(P) - dom(7). First note that this form is completely and uniquely 



determined by 4, so that [dam($), $1 can be identified with 4 .  Second, [dam(+), $1 is a map in VC- 
Pt l (Dom(C))  if and only if 4 < P (by Theorem 4.2) and dom(y)+ = 4. The properties of domains 
and the definition of < easily show this equates to  the condition that (dona(y))q5(dom(@)) = 4. That 
is, VC-Ptl(Dom(C))  is actually Split(C,Obj(Dom C) ) .  

We now make use of F'reyd's result. 

Theorem 4.4 [Fre74, FS90] Let C be a category containing a class Z of splitting idempotentslO. 
Then C i s  equivalent t o  Split(CJ).  

Hence we have immediately a second representation theorem that states properties of partial maps 
correspond exactly to those properties of pcategories that are independent of domains splitting. 

Theorem 4.5 A p-category C is  equivalent t o  VC -Ptl(Dom(C))  if and only if all domains of C 
split. 

To end this section, it is relevant to briefly refer the reader to the recent work of C. Barry Jay 
[Jay901 who takes a different point of view of characterizing categories of partial maps. Instead of 
building auxiliary structures, such as the pcategory structure, Jay takes advantage of the intrinsic 
ordering of a partial map category's hom-sets induced by the ordering of domains of definition to 
define lax" versions of product, adjunction, functor, and natural transformation from which the 
structure of categories of partial maps can be fully and uniformly described. 

5 Combinat or Reduction 

We move our attention to  "real" computation within a category, or what has been generally termed 
categorical programming. Two major foci of research have been data structures and combinator 
reduction. This section will restrict its discussion to  the very recent work in the latter area by Cockett 
and Chen on developing a methodology for directly specifying and building abstract machines that 
compute with categorical combinators to solve specific problems [CC90]. 

The Cockett/Chen viewpoint has been influenced heavily by the experiences of Hagino in cat- 
egorical data structures [Hag87]. Hagino elegantly developed a categorical programming language 
entirely from the minimal foundation of mixed-variance multi-arity functors and adjunctions. He 
was able to  produce a reasonable but limited variety of useful data structures. Cockett and Chen 
adapted Hagino's chain-reduction methods for their own reduction algorithms and extended signifi- 
cantly the breadth of data structures possible to be specified. A particular improvement is that the 
new methodology can be applied to computing in distributive and list-arithmetic settings, two data 
structure environments important to programmers. 

They have been motivated from several directions. Inspiration and encouragement came from (1) 
noting the implementations of Hagino-like data structures in the polymorphic Xcalculus by Wraith 

1°The splitting of an idempotent is equivalent to its being a retraction. 
llLaxity is the weakest sense of commutativity. Instead of equality (strict commutativity) or isomorphism (pseudo 

commutativity), we merely require the existence of a morphism. 



[Wra89], (2) observing the highly intuitive aspects of programming with the equational logics of 
categories to  specify computational environments for combinator systems, and (3) discovering the 
flexibility in selecting strongly-normalizing categorical settings to  solve particular computational 
problems. We will outline their methodology for both constructing combinator systems (called 
theories) from the equations of categories and computing with them. 

First, a combinator theory has three parts: a type stack, a combinator base, and a set of axioms. 
The type stack1= serves as a graded term algebra for expressing the type signatures of combinators 
(special morphisms) and higher categorical constructs such as products and exponentiation. It is 
"stacked", or nested, because we wish to  take advantage of the categorical hierarchy: the bottom 
level lo of the stack should be thought of as the objects of a category, the second and next higher 
level 7' as categories, the third level I2 as 2-categories, and so on. The terms in ?;. are generated by 
a finite collection of function symbols 3i and a countable collection of variables Xi. One may loosely 
relate the function symbols to  type constructors. Within the stack a type assignment associates each 
stack level with the next higher level, making the type stack a directed graph of typing assignments. 
Also defined for the type stack is provision for multi-level substitution to effect type instantiation 
that permits a Milner-style algorithm to find the most general unifier of two type terms. The type 
stack thus becomes the authors' method of avoiding the awkward complexity of the functor calculus 
used to  build type signatures for Hagino's categorical data structures. Here the type stack becomes 
the type structure for the combinators. 

A couple of examples should illuminate the definition of type stack. First we see a prospective 
type stack for a combinator theory that is based on a cartesian closed category: 

A list of three function symbols is presented along with the use of a single type variable of level Tl 
that will be eventually assigned a category from which to draw objects13. The assignment of the 
type signatures to  the function symbols is shown as well. For example, the product type constructor 
accepts a pair of two objects (in the authors' notation, a list of two category variables), both from 
the same category because the common variable X is used. The function 1 has arity14 0 and can 
therefore be identified with a particular constant object. Some type expressions constructible from 
objects, say X ,  Y, and 2 ,  from this stack include: 

( X * Y ) * Z  X X Y  1 * z  

The other type stack example below is more interesting because it demonstrates more of the 
categorical nesting facility and the flexibility in narrowing the stack to a specific class of problems. 
This stack could be used by a combinator theory for an adjunction where the functor F is specified 

12Cockett and Chen's definition is extensive. Only an informal explanation is appropriate here. 
13Typically the variable assignment arises from a type unification phase during "compilation" of the type stack. 
I4Arity is being abused here. We refer only to parameter-arity, not input-arity. 



below to map objects from a category assigned to the variable C to objects in a category assigned 
to the variable D. Clearly the functor G travels in the opposite direction to F. 

Note that both category variables, C and D ,  are type-assigned as constants with the same 2-category 
via X. As would be sensible, our functors should be between categories belonging to the same class 
of categories. Here are some correct type expressions: 

The second major component of a combinator theory, the combinator base, is defined to be a set 
of combinators with signatures, expressed in type terms from 70, of the form ([A1 -+ B1, ..., A, -+ 

B,], C -+ D) for n > 0. The type-pair constructor "-+" is technically a binary function symbol 
implicitly assumed for every type stack's 3 0 .  It is used to build the map types of morphisms, i.e. the 
source and target objects correspond to the domains' types and codomains' types, respectively. A 
combinator with n > 0 corresponds to the usual notion of a parameterized (polymorphic) combinator. 
So if we have morphisms gi : Ai -+ Bi and f is a combinator with the signature of the general form 
expressed above , we say that f (gl, ..., g,) has type C -+ D and write f (91, ..., g,) : C -+ D. 

Combinator expressions are inductively defined in the usual manner. We postulate that the iden- 
tity combinators idx : X 4 X implicitly belong to every combinator base15. The set of combinators 
is also to be closed under instantiations that are consistent with the type stack and under a binary 
composition operator ".". Note that all compositions will be written in diagrammatic order, a detail 
that becomes important in the discussion on combinator term reduction. 

Examples are again demanded here, so we continue the two earlier examples. First, we have a 
conventional set of combinators for a CCC16 

terminal map 0 ( o , X + l )  
first projection nl I+ ( O , X x Y - + X )  

second projection n, I+ ( 1 , X x Y  - + Y )  
product pairing ( ) I+ ([Z -+ X, Z -+ Y], Z X x Y) 

curry maps curry(-) I+ ([X x Y -+ Z],Y 4 X J Z) 
evaluation eval I+ ( O , X X X J Z - + Z )  

Second, a set of combinators for manipulating adjunctions is presented: 

15Note at this point we have to wait for the axiom discussion to determine exactly the implicit behavior of an 
"identity". 

160ur notation is somewhat categorical for clarity, even though a programming language environment is intended 
here by Cockett and Chen. 



left adjoint functor L w ([X -+ Y], L(X) -+ L(Y)) 
right adjoint functor R w ([X -+ Y], R(X) -+ R(Y)) 

factorizer A w ([X --+ R(Y)], L(X) -+ Y)) 
unit P I-+ ( 0 , X + R(L(X))) 

These examples supports the authors' claim of increased flexibility of their approach over Hagino's 
system. Now our combinators are not required to be natural transformations and function (type- 
former) symbols not to be functors. 

The last major part of a combinator theory, the axioms, are an explicit set of equational inference 
rules for the combinators. As we might now anticipate, there is an additional set of rules implicit in 
every combinator theory. These implicit rules simply state that equality is a substitutive congruence, 
composition is associative, and the identity combinators behave as identities. 

So we now complete the two examples of combinator theories. First, a set of CCC axioms1': 

(term) f.0 = 0 
(prod - left) (f,g).m = f 

(prod - right) (f,g).n2 = 9 
(prod - sur) ( x . i ~ ~ , x . ~ ~ )  = x 

(prod - dist) z.(x, y) = (z.2, z.y) 
(exp - inj) (x, ~.curry(z))  .eval = (x, y) .z 

(nl, sz.g) .eval = z 
(exp - sur) 

curry(%) = g 

Now the adjunction axioms: 

(funct - id) L(i) = i and R(i) = i 
(funct - comp) L(x.y) = L(x).L(y) and R(x.Y) = R(x)-R(Y) 

(fact - inj) P.R(A(x)) = x 

(fact - sur) 

After choosing a combinator theory appropriate for the computing problem a t  hand, the cat- 
egorical programmer must now form a reduction system from the theory. Of course, the axioms 
must be oriented to form rewriting rules and in many categorical situations, the proper orientation 
is natural. 

However, the reduction system differs in three ways from standard term rewriting reduction: (1) 
there are notions of closed ("well-formed program or arbitrary element") and canonical ("minimal 
program or canonical element") expressions, (2) reduction may be applied to  closed terms, and 
(3) the auxiliary task during reduction of carrying out distributive operations between the main 

" ~ o t  minimal, this set has the redundant (prod-dist) rule. However, we will see later that we need to be aware of 

the distributivity in such systems. 



rewriting steps must be done to  supply "outer scopes", or context, to  all subterms that are intended 
to have access to  it. 

The initial step in setting up a reduction system is classifying the combinators into three groups. 
The active combinators are those that cause a rewrite rule to  be invoked. More precisely, all rewrite 
rules will have the form t.a r where a is an active combinator, t is the prefix (in a canonical 
form) of a in the overall expression that serves as a's context, and the subterm t . a  is analogous to  
a closure of context (t) and code (a) .  The distributive combinators are those that satisfy the left 
distributive rule: z.S(xl, ..., x,) = S(z.xl, ..., z.2,). Here z acts as a context that directly affects, by 
composition, the processing of the arguments of the distributive. The remainder of the combinators 
are called constructives. Usually a constructive can be thought of as a constructor of data that 
contributes to  the final result of a reduction. 

In our two examples, the classification results as follows: 

CCC Adjunction 

actives 

TI, u2, eval L, R 

distributives 

(-9 -), 0 (none) 

constructives 

curry (-) A, P 

We then select corresponding sets of rewrite rules as follows: 

Adjunction 

( f , 9 ) . ~ 1  f P.R(A(z)) D z 
( f ,  g).*z D g L(i) D i 

(x, y.curry(z)) .eval D (z, y) .z R(i) D i 

L(x.9) D L(x).L(y) 
R(x.Y) D R(x).R(y) 

At this point we should observe that the reduction rules above, when converted back to equalities, 
would not necessarily reproduce the original combinator theory. This apparent loss of proof strength 
should be weighed against the goals of computing only with the elements of the theory and of achieving 
a terminating reduction procedure for the particular problems we wish to  solve. These goals should 
guide this mildly but purposeful ad-hoc selection of actives and orientation of axioms. 

We will next outline the general reduction of a closed expression by an abstract machine proposed 
(and partially implemented [CCS89]) by Cockett, et.al., for computing with categorical combinators. 
We do so before giving formal definitions and explanations of the reduction theory in order to 
introduce the intuitive roles of standard forms of combinator expressions used in the processing. 



This should aid the reader in understanding the technical definitions that follow. The machine 
performs the following steps: 

The machine scans the closed expression left-to-right, reducing actives along the main "spine", 
or composition path, of the expression, creating an expression having only non-actives on 
its spine. After each active is detected, but prior to matching and applying a rewrite rule 
to evaluate the closure, the preceding prefix subexpression (termed a precanonical because it 
clearly has no actives with context to operate upon), is traversed right-to-left to collapse any 
distributives. It  is easy to see the collapsing causes the prefix to become a canonical expression 
by itself. 

The machine then changes direction and scans right-to-left, looking for any distributives on the 
spine. Possibly new distributive could have been introduced via the rewritings. Nevertheless, 
if one is found, the entire prefix sub-expression immediately to the left of the distributive, i.e. 
the distributive's context or outer scope, is distributed to the distributive's arguments. Each 
of the arguments is then processed as an entire closed expression, each time starting again with 
the left-to-right mode to reduce actives and finishing with the right-to-left mode to collapse 
distributives. 

Thus the recursive procedure percolates downward through netings of distributives with left- 
to-right passes, transforming the overall expression into a weakly canonical form having only 
non-actives on its spines and sub-spines (the branching of compositional paths caused by 
distributives). In this way, all actives that are reachable from the original outermost scope are 
reduced. Note also that only reachable distributive are being collapsed. 

The machine then eventually percolates upward, making final right-to-left passes to collapse 
all remaining reachable distributives, and terminates. The resulting expression is canonical. 

We now elaborate the forms of combinator expressions. 

Definition 5.1 A closed expression is inductively defined as 

Any 0-ari ty  distributive is closed. 

If the expression has the form 6(el, ..., e,).yl.yz ..... ym for m 2 0 where 6 is a distributive, 
all the ej's are closed and all the yj 's are ground (contain no variable parameters), then it is 
closed. 

Definition 5.2 A weakly canonical expression is inductively defined as 

Any 0-ari ly  distributive is weakly canonical. 

If the expression has the form 6(el, ..., e,).yl.yz ..... ym for m 2 0 where 6 is a distributive, 
all the ei's are weakly canonical and all the y, 's are ground non-actives, then it is weakly 
canonical. 

Definition 5.3 A canonical expression is inductively defined as 
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Any 0-an'ty distributive is canonical. 

If the expression has the form 6(el, ..., e,).yl.y2 ..... y, for m 2 0 where 6 is a distributive, all 
the ej 's are canonical and all the y, 's are ground constructives, then it is canonical. 

The evaluation strategy is partly top-down and therefore somewhat lazy. The role of the 0-arity 
distributive should be noted here as well. These distributives, called terminal combinators because 
they are left-absorbing (f.60 = SO), act as A abstractors and binders to  close off the expression 
from the external context or environment. We see the CCC terminal combinator example of 0, 
and we also note the absence of distributors in the adjunction theory. The latter observation simply 
means we cannot compute with elements involving adjunctions, unless the categories involved contain 
terminal objects. By the definitions above, canonical terms are weakly canonical, weakly canonical 
are closed, closed terms are left-absorbing, and from what we have just said, left-absorbing terms 
are representatives of programs, morphisms, values, or elements. 

We now tie together the reduction discussions with a computation example from the CCC com- 
binator theory. The element below reduces to  the canonical first projection element of [X x Y + XI. 

precanonical 

1 
((O.al,O.?rz) . ( ~ 2 ,  TI), (O.?r1,0.~2) .curry (nl .az)) .evaI - 

weakly canonical 

1 
(((O.?rl,O.~2) .n2, (0 .171 ,O.~~)  .TI), ( 0 . ~ 1 , O . x z )  .curry(?rl .Q)) .eval - 

precanonical .- 
closure 

1 
( ( 0 . ~ 2 ,  ( 0 . ~ 1 ,  0.7r2) .TI), (O.nl,O.1~2) .curry ( r l  .7r2)) .eval - 

precanonical - 
closure 

1 
( (0 . r2 ,  O.?rl), (O.?rl, 0 . ~ 2 )  .curry (TI .7r2)) .eval 
\ / + 

canonical 
\ d + 

closure 

1 
((0.7r2,0.*1), ( O m ,  0 . ~ 2 ) )  .TI . 7 ~  

" 
canonical 

\ d + 
closure 

1 
(O.7r2,0.T1) .A2 - 

canonical - 
closure 

1 
o.7r1 
v 

canonical 



The first active (eval) is reached moving left-to-right. Its precanonical prefix is collapsed moving 
right-to-left, eventually creating an eval-closure. Note that the first collapse within the prefix creates 
one argument without any actives to be found moving left-to-right, i.e. it is already weakly canonical. 
Therefore it can be collapsed immediately into a precanonical form, moving right-to-left. The 
remaining steps are applications of CCC rewriting rules to closures as the algorithm travels back up 
the distributive nestings. 

The term rewriting underpinnings of the CockettIChen methodology are completeness and lin- 
earity of the reduction rules, deterministic reduction, and separability of canonical expressions. A 
complete set of reduction rules allows every closure that is legal, or type-correct, to be reducible. To 
avoid the complexity of matching closures with the left sides of reduction rules in which variables 
are allowed to occur in both reachable (i.e. with context) and unreachable (i.e. without context) 
positions, reduction rules must be chosen to  be linear (singly-occuring) in each variable. Reducing 
deterministically means having only one reduction rule applicable to  each legal closure. Together 
determinism and linearity imply uniqueness of a canonical expression if one exists. Finally, sep- 
arability means that two canonical expressions that are equal outermost syntactically except for 
unreachable subexpressions (essentially uninvolved in computation) cannot be proved equal in the 
underlying combinator equational theory. This will permit the characterization of canonicals as the 
irreducible expressions. With the selection of rewrite rules following these requirements, we say we 
have a categorical combinator reduction system. Thus directly from well-known results in equational 
systems by Huet and O'Donnell [HL79, O'D771, the authors state the convergence theorem for the 
abstract combinator machine: 

Theorem 5.1 In a categorical combinator reduction system, reduction is confluent on closed ex- 
pressions and an ezpression is irreducible i f  and only if it i s  canonical. 

6 What's Next: Control? 

This author is particularly interested in pushing category theory even more "externally" towards 
implementation of an abstract machine that captures control categorically in its varied forms - 
go-tos, raising exceptions, handling exceptions, while-loops, and more exotic and powerful context- 
transformation mechanisms such as Felleisen's prompt and control operators [Fe188, FWFD88, SFSO]. 

A keystone work in this area is Filinksi's SCL-category (SCL for symmetric combinatory logic) 
that expresses several dualities: totality versus strictness of functions, call-by-name versus call- 
by-value evaluation, and values versus continuations [Fi189a, Fi189bl. His categorical view of a 
continuation is a morphism A --+ 0 where 0 is a weak initial object. This dualizes the concept of a 
value as a morphism, or element, 1 + A where 1 is a weak terminal object. The intuition here is to 
think of a continuation as an non-returning computation18 that accepts A-typed values. 

We also must add that Filinski develops a simply-typed "symmetric" lambda calculus (SLC) that 
allows equal status for continuations and values. He follows the program of Lambek in developing 
exact translations in both directions between the SLC and the SCL-category. Thus, in a technically 
awkward sense, by using these translations Filinski has produced the first abstract machine that 

18Hence continuations cannot be composed as procedures. 
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computes with categorical continuations as first-class objects. 

The axioms of the SCL-category are listed below. The 0 and are the (specified) terminal 
and initial morphisms, respectively. There are also value variables xi : 1 -+ A, continuation variables 
yi :A -+ 0 ,  the co-application pa, f+ as the curry o f f ,  and f, as the co-curry of f .  It is important to 
see that the initial object, terminal object, products, coproducts, exponentials and coexponentials 
satisfy universality properties weakly, i.e. only the existence of factorizing morphisms is guaranteed. 
The strange morphisms 4 : A x [C B] -+ [C -& A x B] and 6 : [C + A + B] -+ A + [C + B] are 
primarily for achieving functional completeness that allows the translation from abstractions in the 
symmetric lambda calculus to the categorical combinators of the SCL. Finally, the SCL condition 
of totality for the morphism f is 0 o f = 0 where 0 is the terminal maplg. The dual, f o 0 = 0 ,  

serves as the strictness condition. 

primitives are total 
id is total 

o of totals is total 
0 is total 

(-, -) of totals is total 
ni is total 

is total 
[-, -1 of totals is total 

ri is total 
4 is total 
0 is total 
z i  is total 
pa is total 
f* is total 

primitives are strict 
id is strict 

o of stricts is strict 
0 is strict 

(-, -) of stricts is strict 
.~ri is strict 

is strict 
[-, -1 of stricts is strict 

~i  is strict 
4 is strict 
6 is strict 
yi is strict 
ap is strict 
f, is strict 

g is total 

T l O  (f1g) = f 
f is total 

g is strict 

[f,glo Ll = f  
f is strict 

lgInterestingly, this same representation of totality had been earlier used in the partial cartesian categories of Curien 
and Obtulowicz. 



h is total h is strict 

( f , 9 ) 0  I&= (f c2 h , g "  h, h "  [f,g] = [h" f , h "  g] 
h, k are total h, k are strict 

(h x k) 0 ( f ,g )  = ( h o  f , k o  s )  [ f ,g I0  ( h + k ) = [ f o  h , g o  kl 

a p o  (fC x i d ) =  f (f* + id )  0 pa = f 
f is total f is strict 

(ap o (f x id))* = f ((f  + id) 0 pa), = f 

There are some suggestions about control within the SCL category if Filinski's CBV denota- 
tional tnorphism semantics are followed. For example, consider how the coapplication pa invokes 
the cocurry f, in a manner dual t o  the invoking of the curry f' with the application ap. The 
allowed strategies of evaluation are illustrated below. Note that CBV evaluates the morphisms in 
diagrammatic order while CBN evaluates them in compositional order. Here v and k represent the 
evaluated value and continuation, and v and K the unevaluated value and continuation. 

CBN 

YV 
I 

CBV 

Pa 

f* + idg 
k n 

A + B  

The applicable semantics are 

M[f 0 g]vn = M[g]v(At.M[f]tn) 
M[pa]vn = n in* (contx(v, At. n inz(t))) 
M[f*]vn = let contx(a,c) = v in M[fla(At.case t of inl(r) : K T inz(s) : c s esac) 

Following these SCL CBV semantics, the elements of the coexponential [B + C] are continuations 
that accept a C-value/B-accepting continuation pair. These elements are termed as context values. 
The computation proceeds in detail as follows: 

1. pa injects (tags) the context pair (c, kg) into [B + C] + B ,  where c is a C-value and kg is a 
B-accepting bridging continuation. 

2. Control then passes to  the [B (: q + B-accepting continuation k[geC1+g following pa, i.e. 



the continuation starting with f, + i dB .  As a result, f, + i d  runs and sees its input tagged as 

a context, viz. (c, ha),  allowing only f, to  process it. 

3. If f,(c) is in A, then the continuation k A + ~  following f, + i d  computes the answer from f,(c). 

4. Otherwise f,(c) is in B, so f, returns to pa with the value f*(c)- 

5.  pa then executes the bridging continuation k g .  This continuation first injects f,(c) into the 
B summand of [B e C] + B. 

6. Then kB re-executes the k[BeCl+B continuation. Again f, + i d  runs and sees only the injected 
f,(c), causing ids to pass g,(c) directly on to  the k A + ~  continuation to compute the answer. 

What this all amounts to  is: 

a The pa processing sets up a bridging continuation for the B (f, result) case, i.e. it "suspends" 
the B-related continuation prior to the cocurry processing. 

a The cocurry processing sets up the continuation for the A (f, result) case. 

a The cocurry processing does all the tag checking. 

a The cocurry processing backtracks from the [B e C]-accepting sub-continuation of k[BeCl+B 
via the bridging continuation to the B-accepting sub-continuation if a B tag of the f,-result 
is detected. 

a Rephrasing the preceding point, pa requests that f, "try" the "A-related'' continuation first, 
and iff,  cannot continue, "doesn the " B-relatedn continuation. 

The difference between currying and cocurrying can now be expressed in a new way. In currying, 
all the parameter values - evaluated one at a time - must be applied to by the function, while in 
cocurrying the parameter continuations must be successively attempted with only one being selected. 
Thus the cocurry side of the composition of pa and f, + idB provides the "initial" continuation, 
and the co-application side provides the ordering of the attempts and the "bridge" to the alternative 
continuation. 

Also, the co-application morphism does no tag checking, or performs any other discriminatory 
functions. 

Another intuition that is consistent with the Filinski semantics is to  consider the pa morphism as a 
CBV-version of "call with exception propagate". The call and exception return state is represented 
by the co-exponential [B e C] and the exception propagation mechanism is represented by the 
bridging to  the B summand and i dB .  Thus f,'s tag checking corresponds to exception-detection 
and a backtrack to  pa "raises" the exception. 

But the Filinski result is only an initial step towards categorical computation using control 
morphisms. There are serious shortcomings in attempting to  use an SCL-category for reasonable 
direct computation. 

First, the SCL-category is quite minimal with respect to the three dualities stated earlier. In 
particular, the SCL definition of a continuation morphism is one-ended or global, while most control 



constructs are two-ended or local: a new context - a value-continuation pair - is computed in 
some manner in terms of the current context to replace the current context. Also, the concept of 
a continuation that "goes on forever, never returning", i.e. without knowledge of if and when it 
will end, seems overly simplified for the sake of categorical and semantic convenience. The general 
need to  raise, propagate, and handle exceptions demands a local or bounded continuation that is 
two-ended and composable in nature. Support for such "procedural" or "operator" continuations 
has come forth not only from Felleisen, who provides a dynamic semantics for his control operators, 
but also in new work by Danvy and Filinski that establishes a static semantics for them as well 

[DF90], and by Griffin who showed that a simpler but very expressive form of the Felleisen context- 
shifting operator - which possesses a classical type - has a precise interpretation in constructive 
logic [GrigO] . 

Second, the axioms of the category are conditionally based on the totality or strictness of mor- 
phisms. This negates the possibility of a Cockett-style term rewriting reduction. One might consider 
applying conditional term rewriting theory, including Knuth-Bendix completion, to an SCL-category 
[Kap84, Kap87, Gan871. However, (1) as claimed above, the SCL-category appears not rich enough 
to be computationally useful in the first place (an opinion shared by Filinski [Fi190]), and (2) severe 
constraints on the premises of conditional rules are required to avoid undecidability. It is for this 
reason that categories possessing weak products/coproducts - such as the SCL-category - along 
with a more sophisticated and fully equational structure similar to the pcategory of Robinson and 
Rosolini might hold promise as a new venue for computing with control morphisms. 

Third, computation is defined not entirely by the equational logic of the SCL category - the 
axioms are strategy-independent - but by two sets of denotational semantics, one for CBV and the 
other for CBN. This represents both a severe coarseness in the strategy spectrum and a weakness in 
the direct programmability of the SCL category. Although there are continuations in the category, 

they play little direct role in the control of the categorical computation itself. 

Each of the papers principally surveyed in this report has influenced our pondering on the 
possibilities for embedding a useful set of control constructs within a category. Here are some 
examples. Could local continuations be internalized as some kind of "control-closed" category or 
a "control-enriched" category? Is a pcategory, which shares many similar properties as the SCL 
category, a starting point for including control? Does the dual of the pcategory's dom-operator 
have any relationship to  control? If such a category is found, could the Cockett methodology be 
extended, if necessary, to deal with actives that have contexts either as prefixes (evaluation of values) 
or postfixes (evaluation of continuations), as a technique to include control operations? 

And what about other categories? One example of possible relevance is the Girard category that 
is essentially a closed symmetric monoidal category with tensor products and exponentials, finite 
categorical products and sums, and an involution functor that intuitively corresponds to converting 
back and forth between values and continuations [See89]. In fact, a Girard category is a special brand 
of *-automonous category [Bar79]. This category contains both weak and categorical products and 
sums depending on the "non-strictness" and "non-totality" of arguments, properties similar to those 
of the SCL category. It  has been proved by Seely to correspond directly to  Girard's linear logic 
[Laf88, Sce901, which in turn has been shown to fit hand-in-glove with computation using Petri 
nets [MOM89, EW901. Since this relationship has strong implications for parallel computation, the 
Girard category is so far only mildly promising for categorizing control. 



Another farther-fetched possibility is higher-order categories such n-categories. Seely has ex- 
pressed the typed lambda calculus as a 2-category where the 2-cells express beta/eta-reductions of 
terms with a single free variable [See87]. Carrying the analogy farther, a higher-order cell might 
express some kind of reduction transformation that switches contexts and exchanges continuations, 
with each cell level representing the next-higher local context of the current computation. 
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