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ABSTRACT 

Broadcasting and  point-to-point communication are  common primitives in parallel com- 
putations. Efficient implementations of these primitives a re  of interest in order t o  
improve the  performance of these computations. In this  paper, we concentrate on the 
t ree architecture and  give lower bounds and algorithms for 1) singlenode broadcasts  2) 
multinode broadcasts  3) scat ter ing and 4) to ta l  exchange. 

1. Introduction 

Tree  architectures arise naturally in real time measurement and control systems [I],  
divide and conquer s trategies (21, and searching applications [3]. The  popularity of the 
t ree architecture s tems from the  following properties [4]: 

1) I t  has  the  least number of arcs possible for the  interconnection of a given set  
of nodes. 

2) Trees  have important  properties for pa th  control, especially in packet 
switching networks. 

3) Trees  have preorder, inorder and postorder capabilities. 

4) They can implement lookahead logic used in carry lookahead adders, prior- 
ity circuits and  shift-registers. 

5 )  They can  naturally implement arithmetic operations and  operations t h a t  
collect d a t a ,  such a s  a maximum of a set  of numbers. 

6) T h e  t ree  architecture is strongly inductive. 

Some of t he  common d a t a  communication pa t te rns  in parallel numerical methods are  

Is, 61: 

1) Singlenode broadcasting: which involves transfer of the  same d a t a  from one 
processor t o  all other  processors in the network. 

2) Multinode broadcasting: which involves concurrent broadcasting from all 
nodes t o  all other  nodes in the network. 

3) Scattering: which is singlenode broadcasting with the difference t h a t  different 
packets  a re  transferred t o  different nodes. 

4) Total exchange: which involves transfer of a different packet from each node 
t o  every other  node. 

Broadcasting finds applications in a variety of linear algebra algorithms [7], such a s  
matrix-vector multiplication, matrix-matrix multiplication, LU-factorization, and also 



in database queries and transitive closure algorithms [8]. Scattering and to ta l  exchange 
operations occur in transposing a matrix and in the conversion between different d a t a  
structures [7]. 

In this paper, we give lower bounds and algorithms for the communication primitives 
mentioned above, for the single 1 1 0  (where each processor can send or receive a t  most 
one message a t  a time) and multiple 1 1 0  (where each processor can simultaneously do 
110 operations on all the ports available) cases for the tree architecture. The lower 
bound results are  summarized in table 1. 

Table 1. 
Lower bounds for some Tree communications. 

The paper is organized as  follows. The next section gives some basic definitions and 
notations used in the rest of the paper. Section 3 deals with the singlenode broadcast 
operation while the multinode broadcast is described in section 4. Sections 5 and 6 dis- 
cuss the scattering and total  exchange operations respectively. Section 7 describes the 
related work. Finally, section 8 gives the conclusions. 

2. Preliminaries 

Multiple I /O 

logn 

(n-1113 
(n-11/3 

n 

Communication task 

Single node b'cast 
Multi node b'cast 

Scattering 
Tota l  Exchange 

A tree is a Hasse diagram <S,R> where S is the set of nodes and R defines the connec- 
tivity among the nodes such tha t  every node (except one, called the root) has exactly 
one arc incident into it. Trivially each pair of nodes has a least upper bound (LUB), 
which is either one of the nodes if they are in a directed path in the tree, or is the node 
a t  which point directed paths from the two nodes meet. Thus, the tree is an  upper lat- 
tice. The  path from any node t o  any other passes through the LUB [4]. 

Single 1 / 0  

2logn 

(n-1) 
(n-$ 

n 

Let n be the number of nodes in the tree. In this paper, we will assume a complete 
binary tree. The number of edges is given by (n-1). The height of the tree, h, is equal t o  
(log(n+l) - 1). (We imply a base of 2 whenever log is used). We define the nodes labeled 
cl and cr in the tree in fig 1 a s  the corner nodes. In particular cl is the left corner node 
and cr is the right corner node. We use the term lchild t o  denote a node's left child and 
rchild t o  for the node's right child. 

Let dij be the length of the shortest path between nodes i and j. We then define the 
diameter of the tree as  max {dij I i,j c S), the maximum distance between any two 
nodes. Clearly, this is 2*h. Thus, the worst case communication delay between any two 
nodes is of the order of the diameter of the graph. 



cl C r 

Figure 1. Corner nodes in a tree 

T h e  node connectivity of a graph is defined as the minimum number of nodes which need 
t o  be removed for the  graph t o  be disconnected. Equivalently, i t  can also be defined a s  
the minimum number of disjoint pa ths  between any two  nodes. T h e  fault tolerance of 
the  graph is then defined as (node connectivity - 1). Clearly, the node connectivity of a 
tree is 1 (removing the  root partitions the tree) implying t h a t  i t  is 0-fault tolerant .  

Labeling of the tree nodes: T h e  nodes are  labeled in increasing numbers s ta r t ing  a t  0 
from left t o  right in each level and  from level 1 t o  log(n+l). I t  is clear t h a t  under this 
scheme, a node i has  as i ts  children nodes labeled 2*i+l and  2*i+2. Conversely, the 
parent  of a node j is given by [(j-1)/21. 

A simple routing algorithm between any two nodes is given by the algorithm A0 below. 
We measure the time required for different algorithms in te rms of the  number of 
timesteps required, where a timestep is the amount of time for a n  1 / 0  operation. 

Algorithm A0 - Routing from node source t o  node dest. 

/* each node follows this algorithm based on the destination node number in the packet */ 
if (dest -= source) done; 

else 

/* find LUB */ 
while (dest > source) do {temp - dest; dest - dest/2;) 

if (dest < source) send to parent; 

else if (odd(temp)) send t o  rchild; else send to Ichild; 

3. Single node broadcast 

Single 110: 

Result 1. 2h t imesteps are required to broadcast a message from the root of a complete 
binary tree of height h i n  the single I /O  case. 



Proof: The proof is by induction. 
Basis (h=l): with single 1/0 operation per unit time, we trivially require two time steps 
for the broadcast. 
Induction step: Suppose the proposition holds for a tree of height h. For a tree of height 
h+l, the routing involves the following steps: 
step 1. send the message t o  its right child. 
steps 2 t o  1+2h: The right child is a tree of height h. So it will take 2h steps t o  finish 
sending the message t o  all i ts  children. At  the s t a r t  of this phase, the number of links t o  
be traversed on the left of the original root is a left child (tree of height h) and the link 
connecting the root t o  the left child. Thus  after time steps 1+2h, one link remains t o  be 
traveled on the left child. 
s tep  1+2h+l: complete the traversal. 
Therefore, i t  requires 2(h+l) time steps t o  broadcast a message from the root. 

Result 2. A lower bound for single node broadcast with single I10  is 2h timesteps. 
Proof: Result 1 assures us t h a t  the time taken by the root is 2h. If we take the corner 
nodes which need t o  traverse the maximum path  in order t o  accomplish the broadcast, 
we notice t h a t  the number of messages is again a t  least 2h. 

Algorithm A1 - Single node broadcast with single 110. 

If (I am the originator node) 

if (parent exists) send to  parent; 

if (rchild exists) send to rchild; 

if (Ichild exists) send to  Ichild; 

else (if data received on channel c) 

if (c !- parent && parent exists) send to  parent; 

if (c != rchild && rchild exists) send to rchild; 

if (c !- lchild && lchild exists) send to  Ichild; 

Result 3. Algorithm A 1  requires a maximum of Sh-I time steps for a single node broad- 
cast. 
Proof: The worst case results when the broadcasting node is either cl or cr. The time for 
the d a t a  t o  propagate t o  the root is h. One time step is required for the message t o  
reach the other child of the root node, which is a full binary tree of height h-1. The 
traversal of t h a t  subtree takes 2(h-1) time steps (result 1). The nodes on the subtree 
containing the originating corner node is subsumed by concurrent transmissions during 
this time. Therefore, the overall time = h + 1 + 2(h-1) = 3h-1 = 31og(n+l)-4, where n 
is the number of nodes in the tree. 



Multiple 110: 

Result 4. Broadcast of a message from the root of a complete binary tree of height h in 
the multiple I /O  case requires h timesteps. 
Proof: is again by induction and is similar t o  the proof of result 1. 0 

Result 5. A lower bound for single node broadcast with multiple I /O is h timesteps. 
Proof: Under the possibility of multiple 1 1 0  operations a t  any given time, the minimum 
time is achieved when the originating node is the root, for which the bound is defined by 
result 5. 

Algorithm A2 - Single node Broadcast with multiple 1/0 

If (I am the originator) 

simultaneously send to the following if they exist: parent, lchild and rchild; 

else (if data received on channel c) 

simultaneously send to the following if they exist and are != c : 

parent, lchild and rchild; 

Result 0. A n  upper bound for singlenode broadcast with multiple I /O as implemented in 
A 2  is 2h timesteps. 
Proof: The worst case results when the message needs t o  traverse the diameter of the 
tree. This happens if the broadcasting node is one of the corner nodes. Irrespective of 
the amount of concurrency in sends, these nodes take h time steps t o  reach the root 
from where we require another h time steps t o  reach the other corner node. 

4. Multinode Broadcast 

Single I/O: 

Result 7. A lower bound for multinode broadcast with single I /O is (n-1) timesteps. 
Proof: Each node receives one message from every other node (which is n-1 messages in 
all). Therefore, the lower bound for single I/O is (n-1). 

The following scheduling disciplines are possible for any given node with single 110: 
1. sPRL: send t o  parent, then t o  rchild, and finally t o  lchild. 
2. sPLR: send t o  parent, then t o  lchild, and finally t o  rchild. 
3. sLRP: send t o  lchild, then t o  rchild, and finally t o  parent. 
4. sRLP: send t o  rchild, then t o  lchild, and finally t o  parent. 
5. sRPL: send t o  rchild, then t o  parent, and finally t o  lchild. 
6. sLPR: send t o  lchild, then t o  parent, and finally t o  rchild. 

Result 8. The time for multinode broadcast when all the nodes follow any of the above 
schedules is the same. Further, that time is not optimal. 



proof: First ,  we make three observations: 
1. When all the  nodes send messages t o  their rchild, only half the nodes in the t ree 
receive one message and  the  other  half d o  not receive any message a t  all. 
2. When all t he  nodes send messages t o  their lchild, the result is analogous. 
3. When all the  nodes send messages t o  their parents, half the nodes in the  t ree receive 
two messages a t  once while the o ther  half d o  not get any. Since, the nodes can  receive 
only one message a t  a time (because of single I/O), half the  nodes are  engaged for two 
time steps while the  o ther  half send the message in one time s t ep  and idle in the  other. 

Thus,  operations (1) and  (2) require one time unit each while operation (3) needs two 
time steps. Any multinode broadcast algorithm which adopts  any  of the scheduling 
algorithms above for all  the nodes is essentially composed of the three operations men- 
tioned above. T h u s  all such algorithms need the same number of time steps. Further ,  in 
all such algorithms half of the nodes d o  not receive any message in any  given time step.  
Hence, they require a t  least twice the number of time steps which might be required in 
the  best possible algorithm. 

Result 9 .  For a tree interconnect with single IIO, a mazimum of 1(5*n)/81 nodes (within 
an accuracy of 1 )  can receive messages at any time step, with any combination of the 
above schedules at digerent nodes in the tree. 
Proof: A tree of n nodes has  1 root, r(n/2)1-1 internal nodes and ln/21 leaves. In any 
operation, the  root and the r(n/2)1-1 internal nodes can send one message each such 
t h a t  the receiving node receive one and only one message each. This  ensures t h a t  the 
message sent  will always be received in the time step.  This  is trivially achieved when 
the root and  all  the internal nodes send messages on their right links. 

There remain [(n/2)1 nodes a t  the  leaves which have not sent  any  message s o  far .  T h e  
tree configuration is such t h a t  two  leaf nodes always have a common parent .  Thus,  if i t  
has  t o  be ensured t h a t  the parent  receives the message in the same time step,  only one 
of i ts  two  children can send a message. This  reduces the number of children which can 
send a messages t o  (112) * [(n/2)1. Further ,  half of the parents  in the  penultimate level 
will be receiving messages from their parents. This  implies t h a t  the number of leaf 
nodes which can  send messages t o  their parents  is further reduced by half and becomes 
T(n/8)l. 

Thus, the to t a l  number of messages which can  be exchanged a t  any  given s tep  is 1 + 
[(n/2)1 - 2 + [(n/8)l which is about  [(5n)/81. 

Algorithm A3 gives a simple scheme for implementing multinode broadcast with single 
110.  A3 is essentially a multi-single node broadcast,  with all the nodes following the 
sLRP scheduling discipline. 

There a re  several ways in which the upper bound on concurrency defined by result 9 can  
be met. The  approaches differ in the specific (5n)/8 nodes which can  receive messages. 
While such algorithms can be derived, i t  ha s  been our experience t h a t  the approach 
does not gain us much over the simple multinode broadcast algorithm A3. T h e  reason is 
t h a t  although most of the exchanges are  accomplished in less t h a n  h steps, the few 



Algorithm A3 - simple multinode broadcast with single 110 

Each node repeats 1 thru 3, (2*h) times: 

1. update left child 

2. update right child 

3. update parent 

exchanges which remain, necessitate a similar figure for the number of timesteps. 

Multiple I/O: 

Result 10. A lower bound for the multinode broadcast with multiple I /O is (n-I ) /$  
timesteps. 
Proof: Each node is t o  receive (n-1) messages, and it can receive a t  most three of those 
a t  any time step. 

We emulate a ring in the tree and circulate the d a t a  from each node. In order t o  
achieve this, we need t o  re-label the nodes of the tree. We follow an in-order labeling of 
the nodes a s  shown in fig 2. Then, the ring emulation is achieved by sending messages t o  
successive nodes. An algorithm performing these actions is given as algorithm A4 below. 

Figure 2. Ring emulation in a tree. 

Although Figure 2 achieves the emulation, the number of hops between neighbors of the 
ring varies within the ring. In particular, this maximum number grows logarithmically 
with the size of the tree. The problem persists with preorder and postorder ring 



Algorithm A4 - Multinode Broadcast with multiple 1 /0  

Emulate a ring in the tree. 

Each node starts by sending its data to i t s  neighbor in the ring in one direction. 

In the subsequent steps, propagate any data which the node gets from the other direction 

emulations a s  well. Shaw [9] describes a particular ring emulation where the maximum 
distance between any two neighbors is exactly three. With such a bounded neighbor 
emulation, we can achieve a multinode broadcast with multiple 1 / 0  in a maximum of 
3*(n-1) timesteps. The specific labeling of nodes is given in figure 3 for a tree of 15 
nodes. 

Fig 3. Bounded neighbor emulation of Shaw. 

5. (Single node) Scattering 

Single I/O: 

Result 11. A lower bound for single node scattering with single I /O is ( n - I )  timesteps. 
Proof: The source node needs to  send (n-1) messages. 0 

Scattering of d a t a  can be done in several ways. One way is t o  simply use the routing 
algorithm A0 repeatedly. The worst case performance of such a scheme results when the 
source node for the scatter  is one of the corner nodes. If such were the case, the total  
number of hops would certainly be greater than (n/4)*(2h) = O(nlogn) even with 



pipelining ( there a re  11-1/41 nodes a t  a distance 2h away). We therefore, retain our ring 
emulation algorithm, by which we can achieve the scat ter ing operation in 3*(n-1) 
timesteps. 

We have two  options in the implementation of the sca t te r .  Firs t ,  we might decide t o  
send d a t a  in one direction only and pipeline the d a t a  for the other  nodes along the  way. 
We call this  t he  option A. Thus,  the  far thest  node in this  scheme would be the neigh- 
boring node in the  other  direction. In our next option, which we call the option B, we 
can  al ternately send d a t a  t o  the  successively closer nodes in both directions ( the 
far thest  node in this  scheme would be the node diametrically opposite t o  the  sender). 
However, due t o  the single I /O communication model, we can send d a t a  in the same 
direction only half the  number of times. Algorithm A5 implements option A. 

Algorithm A5 - Scattering with single I/O. 

Emulate a ring in the tree. 

The source node i sends out the data for the node (i-1) mod n along the longer path 

and pipelines the data for successively nearer nodes. 

Result 12. For a ring network, options A and B cost the same. 
Proof: First  we t ake  the  case when n is even. T h e  number of nodes which need t o  
receive the information is odd. Considering option B, there exists a unique node which is 
the  far thest  distance away. We send d a t a  t o  t h a t  node in the  clockwise direction (say), 
in t imestep 1. We now have two nodes equally fa r  off in both directions. In s tep  2, we 
send d a t a  off t o  the  far thest  node in the anticlockwise direction. We a l te rna te  these 
steps. T h e  messages sent  off in times 1 and 2 reach their destinations a t  the  time (n/2). 
Subsequently, two  nodes will receive their d a t a  a t  each time step.  Since there a re  n/2 
nodes in the  clockwise direction (and one less in the other  direction), the  to t a l  amount  
of time taken  is (n/2)+(n/2-1) = n-1, which is the same as option A. Fig 4 illustrates the 
routing. 

We now consider the case when n is odd. We now have two  nodes which are  far thest  
from the source. D a t a  arrives a t  one far thest  node a t  time rn/21. Thereafter  the  situa- 
tion is same as before, i.e. two  nodes receive d a t a  at each timestep. Thus,  the time for 
option B is now 1 + t ime for (n-1) nodes. Option A also takes  exactly one time s tep  
more, because there is exactly one node ext ra  in the ring. Thus,  both options are  
equivalent. 

Corollary. In a ring emulation in a tree, option B is always better. 
Proof: In a ring network, the  message sent  in time 1 will reach the neighboring node a t  
time 2. However, this does not hold when the dilation factor is greater  t h a n  one (as  in 
the ring emulation). For  example in tree, i t  t akes  3 hops t o  reach the nearest neighbor. 
T h e  time taken  for a message t o  reach a node diametrically opposite in our ring emula- 
tion is 3*(n/2). But, during this time, the  source node has  time t o  send off 3*n/2 



Time 1 Time 2 Time 3 Time 4 Time 5 
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Figure 4. Options A and B when n is even. 
Note: A node with a square represents the arrival of d a t a  for t h a t  node. 

messages which is more than  (n-2) messages t h a t  i t  had t o  send. Thus,  by the  time the  
message reaches the  far thest  node in the ring, all messages t o  the other  nodes have been 
dispatched. The  time a t  which the node (n/2 - 1) gets  i t s  message is 3*(n/2 - 1) + 2 
( two is added because messages in both directions are  sent  al ternately s ta r t ing  a t  0). 
But  this  figure is less t han  3*(n/2). T h e  time required for a message t o  reach its 
nearest neighbor in the emulated ring is more than  the time required for another  mes- 
sage in the same direction t o  get s ta r ted .  This  means t h a t  the time for broadcast by 
option B is the time required for the message t o  reach the diametrically opposite node, 
which is 3*(n/2). But  by scheme A, the time for broadcast is 3(n-1). 



Multiple 110: 

Result 13. A lower bound for scattering with multiple I10 is (n-1)/9 timesteps. 
Proof: T h e  source needs t o  send (n-1) messages and can  send 3 messages a t  each time 
step.  

T h e  approach adopted is the  option B above with the difference t h a t  d a t a  is now sent  
simultaneously in both directions. T h e  maximum time required is 3*(n/2). 

Algorithm A8 - scattering with multiple I/O 

Emulate a ring in the tree. 

Simultaneously send to nodes (1112) and (n/2 -1) (if n is even; and the corresponding nodes when n is 

odd) in the two different directions of the ring. 

Pipeline data for the next farthest nodes. 

6. Total Exchange 

Result 14. A lower bound lor  any total exchange algorithm with single I / O  is 0(n2) 
timesteps. This result holds in  the multiple I /O  case as well. 
Proof: Each node needs t o  transfer (n-1) messages. We can make cuts  a t  different edges 
and see the  number of messages which need t o  cross the edge. If we make a cut  on the  
edge connecting the  root t o  i ts  Ichild, we see t h a t  the  number of messages which need t o  
cross the link t o  the  subtree having the lchild, N, given by: N = ((n-1)/2 + 1) * ((n-1)/2) 
is clearly the  maximum among such numbers. This  therefore is the minimum time any 
to ta l  exchange algorithm needs. 

2 
Since there is only a single edge connecting the root and  i t s  lchild, O(n ) messages need 
t o  t ravel  the  edge sequentially even in the multiple I /O  case. 

Algorithm A7 - Total exchange 

All the nodes follow the algorithms A5 and A6 for single 110 and multiple I/O respectively 

7. Related work 

Johnsson and  Ho  [6] describe the broadcast and personalized communications in the 
hypercube. They give the  lower bounds and also describe algorithms which achieve the 
communication tasks. Saad  and Schultz [5] describe the same operations for a broadcast  
bus, shared memory model, ring, mesh, hypercube and switch models of parallel archi- 
tectures. Fraigniaud et. al. 1101 demonstrate  the optimality of a scat ter ing algorithm for 
a ring of processors. Although there has  been some work reported on individual 



instances of these communication primitives (mostly single node broadcasts) on specific 
interconnects, a comprehensive treatment of communication tasks has been quite lim- 
ited. 

8. Conclusions 

We have presented the lower bounds and algorithms achieving various forms of broad- 
casts and personalized communications in a tree architecture. In each case, we assumed 
two models of communication. The lower bound results are summarized in table 1. 
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