
Communications in a Tree Architecture

Srikanth Kambhatla

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-018

September, 1990

COMMUNICATIONS IN A TREE ARCHITECTURE

Srikanth Kambhat la
Oregon Gradua te Institute

Beaverton, O R 97006

ABSTRACT

Broadcasting and point-to-point communication are common primitives in parallel com-
putations. Efficient implementations of these primitives a re of interest in order t o
improve the performance of these computations. In this paper, we concentrate on the
t ree architecture and give lower bounds and algorithms for 1) singlenode broadcasts 2)
multinode broadcasts 3) scat ter ing and 4) to ta l exchange.

1. Introduction

Tree architectures arise naturally in real time measurement and control systems [I],
divide and conquer s trategies (21, and searching applications [3]. The popularity of the
t ree architecture s tems from the following properties [4]:

1) I t has the least number of arcs possible for the interconnection of a given set
of nodes.

2) Trees have important properties for pa th control, especially in packet
switching networks.

3) Trees have preorder, inorder and postorder capabilities.

4) They can implement lookahead logic used in carry lookahead adders, prior-
ity circuits and shift-registers.

5) They can naturally implement arithmetic operations and operations t h a t
collect d a t a , such a s a maximum of a set of numbers.

6) T h e t ree architecture is strongly inductive.

Some of t he common d a t a communication pa t te rns in parallel numerical methods are

Is, 61:

1) Singlenode broadcasting: which involves transfer of the same d a t a from one
processor t o all other processors in the network.

2) Multinode broadcasting: which involves concurrent broadcasting from all
nodes t o all other nodes in the network.

3) Scattering: which is singlenode broadcasting with the difference t h a t different
packets a re transferred t o different nodes.

4) Total exchange: which involves transfer of a different packet from each node
t o every other node.

Broadcasting finds applications in a variety of linear algebra algorithms [7], such a s
matrix-vector multiplication, matrix-matrix multiplication, LU-factorization, and also

in database queries and transitive closure algorithms [8]. Scattering and to ta l exchange
operations occur in transposing a matrix and in the conversion between different d a t a
structures [7].

In this paper, we give lower bounds and algorithms for the communication primitives
mentioned above, for the single 1 1 0 (where each processor can send or receive a t most
one message a t a time) and multiple 1 1 0 (where each processor can simultaneously do
110 operations on all the ports available) cases for the tree architecture. The lower
bound results are summarized in table 1.

Table 1.
Lower bounds for some Tree communications.

The paper is organized as follows. The next section gives some basic definitions and
notations used in the rest of the paper. Section 3 deals with the singlenode broadcast
operation while the multinode broadcast is described in section 4. Sections 5 and 6 dis-
cuss the scattering and total exchange operations respectively. Section 7 describes the
related work. Finally, section 8 gives the conclusions.

2. Preliminaries

Multiple I /O

logn

(n-1113
(n-11/3

n

Communication task

Single node b'cast
Multi node b'cast

Scattering
Tota l Exchange

A tree is a Hasse diagram <S,R> where S is the set of nodes and R defines the connec-
tivity among the nodes such tha t every node (except one, called the root) has exactly
one arc incident into it. Trivially each pair of nodes has a least upper bound (LUB),
which is either one of the nodes if they are in a directed path in the tree, or is the node
a t which point directed paths from the two nodes meet. Thus, the tree is an upper lat-
tice. The path from any node t o any other passes through the LUB [4].

Single 1 / 0

2logn

(n-1)
(n-$

n

Let n be the number of nodes in the tree. In this paper, we will assume a complete
binary tree. The number of edges is given by (n-1). The height of the tree, h, is equal t o
(log(n+l) - 1). (We imply a base of 2 whenever log is used). We define the nodes labeled
cl and cr in the tree in fig 1 a s the corner nodes. In particular cl is the left corner node
and cr is the right corner node. We use the term lchild t o denote a node's left child and
rchild t o for the node's right child.

Let dij be the length of the shortest path between nodes i and j. We then define the
diameter of the tree as max {dij I i,j c S), the maximum distance between any two
nodes. Clearly, this is 2*h. Thus, the worst case communication delay between any two
nodes is of the order of the diameter of the graph.

cl C r

Figure 1. Corner nodes in a tree

T h e node connectivity of a graph is defined as the minimum number of nodes which need
t o be removed for the graph t o be disconnected. Equivalently, i t can also be defined a s
the minimum number of disjoint pa ths between any two nodes. T h e fault tolerance of
the graph is then defined as (node connectivity - 1). Clearly, the node connectivity of a
tree is 1 (removing the root partitions the tree) implying t h a t i t is 0-fault tolerant .

Labeling of the tree nodes: T h e nodes are labeled in increasing numbers s ta r t ing a t 0
from left t o right in each level and from level 1 t o log(n+l). I t is clear t h a t under this
scheme, a node i has as i ts children nodes labeled 2*i+l and 2*i+2. Conversely, the
parent of a node j is given by [(j-1)/21.

A simple routing algorithm between any two nodes is given by the algorithm A0 below.
We measure the time required for different algorithms in te rms of the number of
timesteps required, where a timestep is the amount of time for a n 1 / 0 operation.

Algorithm A0 - Routing from node source t o node dest.

/* each node follows this algorithm based on the destination node number in the packet */
if (dest -= source) done;

else

/* find LUB */
while (dest > source) do {temp - dest; dest - dest/2;)

if (dest < source) send to parent;

else if (odd(temp)) send t o rchild; else send to Ichild;

3. Single node broadcast

Single 110:

Result 1. 2h t imesteps are required to broadcast a message from the root of a complete
binary tree of height h i n the single I /O case.

Proof: The proof is by induction.
Basis (h=l): with single 1/0 operation per unit time, we trivially require two time steps
for the broadcast.
Induction step: Suppose the proposition holds for a tree of height h. For a tree of height
h+l, the routing involves the following steps:
step 1. send the message t o its right child.
steps 2 t o 1+2h: The right child is a tree of height h. So it will take 2h steps t o finish
sending the message t o all i ts children. At the s t a r t of this phase, the number of links t o
be traversed on the left of the original root is a left child (tree of height h) and the link
connecting the root t o the left child. Thus after time steps 1+2h, one link remains t o be
traveled on the left child.
s tep 1+2h+l: complete the traversal.
Therefore, i t requires 2(h+l) time steps t o broadcast a message from the root.

Result 2. A lower bound for single node broadcast with single I10 is 2h timesteps.
Proof: Result 1 assures us t h a t the time taken by the root is 2h. If we take the corner
nodes which need t o traverse the maximum path in order t o accomplish the broadcast,
we notice t h a t the number of messages is again a t least 2h.

Algorithm A1 - Single node broadcast with single 110.

If (I am the originator node)

if (parent exists) send to parent;

if (rchild exists) send to rchild;

if (Ichild exists) send to Ichild;

else (if data received on channel c)

if (c !- parent && parent exists) send to parent;

if (c != rchild && rchild exists) send to rchild;

if (c !- lchild && lchild exists) send to Ichild;

Result 3. Algorithm A 1 requires a maximum of Sh-I time steps for a single node broad-
cast.
Proof: The worst case results when the broadcasting node is either cl or cr. The time for
the d a t a t o propagate t o the root is h. One time step is required for the message t o
reach the other child of the root node, which is a full binary tree of height h-1. The
traversal of t h a t subtree takes 2(h-1) time steps (result 1). The nodes on the subtree
containing the originating corner node is subsumed by concurrent transmissions during
this time. Therefore, the overall time = h + 1 + 2(h-1) = 3h-1 = 31og(n+l)-4, where n
is the number of nodes in the tree.

Multiple 110:

Result 4. Broadcast of a message from the root of a complete binary tree of height h in
the multiple I /O case requires h timesteps.
Proof: is again by induction and is similar t o the proof of result 1. 0

Result 5. A lower bound for single node broadcast with multiple I /O is h timesteps.
Proof: Under the possibility of multiple 1 1 0 operations a t any given time, the minimum
time is achieved when the originating node is the root, for which the bound is defined by
result 5.

Algorithm A2 - Single node Broadcast with multiple 1/0

If (I am the originator)

simultaneously send to the following if they exist: parent, lchild and rchild;

else (if data received on channel c)

simultaneously send to the following if they exist and are != c :

parent, lchild and rchild;

Result 0. A n upper bound for singlenode broadcast with multiple I /O as implemented in
A 2 is 2h timesteps.
Proof: The worst case results when the message needs t o traverse the diameter of the
tree. This happens if the broadcasting node is one of the corner nodes. Irrespective of
the amount of concurrency in sends, these nodes take h time steps t o reach the root
from where we require another h time steps t o reach the other corner node.

4. Multinode Broadcast

Single I/O:

Result 7. A lower bound for multinode broadcast with single I /O is (n-1) timesteps.
Proof: Each node receives one message from every other node (which is n-1 messages in
all). Therefore, the lower bound for single I/O is (n-1).

The following scheduling disciplines are possible for any given node with single 110:
1. sPRL: send t o parent, then t o rchild, and finally t o lchild.
2. sPLR: send t o parent, then t o lchild, and finally t o rchild.
3. sLRP: send t o lchild, then t o rchild, and finally t o parent.
4. sRLP: send t o rchild, then t o lchild, and finally t o parent.
5. sRPL: send t o rchild, then t o parent, and finally t o lchild.
6. sLPR: send t o lchild, then t o parent, and finally t o rchild.

Result 8. The time for multinode broadcast when all the nodes follow any of the above
schedules is the same. Further, that time is not optimal.

proof: First , we make three observations:
1. When all the nodes send messages t o their rchild, only half the nodes in the t ree
receive one message and the other half d o not receive any message a t all.
2. When all t he nodes send messages t o their lchild, the result is analogous.
3. When all the nodes send messages t o their parents, half the nodes in the t ree receive
two messages a t once while the o ther half d o not get any. Since, the nodes can receive
only one message a t a time (because of single I/O), half the nodes are engaged for two
time steps while the o ther half send the message in one time s t ep and idle in the other.

Thus, operations (1) and (2) require one time unit each while operation (3) needs two
time steps. Any multinode broadcast algorithm which adopts any of the scheduling
algorithms above for all the nodes is essentially composed of the three operations men-
tioned above. T h u s all such algorithms need the same number of time steps. Further , in
all such algorithms half of the nodes d o not receive any message in any given time step.
Hence, they require a t least twice the number of time steps which might be required in
the best possible algorithm.

Result 9 . For a tree interconnect with single IIO, a mazimum of 1(5*n)/81 nodes (within
an accuracy of 1) can receive messages at any time step, with any combination of the
above schedules at digerent nodes in the tree.
Proof: A tree of n nodes has 1 root, r(n/2)1-1 internal nodes and ln/21 leaves. In any
operation, the root and the r(n/2)1-1 internal nodes can send one message each such
t h a t the receiving node receive one and only one message each. This ensures t h a t the
message sent will always be received in the time step. This is trivially achieved when
the root and all the internal nodes send messages on their right links.

There remain [(n/2)1 nodes a t the leaves which have not sent any message s o far . T h e
tree configuration is such t h a t two leaf nodes always have a common parent . Thus, if i t
has t o be ensured t h a t the parent receives the message in the same time step, only one
of i ts two children can send a message. This reduces the number of children which can
send a messages t o (112) * [(n/2)1. Further , half of the parents in the penultimate level
will be receiving messages from their parents. This implies t h a t the number of leaf
nodes which can send messages t o their parents is further reduced by half and becomes
T(n/8)l.

Thus, the to t a l number of messages which can be exchanged a t any given s tep is 1 +
[(n/2)1 - 2 + [(n/8)l which is about [(5n)/81.

Algorithm A3 gives a simple scheme for implementing multinode broadcast with single
110. A3 is essentially a multi-single node broadcast, with all the nodes following the
sLRP scheduling discipline.

There a re several ways in which the upper bound on concurrency defined by result 9 can
be met. The approaches differ in the specific (5n)/8 nodes which can receive messages.
While such algorithms can be derived, i t ha s been our experience t h a t the approach
does not gain us much over the simple multinode broadcast algorithm A3. T h e reason is
t h a t although most of the exchanges are accomplished in less t h a n h steps, the few

Algorithm A3 - simple multinode broadcast with single 110

Each node repeats 1 thru 3, (2*h) times:

1. update left child

2. update right child

3. update parent

exchanges which remain, necessitate a similar figure for the number of timesteps.

Multiple I/O:

Result 10. A lower bound for the multinode broadcast with multiple I /O is (n-I) /$
timesteps.
Proof: Each node is t o receive (n-1) messages, and it can receive a t most three of those
a t any time step.

We emulate a ring in the tree and circulate the d a t a from each node. In order t o
achieve this, we need t o re-label the nodes of the tree. We follow an in-order labeling of
the nodes a s shown in fig 2. Then, the ring emulation is achieved by sending messages t o
successive nodes. An algorithm performing these actions is given as algorithm A4 below.

Figure 2. Ring emulation in a tree.

Although Figure 2 achieves the emulation, the number of hops between neighbors of the
ring varies within the ring. In particular, this maximum number grows logarithmically
with the size of the tree. The problem persists with preorder and postorder ring

Algorithm A4 - Multinode Broadcast with multiple 1 /0

Emulate a ring in the tree.

Each node starts by sending its data to i t s neighbor in the ring in one direction.

In the subsequent steps, propagate any data which the node gets from the other direction

emulations a s well. Shaw [9] describes a particular ring emulation where the maximum
distance between any two neighbors is exactly three. With such a bounded neighbor
emulation, we can achieve a multinode broadcast with multiple 1 / 0 in a maximum of
3*(n-1) timesteps. The specific labeling of nodes is given in figure 3 for a tree of 15
nodes.

Fig 3. Bounded neighbor emulation of Shaw.

5. (Single node) Scattering

Single I/O:

Result 11. A lower bound for single node scattering with single I /O is (n - I) timesteps.
Proof: The source node needs to send (n-1) messages. 0

Scattering of d a t a can be done in several ways. One way is t o simply use the routing
algorithm A0 repeatedly. The worst case performance of such a scheme results when the
source node for the scatter is one of the corner nodes. If such were the case, the total
number of hops would certainly be greater than (n/4)*(2h) = O(nlogn) even with

pipelining (there a re 11-1/41 nodes a t a distance 2h away). We therefore, retain our ring
emulation algorithm, by which we can achieve the scat ter ing operation in 3*(n-1)
timesteps.

We have two options in the implementation of the sca t te r . Firs t , we might decide t o
send d a t a in one direction only and pipeline the d a t a for the other nodes along the way.
We call this t he option A. Thus, the far thest node in this scheme would be the neigh-
boring node in the other direction. In our next option, which we call the option B, we
can al ternately send d a t a t o the successively closer nodes in both directions (the
far thest node in this scheme would be the node diametrically opposite t o the sender).
However, due t o the single I /O communication model, we can send d a t a in the same
direction only half the number of times. Algorithm A5 implements option A.

Algorithm A5 - Scattering with single I/O.

Emulate a ring in the tree.

The source node i sends out the data for the node (i-1) mod n along the longer path

and pipelines the data for successively nearer nodes.

Result 12. For a ring network, options A and B cost the same.
Proof: First we t ake the case when n is even. T h e number of nodes which need t o
receive the information is odd. Considering option B, there exists a unique node which is
the far thest distance away. We send d a t a t o t h a t node in the clockwise direction (say),
in t imestep 1. We now have two nodes equally fa r off in both directions. In s tep 2, we
send d a t a off t o the far thest node in the anticlockwise direction. We a l te rna te these
steps. T h e messages sent off in times 1 and 2 reach their destinations a t the time (n/2).
Subsequently, two nodes will receive their d a t a a t each time step. Since there a re n/2
nodes in the clockwise direction (and one less in the other direction), the to t a l amount
of time taken is (n/2)+(n/2-1) = n-1, which is the same as option A. Fig 4 illustrates the
routing.

We now consider the case when n is odd. We now have two nodes which are far thest
from the source. D a t a arrives a t one far thest node a t time rn/21. Thereafter the situa-
tion is same as before, i.e. two nodes receive d a t a at each timestep. Thus, the time for
option B is now 1 + t ime for (n-1) nodes. Option A also takes exactly one time s tep
more, because there is exactly one node ext ra in the ring. Thus, both options are
equivalent.

Corollary. In a ring emulation in a tree, option B is always better.
Proof: In a ring network, the message sent in time 1 will reach the neighboring node a t
time 2. However, this does not hold when the dilation factor is greater t h a n one (as in
the ring emulation). For example in tree, i t t akes 3 hops t o reach the nearest neighbor.
T h e time taken for a message t o reach a node diametrically opposite in our ring emula-
tion is 3*(n/2). But, during this time, the source node has time t o send off 3*n/2

Time 1 Time 2 Time 3 Time 4 Time 5

OPTION - B

Time 1 Time 2 Time 3 Time 4 Time 5

O P T I O N - A

Figure 4. Options A and B when n is even.
Note: A node with a square represents the arrival of d a t a for t h a t node.

messages which is more than (n-2) messages t h a t i t had t o send. Thus, by the time the
message reaches the far thest node in the ring, all messages t o the other nodes have been
dispatched. The time a t which the node (n/2 - 1) gets i t s message is 3*(n/2 - 1) + 2
(two is added because messages in both directions are sent al ternately s ta r t ing a t 0).
But this figure is less t han 3*(n/2). T h e time required for a message t o reach its
nearest neighbor in the emulated ring is more than the time required for another mes-
sage in the same direction t o get s ta r ted . This means t h a t the time for broadcast by
option B is the time required for the message t o reach the diametrically opposite node,
which is 3*(n/2). But by scheme A, the time for broadcast is 3(n-1).

Multiple 110:

Result 13. A lower bound for scattering with multiple I10 is (n-1)/9 timesteps.
Proof: T h e source needs t o send (n-1) messages and can send 3 messages a t each time
step.

T h e approach adopted is the option B above with the difference t h a t d a t a is now sent
simultaneously in both directions. T h e maximum time required is 3*(n/2).

Algorithm A8 - scattering with multiple I/O

Emulate a ring in the tree.

Simultaneously send to nodes (1112) and (n/2 -1) (if n is even; and the corresponding nodes when n is

odd) in the two different directions of the ring.

Pipeline data for the next farthest nodes.

6. Total Exchange

Result 14. A lower bound lor any total exchange algorithm with single I / O is 0(n2)
timesteps. This result holds in the multiple I /O case as well.
Proof: Each node needs t o transfer (n-1) messages. We can make cuts a t different edges
and see the number of messages which need t o cross the edge. If we make a cut on the
edge connecting the root t o i ts Ichild, we see t h a t the number of messages which need t o
cross the link t o the subtree having the lchild, N, given by: N = ((n-1)/2 + 1) * ((n-1)/2)
is clearly the maximum among such numbers. This therefore is the minimum time any
to ta l exchange algorithm needs.

2
Since there is only a single edge connecting the root and i t s lchild, O(n) messages need
t o t ravel the edge sequentially even in the multiple I /O case.

Algorithm A7 - Total exchange

All the nodes follow the algorithms A5 and A6 for single 110 and multiple I/O respectively

7. Related work

Johnsson and Ho [6] describe the broadcast and personalized communications in the
hypercube. They give the lower bounds and also describe algorithms which achieve the
communication tasks. Saad and Schultz [5] describe the same operations for a broadcast
bus, shared memory model, ring, mesh, hypercube and switch models of parallel archi-
tectures. Fraigniaud et. al. 1101 demonstrate the optimality of a scat ter ing algorithm for
a ring of processors. Although there has been some work reported on individual

instances of these communication primitives (mostly single node broadcasts) on specific
interconnects, a comprehensive treatment of communication tasks has been quite lim-
ited.

8. Conclusions

We have presented the lower bounds and algorithms achieving various forms of broad-
casts and personalized communications in a tree architecture. In each case, we assumed
two models of communication. The lower bound results are summarized in table 1.

Acknowledgements
The author wishes t o thank Micheal Wolfe for his comments on the paper.

References

1. H. F. Li and C. C. Lau, "A Distributed Multiprocessor Traffic Control System,"
Proceedings COMPSAC '78, pp. 259-264, November 1978.

2. E. Horowitz and A. Zorat, "The Binary Tree a s an Interconnection Network:
Applications t o Multiprocessor Systems and VLSI," IEEE Transactions on Com-
puters, pp. 247-253, April 1981.

3. J . Bentley and H. T . Kung, "A Tree Machine for Searching Problems," Proceed-
ings of the IEEE International Conference on Parallel Processing, 1979.

4. G. J. Lipovski and M. Malek, Parallel Computing theory and comparisions, John
Wiley & Sons, 1987.

5. Y. Saad and M. H.Schultz, "Data Communications in Parallel Architectures,"
Parallel Computing, vol. 11, pp. 131-150, 1989.

6. S. L. Johnsson and C. T . Ho, "Optimum Broadcasting and Personalized Communi-
cations in Hypercubes," IEEE Transactions on Computers, vol. 38, 9, pp. 1249-
1268, 1989.

7. S. L. Johnsson, "Communication Efficient Basic Linear Algebra Computations on
Hypercube Architectures," Journal of Parallel and Distributed Computing, vol. 4,
pp. 133-172, 1987.

8. S. A. Browning, The tree machine: A highly concurrent computing environment,
Tech Report 1980:TR:3760, Computer Science, California Institute of Technology,
1980.

9. D. E. Shaw, "Organization and Operation of a Massively Parallel Machine,"
Advanced Semiconductor Technology and Computer Systems, Van Nostrand Rein-
hold Company, 1987. Guy Rabbat (ed.)

10. P . Fraignaud, S. Miguet, and Y. Robert, "Scattering on a Ring of Processors,"
Parallel Computing, vol. 13, pp. 377-383, 1990.

