
Recovery With Limited Replay:
Fault-Tolerant Processes In Linda

Srikanth Kambhatla and Jonathan Walpole

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-019

September, 1990

RECOVERY WITH LIMITED REPLAY:
FAULT-TOLERANT PROCESSES IN LINDA

Srikanth Kambhatla and Jonathan Walpole

Department of Computer Science and Engineering,
Oregon Graduate Institute of Science and Technology,

ABSTRACT

Research in the area of fault-tolerant distributed systems has focused t o a large
extent on d a t a surviving various forms of failure. The replica control algorithms for
maintaining mutually consistent replicas abound in number. However, comparatively
little work has been devoted t o making processes recoverable. In domains other than
databases and transaction processing, fault-tolerance generally implies both fault-
tolerant d a t a and fault-tolerant processes. In environments where cooperation among
processes is important we argue t h a t high availability of processes in addition to their
recoverability is crucial.

Our specific interest is in the Linda tuple space paradigm. In this paper we discuss
efficient techniques for making Linda processes recoverable and outline some charac-
teristics of Linda t h a t make it particularly suitable for implementing fault-tolerance.
We also propose a simple extension t o our recoverable process mechanism t h a t makes
processes highly available.

[keywords: fault-tolerant processes, high availability, recovery, Linda tuple space,
replay, message logging].

1. Introduction

Local area network based distributed systems are low in cost, widely available and
generally have a considerable amount of unused processing capacity. These characteris-
tics make them potentially at tractive a s economical vehicles for supporting long-lived
computation intensive applications such a s scientific computations and simulations.

Such computations are typically structured a s a set of processes t h a t run in paral-
lel and cooperate t o achieve a common goal. In this paper, we address the issues associ-
ated with supporting long-lived parallel applications using the Linda programming T

paradigm [1,2,3]. Linda presents a simple and an elegant model of parallel computa-
tion in which Linda programmers view a distributed system as a virtual uniprocessor
containing a bag of tuples. When a process wishes t o communicate with another process
it leaves a tuple in the tuple space. Likewise, a process wishing t o receive a message
looks for i t in the tuple space. This indirection makes Linda processes location indepen-
dent.

The long duration of computations in the application domain we have outlined
makes reliability an important concern. Failures can affect such applications through a
loss of da ta , a loss of computation, or both. Different approaches can be taken t o

Fault-Tolerant Processes in Linda

cushion against these failures:

D a t a can be made recoverable. This ensures t h a t the d a t a is left in a con-
sistent s t a t e following failures.

D a t a can be made highly available. This ensures t h a t the d a t a remains acces-
sible in the presence of failures.

Processes can be made recoverable. This ensures t h a t the computation need
not be restarted from the beginning when a failed node recovers.

Processes can be made highly available. This ensures t h a t the entire computa-
tion can make progress in the presence of failures.

In a n application domain where d a t a is persistent, it is often useful t o make d a t a
highly available even when processes are not. The reason for this is t h a t such applica-
tions usually involve transactions tha t run in isolation. Such transactions are indepen-
dent of all other transactions, and their results are solely dependent on the s t a t e of the
database when the transaction starts . However, in a cooperative parallel processing
environment, like t h a t of scientific computation, maintaining highly available d a t a (i.e.
the tuples in Linda context) is not enough. In such environments, the completion of the
computation requires the successful completion of all the processes involved in the com-
putation. Furthermore, it is usually the case tha t no one process can remain in a failed
s t a t e while the others continue. Therefore, in such applications high availability can
only be at tained by supporting both highly available d a t a and highly available
processes.

Various solutions t o the problem of highly available processes have been suggested
in the literature. These include backup processes [4], single recorder process [5] , troupes
[6], and Available Processes [7]. These schemes provide highly available processes a t
varying costs. The backup process scheme, troupes and available processes all involve
one or more redundant process, per active process in the system. Such approaches gain
availability a t the cost of considerable processing capacity t h a t could otherwise be used
by the application. In the recorder process scheme, the recorder process itself is a criti-
cal point.

In this paper, we present a n efficient technique for making Linda processes highly
available. Our approach does not require additional language constructs, and does not
impose additional synchronization constraints on processes. Furthermore, we do not
require any special hardware t o record messages, nor is the recording of information
restricted t o a single centralized node.

The main technical contributions of this paper are the following:

I t suggests t h a t the requirements of a cooperative distributed computing
environment necessitate both highly available processes and highly available
data .

I t draws attention t o Linda as a particularly suitable model for fault-tolerant
applications and gives an efficient design for highly available processes in
Linda. This is achieved by integrating the techniques of recoverable processes
and highly available da ta .

The paper is organized a s follows. In section 2, we present our failure model. In
section 3, we discuss the concurrency and recovery model of our system, and the

Fault-Tolerant Processes in Linda

properties of Linda tha t make i t suitable for fault-tolerant applications. In section 4,
we present our design for highly available processes in Linda. Section 5 analyzes the
performance of the proposed mechanism, and section 6 discusses related work. Finally,
section 7 concludes the paper.

2. The Failure Model

Failures can be classified into several broad categories, based on the behavior of
processors (81.

Crash Failures: the failed nodes simply stop on failing and all processes on the
node die.

Omission Failures: nodes occasionally fail t o send or receive messages t h a t
they should.

Byzantine Failures: processors malfunction by sending spurious messages, and
possibly, even contradictory messages.

In this paper, we assume the crash failure model. This is a reasonable assumption
because the abstraction of a crash failure model can be built on top of a system with
more complex modes of failure, and algorithms developed on this model can be extended
t o systems with other failure models [9,10]. We make further assumptions t h a t the
individual processes t h a t make up the parallel computation are deterministic, and t h a t
appropriate communication protocols are used to ensure reliable and ordered message
delivery. When a node fails we assume tha t the tuple space on the node, the unpro-
cessed messages which are residing in the receiver buffer, and the messages which are in
transit t o the node are all lost.

3. The computational model
Before presenting our solution t o fault-tolerant and highly available processes in

Linda, it is necessary t o outline a number of characteristics of our computational
model. These characteristics are determined both by the nature of the application
domain and by the use of the Linda parallel programming paradigm.

3.1. Characteristics of the application domain
The concurrency model is one of cooperating parallel processes rather than iso-

lated independent processes a s in database applications, for example. In the lat ter case,
the noninterference among processes makes serializability [ll] an appropriate notion of
consistency. The cooperative nature of the processes in our computational domain sug-
gests tha t serializability is no longer an appropriate consistency condition. In message
passing systems, approaches t o consistency have tended t o vary from models where pro-
cessors run in total synchrony, t o systems which provide little more than the basic mes-
sage passing mechanism thereby rendering only probabilistic behavioral statements pos-
sible [12]. Among the different models, the virtual synchrony model of Birman and
Joseph is the most appropriate for our applications.

The recovery model is also distinct from t h a t of a typical distributed database
application which is generally based on the concept of atomic actions. The motivation
in applications where d a t a is persistent is t h a t the intermediate s t a t e information of
one transaction should not be visible t o other transactions in the event of a failure.

Fault-Tolerant Processes in Linda

This is achieved by ensuring t h a t transactions execute once (to completion) or not a t all
(i.e. they abort). In our application i t is inappropriate for par ts of a parallel computa-
tion t o abort. Instead, we want to ensure the eventual completion of each pa r t of the
computation. Therefore, we must ensure more than atomicity. Furthermore, the long
life of processes makes i t inappropriate t o roll back the entire computation in order t o
restart following a failure. Consequently, we are interested in ensuring the continued
execution of the computation even in the presence of failures. This can be achieved
using techniques such as checkpointing.

3.2. Characteristics of Linda

Linda has several useful features, which make i t a good platform for developing
fault-tolerant applications in. Firstly, processes in Linda are decoupled in t ime. Both
the in() and the rd() operations on the tuple space block the calling process until they
find a tuple t h a t satisfies them. The combination of the blocking operations and the
level of indirection and buffering introduced by performing operations on the tuple
space rather than directly on the cooperating processes means t h a t Linda programmers
do not need t o assume anything about the relative execution speeds of cooperating
processes.

The above characteristic is particularly useful for fault-tolerance because it sug-
gests tha t individual processes in a parallel computation may be able t o recover from
failures independently. Any other process tha t depends on the results of a recovering
process will eventually block on an in() or a rd() until the failed process recovers.

Secondly, the processes in Linda are decoupled in space. Since all communication
takes place via the tuple space, processes need make no assumption about the location
of the processes with which they are communicating. This is a useful characteristic for
reliable distributed systems because it simplifies tasks such a s restarting failed processes
on other nodes and replicating processes.

Another important feature is the nondeterminism tha t is built into the receiver
operations of Linda. When a process does a receive operation, it will arbitrarily get one
of possibly several matching tuples. Since a given process may only be generating some
of possibly many matching tuples, the runtime system may be in a position t o sustain
the computation without blocking in the presence of some transient failures.

Nondeterminism together with the time and space decoupling features imply some
interesting properties for fault-tolerance. These are illustrated in the following section.
Discussion of our scheme requires the following definitions [13].

The state of a process is the s t a t e of all the variables of the process along with i t s
program counter, and i ts operating system state. The global state of a distributed com-
putation comprises of the s t a t e of all i ts processes, the s ta tes of the receive buffers, and
the s ta tes of the channels carrying the messages. The init ial state of a distributed sys-
tem is the s t a t e in which each process is in i ts initial s t a t e and each of i ts receive
buffers is empty, and there are no messages in transit.

An execut ion of a distributed system is a sequence of the form
a1 a 2 a3

So -, S, -, S2 -* ...,
where, each Si is a global system s ta te , and each cui is an action. Each action is the exe-
cution of a primitive statement by a process which atomically transforms the global

Fault-Tolerant Processes in Linda

s t a t e of the system. An execution is called failure-free if no process failure occurs dur-
ing the system execution. A global system s ta te S is a valid state if S occurs in some
failure-free execution.

4. Our design for highly available processes

Due t o the interdependencies among the processes in the computation, failure of
one node generally affects the entire computation. In order t o avoid having t o restart
the computation from the beginning, we base our recovery technique on periodic check-
pointing of process states. The checkpointing operation is performed unilaterally by
each process. Thus on a failure, a recent checkpointed s t a t e is available from which the
failed process can restart .

An additional constraint during recovery is t h a t if two processes exchange a mes-
sage a t some global s ta te , they should logically exchange the message again when
recovery is being at tempted from a n earlier state. We achieve this consistency in mes-
sage interaction by means of message logging. The interactions of each process are
recorded in the message logs before the interaction actually takes place.

TIME

Figure 1. Checkpointing with message logging.

In figure 1 for example, we have two communicating processes P and Q. The C's
represent checkpointing operations, while L's represent the message logging operations.
The processes record the messages in the message log before they are sent out. Simi-
larly, when a process receives a message, a copy of t h a t message is inserted in the logs.
Thus the contents of the messages exchanged before failure are available for reuse dur-
ing recovery.

Since this recording is being done on a per-process basis, the recovering processes
need not depend on information recorded by any other process t o complete its recovery.
Thus the recovery operations of each process are independent of the other processes.
Similarly, message logging gives the processes considerable freedom in unilaterally
deciding t o take checkpoints. This is because different checkpoints need not satisfy any
consistency criteria with respect t o any messages exchanged.

Fault-Tolerant Processes in Linda

The message log is kept by means of a log space. A log space is functionally similar
t o the tuple space because both are repositories of tuples. However, the log space stores
the information necessary for recovery purposes. This information includes the check-
points of the processes and the logs of the tuple exchange and certain other information
which we describe a little later. The log space and the tuple space need t o be kept
separate in order t o prevent the log tuples from matching any template in the normal
operation and conversely, t o prevent the tuples in the tuple space from matching any
templates during recovery.

4.1. O v e r v i e w o f the recovery p rocess

An important difference between the tuple space and the log space is based on the
ordering of tuples. While a tuple space is an unordered collection of tuples, the tuples
within the log space have a to ta l order based on the processld and the time of insertion.
The processId needs t o be tagged in order to identify the process t o which the log
belongs. The tuples of each process are ordered based on the sequence in which they
were inserted into the log space. The reason for the lat ter ordering is given below.

The nondeterminism feature of Linda implies t h a t the in() and o u t () operations
can interact with one of possibly many processes. When a process does an out() , i t
reveals i ts internal s t a t e t o the other processes, which might take some action based on
it. An in() affects the processes in another way. I t removes some s ta te from the tuple
space, t h a t might otherwise have caused some process t o take different actions had they
removed the tuple instead, thereby resulting in a different global state.

Therefore, if the result of the computation is t o be the same regardless of failures,
i t has t o be ensured t h a t the order in which tuples were matched before the failure is
maintained during recovery. This is stricter condition than is required in send receive
type of communication. Intuitively, the type of communication via the tuple space is
different because the in() operation can be used t o communicate information t o other
processes [13].

During the normal operations on the tuple space, a copy of the tuple is sent by the
process t o the log space. Figure 2 illustrates the process.

TUPLE SPACE PROCESS LOG SPACE

F i g u r e 2. Use of a separate log space.

Fault-Tolerant Processes in Linda

During recovery, the process replays the execution from its checkpointed s ta te . The
recovery scheme essentially consists of the following steps:

1. Load the checkpointed state.

2. For each send operation the recovering process verifies from the log space
whether the message had been sent before. If it had, the current send logi-
cally becomes a null operation. If i t had not, the message is sent and logged.

3 Similarly, if ensuing operation is a receive, the process verifies from the log
space whether the message had been received before. If i t had, the current
receive is satisfied by the tuple present in the log space. The tuple from the
log space is not removed, but i t is ensured t h a t the tuple match follows the
same order in which matching was done prior t o a failure. If a matching tuple
does not exist in the log space, the operation is performed on the tuple space.

4.2. Consistency of the log space and the tuple space

We need t o ensure t h a t the s ta tes of the log space, the tuple space and the
processes are consistent with each other a t all times. For example, suppose t h a t a pro-
cess P has done a n in() on a tuple t . The operations involved are:

t should be atomically removed from the tuple space.

t should be inserted into the log space.

the process should then continue its operation with t .

The algorithm should ensure tha t consistency is maintained, in the presence of
failures. When a successful match occurs, it has t o be ensured t h a t the same tuple does
not match any other template. We achieve correctness by means of marking tuples. On
a successful match, the tuple is marked a s matched t o indicate a logical removal from
the tuple space. A copy of the matched tuple is now put into the log space. After the
copying operation onto the log space is successful, the tuple in the log space is marked
as copied; and the tuple is removed from the tuple space. The tuple in the log space
now becomes a log tuple.

Any matched tuples left in the tuple space by a failed process are indicative of the
fact t h a t the in() operation was not completed successfully. If the copying operation
was not successful as well, the tuple should be available for reuse. These are precisely
the tuples which have been matched by the process in the tuple space, but which do not
exist in the log space. When the recovery manager detects the failure of a process, it
unmarks all these tuples and makes them available for use. On the other hand, if the
recovery manager finds any matched tuples in the tuple space, a copy of which exists a s
a copied tuple in the log space, those tuples are removed from the tuple space. I t is
ensured tha t the processlds are tagged onto the tuples t o prevent inconsistencies. The
transitions of the s t a t e of the tuple can be represented a s shown in figure 3. A sum-
mary of the recovery actions based on the tuple s t a t e is given in table 1. Similar
actions are performed for out() and rd().

I t is important t h a t the checkpointing operation be done without loosing previous
information. This is ensured by deletion of the previous checkpoint only after the
current checkpoint has been taken. When the new checkpoint is written the log tuples
of the process can safely be removed. Since, the log tuples need only be kept in the log

Fault-Tolerant Processes in Linda

Tuple space log space

Figure 3. Life and times of a tuple.

Table 1. Action performed by on failure by the recovery manager.

in tuple space

unmatched
matched
matched

space between checkpoints for each process, and since the number of processes is finite,
the log space always contains a finite number of tuples, if the checkpointing operation is
done periodically. The algorithms for checkpointing and Linda operations are outlined
in figures 4 and 5.

4.3. Replication for availability

in log space

-
copied
copied

log

Message logging and checkpointing ensures the fault-tolerance of processes. In
order t o achieve high availability in the tuple spaces, we need t o replicate the tuple
space. Some of the replication issues have been addressed in a n earlier paper [14]. In
order t o make the processes highly available a s well a s fault-tolerant we replicate the
recovery information associated with each process. In our scheme, we t rea t the tuple
space and the log space analogously and apply the tuple space replication algorithms t o
provide the same degree of availability t o for the log space a s for the tuple space itself.

recovery manager
-

unmark
remove

-
-

recovering process
-

use from log space
use from log space
use from log space

Fault-Tolerant Processes in Linda

~ r o c e d u r e checkpoint(P)
begin

increment checkpoint number for P in log space
put the state of P onto log space
delete the all messages logged for P
delete the previous checkpointed state

end
Figure 4. Checkpointing operation

/* Linda operations at run time */
procedure LindaOperations(operation)
begin

case operation of
in():
rd():

match a tuple locally
mark the tuple as matched
copy the tuple onto the log space and mark LS tuple as copied
if (operation = in()) remove tuple from the tuple space
mark LS tuple as log
tag the tuple in the log space

out():
put the tuple in the log space and mark it as created
copy it onto the tuple space and mark it as unmatched
mark the LS tuple as log

end
Figure 5. Linda operations a t run time.

4.4. Failure Detection and the recovery manager

The recovery of the processes is managed by a distinguished process called the
recovery manager. When the recovery manager detects a failed process, i t waits until
the node recovers and spawns a new process with the checkpointed s ta te . If the failed
node does not recover in some time T, the recovery manager spawns a new process on a
different node and loads the replicated checkpointed s t a t e on t h a t process.

Failure detection is tricky because the processes seldom interact with each other
directly. Our solution is based on the recognition of the fact t h a t the common meeting
point for all the processes is the tuple space itself. So, each process periodically puts a n
I am alive tuple into the tuple space. The recovery manager regularly reads the tuple
space for these tuples. Failure t o get a tuple from a process would indicate the necessity
of a corrective action. The I am alive tuples of different processes need t o be distinguish-
able from each other. They need not be distinguishable among themselves because a t
any given time only one would be residing in the tuple space.

The failure of the recovery manager itself can be detected by making the processes
check if their previous I am alive tuples are still present in the tuple space, before they

Fault-Tolerant Processes in Linda

insert the new ones. If the tuple space has some unconsumed tuples, another recovery
manager needs t o be invoked. I t is conceivable t h a t the recovery manager fails in the
middle of a repair operation. T o take care of this eventuality, the recovery manager
needs to log the fact t h a t it is s tart ing the recovery process a t some node. This log is
not logically a par t of the tuple space, thus it is put into the log space. The interaction
of the recovery manager with the tuple space and the log space can be shown a s in
figure 6. The recovery Manager algorithm is outlined in figure 7. We are exploring the
possibilities of making the recovery manager more efficient by decentralizing i t and are
also looking into ways of piggybacking the I am alive tuples for minimum overhead on
the processes.

TUPLE SPACE LOG SPACE

I am

alive
D

tuples

Figure 6. Interactions of the recovery manager

/* invoked on a process failure detection */
procedure recovery-manager()
begin

periodically do
look for I a m alive tuples for all processes
remove them from the tuple space

if (failure detected) then
write a log stating failed process and start attempt
wait till node comes back up
if (timeout) spawn a new process on a different node

else spawn a process on the failed node
retrieve the checkpointed state for the failed process
remove inconsistencies in tuple space and log space for the process
start executing the process
remove start recovery attempt log

end
Figure 7. Recovery manager process

Fault-Tolerant Processes in Linda

4.5. Some attractive features of our scheme

Independent checkpointing and message logging are central t o our scheme. An
alternative might be not t o log messages a t all, but keep the checkpoints consistent
[15,16,17,18]. In these schemes, several processes need t o rollback t o their earlier con-
sistent s t a t e so t h a t replay will correctly handle message interactions. Some of the
advantages of our scheme are:

The checkpointing operation can be performed unilaterally by each process.
In particular, the checkpoints of different processes need not be consistent in
order t o ensure recovery.

Replay is limited t o just the failed process. The alternative mentioned above
might result in several functional processes t o rollback and re-execute from
their checkpointed state.

There is no roll back involved. The processes which fail, s t a r t again from
their previous checkpointed s ta te . This is the only way in which a process
goes back t o a previous s t a t e in time. As a consequence of the above, we do
not have the problem of undoing interactions or side effects.

The proposed scheme implements recovery efficiently. Since interprocess
communication does not take place during replay, all interactions are logi-
cally performed only once. Thus, we reduce communication overheads. Also,
recovery is faster because we are no longer bothered about determining all
the processes we had interacted with in order t o rollback t o consistent check-
pointed states.

The benefits listed above are gained a t the expense of the space t h a t is required
for storing the message logs. However, we contend tha t the space overhead is reason-
able. The additional space required is directly proportional t o the number of messages
tha t need t o be logged before a checkpoint happens. In the trivial case, we can check-
point after every message received, thereby ensuring no space overhead a t all, while in
a more realistic case, we might want t o take checkpoints based on the event of the
space allocated for logs getting full.

4.6. Fault-tolerance conditions and correctness of our scheme

Any implementation supporting fault-tolerant processes must ensure the following
fault-tolerance conditions.

FT1. Correctraess condition. The result of a computation should be the same as the
result of some failure-free execution. Here the meaning of same depends on
the semantics of the domain in which the computation is taking place.

FTP. Termination condition. The computation will reach a final s t a t e in finite
amount of time if a t least one node is operational.

F T 2 ensures tha t any failure detection and recovery algorithms should all ter-
minate and have the effects which ensure FT1.

Fault-Tolerant Processes in Linda

Correctness Argument

Here we give a n informal argument t o say t h a t our scheme satisfies the fault-
tolerance conditions FT1 and FT2.

First, we assume t h a t a failure-free execution satisfies the condition FT2. What
remains t o be shown is t h a t the recovery scheme will put the failed process in the same
s ta te a s it was before the failure. We also need t o show t h a t this happens in a finite
amount of time given the fact tha t a t least one (any) node is functional.

For a failed process t o recover, the recovery manager, loads the checkpointed s t a t e
into a new process. A deterministic process would, given the checkpointed s ta te , go
through the same sequence of s ta tes tha t it went through before the failure. When i t
reaches the point where i t had interacted with some other process, it looks into i ts mes-
sage log. Since the tuples match templates in the order in which they entered the log
space, the recovering process is fed with the same tuples, which it had seen before the
failure and in the same order.

For each tuple operation, we follow the approach outlined in the recovery scheme.
I t is important t o realize t h a t any tuple which has been sent or received before the
failure is present in the logs. The converse is also true. Any tuple which is not there in
the log has not been received or sent. Once such a point is reached, we know the process
is back t o where it was before the failure. Therefore, the scheme puts the recovering
process back in the same s ta te a s i t was in before failure. Same in the context of Linda
is with regard t o the nondeterminism built into the tuple matching operation.

For the termination condition to be satisfied, we note t h a t our scheme spawns the
process on a separate node if the failed node does not come back up in some time T.
The rest of the termination proof follows from the fact t h a t since there can only be
finitely many tuples in the log space the amount of time taken for the recovery from
the loading of checkpointed s t a t e t o normal running condition, is finite.

5. Estimation of Overheads

One way of estimating overheads in our recovery scheme is t o compare the
number of logical tuple operations which occur in our scheme with the number in a n
implementation without fault-tolerance. The number of logical tuple operations can be
expressed as:
Number of operations = number of tuple operations a s given in the program

+ number of tuples logged onto the log space
+ expected number of additional operations incurred because of failures
+ number of operations for flushing of the log space
+ the number of operations for checkpointing
+ the number of tuples for failure detection
+ the number of operations when the recovery manager fails
+ number of start recovery tuples.

Suppose that ,

N = number of tuple operations t o be performed by the program
p = number of processes
,u = failure r a te
X = recovery ra te

Fault-Tolerant Processes in Linda

n = average number of tuples present in the log space on failure
j = frequency of checkpointing operation
T = duration of the program

The number of tuple operations on a failure is the average number of tuples read
from the log (n). During recovery, these tuples are not written back onto the log space.
So, the overall ra te a t which the tuples are read from the log space is given by pTn.
The number of d a t a tuples written onto the log space is, of course, N. The number of
checkpoints taken per process is given by fT. So, pjT checkpoint tuples are put into the
system. Therefore the log space is flushed pjT times. On a flush, all the tuples in the
log space are removed. Since the average size of the log space is n, the number of tuples
read off during the flushing operations is npjT.

Assuming t h a t the I am alive tuples are put in the tuple space a t the same ra te a s
f, the number of I a m alive put in the tuple space are fTp. Since a read operation pre-
cedes the insertion, (to check for the recovery manager failure), and the fact t h a t the
recovery manager reads the same number of tuples t o detect failures, the number of
tuple operations is 3fTp. Noting the fact tha t the recovery manager is just another pro-
cess, the number of failures of the recovery manager is pT. No tuples are inserted in the
tuple space or the log space due t o this. The number of start recovery tuples is the same
a s the number of failures (ppT).

We have a n equality which we have not mentioned so far. Since the average
number of tuples in the log space is n and the ra te a t which the log space is flushed per
process jT times,

N - = n.
fT

Therefore, the total number of tuples operations performed when highly available
processes are implemented, Nhap, is

N h a p = N + p T n + N + n p f T + 3 f T p + f T p + p T + p p T .
Or,

We see, t h a t the number of tuple operations is linear in N.

6. Related work
Considerable work has been reported on reliable computing in distributed systems.

We briefly describe the work on achieving reliable processes.

Recoverable Processes
Recoverable processes are usually based on checkpointing of the process s ta te . The

schemes differ in the model of interprocess communication and in the way of maintain-
ing correctness in the global state. The scheme proposed by Bart let t in [19] assumes a
synchronous model of communication. Asynchronous message passing has been con-
sidered by many researchers [5,20,4,21]. While most of them have some form of mes-
sage logging, they differ in issues of the identity of the process doing the logging, the
amount of redundancy required, and the nature of the recovery process.

Fault-Tolerant Processes in Linda

A fundamentally different view for achieving fault-tolerance is by distributed con-
sistent checkpointing [IS, 16,17,18]. This technique removes the requirement for log-
ging. However the failure of one process may cause other processes in the system t o roll
back. Multiple failures require complicated recovery techniques.

Highly Available processes

Borg et a1 141 propose a n approach t o making processes highly available t h a t is
based on the concept of providing a backup process for each active process. The backup
process resides on a different processor and is passive. Whenever a message is sent t o a
process, the same message is also sent t o i t s backup. Similarly, replies are also sent t o
the backup process. There are two disadvantages t o this mechanism. First, there is a
twofold increase in the number of processes and a threefold increase in the communica-
tion traffic in the system. Second, the communication mechanism needs t o ensure t h a t
a process and i ts backup always agree on the interactions tha t the process is involved
in.

Another approach, suggested by Powell and Presotto [5], is to have only one pro-
cess in the system which records the messages t h a t are passed between the others.
When a failure occurs, the failed process must be restarted and must ask the central
process for a record of all the interactions the original process had participated in.
There are several problems with this approach. First, the recorder process is critical.
Second the recorder process is a bottleneck. Finally, the efficiency of the approach
depends t o a large extent on the topology of the underlying network.

The approaches mentioned before have t o get another process s tar ted when a
failure occurs. Unfortunately, the delay involved in doing so might not be satisfactory
for some real time applications. Work reported in the area of active replicas has been in
terms of troupes [6] and Available Processes [7]. This approach results in a n increase in

2
the number of processes by a factor of N and the number of messages by a factor of N ,
where N is the degree of replication.

Our approach t o highly available processes has been t o integrate the approaches
for highly available d a t a along with recoverable processes. This approach lends us
immunity against the dependence on one distinguished process, while eliminating the
redundancy in the number of processes a s well.

Fault-tolerance in Linda
T o our knowledge, only one project has specifically addressed the issue of fault-

tolerance in Linda [22,23]. However, this research only addressed the issue of providing
a highly available tuple space via replication of the entire tuple space. The virtual par-
tition algorithm [24] is used t o maintain the mutual consistency of the replicas. Each
replica has a n associated view which changes a s the communication capability of the
replica changes. Accesses within a view are based on the read-any-write-all protocol. A
fundamental requirement of this scheme is t h a t each view has a majority of the replicas
and t h a t during the creation of a new view a t least one member of the previous view is
included. Hence, the availability of the tuple space depends on the availability of a
majority of the replicas.

Fault-Tolerant Processes in Linda

Our research differs from t h a t of Xu and Liskov in a number of respects. First, we
address the full spectrum of reliability issues for loosely-coupled distributed Linda sys-
tems, including recoverable and highly available processes a s well as recoverable and
highly available tuple spaces. Second, our research in the specific area of tuple space
replication is distinct from t h a t of Xu and Liskov in the sense tha t we investigate
methods for replicating different granularities of tuple space d a t a and we require a
higher level of availability for out tuple space especially in the presence of network par-
titions and the failure of a majority of the nodes [14].

7. Conclusions

In this paper we addressed the issues in reliable support for long lived parallel
applications in a loosely coupled distributed environment. The basis for the paper was
t h a t in these domains, cooperation among processes necessitates the requirement for
high availability in d a t a and processes.

We looked a t the features in Linda t h a t make it a suitable environment for fault-
tolerance. We then introduced a way of implementing highly available processes in
Linda. Our approach for achieving high availability was t o integrate the approaches of
fault-tolerance with replication. We were motivated in the design of our scheme by the
ease of checkpointing, the reduced effort during recovery, and by the limited amount of
replay necessary.

References

R. Bjornson, N. Carriero, D. Gelernter, and Jerrold Leichter, "Linda, the Portable Paral-
lel," Yale Univ. Dept. Comp. Sci. RR-520, January 1988.

N. Carriero and D. Gelernter, "Linda in Context," Communications of the ACM, vol. 32, 4,
pp. 444-458.

N. Carriero, D. Gelernter, and Jerrold Leichter, "Distributed Data Structures in Linda,"
Proceedings of the ACM Symposium on Principles of Programming Languages, January
1986.

A. Borg, J. Baumbach, and S. Glazer, "A Message System Supporting Fault Tolerance,"
Proceedings of the ninth Symposium on Operating Systems Principles, pp. 90- 99, 1983.

M. L. Powell and D. L. Presotto, "Publishing- A Reliable Broadcast Communication
Mechanism," Proceedings of the ninth Symposium on Operating Systems Principles, pp. 100-
109, 1983.

E. Cooper, Replicated Distributed Programs, pp. 63-78, ACM, 1985.

L. V. Mancini and S. K. Shrivastava, "Replication within Atomic Actions and Conversa-
tions: A Case Study in Fault-Tolerance Duality," Proceedings of the nineteenth Symposium
on Fault Tolerant Computing, pp. 454-461, 1989.

T. A. Joseph and K. P. Birman, "Reliable Broadcast Protocols," Cornell University, TR
88-918, June 1988.

R. D. Schlichting and F. B. Schneider, "Fail Stop Processors: An Approach to Designing
Fault-Tolerant Computing Systems," ACM Transactions on Computing Systems, vol. 1,3,
pp. 222-238, 1983.

G. Neiger and S. Toueg, "Automatically Increasing the Fault-Tolerance of Distributed
Systems," Proceedings of the seventh ACM Symposium on Principles of Distributed Comput-
ing, 1988.

Fault-Tolerant Processes in Linda

K. Eswaren, J. Gray, R . Lorie, and I. Traiger, "The notion of consistency and predicate
locks in a database system," Communications of the ACM, vol. 19, pp. 624-633, Nov 1976.

K. P. Birman and T. A. Joseph, "Exploiting Replication," Cornell University TR-88-917,
June 1988.

P. Jalote, "Fault Tolerant Processes," Distributed Computing, vol. (1989)3, pp. 187-195,
Springer Verlag.

J. Walpole and S. Kambhatla, Replication issues for Long-Lived Parallel Computations in a
Loosely-Coupled Distributed Environment, 1990. The Workshop on Management of Repli-
cated Data, 1990.

P. Leu and B. Bhargava, "Concurrent Robust Checkpointing and Recovery in Distributed
Systems," Proceedings of the Eighth International Conference on Data Engineering, pp. 154-
163, 1988.

G. Barigazzi and L. Strigini, "Application Transparent Setting of Recovery Points,"
Proceedings of the thirteenth IEEE Syrnp on Fault Tolerant Computing, Milano, Italy, 1983.

R. Koo and S. Toueg, "Checkpointing and Rollback Recovery for distributed systems,"
IEEE Transactions on Software Engineering, vol. SE-13, 1, pp. 23- 31, 1987.

Y. Tamir and C. H. Sequin, "Error recovery in multicomputers using global checkpoints,"
Proceedings of the thirteenth International Conference on Parallel Processing, 1984.

J. F. Bartlett, "A Nonstop Kernel," Proceedings of the eighth Symposium on Operating Sys-
tems Principles, pp. 22- 29, 1981.

R. E . Strom and S. Yemini, "Optimistic Recovery: a n asynchronous approach t o fault
tolerance in distributed systems," Fourteenth International Fault Tolerant Computing Sym-
posium, pp. 374- 379, 1984.

D. B. Johnson and W. Zwaenepoel, "Sender based Message Logging," Seventeenth Interna-
tional Fault Tolerant Computing Symposium, pp. 14- 19, 1987.

A. S. Xu, "A Fault Tolerant Network Kernel for Linda," MIT Laboratory for Computer
Science, Master's Thesis, 1988.

A. S. Xu and B. Liskov, "A design for a Fault Tolerant, Distributed Implementation of
Linda," Proceedings of the ninth International Symposium on Fault Tolerant Computing, pp.
199 - 206, IEEE, 1989.

A. El Abbadi, D. Skeen, and F . Christian, "An Efficient Fault Tolerant Protocol for Repli-
cated Data Management," Proceedings of the Fourth ACM Symposium on Principles of
Database Systems, pp. 215-228, Portland, 1985.

