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ABSTRACT 

Research in the area  of fault-tolerant distributed systems has focused t o  a large 
extent on d a t a  surviving various forms of failure. The replica control algorithms for 
maintaining mutually consistent replicas abound in number. However, comparatively 
little work has  been devoted t o  making processes recoverable. In domains other than 
databases and transaction processing, fault-tolerance generally implies both fault- 
tolerant d a t a  and fault-tolerant processes. In environments where cooperation among 
processes is important we argue t h a t  high availability of processes in addition to  their 
recoverability is crucial. 

Our specific interest is in the Linda tuple space paradigm. In this paper we discuss 
efficient techniques for making Linda processes recoverable and outline some charac- 
teristics of Linda t h a t  make it particularly suitable for implementing fault-tolerance. 
We also propose a simple extension t o  our recoverable process mechanism t h a t  makes 
processes highly available. 

[keywords: fault-tolerant processes, high availability, recovery, Linda tuple space, 
replay, message logging]. 

1. Introduction 

Local area  network based distributed systems are  low in cost, widely available and 
generally have a considerable amount of unused processing capacity. These characteris- 
tics make them potentially at tractive a s  economical vehicles for supporting long-lived 
computation intensive applications such a s  scientific computations and simulations. 

Such computations are typically structured a s  a set  of processes t h a t  run in paral- 
lel and cooperate t o  achieve a common goal. In this paper, we address the issues associ- 
ated with supporting long-lived parallel applications using the Linda programming T 

paradigm [1,2,3]. Linda presents a simple and an elegant model of parallel computa- 
tion in which Linda programmers view a distributed system as  a virtual uniprocessor 
containing a bag of tuples. When a process wishes t o  communicate with another process 
it leaves a tuple in the tuple space. Likewise, a process wishing t o  receive a message 
looks for i t  in the tuple space. This indirection makes Linda processes location indepen- 
dent. 

The long duration of computations in the application domain we have outlined 
makes reliability an important concern. Failures can affect such applications through a 
loss of da ta ,  a loss of computation, or both. Different approaches can be taken t o  
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cushion against these failures: 

D a t a  can be made recoverable. This ensures t h a t  the d a t a  is left in a con- 
sistent s t a t e  following failures. 

D a t a  can be made highly available. This ensures t h a t  the d a t a  remains acces- 
sible in the presence of failures. 

Processes can be made recoverable. This ensures t h a t  the computation need 
not be restarted from the beginning when a failed node recovers. 

Processes can be made highly available. This ensures t h a t  the entire computa- 
tion can make progress in the presence of failures. 

In a n  application domain where d a t a  is persistent, it is often useful t o  make d a t a  
highly available even when processes are not. The reason for this is t h a t  such applica- 
tions usually involve transactions tha t  run in isolation. Such transactions are  indepen- 
dent of all other transactions, and their results are solely dependent on the s t a t e  of the 
database when the transaction starts .  However, in a cooperative parallel processing 
environment, like t h a t  of scientific computation, maintaining highly available d a t a  (i.e. 
the tuples in Linda context) is not enough. In such environments, the completion of the 
computation requires the successful completion of all the processes involved in the com- 
putation. Furthermore, it is usually the case tha t  no one process can remain in a failed 
s t a t e  while the others continue. Therefore, in such applications high availability can 
only be at tained by supporting both highly available d a t a  and highly available 
processes. 

Various solutions t o  the problem of highly available processes have been suggested 
in the literature. These include backup processes [4], single recorder process [5] ,  troupes 
[6], and Available Processes [7]. These schemes provide highly available processes a t  
varying costs. The backup process scheme, troupes and available processes all involve 
one or more redundant process, per active process in the system. Such approaches gain 
availability a t  the cost of considerable processing capacity t h a t  could otherwise be used 
by the application. In the recorder process scheme, the recorder process itself is a criti- 
cal point. 

In this paper, we present a n  efficient technique for making Linda processes highly 
available. Our approach does not require additional language constructs, and does not 
impose additional synchronization constraints on processes. Furthermore, we do not 
require any special hardware t o  record messages, nor is the recording of information 
restricted t o  a single centralized node. 

The main technical contributions of this paper are the following: 

I t  suggests t h a t  the requirements of a cooperative distributed computing 
environment necessitate both highly available processes and highly available 
data .  

I t  draws attention t o  Linda as  a particularly suitable model for fault-tolerant 
applications and gives an  efficient design for highly available processes in 
Linda. This is achieved by integrating the techniques of recoverable processes 
and highly available da ta .  

The paper is organized a s  follows. In section 2, we present our failure model. In 
section 3, we discuss the concurrency and recovery model of our system, and the 
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properties of Linda tha t  make i t  suitable for fault-tolerant applications. In section 4, 
we present our design for highly available processes in Linda. Section 5 analyzes the 
performance of the proposed mechanism, and section 6 discusses related work. Finally, 
section 7 concludes the paper. 

2. The Failure Model 

Failures can be classified into several broad categories, based on the behavior of 
processors (81. 

Crash Failures: the failed nodes simply stop on failing and all processes on the 
node die. 

Omission Failures: nodes occasionally fail t o  send or receive messages t h a t  
they should. 

Byzantine Failures: processors malfunction by sending spurious messages, and 
possibly, even contradictory messages. 

In this paper, we assume the crash failure model. This is a reasonable assumption 
because the abstraction of a crash failure model can be built on top of a system with 
more complex modes of failure, and algorithms developed on this model can be extended 
t o  systems with other failure models [9,10]. We make further assumptions t h a t  the 
individual processes t h a t  make up the parallel computation are deterministic, and t h a t  
appropriate communication protocols are used to  ensure reliable and ordered message 
delivery. When a node fails we assume tha t  the tuple space on the node, the unpro- 
cessed messages which are residing in the receiver buffer, and the messages which are in 
transit t o  the node are  all lost. 

3. The computational model 
Before presenting our solution t o  fault-tolerant and highly available processes in 

Linda, it is necessary t o  outline a number of characteristics of our computational 
model. These characteristics are  determined both by the nature of the application 
domain and by the use of the Linda parallel programming paradigm. 

3.1. Characteristics of the application domain 
The concurrency model is one of cooperating parallel processes rather than iso- 

lated independent processes a s  in database applications, for example. In the lat ter  case, 
the noninterference among processes makes serializability [ll] an appropriate notion of 
consistency. The cooperative nature of the processes in our computational domain sug- 
gests tha t  serializability is no longer an  appropriate consistency condition. In message 
passing systems, approaches t o  consistency have tended t o  vary from models where pro- 
cessors run in total  synchrony, t o  systems which provide little more than the basic mes- 
sage passing mechanism thereby rendering only probabilistic behavioral statements pos- 
sible [12]. Among the different models, the virtual synchrony model of Birman and 
Joseph is the most appropriate for our applications. 

The recovery model is also distinct from t h a t  of a typical distributed database 
application which is generally based on the concept of atomic actions. The motivation 
in applications where d a t a  is persistent is t h a t  the intermediate s t a t e  information of 
one transaction should not be visible t o  other transactions in the event of a failure. 
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This is achieved by ensuring t h a t  transactions execute once ( to completion) or not a t  all 
(i.e. they abort). In our application i t  is inappropriate for par ts  of a parallel computa- 
tion t o  abort. Instead, we want to ensure the eventual completion of each pa r t  of the 
computation. Therefore, we must ensure more than atomicity. Furthermore, the long 
life of processes makes i t  inappropriate t o  roll back the entire computation in order t o  
restart  following a failure. Consequently, we are interested in ensuring the continued 
execution of the computation even in the presence of failures. This can be achieved 
using techniques such as  checkpointing. 

3.2. Characteristics of Linda 

Linda has several useful features, which make i t  a good platform for developing 
fault-tolerant applications in. Firstly, processes in Linda are decoupled in t ime.  Both 
the in() and the rd() operations on the tuple space block the calling process until they 
find a tuple t h a t  satisfies them. The combination of the blocking operations and the 
level of indirection and buffering introduced by performing operations on the tuple 
space rather than directly on the cooperating processes means t h a t  Linda programmers 
do not need t o  assume anything about the relative execution speeds of cooperating 
processes. 

The above characteristic is particularly useful for fault-tolerance because it sug- 
gests tha t  individual processes in a parallel computation may be able t o  recover from 
failures independently. Any other process tha t  depends on the results of a recovering 
process will eventually block on an in() or a rd() until the failed process recovers. 

Secondly, the processes in Linda are  decoupled in space. Since all communication 
takes place via the tuple space, processes need make no assumption about the location 
of the processes with which they are communicating. This is a useful characteristic for 
reliable distributed systems because it simplifies tasks such a s  restarting failed processes 
on other nodes and replicating processes. 

Another important feature is the nondeterminism tha t  is built into the receiver 
operations of Linda. When a process does a receive operation, it will arbitrarily get one 
of possibly several matching tuples. Since a given process may only be generating some 
of possibly many matching tuples, the runtime system may be in a position t o  sustain 
the computation without blocking in the presence of some transient failures. 

Nondeterminism together with the time and space decoupling features imply some 
interesting properties for fault-tolerance. These are illustrated in the following section. 
Discussion of our scheme requires the following definitions [13]. 

The state of a process is the s t a t e  of all the variables of the process along with i t s  
program counter, and i ts  operating system state.  The global state of a distributed com- 
putation comprises of the s t a t e  of all i ts  processes, the s ta tes  of the receive buffers, and 
the s ta tes  of the channels carrying the messages. The init ial  state of a distributed sys- 
tem is the s t a t e  in which each process is in i ts  initial s t a t e  and each of i ts  receive 
buffers is empty, and there are no messages in transit.  

An execut ion of a distributed system is a sequence of the form 
a1 a 2  a3 

So -, S, -, S2 -* ..., 
where, each Si is a global system s ta te ,  and each cui is an  action. Each action is the exe- 
cution of a primitive statement by a process which atomically transforms the global 
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s t a t e  of the system. An execution is called failure-free if no process failure occurs dur- 
ing the system execution. A global system s ta te  S is a valid state if S occurs in some 
failure-free execution. 

4. Our design for highly available processes 

Due t o  the interdependencies among the processes in the computation, failure of 
one node generally affects the entire computation. In order t o  avoid having t o  restart  
the computation from the beginning, we base our recovery technique on periodic check- 
pointing of process states.  The checkpointing operation is performed unilaterally by 
each process. Thus  on a failure, a recent checkpointed s t a t e  is available from which the 
failed process can restart .  

An additional constraint during recovery is t h a t  if two processes exchange a mes- 
sage a t  some global s ta te ,  they should logically exchange the message again when 
recovery is being at tempted from a n  earlier state.  We achieve this consistency in mes- 
sage interaction by means of message logging. The interactions of each process are 
recorded in the message logs before the interaction actually takes place. 

TIME 

Figure 1. Checkpointing with message logging. 

In figure 1 for example, we have two communicating processes P and Q. The C's 
represent checkpointing operations, while L's represent the message logging operations. 
The processes record the messages in the message log before they are  sent out. Simi- 
larly, when a process receives a message, a copy of t h a t  message is inserted in the logs. 
Thus the contents of the messages exchanged before failure are available for reuse dur- 
ing recovery. 

Since this recording is being done on a per-process basis, the recovering processes 
need not depend on information recorded by any other process t o  complete its recovery. 
Thus  the recovery operations of each process are independent of the other processes. 
Similarly, message logging gives the processes considerable freedom in unilaterally 
deciding t o  take  checkpoints. This is because different checkpoints need not satisfy any 
consistency criteria with respect t o  any messages exchanged. 
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The message log is kept by means of a log space. A log space is functionally similar 
t o  the tuple space because both are repositories of tuples. However, the log space stores 
the information necessary for recovery purposes. This information includes the check- 
points of the processes and the logs of the tuple exchange and certain other information 
which we describe a little later. The log space and the tuple space need t o  be kept 
separate in order t o  prevent the log tuples from matching any template in the normal 
operation and conversely, t o  prevent the tuples in the tuple space from matching any 
templates during recovery. 

4.1. O v e r v i e w  o f  the recovery  p rocess  

An important difference between the tuple space and the log space is based on the 
ordering of tuples. While a tuple space is an  unordered collection of tuples, the tuples 
within the log space have a to ta l  order based on the processld and the time of insertion. 
The processId needs t o  be tagged in order to  identify the process t o  which the log 
belongs. The tuples of each process are ordered based on the sequence in which they 
were inserted into the log space. The reason for the lat ter  ordering is given below. 

The nondeterminism feature of Linda implies t h a t  the in() and o u t ( )  operations 
can interact with one of possibly many processes. When a process does an  out() ,  i t  
reveals i ts  internal s t a t e  t o  the other processes, which might take some action based on 
it.  An in() affects the processes in another way. I t  removes some s ta te  from the tuple 
space, t h a t  might otherwise have caused some process t o  take different actions had they 
removed the tuple instead, thereby resulting in a different global state.  

Therefore, if the result of the computation is t o  be the same regardless of failures, 
i t  has t o  be ensured t h a t  the order in which tuples were matched before the failure is 
maintained during recovery. This is stricter condition than is required in send receive 
type of communication. Intuitively, the type of communication via the tuple space is 
different because the in() operation can be used t o  communicate information t o  other 
processes [13]. 

During the normal operations on the tuple space, a copy of the tuple is sent by the 
process t o  the log space. Figure 2 illustrates the process. 

TUPLE SPACE PROCESS LOG SPACE 

F i g u r e  2. Use of a separate log space. 
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During recovery, the process replays the execution from its  checkpointed s ta te .  The 
recovery scheme essentially consists of the following steps: 

1. Load the checkpointed state.  

2. For each send operation the recovering process verifies from the log space 
whether the message had been sent before. If it had, the current send logi- 
cally becomes a null operation. If i t  had not, the message is sent and logged. 

3 Similarly, if ensuing operation is a receive, the process verifies from the log 
space whether the message had been received before. If i t  had, the current 
receive is satisfied by the tuple present in the log space. The tuple from the 
log space is not removed, but i t  is ensured t h a t  the tuple match follows the 
same order in which matching was done prior t o  a failure. If a matching tuple 
does not exist in the log space, the operation is performed on the tuple space. 

4.2. Consistency of the log space and the tuple space 

We need t o  ensure t h a t  the s ta tes  of the log space, the tuple space and the 
processes are consistent with each other a t  all times. For example, suppose t h a t  a pro- 
cess P has done a n  in() on a tuple t .  The operations involved are: 

t should be atomically removed from the tuple space. 

t should be inserted into the log space. 

the process should then continue its operation with t .  

The algorithm should ensure tha t  consistency is maintained, in the presence of 
failures. When a successful match occurs, it has t o  be ensured t h a t  the same tuple does 
not match any other template. We achieve correctness by means of marking tuples. On  
a successful match, the tuple is marked a s  matched t o  indicate a logical removal from 
the tuple space. A copy of the matched tuple is now put into the log space. After the 
copying operation onto the log space is successful, the tuple in the log space is marked 
as  copied; and the tuple is removed from the tuple space. The tuple in the log space 
now becomes a log tuple. 

Any matched tuples left in the tuple space by a failed process are  indicative of the 
fact t h a t  the in() operation was not completed successfully. If the copying operation 
was not successful as well, the tuple should be available for reuse. These are precisely 
the tuples which have been matched by the process in the tuple space, but  which do not 
exist in the log space. When the recovery manager detects the failure of a process, it 
unmarks all these tuples and makes them available for use. On the other hand, if the 
recovery manager finds any matched tuples in the tuple space, a copy of which exists a s  
a copied tuple in the log space, those tuples are removed from the tuple space. I t  is 
ensured tha t  the processlds are tagged onto the tuples t o  prevent inconsistencies. The 
transitions of the s t a t e  of the tuple can be represented a s  shown in figure 3. A sum- 
mary of the recovery actions based on the tuple s t a t e  is given in table 1. Similar 
actions are performed for out() and rd(). 

I t  is important t h a t  the checkpointing operation be done without loosing previous 
information. This is ensured by deletion of the previous checkpoint only after the 
current checkpoint has been taken. When the new checkpoint is written the log tuples 
of the process can safely be removed. Since, the log tuples need only be kept in the log 
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Tuple space log space 

Figure 3. Life and times of a tuple. 

Table 1. Action performed by on failure by the recovery manager. 

in tuple space 

unmatched 
matched 
matched 

space between checkpoints for each process, and since the number of processes is finite, 
the log space always contains a finite number of tuples, if the checkpointing operation is 
done periodically. The algorithms for checkpointing and Linda operations are outlined 
in figures 4 and 5. 

4.3. Replication for availability 

in log space 

- 
copied 
copied 

log 

Message logging and checkpointing ensures the fault-tolerance of processes. In 
order t o  achieve high availability in the tuple spaces, we need t o  replicate the tuple 
space. Some of the replication issues have been addressed in a n  earlier paper [14]. In 
order t o  make the processes highly available a s  well a s  fault-tolerant we replicate the 
recovery information associated with each process. In our scheme, we t rea t  the tuple 
space and the log space analogously and apply the tuple space replication algorithms t o  
provide the same degree of availability t o  for the log space a s  for the tuple space itself. 

recovery manager 
- 

unmark 
remove 

- 
- 

recovering process 
- 

use from log space 
use from log space 
use from log space 
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~ r o c e d u r e  checkpoint(P) 
begin 

increment checkpoint number for P in log space 
put the state of P onto log space 
delete the all messages logged for P 
delete the previous checkpointed state 

end 
Figure 4. Checkpointing operation 

/* Linda operations at run time */ 
procedure LindaOperations(operation) 
begin 

case operation of 
in(): 
rd(): 

match a tuple locally 
mark the tuple as matched 
copy the tuple onto the log space and mark LS tuple as copied 
if (operation = in()) remove tuple from the tuple space 
mark LS tuple as log 
tag the tuple in the log space 

out(): 
put the tuple in the log space and mark it as created 
copy it onto the tuple space and mark it as unmatched 
mark the LS tuple as log 

end 
Figure 5. Linda operations a t  run time. 

4.4. Failure Detection and the recovery manager 

The recovery of the processes is managed by a distinguished process called the 
recovery manager. When the recovery manager detects a failed process, i t  waits until 
the node recovers and spawns a new process with the checkpointed s ta te .  If the failed 
node does not recover in some time T, the recovery manager spawns a new process on a 
different node and loads the replicated checkpointed s t a t e  on t h a t  process. 

Failure detection is tricky because the processes seldom interact with each other 
directly. Our  solution is based on the recognition of the fact t h a t  the common meeting 
point for all the processes is the tuple space itself. So, each process periodically puts a n  
I am alive tuple into the tuple space. The recovery manager regularly reads the tuple 
space for these tuples. Failure t o  get a tuple from a process would indicate the necessity 
of a corrective action. The I am alive tuples of different processes need t o  be distinguish- 
able from each other. They need not be distinguishable among themselves because a t  
any given time only one would be residing in the tuple space. 

The failure of the recovery manager itself can be detected by making the processes 
check if their previous I am alive tuples are still present in the tuple space, before they 
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insert the new ones. If the tuple space has some unconsumed tuples, another recovery 
manager needs t o  be invoked. I t  is conceivable t h a t  the recovery manager fails in the 
middle of a repair operation. T o  take care of this eventuality, the recovery manager 
needs to log the fact t h a t  it is s tart ing the recovery process a t  some node. This log is 
not logically a par t  of the tuple space, thus it is put into the log space. The interaction 
of the recovery manager with the tuple space and the log space can be shown a s  in 
figure 6. The  recovery Manager algorithm is outlined in figure 7. We are exploring the 
possibilities of making the recovery manager more efficient by decentralizing i t  and are 
also looking into ways of piggybacking the I am alive tuples for minimum overhead on 
the processes. 

TUPLE SPACE LOG SPACE 

I am 

alive 
D 

tuples 

Figure 6. Interactions of the recovery manager 

/* invoked on a process failure detection */ 
procedure recovery-manager() 
begin 

periodically do 
look for I a m  alive tuples for all processes 
remove them from the tuple space 

if (failure detected) then 
write a log stating failed process and start attempt 
wait till node comes back up 
if (timeout) spawn a new process on a different node 

else spawn a process on the failed node 
retrieve the checkpointed state for the failed process 
remove inconsistencies in tuple space and log space for the process 
start executing the process 
remove start recovery attempt log 

end 
Figure 7. Recovery manager process 
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4.5. Some attractive features of our scheme 

Independent checkpointing and message logging are central t o  our scheme. An 
alternative might be not t o  log messages a t  all, but  keep the checkpoints consistent 
[15,16,17,18]. In these schemes, several processes need t o  rollback t o  their earlier con- 
sistent s t a t e  so  t h a t  replay will correctly handle message interactions. Some of the 
advantages of our scheme are: 

The checkpointing operation can be performed unilaterally by each process. 
In particular, the checkpoints of different processes need not be consistent in 
order t o  ensure recovery. 

Replay is limited t o  just the failed process. The alternative mentioned above 
might result in several functional processes t o  rollback and re-execute from 
their checkpointed state.  

There is no roll back involved. The processes which fail, s t a r t  again from 
their previous checkpointed s ta te .  This is the only way in which a process 
goes back t o  a previous s t a t e  in time. As a consequence of the above, we do 
not have the problem of undoing interactions or  side effects. 

The proposed scheme implements recovery efficiently. Since interprocess 
communication does not take place during replay, all interactions are  logi- 
cally performed only once. Thus, we reduce communication overheads. Also, 
recovery is faster because we are no longer bothered about determining all 
the processes we had interacted with in order t o  rollback t o  consistent check- 
pointed states. 

The benefits listed above are gained a t  the expense of the space t h a t  is required 
for storing the message logs. However, we contend tha t  the space overhead is reason- 
able. The additional space required is directly proportional t o  the number of messages 
tha t  need t o  be logged before a checkpoint happens. In the trivial case, we can check- 
point after  every message received, thereby ensuring no space overhead a t  all, while in 
a more realistic case, we might want t o  take checkpoints based on the event of the 
space allocated for logs getting full. 

4.6. Fault-tolerance conditions and correctness of our scheme 

Any implementation supporting fault-tolerant processes must ensure the following 
fault-tolerance conditions. 

FT1. Correctraess condition. The result of a computation should be the same as  the 
result of some failure-free execution. Here the meaning of same depends on 
the semantics of the domain in which the computation is taking place. 

FTP. Termination condition. The computation will reach a final s t a t e  in finite 
amount of time if a t  least one node is operational. 

F T 2  ensures tha t  any failure detection and recovery algorithms should all ter- 
minate and have the effects which ensure FT1. 
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Correctness Argument 

Here we give a n  informal argument t o  say t h a t  our scheme satisfies the fault- 
tolerance conditions FT1 and FT2. 

First,  we assume t h a t  a failure-free execution satisfies the condition FT2. What  
remains t o  be shown is t h a t  the recovery scheme will put the failed process in the same 
s ta te  a s  it was before the failure. We also need t o  show t h a t  this happens in a finite 
amount of time given the fact tha t  a t  least one (any) node is functional. 

For a failed process t o  recover, the recovery manager, loads the checkpointed s t a t e  
into a new process. A deterministic process would, given the checkpointed s ta te ,  go 
through the same sequence of s ta tes  tha t  it went through before the failure. When i t  
reaches the point where i t  had interacted with some other process, it looks into i ts  mes- 
sage log. Since the tuples match templates in the order in which they entered the log 
space, the recovering process is fed with the same tuples, which it had seen before the 
failure and in the same order. 

For each tuple operation, we follow the approach outlined in the recovery scheme. 
I t  is important  t o  realize t h a t  any tuple which has been sent or received before the 
failure is present in the logs. The converse is also true. Any tuple which is not there in 
the log has not been received or sent. Once such a point is reached, we know the process 
is back t o  where it was before the failure. Therefore, the scheme puts the recovering 
process back in the same s ta te  a s  i t  was in before failure. Same in the context of Linda 
is with regard t o  the nondeterminism built into the tuple matching operation. 

For the termination condition to be satisfied, we note t h a t  our scheme spawns the 
process on a separate node if the failed node does not come back up in some time T. 
The rest of the termination proof follows from the fact  t h a t  since there can only be 
finitely many tuples in the log space the amount of time taken for the recovery from 
the loading of checkpointed s t a t e  t o  normal running condition, is finite. 

5. Estimation of Overheads 

One way of estimating overheads in our recovery scheme is t o  compare the 
number of logical tuple operations which occur in our scheme with the number in a n  
implementation without fault-tolerance. The number of logical tuple operations can be 
expressed as: 
Number of operations = number of tuple operations a s  given in the program 

+ number of tuples logged onto the log space 
+ expected number of additional operations incurred because of failures 
+ number of operations for flushing of the log space 
+ the number of operations for checkpointing 
+ the number of tuples for failure detection 
+ the number of operations when the recovery manager fails 
+ number of start recovery tuples. 

Suppose that ,  

N = number of tuple operations t o  be performed by the program 
p = number of processes 
,u = failure r a te  
X = recovery ra te  
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n = average number of tuples present in the log space on failure 
j = frequency of checkpointing operation 
T = duration of the program 

The  number of tuple operations on a failure is the average number of tuples read 
from the log (n).  During recovery, these tuples are not written back onto the log space. 
So, the overall ra te  a t  which the tuples are read from the log space is given by pTn. 
The number of d a t a  tuples written onto the log space is, of course, N. The number of 
checkpoints taken per process is given by fT. So, pjT checkpoint tuples are  put  into the 
system. Therefore the log space is flushed pjT times. On a flush, all the tuples in the 
log space are  removed. Since the average size of the log space is n, the number of tuples 
read off during the flushing operations is npjT. 

Assuming t h a t  the I am alive tuples are put in the tuple space a t  the same ra te  a s  
f, the number of I a m  alive put in the tuple space are  fTp. Since a read operation pre- 
cedes the insertion, ( to check for the recovery manager failure), and the fact  t h a t  the 
recovery manager reads the same number of tuples t o  detect failures, the number of 
tuple operations is 3fTp. Noting the fact tha t  the recovery manager is just another pro- 
cess, the number of failures of the recovery manager is pT. No tuples are  inserted in the 
tuple space or  the log space due t o  this. The number of start recovery  tuples is the same 
a s  the number of failures (ppT). 

We have a n  equality which we have not mentioned so  far. Since the average 
number of tuples in the log space is n and the ra te  a t  which the log space is flushed per 
process jT times, 

N - = n. 
fT 

Therefore, the total  number of tuples operations performed when highly available 
processes are  implemented, Nhap, is 

N h a p = N + p T n + N + n p f T + 3 f T p + f T p + p T + p p T .  
Or, 

We see, t h a t  the number of tuple operations is linear in N. 

6. Related work 
Considerable work has been reported on reliable computing in distributed systems. 

We briefly describe the work on achieving reliable processes. 

Recoverable Processes 
Recoverable processes are usually based on checkpointing of the process s ta te .  The 

schemes differ in the model of interprocess communication and in the way of maintain- 
ing correctness in the global state.  The scheme proposed by Bart let t  in [19] assumes a 
synchronous model of communication. Asynchronous message passing has been con- 
sidered by many researchers [5,20,4,21]. While most of them have some form of mes- 
sage logging, they differ in issues of the identity of the process doing the logging, the 
amount of redundancy required, and the nature of the recovery process. 
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A fundamentally different view for achieving fault-tolerance is by distributed con- 
sistent checkpointing [IS, 16,17,18]. This technique removes the requirement for log- 
ging. However the failure of one process may cause other processes in the system t o  roll 
back. Multiple failures require complicated recovery techniques. 

Highly Available processes 

Borg et a1 141 propose a n  approach t o  making processes highly available t h a t  is 
based on the concept of providing a backup process for each active process. The backup 
process resides on a different processor and is passive. Whenever a message is sent t o  a 
process, the same message is also sent t o  i t s  backup. Similarly, replies are also sent t o  
the backup process. There are two disadvantages t o  this mechanism. First,  there is a 
twofold increase in the number of processes and a threefold increase in the communica- 
tion traffic in the system. Second, the communication mechanism needs t o  ensure t h a t  
a process and i ts  backup always agree on the interactions tha t  the process is involved 
in. 

Another approach, suggested by Powell and Presotto [5], is to  have only one pro- 
cess in the system which records the messages t h a t  are passed between the others. 
When a failure occurs, the failed process must be restarted and must ask the central 
process for a record of all the interactions the original process had participated in. 
There are  several problems with this approach. First,  the recorder process is critical. 
Second the recorder process is a bottleneck. Finally, the efficiency of the approach 
depends t o  a large extent on the topology of the underlying network. 

The approaches mentioned before have t o  get another process s tar ted  when a 
failure occurs. Unfortunately, the delay involved in doing so might not be satisfactory 
for some real time applications. Work reported in the area of active replicas has  been in 
terms of troupes [6] and Available Processes [7]. This approach results in a n  increase in 

2 
the number of processes by a factor of N and the number of messages by a factor of N , 
where N is the degree of replication. 

Our approach t o  highly available processes has  been t o  integrate the approaches 
for highly available d a t a  along with recoverable processes. This approach lends us 
immunity against the dependence on one distinguished process, while eliminating the 
redundancy in the number of processes a s  well. 

Fault-tolerance in Linda 
T o  our knowledge, only one project has specifically addressed the issue of fault- 

tolerance in Linda [22,23]. However, this research only addressed the issue of providing 
a highly available tuple space via replication of the entire tuple space. The virtual par- 
tition algorithm [24] is used t o  maintain the mutual consistency of the replicas. Each 
replica has a n  associated view which changes a s  the communication capability of the 
replica changes. Accesses within a view are based on the read-any-write-all protocol. A 
fundamental requirement of this scheme is t h a t  each view has a majority of the replicas 
and t h a t  during the creation of a new view a t  least one member of the previous view is 
included. Hence, the availability of the tuple space depends on the availability of a 
majority of the replicas. 
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Our  research differs from t h a t  of Xu and Liskov in a number of respects. First,  we 
address the full spectrum of reliability issues for loosely-coupled distributed Linda sys- 
tems, including recoverable and highly available processes a s  well as  recoverable and 
highly available tuple spaces. Second, our research in the specific area  of tuple space 
replication is distinct from t h a t  of Xu and Liskov in the sense tha t  we investigate 
methods for replicating different granularities of tuple space d a t a  and we require a 
higher level of availability for out tuple space especially in the presence of network par- 
titions and the failure of a majority of the nodes [14]. 

7. Conclusions 

In this paper we addressed the issues in reliable support for long lived parallel 
applications in a loosely coupled distributed environment. The basis for the paper was 
t h a t  in these domains, cooperation among processes necessitates the requirement for 
high availability in d a t a  and processes. 

We looked a t  the features in Linda t h a t  make it a suitable environment for fault- 
tolerance. We then introduced a way of implementing highly available processes in 
Linda. Our approach for achieving high availability was t o  integrate the approaches of 
fault-tolerance with replication. We were motivated in the design of our scheme by the 
ease of checkpointing, the reduced effort during recovery, and by the limited amount of 
replay necessary. 
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