
A Matching Process Modulo a Theory of
Categorical Products

Francodse BeNegarde

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-020

September, 1990

A Matching Process Modulo a Theory of
Categorical Products

Fran~oise BELLEGARDE
Oregon Graduate Institute of Science and Technology

19600 N W von Neumann Dr.
Beaverton OR. 97006-1999
email: bellegar@cse.ogi. edu

Abstract

We present a matching algorithm modulo axioms of categorical products.
This infinitary matching returns what we call selector-solved forms in which sets
of equations have been simplified as much as possible. Although the selector-
solved form is weaker than the fully solved form, it is sufficient for application
to program transformation.

Introduction
Most program transformation systems consist of a catalogue of transformation rules
that specify the schemes of the source S1 and target S2 programs together with a
set of hypotheses H that must verify these programs. Program transformation can
be viewed as schematic conditional rewriting systems. A transformation rule is a
pair S1 -+ S2, (H) such that the source program scheme S1 is equivalent to the
target program scheme S2 under the hypotheses H. In general, this equivalence is a
congruence that allows us to transform programs in the following way: if a subpart
t of the input program matches the source scheme S1, and if the hypotheses H are
satisfied, then the output program is the result of replacing t by the instantiation of
the output scheme S2.

The matching process has to instantiate functions, therefore this is at least a
second-order matching as described in [9, 10, 71. A way to avoid this is to use com-
binators, such as the composition operator, to express programs. If we use the com-
position, identity, projections and product to express programs, the axioms of the
algebra of programs are those of categorical products. Then the matching process be-
comes first-order modulo these axioms. In this paper, we study the matching problem
modulo the theory P of categorical products.

Following [16], the matching process is viewed as a step-by-step process that
transforms a set of pairs of terms, simplifying these pairs until we get a normal-form,
usuallv called the solved form: X I = tl x, = t,. where xl . . . - . x, are variables.

A solved form gives the mapping of a matching substitution. However the matching
modulo the theory P is infinitary (there can be infinitely many distinct solutions),
which makes the process of finding a complete set of matches non terminating. The
way to avoid this result is to simplify the set of pairs as much as possible. Here the
normal-form is not always a solved form but is a set of pairs of terms that we call a
selector-solved form: sl = tl, . . . , s, = t,. This form presents a generic solution. In
a selector-solved form, different kinds of normal-forms coexist as in [4].

Most of these solutions appear to be insignificant for the purpose of program
scheme recognition. For example, we do not want solutions that are functions in
P with pairs as a result, because they do not correspond to functions in programs.
Therefore the matching has to take some particular constraints [14] into account.
These constraints can be expressed as transformation rules for the matching process.
We will show that the constraints added to P for program scheme recognition give
solutions that are always in solved form, which means that the constrained matching
modulo P is finite.

We introduce the theory P in Section 2 and the matching process in Section 3.
Section 4 examines some rules to constrain the matching problem for the purpose of
program scheme recognition.

1 Preliminaries
This section contains the definitions and notations used in the paper.

Given a set V of variables, and a set F of function symbols, T(F, V) denotes the
free F-algebra over V. Terms are the elements of T (F , V). V(t) denotes the set
of variables of a term t. T(F) denotes the set of ground terms on F, i.e., without
variables.

Terms are considered as functions from the free monoid on the natural numbers
without zero, N f to F U V. The domain of t is called the set of occurrences or
positions of t . Therefore, t (p denotes the subterm of t at the position p. t I e is t .

Substitutions a are endomorphisms of T(F, V) with a finite domain D(o) . A
substitution is denoted by its graph (xl t+ tl), - - , (x, H t,). I (a) is the set of the
variables introduced by the substitution a, i.e., V(tl) U . . . U V(t,).

Given two terms s and t, a substitution a is a match from s to t if a(s) = t .
Let t [s], be the term t in which the subterm at position p has been replaced by

s. Let E = {li = r;)iEI be a set of equations such that 1; and ri for i E I are terms.
One step of E-equality, denoted by s HE t , is defined by: an equation 1 = r in E;
a position p in s; and a match a from I to the subterm of s at the position p. Here
t = s[a(r)],. The reflexive symmetric transitive closure is the E-equality denoted by
=E.

Given two terms s and t, a substitution a is an E-match from s to t if a(s) =E t.
Let X be a subset of V. We define a quasi-order on substitutions S E by a sE a'[X]

iff there exists a substitution p such that for all x in X, p(a(x)) = E al(x). This quasi-
order induces classically a partial order also noted SE on the quotient of the set of
substitutions by the equivalence associated by SE.

Let ME(s, t) be the set of the E-matches from s to t. We define the complete set
of E-matches from s to t, denoted CSME(s, t), away from a set of variables W by:

1. Variable protection: For all o in CSME(s,t), D(o) 2 V(s) and I(o) n (W -
V(t)) = 0

2. Correctness: CSME(s,t) M ~ (s , t)

3. Completeness: Vp E ME (S, t), 30 E CSME(s, t) such that a IE p[V(s)]

4. Moreover, the CSME(s, t) is said to be minimal: when Va, u' E CSME(s, t),
u ~ ~ u ' ~ o = ~ '

The variable protection condition is a technical restriction that allows us to separate
the variables introduced by the match from the variable of s.

A matching equation, denoted by s =E t seeks a minimal CSME(s, t) when pos-
sible. In our case, t will be a ground term. The notation = E refers only to the
E-equality and does not reflect the asymmetry of the matching problem, but we
use it for reasons we discuss below. A matching problem is a finite set of matching
equations {sl =E tl, - - . , s, =E t,) seeking CSME(~l , tl) n . . - n CSMg(sn,t,).

2 The theory P: A first-order term language to
represent schemes

Let us consider one of the well-known transformation rules for recursion removal.
In [6, 101, this transformation rule is expressed by the rule S1 -, S2, (H) where

Sl : f(x) = if p(x) then g(x) else h(i(x),f(j(x))),

S2 : f (x) = if p(x) then g(x) else w(i(x), j(x))

where
W(X, Y) = if P(Y) then h(x, Y(Y)) else w(h(x,i(y)),j(y))

under the associativity of h:

In the rule, the terms express program schemes where the unknowns p, g, h, i, j stand
for functions and x, y stand for data. This means that the terms are at least second-
order.

Let us now express recursive definitions of functions with combinators: o for the
composition of two functions, Id for the identity function, (-, -) for the pairing of two
functions, and Fst and Snd for the first and second projections. The symbol quote,
denoted by '-, is the combinator K. It indicates constant functions. Such combina-
tors exist in functional lanrruarres. for exam~le in ML 1171. Thev are fundamental to

FP [I]. These combinators are the symbols of the theory of categorical products [15]
that we call P. Suppose we have also a combinator Cond of arity 3 for conditionals.
In such a combinatory framework the terms of the transformation rule become:

S1 : f = Cond(p,g, h 0 (i, f 0 j)),

S2 : f = Cond(p,g, w o (h o (i, j)) ,

w = Cond(p o Snd, h o (Fst,g o Snd),w o (h o (Fst,i o Snd), j o Snd))

and,
H : h 0 (x, h o (y , ~)) = h o (h o (x,y),z)

This transformation scheme is cited in [13], where we can find a good catalogue of
transformation schemes for recursion removal expressed in an FP-like formalism.

Now, variables stand only for functions. S1, S2 , and H are defined by first-order
terms .

Let us now consider a classical example. A function reverse reversing a list can
be defined by the following recursive equation:

reverse(x) = if null(x) then nil else append(reverse(tl(x)), cons(hd(x), nil))

In a combinatory framework, reverse becomes:

reverse = Cond(nuE1, 'nil, append o (reverse o tl, cons o (hd, 'nil)))

How do we recognize that the scheme S1 is applicable to the function reverse? If
we keep the usual expressions and if we limit ourselves to simple functions, we can use
a second-order matching. Such a second-order matching algorithm is proposed in [lo].
If we choose the combinatory expressions presented above, the matching is now first-
order modulo the theory P of categorical products. The theory P is elegant in that
it creates a canonical (Confluent, Terminating and Interreduced) Term Rewriting
System for P [5, 21.

(f 0 9) o h + f 0 (g 0 h)
f o l d + f
I d o f + f

Fst 0 (f ,g) + f
S" 0 (f ,g) + g

(Fst o h,Snd o h) + h
'x 0 y --, 'x

(f , d 0 h + (f 0 h , s 0 h)
(Fst,Snd) + Id

This Term Rewriting System allows us to normalize terms and to decide that two
terms are P-equals by checking the equality of their normal-forms. We denote by
t J p , the normal-form of a term t using this system.

Let us now consider the matching ~roblem modulo the theorv P.

3 The matching problem modulo the theory P

3.1 Selector-solved forms

The matching problem modulo the theory P is infinitary, i.e., gives infinitely many
independent solutions. For example we can easily find infinitely many independent
solutions corresponding to the matching from S1 to the expression of reverse given
in Section 2:

p = null, g = 'nil, j = tl,

h = append o (Snd, Fst), i = cons o (hd, 'nil)

but also
p = null, g = 'nil, j = tl,

h = append o (Snd, Fst o Fst), i = (cons o (hd, 'nil), -)

where - stands for any term, and also

p = null, g = 'nil, j = tl,

h = append o (Snd,Fst o Snd), i = (-,cons o (hd,'nil))

p = null, g = 'nil, j = tl,

h = append o (Snd,Fst o Fst o Fst),

i = ((cons o (hd, 'nil), -), -)

and so on.
We can easily see why this happens. Let us consider a match from x o y to t

where x and y are variables. Suppose that x is substituted by Fst o (Snd o Fst);
then y must be ((-, (t, -)), -). We know that all compositions of Fst and Snd are
solutions for x. We define a subset of terms called SELECTOR, defined recursively
as follows:

Definition 1 Let S be a new set of variables. Usually, we denote the elements of S
by an indexed identifier sel.

1. S SELECTOR

2. Fst, Snd , Id E SELECTOR

3. Fst o s, Snd o s E SELECTOR if s E SELECTOR- {Id)

A SELECTOR term is ground when it is constructed without SELECTOR vari-
ables.

Let sel be a SELECTOR variable. Suppose we match x o y to a o b where
x, y are variables and a, b are constants. Solutions of the match are also solutions of
the set of equations: {x =p se1,sel o y = p a o b) or {x = p a o se1,sel o y = p b)
or {x = p Q o (b o sel), sel o y = p Id). These sets are selector-solved forms for
the match. For application to program transformation, it is sufficient to have the
selector-solved form, although it is weaker than the fully solved form. For the same
purpose, G. Huet in [9] also introduced a weaker form of solved-form called "presolved
forms" in higher-order unification processes.

Let A be the axiom of the associativity of o. We define a selector-solved form by:

Definition 2 A selector-solved form for P is any finite set of equations

such that t; E T(F, VUS), and either s; E V or si = A w o y where w E SELECTOR,
and y E V.

For example the selector-solved form

{p = p null,g = p 'nil, j = p tl,

h = p append o (Snd, sell), sell o i = p cons o (hd, 'nil))

gives a representation of an infinite family of solutions of the P-matching problem
S1 = p reverse.

3.2 Matching modulo D
We present an abstract view of the matching process as a set of rules for transforming
a matching problem into an explicit representation of its solution, if such exists. This
point of view was considered first by [8, 161. Our rules are similar to the rules in [12].

P-match uses a set of transformation rules to process matching modulo a theory
D with axioms:

(f 0 9) O h = f O (9 O h)
f o l d = f

I d o f = f

(f,g) 0 h = (f 0 h,9 0 h)
'x 0 y = 'x

A canonical Term Rewriting System for D is obtained by directing these equations
from left to right.

A matching equation in the theory D is denoted by s =D t where s E T (F , V)
and t E T (F) . This matching is finite.

Using the canonical Term Rewriting System for D, we only consider normalized
matching equations and normalized solved forms, i.e., all the terms are in D-normal-
form.

to the D-equality. No confusion is possible between these two kinds of "equations"
in our processes. In the rules Mergedelete and Mergefail, the condition s =D t and
s f D t can be replaced by the syntactic equality s = t and s # t respectively because
s and t are in D-normal form. The distinction between constant and variable in the
Mutation rules are useful for performance and are made possible because all terms
are in D-normal form.

These transformations are non deterministic. For example, one can apply either
the rule oo-Mutatel, oo-Mutate2, or Decompose, which have the same left-hand side.
Each option generates a possible solution.

Lemma 1 Starting with s =D t and using the rules repeatedly until none is ap-
plicable results in a tree whose leaves are labeled by either (8 ; fai l) , or (8 ; {xl =D

t l , - ,xn =D t,}) where x; E V . By removing the equations new; =D ti, the set
x1 =D t l , . , xm =D tm can be turned into a substitution D-match from s to t . In so
doing, a complete set of D-matches from s to t is defined.

Proof: Let us only sketch the steps of the proof.

First, we group together rules having the same possible left-hand
sides. For example, oo-Mutatel, oo-M utate2 and Decompose must
belong to the same group. We show that each group of rules de-
termines a set of equations whose set of solutions B is the same as
the set of solutions A of the common left-hand side. This prove the
soundness of the matching process. This is obvious in proving that
B 2 A. The converse must take the axioms into account.

Second, we show that the leaves of a transformation tree are either
(0; fai l) , or (0; {xl =D tl, . . , x, =D t,)) where x; E V. This is
easy, because the rules have been written for this purpose. In fact,
all that we show is that no cases have been forgotten. This proves
the completeness.

a Finally, it remains to prove that the process terminates. Let I t I
denote the size (number of symbols) of a term t . We define a well-
founded ordering on equations by s =D t >D s' =D t' if I s) +) t)) I
s' I + I t' I. We compare the set E by the multiset extension of the
ordering >>o. By looking at the rules oo-Mutate2 and opair-Mutate2,
we show that the number of new variables is bounded by the size of t .
Each application of a transformation rule either enlarges the solved
set Q which is bounded by the number of variables in s plus the
number of new variables or the set E decreases by the well-founded
multiset ordering >>D.

Obviously, the set of solutions is not minimal. However, because the set is finite, we
can get a minimal solution by eliminating the redundancies.

Let the D-match algorithm be a set of transformation rules operating on pairs
(E;Q) of sets of normalized matching equations, with E containing the equations yet
to be solved and Q containing the partial normalized solution.

We denote by E { x M t) JA the set of equations E in which every occurrences of
the variable x is replaced by the term t. Moreover all the terms in E are A-normalized.

A subset of V is a set of new variables, called new, newl,. ., that are used during
the matching process.

In the following, x always denotes a variable in V that can be a new variable for
the process. new, newl, new2 denote new variables. c denotes a constant symbol.
Notice that a term t in D-normal form with top symbol o can only be of the form
c o v or x o v where c is a constant symbol different from Id, x is a variable and, v,
u are any term.

Let the transformation rules be:

Delete ({s =D S) U E; Q) =j (3; &).
Decompose ({ f (q =D f (0) u E; Q)
+ ({SI =D t l , ' ' ' Sn =D tn)) U E; Q).
Fail ({ f (q =D g(q) u E ; &) * (0; fail), if f # 9 and f #
Eliminate ({ x =D S) U E ; &)

(E { x S) L D ; { X =D S) U &{x I+ S) L D)
if x does not occurs in the left-hand sides in E.
Mergedelete ({ x =D s, x =D t) U E ; 9) * ({a : =D s) U E; Q)
if s =D t.
Mergefail ({ x =D s, x =D t} U E; Q) * (0; fail)
if s , t E T (F) and s #E t.
oc-Mutate1 ({ u o v =D c) U E ; Q) =+ ({ u =D Id, v =D c) U E; Q).
oc-Mutate2 ({ u o v =D c } U E ; Q) =+ ({ u =D c, v =D Id) U E; Q).
oo-Mutate1 ({ x o v =D tl 0 t2) U E ; Q) + ({ x =D Id,v =D ti 0 t2) U E; Q).
oo-Mutate2 ({ x o v =D tl o t2) U E ; Q)
.=j ({ x =D tl o new, new o v =D t2) U E ; Q) .
0'-Mutate1 ({ u o v =D 'a} U E; Q) 3 ({ u =D Id, v =D 'a} U E; Q).
0'-Mutate2 ({ u o v =D ' a) U E; Q) =+ ({v =D ' a) U E; Q).
opair-Mutate1 ({ x o u =D (tl, t2)) U E ; Q)
* ({ x =D Id, u =D (tl,t2)} U E; &)-
~pair-Mutate2 ({ x o u =D (tl, t2)) U E ; &)
+ ({ x =D (newl, new2), new1 0 u =D t l , new2 0 u =D t2)) u E ; Q).
opair-Mutate3 { c o u =D (tl,tz)) U E; Q) * (0; fail)

The rule Eliminate increases the solution set Q. It also allows us to eliminate
the occurrences of the new variables. New variables are introduced as occurrences of
terms t in equations of the form x =D t where x E V by the rules 00-Mutate2 and
opair-Mutate2. The rule Eliminate achieves the solution for x when a solution for the
new variables occurring in t is found. These equations with variables in the left-hand
side are not really matching equations, but we keep the notation =D which refers

' opair-Mutate1 ({x o u = p (tl , t2)) U E ; Q)
* ({x =p Id , 41 =P (tl, t2)) U E; Q).
opair-Mutate2 ({x o u = p (t l , t z) } U E ; Q)
=$ ({x = p (newl,new2),newl o u = p tl ,new2 0 =P t2)) U E ; &).
opair-Mutate3 ({x o u = p (tl , t2)) U E ; Q)
=$ ({x = p new1 o sel, newl o new2 =D (t l , t z) , sel o u = p new21 U E ; Q) .
0'-Mutatel ({u o v = p ' a) U E ; Q) =j ({u =P Id,v =P ' a) u E ; Q) .

0'-Mutate2 ({ u o v = p 'a) U E ; Q) * ((u =P ' a) U E ; Q) .
0'-Mutate3 ({x o v = p ' a) U E ; Q) & ({x =P sel, sel 0 v =P ' a) U E ; Q) .

Once again, the rule opair-M utate3 introduces a D-match equation.
Because of the axiom (Fst o f , Snd o f) + f , we have one more rule for a match

from a term (u, v) .

(pair-Mutate ({(u, v) =p t) U E ; Q) * {u = P Fst 0 t , v =P S n d 0 t) U E ; &). I

Let us consider now the case where we match a term s = II o (x o v) to a term t
where II is a ground selector term and v a term in P-normal form. Il is maximum in
s. Other solutions can come from II o x being a selector of t in v. In this case x has
to be a selector variable. Note that s is not itself in P-normal form. A * indicates
rules that do not follow the convention that all terms are in P-normal form.

I *pi-variable ({11 o (x o u) = p t) U E ; Q) 6 ({x =P sel, n 0 (sel 0 u) =P t) U E; Q) . I

Lemma 2 The above rules ensure soundness and completeness of the transformation.

Proof: The soundness is obvious for each rule. For completeness,
one must examine together all rules having the same left-hand sides and
determine that all possible outcomes on the right-hand side have been
considered. For example Decompose, 00-M utatel, 0 0 - M utate2, and oo-
Mutate3, having x o v and c' o t on the left-hand side, must be grouped.

Let us show how we prove completeness for this particular case. Be-
cause of the canonicity of P, any proof of a(x o v) = p c o t corresponds to a
rewrite proof of the form u(x o v) J p = c o t . The obvious solution is given
by Decorn pose; oo-Mutate1 uses the left-identity; and 00-Mutate2 uses the
associativity. The distributivity cannot yield c o t . 00-Mutate3 handles
the projections. The main point is to prove that new1 o new2 = D d o t
has the same solution as new1 o new2 = p c' o t when new1 f p u o w
where w E SELECTOR. This is done by induction on the structure of
the substitution for newl.

Other cases yield the same kind of proof. 0

3.3 Mutation rules

Let us now consider a set of transformation rules for P-matching. Let us recall that
we introduced the terms called SELECTORS to define infinitely many independent
solutions. S is a set of variables of the sort SELECTOR.

Using the canonical Term Rewriting System for P, we only consider normalized
matching equations and normalized selector-solved forms, i.e., all the terms are in
P normal-form. In the following, x always denotes a variable in V, which can be a
new variable designed for the process. se1,sel; denotes SELECTOR variables in S.
new, newi denotes new variables. c denotes a constant symbol. We still have the rule
Decompose:

1 ~ e c o m ~ o s e ({ f (q = p f (i) } U E; Q) 3 ({ S I =P t ~ , . -, sn =P t.1) U E; Q). I
Let us now consider the match from a term s with a top symbol s I E = o to a term

t . In a term s = u o v in P-normal-form u can only be a variable x or a constant c.

oc-Mutate1 ({ x o v = p c') U E ; Q) =j ({ a : =P I d , v =P d) U E ; Q)
oc-Mutate2 ({ u o v = p c') U E ; Q) =j ({ u =P C',V =P I d } U E; &).
oc-Mutate3 ({ x o v = p c'} U E ; Q) * ({ x = sel, se! 0 v =P c'} U E ; &).
oc-Mutate4 ({ x o v =p c'} U E; Q) * ({a: = c' 0 sel, sel 0 v =P I d) U E ; Q).

The rules oc-Mutate3 and oc-Mutate4 introduce a variable of the sort SELECTOR
and an equation of the form sel o v =p t to prepare the eventual presentation of an
infinite family of solutions. The above set of rules does not cover solutions that are
possible when u in s = u o v is a selector. We will include this case inside a more
general case where s I E = o and t is any term.

Let us now consider the match from a term s with a top symbol s 1 E = o to a
term t with a top symbol t I E = o.

oo-Mutate1 ({ x o v = p c' o t) U E ; Q)
e ({x = p Id, v = p c' o t) U E ; Q).
00-Mutate2 ({ x o v = p c ' o t) ~ E ; Q)
=$ ({ x = ~ c' o new,new o v = p t) ~ E ; Q) .
oo-Mutate3 ({ x o v =p c' o t } U E ; Q)
+ ({ x = p newl o sel, sel o v = p newz, new1 o new2 =D c' o t) U E ; Q)) .

Note that the rule 00-Mutate3 introduces a D-match equation new1 o new2 =D
c' o t , which will be transformed as indicated by Lemma 1.

Let us now consider the match from a term s with a top symbol s I E = o to a
term t with a top symbol t 1 E E {', (-, -)).

3.4 Simplification of matching equations with SELECTOR
variables

An equation a o (sel o v) = p t where a is a selector term, and v is not reduced
to a variable is simplified by the following rules. n denotes one of the selectors Fst or
S n d .

Projection1 ({sel o f (5) =p r) U E ; Q)
* ({ f (q ' P I d } U E{sel,-+ r) l p ; I-, r) l p)
Projection2 ({sel o f (17) = p n o t } U E ; Q)
+ ({selz o f (v') = p t) U E{sel H n o se12} J p ; Q{sel I-, n o se12) l p)
Reducpairl ({ (a o sel) o (u , v) = p t) U E ; Q)
+ ({(a o sell) o u = p t } U E{sel I+ sell o Fst) J p ; Q{sel I+ sell o Fst) J p)

*Reducpair2 ({ (a o sel) o (u ,v) = p t) U E ; Q)
({ (a o sell) o v =p t } U E{sel I-, sell o S n d } J p ; Q{sel w sell o Snd) l p)

*Red ucid ({(a o sel) o f (17) = p t } U E ; Q)
==t (a o f (v') = p t } U E{sel H Id) J p ; Q{sel H Id} J p)

o-Reduc ({ a o (sel o (x o u)) = p t) U E ; Q)
a ({ x =p selz, a o (sel o (se12 o u)) =p t) U E ; Q) .

Lemma 3 Starting with ({sel o u = p t) ; 0) , and using the rules of Section 3.4
repeatedly until none is applicable results in a tree whose leaves are labeled by {sl = p

I t l , . , S , =p t,}; {s; =p t l , . - . , S; = p t;) where ti is a term in T (F , V) and s: =A

a o x where a E SELECTOR.

3.5 Delete and Merge rules

Let us now consider the deletion rules.

Delete ((3 =P s) U E ; &) * (E ; &).
Fail ({f (q =P g (0) U E; &) =$ (0 7 fai l)
if f # g and, f is a constant or f = '.
Eliminate ({ x =P S) U E ; &) =j (E { x S) J P ; { X =P S } U &{x ,-+ S } J P)
if x is a variable which is not the left-hand side of another equation in E.

Let us finally consider the merge rules. A new problem arises when we want to
merge x =p s with x = p t . If s + t and if s or t contains variables of the sort
SELECTOR, there is not a failure. Therefore we must find a substitution o of these
variables by terms of the sort SELECTOR such that a (s) = p o (t) . This restricted
P-unification to SELECTOR substitutions is introduced by unification equations
denoted by s =u t .

It remains to solve the restricted unification equations s =u t .

Merge ({ x = ~ s , x = ~ ~) u E ; Q) ~ ({ x = P s , s = P ~ } U E ; Q) ,
if s, t E T(F), 0 5 Is1 5 Itl.
"Mergesell ({a o x =P s, x =P t) U E ; Q) =S ({ a 0 t =P s) U E; Q),
s , t E T(F) .
*Mergesel2 ({ a o x = p s , a 0 x = P ~ } U E ; Q) = + - ({ W 0 x = p s , s = p t } U E ; Q) ,
s , t E T(F) , 0 2 Is1 5 Itl.
Mergeunif ({x = p s, x =P t) U E; Q) & ({x =P s, s =U t } U E; Q)
i f s , t e T (F , S) a n d s # t .

Lemma 4 The terms with variables of the sort SELECTOR in a restricted unifica-
tion equation are P-equals to a term of the form k o (sel o II) where IT is a ground
selector term and k is a ground term.

A

Proof: A very informal argument is that these terms come from the
equations x 2: new o sel introduced by the mutation rules, thus new which
is solution of a D-equation is instantiated by a ground term. Morever,
any variable of the sort SELECTOR can be instantiated by SELECTOR
terms with at least one SELECTOR variable (rules of Section 3.4). 13

As a consequence the restricted unification is an easy finite process. We do not give
the rules here for lack of space. They look like the rules that [12] uses to describe
E-unification procedures except that variables are of a restrictive sort SELECTOR,
i.e., terms belong to T(F, S), and terms with variables are P-equals to terms of the
restrictive form k o (sel o II).

3.6 Soundness, completness, and terminat ion

Theorem 1 Starting with s = p t and using all the rules of Section 3 repeatedly
until none is applicable results in a tree whose leaves are labeled by either (P); fail) or

XI -p tl, . - , x, =p t,)) where xi E V, s; = A w o y ({SI =P UI, ' . s m =P urn); { -

where w E SELECTOR, and y E V.

Proof: Soundness and completeness are proved using the Lemmas. To
prove the termination, we define a well-founded ordering on equations by
s = A t >p S' =A, t' if A t- A' or A = A' and Max(ls(, Itl))Max(lsll, It1\)
or A = A' and Max(ls1, It[) = Max(lsll, It1[) and nv(s) > nv(s'), where
+ is defined on {P, D, U) by P t- D and P F U, and where nv(s) is the
number of variables of V occurring in s. We compare the set E by the
multiset extension >>p. Now the proof is the same as for Lemma 1.

Let us come back to our example in Section 2. We want to match S1 which is expressed
as :

f = Cond(p,g, h 0 (4 f 0 j)) ,

with

reverse = Cond(nul1, 'nil, append o (reverse o tl, cons o (hd, 'nil)))

We need to have the symbols = and Cond in F. Then, by the rules Decompose and
Eliminate we get the sets

({h o (i, f o j) = p append o (reverse o tl, cons o (hd, 'nil)));

{ f = p reverse, p = p null,g = p 'nil))

Processing the unique equation in E returns 26 sets of distinct families of equations.

4 Constrained matching for scheme recognition

The trouble with transformation rules is that they often have implicit auxiliary syn-
tactical constraints. For example, the scheme S1 + S2, (H) in the combinatory form
assumes that the defined recursive variable symbol f does not occur in the function
p, g, h, i, j. The validation of the scheme by fixpoint induction uses this fact, which
actually is implicit for all the schemes for recursion removal proposed in [13].

To take care of this particular constraint, let us define subset R of V for the set of
recursive variables, and let us add two transformation rules to the matching process:

' f-constraint1 (E; {f = p C, x = p t) U Q) =+= (0; fail), if f E R occurs in t
f-constraint2 ({s o x = p t) U E; {f = p c} U Q) (0; fail), if f E R occurs in t

For the match of S1 with reverse which returns 26 solutions without constraints,
the number of solutions fall down to 6. For example the following solution:

({sell o i = p 'nil, se12 o i = p hd, se13 o i = p reverse o tl};

{h = p append o (se13 o Fst,cons o (se12 o Fst,seEl o Fst))

f = p reverse,p = p nul1,g = p 'nil))

is eliminated, using f-const raint2, and the solution:

({sell o i = p 'nil, se12 o i = p hd, se13 o i = p tl);

{h = p append o (reverse o (se13 o Fst), cons o (se12 o Fst, sell o Fst))

f = p reverse, p = p null, g = p 'nil))

is eliminated using f-constraintl.
Now, by using the combinator (-, -) to express the programs, we can have func-

tions of the type A I+ C x D. It may be, however that the programming language
does not allow us to write functions of this type, which are considered not to be
functions at all. In this case, we must add another constraint to the matching by the
following rule:

(0; fail)
*pair-constraint2 ({m o (sel o x) = p t) U E; Q)

For the match of S1 with reverse the number of solutions decreases to 3 with
pair-const raintl and pair-const raint2. For example the solution:

({sell o i = p 'nil, se12 o i = p hd);

{h = p append o (Snd, cons o (selz o Fst, Fst, sell o Fst)),

j = p tl, f = p reverse, p = p null, g = p 'nil))

is eliminated. Moreover the solutions are in solved-form (E = 0). We get the following
result:

Corollary 1 Starting with s = p t and using all the rules given in the paper repeatedly
until none is applicable results in a tree whose leaves are labeled by either (0); fail) or
(0; {xl = p tl, . . , xn = p t,)) where x; E V

Proof: It is obvious that all the selector variables are suppressed, and
the result follows by application of Theorem 1.

The 3 solutions of the constrained matching are:

p = null,g = 'nil, j = tl, h = append o (Snd, Fst),i = cons o (hd,'nil)

p = null, g = 'nil, j = tl, h = append o (Snd, cons o (hd, 'nil)), i = Id

p = nul1,g = 'nil, j = tl, h = append o (Snd, cons o (Fst, 'nil)), i = hd

The correspondent solutions are directly given by a second-order matching (See [lo]).

5 Conclusion

Our constrained matching process including the rule pair-constraint gives the same
results as the second-order matching. It looks more complicated, but it is more general
because we have a more general process without the pair-constraint rules. These rules
restrict strongly the class of languages processed. For example, we might want to
write a function such as f = (reverse, length) and be able to remove the recursion
in the unfolded result. Even for a language that does not include the pairing, our
process without pair-constraint is useful. Let us consider the example:

f (x, TJ) = if null(x) then nil else append(unit(y), append(hd(x), g(tl(x), y)))

Using a second-order matching, the above definition does not match S1, but the
corresponding expression with combinators

f = Cond(nul2 o Fst,'nil,

append o (unit o Snd.avvend(hd o Fst.0 o (tl o Fst.Snd))\

P-mat ches S
Moreover, we only want to retain a solution that satisfies the hypotheses. This

can be viewed also as a special kind of constraint. However, constraints coming from
the hypotheses can be difficult to handle. For example, some transformation schemes
for recursion removal are such that a function h occurring in the target scheme does
not appear in the source scheme. This function h has to be found by considering the
hypothesis. In this case the hypothesis is an equation to solve in a theory T including
P. Therefore the constraints introduced by the satisfaction of the hypothesis can
provide a problem that is bigger than the original matching problem.

We have supposed that the operator Cond occurs only once at the top of the two
terms of a matching equation, such that it immediately disappears by application of
the rule Decompose. Consequently, it happens that we have to transform the term to
match by using axioms on Cond (see [3, 111 for these axioms) in order to get Cond in
such a position. One way to avoid that could be to take these axioms into account in
the matching process itself.

I would like to thank Dick Kieburtz at OGI and, Pierre Lescanne, Helene Kirchner
and Claude Kirchner at CRIN who provided me with useful discussions.

References

[I] J. Backus. Can programming be liberated from the Von Neumann style? A
functional style and its algebra of programs. Communication of the Association
for Computing Machinery, 21(8), 1978.

[2] F. Bellegarde. Rewriting systems on FP expressions to reduce the number of
sequences yielded. Science of Computer Programming, 6, pages 11-34? North
Holland, 1986.

[3] S. Bloom and R. Tindell. Varieties of i f . . . then - . . else - . a . In SIAM Journal on
Computing 12(4) , pages 677-707, 1983.

[4] H. Comon and P. Lescanne. Equational Problems and Disunification. In Journal
of Computer Science, Special issue on Unification. Part one, 7(3-4), pages 371-
426, 1989.

[5] P. L. Curien. Categorical Combinators, Sequential Algorithms and Functional
Programming. Pitman, 1986.

[6] J. Darlington and R. Burstall. A System which automatically improves programs.
In Proceedings of the Third International Joint Conference on Artificial Intelli-
gence, Standford, pages 479-484, 1973. Also: Acta Informatica, 6, pages 41-60,
1976.

[7] J. Hannan and D. Miller. Uses of Higher-Order Unification For Implementing
Program Transformers. In Proceedings of the Logic Programming Conference
MIT Press. Seattle, 1988.

[8] J . Herbrand. Sur la Thkorie de la Dkmonstration,. In Logical Writings, W. Gold-
bach, ed., Cambridge, 1971.

[9] G. Huet. A Unification algorithm for typed lambda calculus. In Theoritical Com-
puter Science, 1(1):27:57, 1973.

[lo] G. Huet and B. Lang. Proving and Applying Program Transformations Expressed
with Second-Order Patterns. Acta Informatica , 11, pages 31-55, Springer-Verlag,
1978.

[I 11 I. Guessarian and J. Meseguer. On the Axiomatization of "if-then-else" . Internal
Report, Center for the Study of Language and Information, CSLI-85-20, Stand-
ford, 1985.

[12] J.P. Jouannaud and C. Kirchner. Solving Equations in Abstract Algebras: A
Rule-Based Survey of Unification, Internal Report, Centre de Recherche en In-
formatique de Nancy, Nancy, 1989.

[13] R. B. Kieburz and J. Schultis. Transformations of F P program schemes. Pro-
ceedings of the Conference on FunctionaI Programming Languages and Computer
Architecture. Association for Computing Machinery, 1981.

[14] C. Kirchner and H. Kirchner. Constrained Equational Reasoning. In Proceed-
ings of the ACM-SIGSAM International Symposium on Symbolic and Algebraic
Computation, pages 382-389, Portland, 1989.

[15] J. Lambek and P. J . Scott. Introduction to Higher-Order Categorical Logic. Cam-
bridge studies in advanced mathematics, 7, Cambridge University Press, 1986.

[16] A. Martelli and U. Montanari. An efficient unification algorithm. A CM Trans-
actions On Programming Languages And Systems, 4(2):258-282, 1982.

[17] R. Milner. A proposal for Standard ML. Technical Report CSR-157-83, Computer
Science Department, University of Edimburgh, 1983.

