
Program Transformation and Rewriting

Francoise Bellegarde

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-021

September, 1990

Program Transformation and Rewriting

Franqoise BELLEG ARDE
Oregon Graduate Institute of Science and Technology

19600 NW von Neumann Dr.
Beaverton OR. 97006-1999
email: bellegar@cse.ogi.edu

Abst rac t

We present a basis for program transformation using term rewriting tools. A speci-
fication is expressed hierarchically by successive enrichments as a signature and a set of
equations. A term can be computed by rewriting. Transformations come from applying
a partial unfailing completion procedure to the original set of equations augmented by
inductive theorems and a definition of a new function symbol following diverse heuris-
tics. Moreover, the system must provide tools to prove inductive properties; to verify
that enrichment produces neither junk nor confusion; and to check for ground conflu-
ence and termination. We show how these properties are related to the correctness of
the transformation.

1 Equations and program transformation

An important research topic in the area of automatic programming is transformational
programming. Functional programming is not inhibited by superfluous concerns such as
sequential control or storage mapping. Transformational programming offers a means to
formally develop efficient programs from clear programs expressed in high level, functional
languages. The program transformation paradigm is not new, but it can take its place
in software design only if the transformation process is automated as much as possible.
Another condition for program transformation to become a useful method for software
design is that it can be used to transform large programs.

A problem with the transformation paradigm is the loss of visibility of its design. Hand
transformation is a lengthy, boring and error-prone process. Transformation systems might
help by making the process semi-automatic, but this is not enough. As the form of a
program is changed during the transformation process, its meaning soon becomes unclear
and the user gets lost.

On the other hand, the program transformation process requires knowledge about the
program. Properties of the program direct its transformation, and the programmer must
provide them. Sometimes, these properties are well known, and they do not need to be
proved over and over again. Sometimes, the proof is easy to do by hand. This task may or
may not take place during the transformation process itself. In any case, the transformation
system must be able to take account of properties given by the user. Moreover, it must be
able to help t o prove or disprove some of the properties suggested by the programmer.

1.1 Equations in functional programs

Either a purely functional fragment of a language like ML or a fragment of an order-sorted
language like OBJ [lo] can be considered as a good candidate for a specification language. It
is relatively easy to write or to translate a specification with such languages in an equational
form. We will consider a specification given by:

a signature C composed of a set of sort symbols and a set of function symbols with
rank declarations.

a set E of equations.

In this sense, a specification describes a class of algebras, namely the class of C-algebras
satisfying the equations E. But the semantics we give to such specifications is the initial
algebra S(C, E).
Example 1 The following specification describes append:

sort 1 ist[eIem]

nil : H list

:: : elem x list H list

append : list x list ++ list

Vx : elem.xs, y : list.append((x :: xs), y) = x :: append(xs, y)

The possibility of describing and transforming an application by successive enrichments
of a specification allows us to handle large programs.

Definition 1 An enrichment of a specification S = (C, E) is a specification St = (Ct, E')
such that C 5 C' and E E E'.

Enrichments can produce either junk, that is new terms that are not equivalent to an already
existing term, or confusion, that is equivalence bet ween two terms originally distinct.
Example 2 We can enrich the specification of the example 1 by adding the inductive
equations:

Vx, y, z : list.append(x, append(y, z))=append(append(x, y), z) (1)
Vx : list.append(x, nil)=x (2)

We can also enrich the specification of Example 1 by adding a new function reverse and
equations for its definition:

reverse : list w list

reverse(ni1) = nil (3)

Vx : e1em.x~ : list.reue~se(x :: xs) = append(reuerse(xs), x :: nil) (4)

These two enrichments do not create junk or confusion.

For now, we consider only the particular case of a pure sorted equational language. Some
extensions could be considered in the future, such as equations conditioned by premises.
Our goal is to define what a transformation system based on rewriting tools can offer. Before
going further, let us give basic notions and notations that are used in this paper.

1.2 Basic notions and notations

We will denote by T(C, X) the set of terms built with the variables X and the functions
symbols of the signature C. The set of ground terms or terms without variables is denoted by
T(C). Positions in terms are represented as a sequence of integers. t / p denotes the subterm
of t a t the position p. Substitutions are endomorphisms of T(C, X). The replacement of
the subterm t l p in t by the term u is denoted by t[p c u].

Given a binary relation, +, +* is the reflexive transitive closure of 4. ** is its
reflexive and symmetric transitive closure. A relation -t is noetherian if there is no infinite
sequence t r --+ t 2 A relation -t is confluent if c* o -+*G+* o t*, where o denotes the
composition of relations. An equation is a pair of terms s = t . Given a set E of equations,
we write s * E t if s/p = a(1) and t = s[p < -o(T)] for some position p in t , substitution a
and equation 1 = r or T = 1 in E.

A rule is an oriented pair of terms 1 -r T . A term rewriting system is a set of rules.
Given a term rewriting system R, the rewriting relation + R is a binary relation in T(C, X).
s + R t if there exists a rule 1 -t T in R, a position p in s , a substitution a such that
a(l) = s l p and t = s[p < -a(r)]. A term t is in normal form if it is irreducible.

A term rewriting system is terminating if the relation + R is noetherian, confluent
if the relation + R is confluent, and convergent if it is both confluent and terminating.
Convergence ensures existence and unicity of the normal form of every term.

Critical pairs are produced by overlaps of two redexes in a same term. A non-variable
term t' and a term t overlap if there exists a non-variable position p in t such that t / p and t'
are unifiable. Let g -+ d and 1 -t r be two rules such that 1 and g overlap a t the position p
with the most general unifier a. The overlapped term a(g) produces the critical pair (p , q)
defined by p = a(g[p < -r]) and q = a(d). A critical pair is convergent if p and q reduce to
the same term.

The completion procedure [12] was introduced as a means at deriving convergent term-
rewriting systems used as procedures for deciding the validity of identities (the word prob-
lem) in a given equational theory. The procedure generates new rewrite rules to resolve
ambiguities resulting from existing rules that overlap. These new rules are produced by
non-convergent critical pairs.

A completion procedure can fail because it is unable to orient an equation into a rule
without losing the termination property of the system. However, non-orientable equations
may sometimes be used for reduction anyway, because their instances can be oriented. This
idea is basic to the unfailing completion procedure [2, I]. It uses the notion of ordered
rewriting which does not require that an equation always be used from left to right. An
ordered rewriting system is a set of equations together with a reduction ordering >, i.e. a
well-founded, monotonic and stable. An ordered rewriting system can be denoted (E , >).
When the equations in E can be oriented with >, we usually call them rules. The ordered
rewriting relation using (E , >)is the rewriting relation +E> where E > denotes the set of all
the orientable instances of E. This allows us to extend the notion of critical pairs to ordered
critical pairs and to extend the completion process to an unfailing completion process, i.e.
a completion that cannot fail. The outcome of the unfailing completion procedure, when it
does not loop, is either a (ground) convergent term rewriting system R when all equations
are rules or a ground convergent ordered rewriting system (E, >) when some equations
remain unordered. By ground convergence, we mean termination and confluence on ground
terms. Obviously, convergence implies ground convergence.

Given a ground convergent term rewriting system R, a term t is ground (or inductively)

reducible with R if all its ground instances are R reducible.
An equation s = t is an inductive theorem (or inductive consequence) of E if for any

ground substitution a, a(s) = a(t).

1.3 Checking properties of enrichments

Using equational logic as a programming language was proposed by O'Donnell [17], by
Gogen [lo] and by Dershowitz [8]. An operational semantics can be given to functions
defined by equations by using term rewriting systems.

We consider programs presented in a specification S = (C, E) by a set of equations E.
The specification S is constructed by successive enrichments of a specification So = (Co, Eo).
We consider the case when the set of functions in the signature C can be split into a set
of constructors C and a set of defined functions D. The definition of functions of D is
suficiently complete with respect to C, i.e. it produces no junk, if every ground term is
provably equal to a constructor term, which is a term built only with constructors.

When E can be partitioned into constructors and defined symbols, Ec U ED, where Ec
is the subset of equations that contain only constructors and variables. If Ec = 0, the
constructors are said to be free. The specification is consistent with respect to C, i.e. it
produces no confusions, if for all constructor terms s and t, s -% t iff s -kc t. A
good transformation system must be able to prove properties about specifications. Let us
consider the principal results regarding enrichments.

Let S = (C, E) C S' = (C, El) be an enrichment with only new equations: E' =
E U Eo. The enrichment is consistent if every equation in Eo is an inductive consequence
of E.

When theories are presented by ground convergent term rewriting systems, the ground
completion process can be used to prove consistency of an enrichment and to produce
simultaneously a ground convergent term rewriting system for the enriched specification.
Consider an enrichment S = (C, I t0) C S' = (C', RouEo) with Ro a ground convergent term
rewriting system on Tc. The general idea is to complete first Ro U Eo, yielding a ground
convergent system R' on Tc,. Then one checks that whenever a rewrite rule, whose left and
right-hand sides both belong to Tc, is added, then this rule is an inductive consequence
of Ro. Bachmair has designed an unfailing ground completion procedure for consistency
proofs in [I].

If the term rewriting system R associated with the specification is ground confluent,
deciding sufficient completeness with respect to C is the same as checking that the normal
form of all ground terms is a constructor term. If R preserves constructor terms, (i.e. for
any rule 1 -, r where 1 is a constructor term, T is also a constructor term), then it is
equivalent to checking for inductive reducibility [ll]. Deciding inductive reducibility can
be done by using test sets. A constructive method for test sets is given by Kounalis in [13].

Ground confluence of the associated term rewriting system is required for proofs about
enrichments. However, we do not always require consistency or sufficient completeness of
enrichments. A specification that builds the integers modulo 2 by enriching a specification
of integers is not consistent. A specification that builds integers with an infinity element
by enriching a specification of integers is not sufficiently complete. Still, these kinds of
construction can both be useful. Moreover, we do not really want to limit the transformation
process t o terminating programs. However, we are limited if we want to do automatic proofs
about enrichments.

2 Program transformation

Dershowitz has shown how completion can be applied to the task of program synthesis from
specifications in [7, 91. The transformation process can be viewed as a p ~ r t i a l unfailing
completion.
Example 3 Let us take the well known example of the transformation of the specification of
the function reverse in example 2 [7]. We want a more efficient implementation of reverse.
In an attempt to find one, we enrich the specification with the definition of a new function
motivated by a generalization of the right-hand side of equation 4.

h : list x list H list

h(u, v) = append(reverse(u), v)

Overlaps between the right-hand side of equa.tion 5 and the left-hand sides of equations 3
and 4 produce ordered critical pairs resulting in a direct definition of the function h:

h : list x list H list

h(ni1, v) = append(ni1, v) (6)
h(x :: xs, v) = append(append(reverse(xs), x :: nil), v) (7)

This corresponds to applications of the instantiation law followed by an unfolding in the
system of B u r s t d and Darlington [5]. The right-hand side of the equation 6 can be simplified
using the definition of append:

The right-hand side of equation 7 can be simplified successively using the associativity of
append given by equation 1, the definition of append, equation 2, and equation 5, oriented
from right to left into:

This corresponds to applications of laws, unfoldings and finally a folding in the system
of Burstall and Darlington. An overlap between the left-hand side of equation 2 and the
right-hand side of equation 5 results in the equation:

reverse(x) = h(x, nil)

This overlap is another motivation for proposing equation 5. This completes the trans-
formation of reverse using append into a tail recursive definition of reverse using only ::.

If we look a t diverse examples, the heuristic is always the same: given a specification
which defines a function f by equations, the first step consists of the introduction of a new
function h(xl, . . . , x,) = e, where e is chosen from the following heuristics:

generalization of a subexpression e j in the definition of f i.e. e j = a(e) for some
substitution a so that e j can be simplified into a(h(xl, -, x,)),

a simple composition of functions in the definition off and

a tuple of subexpressions in the definition of f chosen from any of these heuristics.

Often, it happens that f (x i , . . . , xk) is a subexpression of e because the definition of f is
recursive.

Overlaps between the left-hand side of the definition of h and the right-hand sides of
one or more of the equations of f result in a direct definition of h by a set of equations dh.

The second step consists in the simplification of the left-hand sides of dh using equations
of the original specification S of f and equations of an enrichment of S . Instances of e are
simplified into instances of h.

If f (x i , . - , x;) is a subexpression of e, it happens (mostly because the user has chosen
e on purpose) that an instance of e can be simplified into f (x i , . . -, xk) , resulting in a direct
definition of f using h. In any case, because of the heuristics used to choose e, e f can be
simplified, resulting in a definition of f using h.

Let us consider another simple example to illustrate the tupling heuristic.
Example 4 The following specification (C, E) of integers:

sort Int
ZERO : ~ I n t

S : Int H Int
+ : Int x Int w Int

* : Int x Int H Int

Vx : Int .ZER0 + x = x

Vx : 1nt.y : Int .S(x) + y = S (x + y)

Vx: In t .ZERO*x = ZERO

Vx : Int.y : Int.S(x) * y = x * y + y
is enriched with a definition of the function fib defining the nth fibonacci number:

fib : Int H Int

f i b (Z E R 0) = ZERO (9)
Vx : Int. f i b (S (ZER0) = S (Z E R 0) (10)
Vx : Int. f ib (S(S(x))) = f ib(S(x)) + f ib(z) (11)

We will now generalize f ib(S(x)) + f ib(x) using a new function g by the tupling heuristic
introducing as a new sort, pairs of integers:

sort : pair[elem]

(-, -) : elem x elem H pair

f st : pair H elem
snd : pair I+ elem

Vx : e1em.y : elem. fs t ((x , y)) = x
Vx : elem.y : elem.snd((x, y)) = y

We define g by:

g Int H Int

Vx : Int.g(x) = (f ib (S (x) , f ib(x))

Overlaps between the left-hand side of the definition of g and the definitions of f st and snd
result in:

Equation 14 is a new definition of fib using g. Equation 11 is simplified into :

Equation 12 is simplified into

An overlap between 14 and 9, and an overlap between 13 and 10 results in:

f s t (g (Z E R 0)) = S (Z E R 0)

s n d (g (Z E R 0)) = ZERO

instantiating 16 into:

g (Z E R 0) = (S (Z E R O) , Z E R O)

Overlaps between 14, 13 and 15 result in:

instantiating 16 into:

Equations 14, 17, and 18 constitute a tail recursive definition of fib.

This transformation process is not restricted to simple and well known examples. The
interested reader can look a t the development of the Kwic example given in the appendix.
Reddy gives very interesting examples in [19]. I will not address in this paper the question
of the amelioration of the efficiency of a program by using this transformation process
with the heuristics described above. I am only interested here in its correctness and its
implementation using term-rewriting techniques.

2.1 Correctness of the transformation process

The transformation process consists primarily of that part of the unfailing completion pro-
cess that I call a partial unfailing completion.

Definition 2 Two specifications S = (C , E) and S f = (C , E') are equivalent if for any
ground terns s and t , s t-+k t i$s -k, t .

In other words, S and S f have the same initial algebra. In the following, t l , . . . ,t, are
constructor terms. Recall that C is the set of constructors. Therefore, T(C) is the set of
ground constructor terms.

Definition 3 Let S f = (C j , E j) be the specification defining the finction f . The result of
the transformation is a specification S; = (C;, E;) specihing the same function f i.e. for
all ground terms, f (t l , . -. , t,) -if s i f f (t l , . - - , t,) -;$ s. In other words, S f and S)

are equivalent on the terns T (C U { f)) x T (C)

Proposition 1 Let us call S = (C , E) the enrichment of S f = (C f , E f) with a set of new
function symbols Ch, their definitions Eh, and inductive consequences L of E . We have
C = C f U Ch and E = E f U Eh U I;. Let S' = (C , El) be the result of a partial unfailing
completion of S . Then

1. The partial unfailing completion transforms S into an equivalent specification St.

2. The transformation process transforms a specification S f = (C f , E f) of a function f
into an equivalent specification S; = (C ' f , E;) of the function f if

The Ec-equality (equality between constructors) is included into the E>-equality,

S is consistent with respect to the conctrtlctors and

S; is a complete definition of f , i.e. for all ground terms f (t l , - . .,t,), there
exists a constructor term s such that f (t l , - . , t,) t-i;, s.

f

Proof: The first result follows simply from the fact that partial unfailing
completion does not modify the initial algebra. Considering the second result,
the transformation process transform S f into S;. First, S f and S are equiva-
lent because neither inductive consequences nor Eh modifies the initial algebra.
Second, the partial unfailing completion does not modify the E-equality, thus
c+* C_t+k. Let us consider a ground term f (t l , - . , t,), and a constructor

E;
term a such that f (t l , . . , t,) -;, s, then:

f

Conversely, i f f (t l , - ,t,) -kf s , then f (t l , - - . , t,) -fE s because
Sf and S are equivalent. There exists a constructor term u such that
f (t l , . , t.) HE, U. Therefore f (t l , . . . , t.) -5 u by -2; c-2.

f
u -5 s by transitivity of the E-equality. u -5, s by consistency of
E with respect t o the conctructors. u t+* s because the Ei-equality

E;
contains the Ec-equality. f (t l , . . . , t,) -* s , by transitivity o f the E-

E;
equality.

0

Proposition 2 The transformation process preserves the consistency of a specification with
respect to the conctructors.

Proof: The partial unfailing completion does not modify the initial algebra.
0

Let us consider now the operational point of view. The theory is presented by a term
rewriting system R for the specification (C , R). Computation o f a term in T (C) is done
by rewriting. The operationally complete definition o f a function f with a specification

(Cj , R j) w.r.t C is when for all ground term f (tl,. . , t,), there exists a constructor term
s such that

f(t l , . . . , tn) +;E

Operational and algebraic definitions coincide if R is ground convergent.

Proposition 3 Let the specification (Cf, Rf) be an operationally complete definition off
consistent with respect to the conctructors. If it is transformed into the specification (Clf, Rlf)
which is an operationally complete definition of f , then the computations, i.e. the normal
forms of a ground term f (tl, . . , t,), by R and R' are Ec-equal.

Proof: A ground term f (tl , - - . , t,) has Rj-normal forms s and R'f-normal
forms u that are constructor terms. The Rf equality and the R; equality are
contained into the E = Rf U Eh U L equality where Rf is the set of rules of the
new functions and L the set of the inductive consequences introduced for the
transformation. Therefore, u and s are (E, >)-normal forms. C, E is consistent
w.r.t C because the addition of L and Eh does not modify the consistency.
u -kc s by consistency of (C, E) with respect to the conctructors.

All the above results are valid, if we replace the specification of the constructors (C, Ec)
by any specification at any level of the hierarchic construction of the specification. The
following result proved in [14] is interesting when we construct a specification hierarchically.

Proposition 4 Let Ro be a ground convergent term rewriting system, and let Rf be an en-
richment of (Co, Ro) with a complete definition off w.r.t Co, then R j is ground cohvergent.

As a consequence, when R j is transformed into Ro 5 Rlf, which gives a new complete
definition of f w.r.t Ro, R; is ground convergent.

2.2 Implementation of the transformation process

The core of the system is the partial unfailing completion. Given a source term rewriting
system Rf , we enrich the specification S = (C f , E f) with a definition Eh of a new symbol h,
like h in the example of reverse or like g in the example of f ibonacci. This new definition
is given in general by a unique equation Eh : h(xl, - . - , x,) = e where e is built following the
diverse heuristics suggested above. Let us imagine how to organize the partial completion
process.

1. The system computes the ordered critical pairs between Eh and R j

Let a be the most general unifier of e with f (tl , . . - , t,), left-hand side of an equation
f (tl,. , t,) = t. Let a(e) be greater than the instance a(h(xl, . . - , 2,)) so that the
ordered critical pairs are equations a(h(zl, . - , x,)) = o(t). If R j contains complete
definitions of every defined symbol, such equations contain a complete definition of h.

2. The system processes simplifications, then, the complete definition of f is simplified,
and h must occur in the definition of f . The possible overlaps with Eh can give more
than one possibility, as shown in the following example:

Example 5 Let R f be a ground convergent system for a complete definition of fac-
torial containing a definition of + and * on integers.

S (x) + Y -, S (x + Y)
Z E R O + x -, x

S (x) * y + x * y + y

ZERO * x -, ZERO

fact(S(x)) -, S (x) * fact(x)

f ac t (ZER0) + S (Z E R 0)

With a definition h(x , u) = u * fact(x), the process will return the equations:

h(x , S (u)) = h(x , U) + fact(%)
h(x , Z E R O) = ZERO

h (S (x) , u) = u * (h (x , x) + fac t (x))
h (Z E R 0 , S (u)) = x * $ (Z E R O)

by overlapping u * fact(x) on the definition of * and on the definition of fact. The
user may be disturbed by these two potential complete definitions of h.

3. Additional inductive theorems can be added to help the transformation

Theorems are helpful

(a) for simplifying all rules and equations

(b) for deducting new inductive equations from the definition of the new symbol.

Therefore, we do not overlap the theorems with Eh and the consequences of Eh. The
system overlaps the new theorems only with E f . Moreover, some theorems can be
used only for simplification and in this case they need not to be overlapped with E f .
The user must indicate if the theorem must be overlapped or not. New theorems can
be provided by the user at the beginning of the whole process or during the process.
The separation of the transformation process into two steps as we illustrated here is
totally artificial.

2.3 Limitations of partial completion

1. The partial completion can loop as every completion procedure can do. However,
the user can always interrupt the process when getting a result that contains a new,
hopefully better, complete definition of the function of interest.

Example 6 Let us continue our example with the definition of factorial. First, we
introduce the inductive theorem x * S (Z E R 0) -t x for simplifying the right-hand side
of equation 24 into

h (Z E RO, S (U)) = x (25)

Second, we introduce the associativity of * in an attempt to simplify the left-hand side
u * (h (x , x) + f act(x)) of equation 23 and remove the occurrence of f act(x). Assuming

that z*(u* f act(x)) is greater than (z*u)* f act(x), a superposition of the associativity
on h(x, u) = u * fact($) generates the pair:

Assuming that h(x,x) + fact(x) is greater than h(x, S(x)), the right-hand side of
equation 23 is simplified, resulting in:

Equations 25 and 27 give a tail recursive complete definition of h, but the other
superpositions make the completion process continue indefinitely. One can notice
that the process would work and be finite if superpositions were limited to being done
only with the definition of fact given by equations 19 and 20.

2. The process can also fail to find the desired result, even if it exists, because of the
inadequacy of the ordering. This is the principal drawback of this method. Recur-
sive path ordering [6] often does not work as well as polynomial interpretations [15].
Transformation orderings [3, 41 might be useful. Work remains to be done to find
adequate orderings.

One way to resolve this can be to restrict the completion more severely. Let g be the
function such that the overlaps between the definition of g and the definition of h must be
done to find the new definition of h. Given the new function h, the function of interest f ,
the inductive consequences L, the means to orient equations of L, and the function g, the
system or the user needs only to orient equational consequences.

The Focus system [IS], which does not search for equational consequences, is even more
restrictive. It superposes only g and h and simplifies by rewriting. Therefore, it does no
completion a t all. But this is sometimes too restrictive. For example, it generates this
definition of reverse as

reverse(ni1) = nil

reverse(x :: xs) = h(xs, x :: nil)

but it does not generate the definition reverse(x) = h(x, nil), although this last definition
can always be proved by induction [20,14] from the first one. The following example shows
the weaknesses of the various choices.
Example 7 Let us go back to factorial. With the associativity of * oriented as x * (y * z) -t
(x * y) * z, the superposition between u * fact(x)) and fact(S(x)) is u * f act(S(x)) which
has 3 distinct normal forms giving 3 definitions of h(S(x), u) as:

1. h(S(x), u) = u * (h(x, x) + f act(x))

The third one gives a tail recursive definition. The partial completion will force the con-
fluence to a unique normal form. If the ordering is well chosen (we noted above that this
is the major drawback of the method), the third definition will be the normal-form. On
another hand, without completion, you might get either the third definition with an out-
ermost rewriting, or the first or the second ones with an innermost rewriting. The first
definition is obtained by choosing to simplify first with the rule S(x) * y) -t x * y + y, and
the second definition is obtained by choosing to simplify first with the definition of h(x, u).

3 Conclusion

We choose to use a partial unfailing completion process as the central part of a transforma-
tion system. For that we use the toolkit of rewriting tools provided by ORME [16]. With
this simple initial implementation we have tested the well-known examples and the kwic ex-
ample given in the appendix. The kwic example is interesting because it requires 3 steps of
transformation and therefore shows the potential for transformation of larger specifications
by composition of individual transformation steps. With abilities to perform:

1. induction proofs [14, 201,

2. check of consistency [I, 91,

3. check of complete definition and sufficient completeness [ll, 131,

one could check the main properties of the specifications and prove the inductive conse-
quences that must be added to perform the transformation. The system must also extract
the specification (C f , R f) from the specification (C', R') resulting from a transformation
step, i.e. extract a complete definition of the function of interest f and, iteratively, com-
plete definitions of functions that occur in the definition of f . For this purpose it needs a
check of a complete definition.

All this might be extended to conditional specifications, i.e. a set of conditional equa-
tions. A conditional equation is an equation or an expression el A . . . A en + e where
el , . . , ,en are equations called conditions and e is an equation. Conditional equations are
very useful to express specifications. The function filter in the appendix might rather be
expressed by:

f ilter(ni1) = nil

issig(x) + f ilter(cons(x, xs)) = f ilter(xs)

not(issig(x)) =+ f ilter(cons(x, 3s)) = cons(x, f ilter(xs))

They are also very useful to express conditional properties that might help the transforma-
tion.

Acknowledgements: We thank U.S. Reddy for giving us a copy of the Focus System, P.
Lescanne for the tools provided by ORME, R. Kieburtz for the idea of the kwic example, B.
Vance, J. Hook, R. Kieburtz, C. Kirchner and P. Lescanne for their support and comments.

References

[I] L. Bachmair. Proofs methods for equational theories. PhD thesis, University of Illinois,
Urbana- Champaign, 1987. Revised version, August 1988.

[2] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In Proceed-
ings of the colloquium on the resolution of Equations in Algebmic Structures, 1987.

[3] F. Bellegarde and P. Lescanne. Transformation Orderings. In 12th Colloquium on Twes
in Algebm and Programming, TAPSOFT, pages 69-80, Springer Verlag, Lecture Notes
in Computer Science 249, 1987.

[4] F. Bellegarde and P. Lescanne. Termination by Completion, Technical Report CRIN
90-R-028, 1990.

[5] R. M. Burstall and J. Darlington. A Transformation System For Developing Recursive
Programs. Jourmal of the Association for Computing Machinery, 24, pages 44-67,1977.

[6] N. Dershowitz. Termination. In Proceedings of the first Conference on Rewriting Tech-
niques and Applications, Springer Verlag, Lecture Notes in Computer Science 202,
pages 180-224, Dijon, France, 1985.

[7] N. Dershowitz. Synthesis By Completion. Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 208-214, Los Angeles, 1985.

[8] N. Dershowitz. Computing with rewrite systems. Information and Control, 65(2/3):122-
157,1985.

[9] N. Dershowitz. Completion and its Applications. Resolution of Equations in Algebraic
Structures, Academic Press, New York, 1988.

[lo] J. Goguen and C. Kirchner and H. Kirchner and A. Megrelis and J. Meseguer and T.
Winkler. An introduction to OBJ-3. In Proceedings of the lrst Intern. Workshop on
Conditional Term Rewriting Systems, Lecture Notes in Computer Science 308, 1988.

[l l] D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and related prop-
erties of term rewriting systems. Acta Inforrnatica, 24:395-415, 1987.

[12] D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebras. In J.
Leech, editor, Computational Problems in Abstract algebra, pages 263-297, Pergamon
Press, Oxford, U. K.,1970.

[13] E. Kounalis, Testing for Inductive (C0)-Reducibilit y. In Proceedings of the 15th Inter-
national Colloquium on Trees in Algebra and Programming, Lecture Notes in Computer
Science 431, pages 221-238, 1990.

[14] E. Kounalis, M. Rusinowitch. Mechanizing Inductive Reasoning. In Proceedings of the
eight National Conference on Artificial Intelligence, AAAI-90, 1990.

[15] D.S. Lankford. On proving term rewriting systems are Noetherian, Memo MTP-3,
Mathematic Department, Louisiana Tech. University, Ruston, LA, May 1979. (Revised
October 1979).

[16] P. Lescanne, Completion Procedures as Transition Rules + Contro1:ORME. In 2nd In-
tern. Workshop Algebmic and Logic Programming, Lecture Notes in Computer Science,
1990.

1171 M. O'Donnell. Equationa1 Logic as a Programming Language. Foundation of Comput-
ing, MIT Press, 1985.

[18] U. S. Reddy. Transformational derivation of programs using the Focus system. In Sym-
posium Practical Software Development Environments, pages 163-172, ACM, December
1988.

[19] U. S. Reddy, Formal methods in transformational derivation of programs. In Proceed-
ings of the ACM Intern. Workshop on Automatic Software Design, AAAI, 1990.

[20] U. S. Reddy, Term Rewriting Induction. In Proceedings of the Conference of Automated
Deduction, 1990.

4 Appendix: Kwic example

The problem is to produce, from a list of titles, a list of the cyclic permutations of the
original titles such that we retain only those permutations that begin with a key word.

4.1 Specification

Here we show the construction of the specification by successive enrichments.
Let us represent a title by a list of words. Our input is a list of titles. We can use a

specification of lists.

sort list[elem]

nil : H list

:: : elem x list H list

append : list x list I-+ list

V x : list.append(ni1, x) = x

V x : elem.xs, y : list.append((x :: xs) , y) = x :: append(xs, y)

We enrich the specification with the definition of a function rotations to get an elementary
cyclic permutation.

V x : list[word].rotate(nil) = nil

V x : word.xs : list.rotate(x :: x s) = append(xs, x :: ni l)

Now we want t o iterate the function rotate to get the permutations of a title. The title
itself can be used to control the iteration. The function all returns the complete list of
cyclic permutations of a title.

Vx : list[word].all(x) = repeat(x, x)

V x : list[word].repeat(x, nil) = nil

V x : word.u, xs : list[word].repeat(u, x :: xs) = u :: repeat(rotate(u), x s)

We can now get the permutations of all titles by a function concall:

concall(ni1) = nil

V x : list[word].xs : list[list[word]].concall(x :: xs) = append(all(x),concall(xs))

The list of permutations can be filtered to extract the significant titles. The permutations
whose initial word belongs to the set of insignificant words can be dropped. A predicate
issig checks if the permutation is kept. To specify filter, we use a ternary conditional
operator cond.

filter(ni1) = nil

V x : list[word].xs : list[list[word]].

f ilter(x :: xs) = cond(issig(x), x :: f i l ter(xs), f i l ter(xs))

Finally, we get the desired result by:

4.2 First transformation step

We first transform the definition of sigperm:

sigperm(ni1) = nil

sigperm(x :: x s) = f ilter(append(repeat(x, x) , concall(xs))

We introduce an inductive theorem:

f ilter(append(x, y)) = append(f i l ter(x), f i l ter(y))

It allows us to simplify sigperm into:

sigperm(x :: x s) = append(f ilter(repeat(x, x)) , sigperm(xs))

The complete definition of sigperm is now:

append(ni1, x) = x

append(x :: xs, y) = x :: append(xs, y)

rotate(ni1) = nil

rotate(x :: xs) = append(xs, x :: ni l)

repeat(x, n i l) = nil

repeat(u, x :: xs) = u :: repeat(rotate(u), x s)

f ilter(ni1) = nil

f ilter(x :: x s) = cond(issig(x), x :: f i l ter(xs), f i l ter(xs))

sigperm(ni1) = nil

sigperm(x :: x s) = append(f ilter(repeat(x, x)) , sigperm(xs))

4.3 Second transformation step

We are now interested in modifying the composition f ilter(repeat(x, x)) in the definition
of sigperm. We introduce a new definition:

sigrot(x, y) = filter(repeat(x, y))

and the transformation process gives the equations:

sigperm(x :: xs) = append(sigrot(x, x) , conc f i l (xs))

sigrot(x, n i l) = nil

sigrot(u, x :: 3 s)) = cond(issig(u), u :: sigrot(rotate(u), xs) , sigrot(rotate(u), x s))

The complete definition of sigperm is now:

append(ni1, x) = x

append(x :: xs , y) = x :: append(xs, y)

rotate(ni1) = nil

rotate(% :: x s) = append(xs, x :: ni l)

sigperm(ni1) = nil

sigperm(x :: xs) = append(sigrot(x, x) , sigperm(xs))

sigrot(x, n i l) = nil

sigrot(u, x :: x s)) = cond(issig(u), u :: sigrot(rotate(u), xs) , sigrot(rotate(u), x s))

4.4 Third transformation step

Our objective is to get rid of the costly occurrences of append in sigperm. We introduce
the new definition:

sr (x , y, u) = append(sigrot(x, y) , u)

and the theorem:

append(cond(u, x , y) , a) = cond(u, append(x, a) , append(y, z))

the transformation process returns:

S T (X , ni l , u) = u

sr(x1, x :: xs , u) = cond(issig(x), x :: sr(rotate(xl) , xs , u) , sr(rotate(xl) , x s , u))

conc f i l (x :: xs) = sr (x , x , conc f i l (xs))

The complete definition of sigperm is now:

append(ni1, x) = x
append(x :: xs , y) = x :: append(xs, y)

rotate(ni1) = nil

rotate(x :: x s) = append(xs,x :: ni l)

sigperm(ni1) = nil

sigperm(x :: xs) = sr(x , x , conc f i l (xs))

S T (X , ni l , u) = u

sr(x1, x :: xs , u) = cond(issig(x), x :: sr(rotate(xl) , x s , u) , sr(rotate(xl) , xs , u))

