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Abst rac t  

We present a basis for program transformation using term rewriting tools. A speci- 
fication is expressed hierarchically by successive enrichments as a signature and a set of 
equations. A term can be computed by rewriting. Transformations come from applying 
a partial unfailing completion procedure to the original set of equations augmented by 
inductive theorems and a definition of a new function symbol following diverse heuris- 
tics. Moreover, the system must provide tools to prove inductive properties; to  verify 
that enrichment produces neither junk nor confusion; and to check for ground conflu- 
ence and termination. We show how these properties are related to the correctness of 
the transformation. 

1 Equations and program transformation 

An important research topic in the area of automatic programming is transformational 
programming. Functional programming is not inhibited by superfluous concerns such as 
sequential control or storage mapping. Transformational programming offers a means to 
formally develop efficient programs from clear programs expressed in high level, functional 
languages. The program transformation paradigm is not new, but it can take its place 
in software design only if the transformation process is automated as much as possible. 
Another condition for program transformation to become a useful method for software 
design is that it can be used to transform large programs. 

A problem with the transformation paradigm is the loss of visibility of its design. Hand 
transformation is a lengthy, boring and error-prone process. Transformation systems might 
help by making the process semi-automatic, but this is not enough. As the form of a 
program is changed during the transformation process, its meaning soon becomes unclear 
and the user gets lost. 

On the other hand, the program transformation process requires knowledge about the 
program. Properties of the program direct its transformation, and the programmer must 
provide them. Sometimes, these properties are well known, and they do not need to be 
proved over and over again. Sometimes, the proof is easy to do by hand. This task may or 
may not take place during the transformation process itself. In any case, the transformation 
system must be able to  take account of properties given by the user. Moreover, it must be 
able to  help t o  prove or disprove some of the properties suggested by the programmer. 



1.1 Equations in functional programs 

Either a purely functional fragment of a language like ML or a fragment of an order-sorted 
language like OBJ [lo] can be considered as a good candidate for a specification language. It 
is relatively easy to write or to translate a specification with such languages in an equational 
form. We will consider a specification given by: 

a signature C composed of a set of sort symbols and a set of function symbols with 
rank declarations. 

a set E of equations. 

In this sense, a specification describes a class of algebras, namely the class of C-algebras 
satisfying the equations E. But the semantics we give to such specifications is the initial 
algebra S(C,  E). 
Example  1 The following specification describes append: 

sort 1 ist[eIem] 

nil : H list 

:: : elem x list H list 

append : list x list ++ list 

Vx : elem.xs, y : list.append((x :: xs), y) = x :: append(xs, y) 

The possibility of describing and transforming an application by successive enrichments 
of a specification allows us to  handle large programs. 

Definition 1 An enrichment of a specification S = (C, E )  is a specification St = (Ct, E') 
such that C 5 C' and E E E'. 

Enrichments can produce either junk, that is new terms that are not equivalent to an already 
existing term, or confusion, that is equivalence bet ween two terms originally distinct. 
Example  2 We can enrich the specification of the example 1 by adding the inductive 
equations: 

Vx, y, z : list.append(x, append(y, z))=append(append(x, y), z )  (1) 
Vx : list.append(x, nil)=x (2) 

We can also enrich the specification of Example 1 by adding a new function reverse and 
equations for its definition: 

reverse : list w list 

reverse(ni1) = nil (3) 

Vx : e1em.x~ : list.reue~se(x :: xs) = append(reuerse(xs), x :: nil) (4) 

These two enrichments do not create junk or confusion. 

For now, we consider only the particular case of a pure sorted equational language. Some 
extensions could be considered in the future, such as equations conditioned by premises. 
Our goal is to  define what a transformation system based on rewriting tools can offer. Before 
going further, let us give basic notions and notations that are used in this paper. 



1.2 Basic notions and notations 

We will denote by T(C, X )  the set of terms built with the variables X and the functions 
symbols of the signature C. The set of ground terms or terms without variables is denoted by 
T(C). Positions in terms are represented as a sequence of integers. t / p  denotes the subterm 
of t  a t  the position p. Substitutions are endomorphisms of T(C, X). The replacement of 
the subterm t l p  in t by the term u is denoted by t[p c u]. 

Given a binary relation, +, +* is the reflexive transitive closure of 4. ** is its 
reflexive and symmetric transitive closure. A relation -t is noetherian if there is no infinite 
sequence t r  --+ t 2 . .  .. A relation -t is confluent if c* o -+*G+* o t*, where o denotes the 
composition of relations. An equation is a pair of terms s = t .  Given a set E of equations, 
we write s * E  t if s/p = a(1) and t = s[p < -o(T)] for some position p in t ,  substitution a 
and equation 1 = r or T = 1 in E. 

A rule is an oriented pair of terms 1 -r T .  A term rewriting system is a set of rules. 
Given a term rewriting system R, the rewriting relation + R  is a binary relation in T(C, X). 
s + R  t  if there exists a rule 1 -t T in R, a position p  in s ,  a substitution a such that 
a(l)  = s l p  and t  = s[p < -a(r)]. A term t  is in normal form if it is irreducible. 

A term rewriting system is terminating if the relation + R  is noetherian, confluent 
if the relation + R  is confluent, and convergent if it is both confluent and terminating. 
Convergence ensures existence and unicity of the normal form of every term. 

Critical pairs are produced by overlaps of two redexes in a same term. A non-variable 
term t' and a term t  overlap if there exists a non-variable position p in t  such that t / p  and t' 
are unifiable. Let g -+ d and 1 -t r be two rules such that 1 and g overlap a t  the position p  
with the most general unifier a. The overlapped term a(g) produces the critical pair ( p ,  q )  
defined by p = a(g[p < -r]) and q = a(d). A critical pair is convergent if p  and q reduce to  
the same term. 

The completion procedure [12] was introduced as a means at deriving convergent term- 
rewriting systems used as procedures for deciding the validity of identities (the word prob- 
lem) in a given equational theory. The procedure generates new rewrite rules to resolve 
ambiguities resulting from existing rules that overlap. These new rules are produced by 
non-convergent critical pairs. 

A completion procedure can fail because it is unable to orient an equation into a rule 
without losing the termination property of the system. However, non-orientable equations 
may sometimes be used for reduction anyway, because their instances can be oriented. This 
idea is basic to  the unfailing completion procedure [2, I]. It uses the notion of ordered 
rewriting which does not require that an equation always be used from left to  right. An 
ordered rewriting system is a set of equations together with a reduction ordering >, i.e. a 
well-founded, monotonic and stable. An ordered rewriting system can be denoted (E ,  >). 
When the equations in E can be oriented with >, we usually call them rules. The ordered 
rewriting relation using (E ,  >)is the rewriting relation +E> where E > denotes the set of all 
the orientable instances of E. This allows us to extend the notion of critical pairs to ordered 
critical pairs and to extend the completion process to an unfailing completion process, i.e. 
a completion that cannot fail. The outcome of the unfailing completion procedure, when it 
does not loop, is either a (ground) convergent term rewriting system R when all equations 
are rules or a ground convergent ordered rewriting system (E, >) when some equations 
remain unordered. By ground convergence, we mean termination and confluence on ground 
terms. Obviously, convergence implies ground convergence. 

Given a ground convergent term rewriting system R, a term t is ground (or inductively) 



reducible with R if all its ground instances are R reducible. 
An equation s = t is an inductive theorem (or inductive consequence) of E if for any 

ground substitution a, a(s)  = a(t). 

1.3 Checking properties of enrichments 

Using equational logic as a programming language was proposed by O'Donnell [17], by 
Gogen [lo] and by Dershowitz [8]. An operational semantics can be given to  functions 
defined by equations by using term rewriting systems. 

We consider programs presented in a specification S = (C, E )  by a set of equations E. 
The specification S is constructed by successive enrichments of a specification So = (Co, Eo). 
We consider the case when the set of functions in the signature C can be split into a set 
of constructors C and a set of defined functions D. The definition of functions of D is 
suficiently complete with respect to C,  i.e. it produces no junk, if every ground term is 
provably equal to a constructor term, which is a term built only with constructors. 

When E can be partitioned into constructors and defined symbols, Ec U ED, where Ec 
is the subset of equations that contain only constructors and variables. If Ec = 0, the 
constructors are said to  be free. The specification is consistent with respect to  C,  i.e. it 
produces no confusions, if for all constructor terms s and t, s -% t iff s -kc t. A 
good transformation system must be able to prove properties about specifications. Let us 
consider the principal results regarding enrichments. 

Let S = (C, E )  C S' = (C, El) be an enrichment with only new equations: E' = 
E U Eo. The enrichment is consistent if every equation in Eo is an inductive consequence 
of E. 

When theories are presented by ground convergent term rewriting systems, the ground 
completion process can be used to prove consistency of an enrichment and to  produce 
simultaneously a ground convergent term rewriting system for the enriched specification. 
Consider an enrichment S = (C, I t0)  C S' = (C', RouEo) with Ro a ground convergent term 
rewriting system on Tc. The general idea is to complete first Ro U Eo, yielding a ground 
convergent system R' on Tc,. Then one checks that whenever a rewrite rule, whose left and 
right-hand sides both belong to  Tc, is added, then this rule is an inductive consequence 
of Ro. Bachmair has designed an unfailing ground completion procedure for consistency 
proofs in [I]. 

If the term rewriting system R associated with the specification is ground confluent, 
deciding sufficient completeness with respect to C is the same as checking that the normal 
form of all ground terms is a constructor term. If R preserves constructor terms, (i.e. for 
any rule 1 -, r where 1 is a constructor term, T is also a constructor term), then it is 
equivalent to checking for inductive reducibility [ll]. Deciding inductive reducibility can 
be done by using test sets. A constructive method for test sets is given by Kounalis in [13]. 

Ground confluence of the associated term rewriting system is required for proofs about 
enrichments. However, we do not always require consistency or sufficient completeness of 
enrichments. A specification that builds the integers modulo 2 by enriching a specification 
of integers is not consistent. A specification that builds integers with an infinity element 
by enriching a specification of integers is not sufficiently complete. Still, these kinds of 
construction can both be useful. Moreover, we do not really want to limit the transformation 
process t o  terminating programs. However, we are limited if we want to  do automatic proofs 
about enrichments. 



2 Program transformation 

Dershowitz has shown how completion can be applied to the task of program synthesis from 
specifications in [7, 91. The transformation process can be viewed as a p ~ r t i a l  unfailing 
completion. 
Example 3 Let us take the well known example of the transformation of the specification of 
the function reverse in example 2 [7]. We want a more efficient implementation of reverse. 
In an attempt to  find one, we enrich the specification with the definition of a new function 
motivated by a generalization of the right-hand side of equation 4. 

h : list x list H list 

h(u, v) = append(reverse(u), v) 

Overlaps between the right-hand side of equa.tion 5 and the left-hand sides of equations 3 
and 4 produce ordered critical pairs resulting in a direct definition of the function h: 

h : list x list H list 

h(ni1, v) = append(ni1, v) (6) 
h(x :: xs, v) = append(append(reverse(xs), x :: nil), v) (7) 

This corresponds to  applications of the instantiation law followed by an unfolding in the 
system of B u r s t d  and Darlington [5]. The right-hand side of the equation 6 can be simplified 
using the definition of append: 

The right-hand side of equation 7 can be simplified successively using the associativity of 
append given by equation 1, the definition of append, equation 2, and equation 5, oriented 
from right to  left into: 

This corresponds to applications of laws, unfoldings and finally a folding in the system 
of Burstall and Darlington. An overlap between the left-hand side of equation 2 and the 
right-hand side of equation 5 results in the equation: 

reverse(x) = h(x, nil) 

This overlap is another motivation for proposing equation 5. This completes the trans- 
formation of reverse using append into a tail recursive definition of reverse using only ::. 

If we look a t  diverse examples, the heuristic is always the same: given a specification 
which defines a function f by equations, the first step consists of the introduction of a new 
function h(xl, . . . , x,) = e, where e is chosen from the following heuristics: 

generalization of a subexpression e j  in the definition of f i.e. e j  = a(e) for some 
substitution a so that e j  can be simplified into a(h(xl, -, x,)), 

a simple composition of functions in the definition off  and 



a tuple of subexpressions in the definition of f chosen from any of these heuristics. 

Often, it happens that f ( x i , .  . . , xk) is a subexpression of e because the definition of f is 
recursive. 

Overlaps between the left-hand side of the definition of h and the right-hand sides of 
one or more of the equations of f result in a direct definition of h by a set of equations dh. 

The second step consists in the simplification of the left-hand sides of dh  using equations 
of the original specification S of f and equations of an enrichment of S .  Instances of e are 
simplified into instances of h. 

If f ( x i , .  - , x;) is a subexpression of e, it happens (mostly because the user has chosen 
e on purpose) that an instance of e can be simplified into f ( x i , .  . -, xk) ,  resulting in a direct 
definition of f  using h. In any case, because of the heuristics used to  choose e,  e f  can be 
simplified, resulting in a definition of f using h. 

Let us consider another simple example to illustrate the tupling heuristic. 
Example 4 The following specification (C, E )  of integers: 

sort Int 
ZERO : ~ I n t  

S : Int H Int 
+ : Int  x Int w Int 

* : Int  x Int H Int 

Vx : Int .ZER0 + x = x 

Vx : 1nt.y : Int .S(x)  + y = S ( x  + y) 

Vx: In t .ZERO*x = ZERO 

Vx : Int.y : Int.S(x) * y = x * y + y 
is enriched with a definition of the function fib defining the nth fibonacci number: 

fib : Int H Int 

f i b ( Z E R 0 )  = ZERO (9) 
Vx : Int.  f i b (S (ZER0)  = S ( Z E R 0 )  (10) 
Vx : Int. f ib (S(S(x) ) )  = f ib(S(x))  + f ib(z) (11) 

We will now generalize f ib(S(x) )  + f ib(x) using a new function g by the tupling heuristic 
introducing as a new sort, pairs of integers: 

sort : pair[elem] 

(-, -) : elem x elem H pair 

f st : pair H elem 
snd : pair I+ elem 

Vx : e1em.y : elem. fs t ((x ,  y ) )  = x 
Vx : elem.y : elem.snd((x, y ) )  = y 

We define g by: 

g Int H Int 

Vx : Int.g(x) = ( f ib (S (x ) ,  f ib(x)) 



Overlaps between the left-hand side of the definition of g and the definitions of f st and snd 
result in: 

Equation 14 is a new definition of fib using g. Equation 11 is simplified into : 

Equation 12 is simplified into 

An overlap between 14 and 9, and an overlap between 13 and 10 results in: 

f s t ( g ( Z E R 0 ) )  = S ( Z E R 0 )  

s n d ( g ( Z E R 0 ) )  = ZERO 

instantiating 16 into: 

g ( Z E R 0 )  = ( S ( Z E R O ) ,  Z E R O )  

Overlaps between 14, 13 and 15 result in: 

instantiating 16 into: 

Equations 14, 17, and 18 constitute a tail recursive definition of fib. 

This transformation process is not restricted to simple and well known examples. The 
interested reader can look a t  the development of the Kwic example given in the appendix. 
Reddy gives very interesting examples in [19]. I will not address in this paper the question 
of the amelioration of the efficiency of a program by using this transformation process 
with the heuristics described above. I am only interested here in its correctness and its 
implementation using term-rewriting techniques. 

2.1 Correctness of the transformation process 

The transformation process consists primarily of that part of the unfailing completion pro- 
cess that I call a partial unfailing completion. 

Definition 2 Two specifications S = ( C ,  E )  and S f  = ( C ,  E') are equivalent if for any 
ground terns s and t ,  s t-+k t i$s -k, t .  

In other words, S and S f  have the same initial algebra. In the following, t l , .  . . ,t,  are 
constructor terms. Recall that C is the set of constructors. Therefore, T(C) is the set of 
ground constructor terms. 



Definition 3 Let S f  = ( C j ,  E j )  be the specification defining the finction f .  The result of 
the transformation is a specification S; = (C;, E;) specihing the same function f i.e. for 
all ground terms, f ( t l ,  . -. , t,) -if s i f f  ( t l ,  . - - , t,) -;$ s. In other words, S f  and S )  

are equivalent on the terns T ( C  U { f ) )  x T ( C )  

Proposition 1 Let us call S = ( C ,  E )  the enrichment of S f  = ( C f ,  E f )  with a set of new 
function symbols Ch, their definitions Eh, and inductive consequences L of E .  We have 
C = C f  U Ch and E = E f  U Eh U I;. Let S' = (C ,  El) be the result of a partial unfailing 
completion of S .  Then 

1. The partial unfailing completion transforms S into an equivalent specification St.  

2. The transformation process transforms a specification S f  = ( C f ,  E f )  of a function f 
into an equivalent specification S; = ( C ' f ,  E;) of the function f if 

The Ec-equality (equality between constructors) is included into the E>-equality, 

S is consistent with respect to the conctrtlctors and 

S; is a complete definition of f ,  i.e. for all ground terms f ( t l ,  - .  .,t,), there 
exists a constructor term s such that f ( t l ,  - . , t,) t-i;, s. 

f 

Proof: The first result follows simply from the fact that partial unfailing 
completion does not modify the initial algebra. Considering the second result, 
the transformation process transform S f  into S;. First, S f  and S are equiva- 
lent because neither inductive consequences nor Eh modifies the initial algebra. 
Second, the partial unfailing completion does not modify the E-equality, thus 
c+* C_t+k. Let us consider a ground term f ( t l ,  - .  , t,), and a constructor 

E; 
term a such that f ( t l , .  . , t,) -;, s, then: 

f 

Conversely, i f  f ( t l ,  - ,t,) -kf s ,  then f ( t l ,  - - .  , t,) -fE s because 
Sf and S are equivalent. There exists a constructor term u such that 
f ( t l , .  , t.) HE, U. Therefore f ( t l , .  . . , t.) -5 u by -2; c-2. 

f 
u -5 s by transitivity of the E-equality. u -5, s by consistency of 
E with respect t o  the conctructors. u t+* s because the Ei-equality 

E; 
contains the Ec-equality. f ( t l  , . . . , t,) -* s ,  by transitivity o f  the E-  

E; 
equality. 

0 

Proposition 2 The transformation process preserves the consistency of a specification with 
respect to the conctructors. 

Proof: The partial unfailing completion does not modify the initial algebra. 
0 

Let us consider now the operational point of view. The theory is presented by a term 
rewriting system R for the specification ( C ,  R). Computation o f  a term in T ( C )  is done 
by rewriting. The operationally complete definition o f  a function f with a specification 



(Cj ,  R j )  w.r.t C is when for all ground term f (tl,. . , t,), there exists a constructor term 
s such that 

f(t l , . . . , tn) +;E 

Operational and algebraic definitions coincide if R is ground convergent. 

Proposition 3 Let the specification (Cf,  Rf )  be an operationally complete definition off 
consistent with respect to the conctructors. If it is transformed into the specification (Clf, Rlf) 
which is an operationally complete definition of f ,  then the computations, i.e. the normal 
forms of a ground term f (tl, . . , t,), by R and R' are Ec-equal. 

Proof: A ground term f (tl , - - . , t,) has Rj-normal forms s and R'f-normal 
forms u that are constructor terms. The Rf equality and the R; equality are 
contained into the E = Rf U Eh U L equality where Rf is the set of rules of the 
new functions and L the set of the inductive consequences introduced for the 
transformation. Therefore, u and s are (E, >)-normal forms. C, E is consistent 
w.r.t C because the addition of L and Eh does not modify the consistency. 
u -kc s by consistency of (C, E )  with respect to the conctructors. 

All the above results are valid, if we replace the specification of the constructors (C, Ec) 
by any specification at any level of the hierarchic construction of the specification. The 
following result proved in [14] is interesting when we construct a specification hierarchically. 

Proposition 4 Let Ro be a ground convergent term rewriting system, and let Rf be an en- 
richment of (Co, Ro) with a complete definition off w.r.t Co, then R j  is ground cohvergent. 

As a consequence, when R j  is transformed into Ro 5 Rlf, which gives a new complete 
definition of f w.r.t Ro, R; is ground convergent. 

2.2 Implementation of the transformation process 

The core of the system is the partial unfailing completion. Given a source term rewriting 
system Rf ,  we enrich the specification S = (C f ,  E f )  with a definition Eh of a new symbol h, 
like h in the example of reverse or like g in the example of f ibonacci. This new definition 
is given in general by a unique equation Eh : h(xl, - . - , x,) = e where e is built following the 
diverse heuristics suggested above. Let us imagine how to organize the partial completion 
process. 

1. The system computes the ordered critical pairs between Eh and R j  

Let a be the most general unifier of e with f (tl , .  . - , t,), left-hand side of an equation 
f (tl,.  , t,) = t. Let a(e) be greater than the instance a(h(xl, . . - , 2,)) so that the 
ordered critical pairs are equations a(h(zl, .  - , x,)) = o(t). If R j  contains complete 
definitions of every defined symbol, such equations contain a complete definition of h. 

2. The system processes simplifications, then, the complete definition of f is simplified, 
and h must occur in the definition of f .  The possible overlaps with Eh can give more 
than one possibility, as shown in the following example: 



Example  5 Let R f  be a ground convergent system for a complete definition of fac- 
torial containing a definition of + and * on integers. 

S ( x )  + Y -, S ( x  + Y )  
Z E R O + x  -, x 

S ( x ) * y + x * y + y  

ZERO * x -, ZERO 

fact(S(x))  -, S ( x )  * fact(x)  

f ac t (ZER0)  + S ( Z E R 0 )  

With a definition h(x ,  u )  = u * fact(x),  the process will return the equations: 

h(x ,  S ( u ) )  = h(x ,  U )  + fact(%) 
h(x ,  Z E R O )  = ZERO 

h ( S ( x ) ,  u )  = u * (h (x ,  x )  + fac t (x ) )  
h ( Z E R 0 ,  S ( u ) )  = x * $ ( Z E R O )  

by overlapping u * fact(x) on the definition of * and on the definition of fact. The 
user may be disturbed by these two potential complete definitions of h. 

3. Additional inductive theorems can be added to help the transformation 

Theorems are helpful 

( a )  for simplifying all rules and equations 

(b) for deducting new inductive equations from the definition of the new symbol. 

Therefore, we do not overlap the theorems with Eh and the consequences of Eh. The 
system overlaps the new theorems only with E f .  Moreover, some theorems can be 
used only for simplification and in this case they need not to be overlapped with E f .  
The user must indicate if the theorem must be overlapped or not. New theorems can 
be provided by the user at the beginning of the whole process or during the process. 
The separation of the transformation process into two steps as we illustrated here is 
totally artificial. 

2.3 Limitations of partial completion 

1. The partial completion can loop as every completion procedure can do. However, 
the user can always interrupt the process when getting a result that contains a new, 
hopefully better, complete definition of the function of interest. 

Example  6 Let us continue our example with the definition of factorial. First, we 
introduce the inductive theorem x * S ( Z E R 0 )  -t x for simplifying the right-hand side 
of equation 24 into 

h ( Z E  RO, S ( U ) )  = x (25) 

Second, we introduce the associativity of * in an attempt to simplify the left-hand side 
u * ( h ( x ,  x )  + f act(x)) of equation 23 and remove the occurrence of f act(x). Assuming 



that z*(u* f act(x)) is greater than (z*u)* f act(x), a superposition of the associativity 
on h(x, u) = u * fact($) generates the pair: 

Assuming that h(x,x) + fact(x) is greater than h(x, S(x)), the right-hand side of 
equation 23 is simplified, resulting in: 

Equations 25 and 27 give a tail recursive complete definition of h, but the other 
superpositions make the completion process continue indefinitely. One can notice 
that the process would work and be finite if superpositions were limited to being done 
only with the definition of fact given by equations 19 and 20. 

2. The process can also fail to find the desired result, even if it exists, because of the 
inadequacy of the ordering. This is the principal drawback of this method. Recur- 
sive path ordering [6] often does not work as well as polynomial interpretations [15]. 
Transformation orderings [3, 41 might be useful. Work remains to be done to find 
adequate orderings. 

One way to  resolve this can be to restrict the completion more severely. Let g be the 
function such that the overlaps between the definition of g and the definition of h must be 
done to  find the new definition of h. Given the new function h, the function of interest f ,  
the inductive consequences L, the means to orient equations of L, and the function g, the 
system or the user needs only to orient equational consequences. 

The Focus system [IS], which does not search for equational consequences, is even more 
restrictive. It superposes only g and h and simplifies by rewriting. Therefore, it does no 
completion a t  all. But this is sometimes too restrictive. For example, it generates this 
definition of reverse as 

reverse(ni1) = nil 

reverse(x :: xs) = h(xs, x :: nil) 

but it does not generate the definition reverse(x) = h(x, nil), although this last definition 
can always be proved by induction [20,14] from the first one. The following example shows 
the weaknesses of the various choices. 
Example 7 Let us go back to  factorial. With the associativity of * oriented as x * (y * z) -t 
(x * y) * z, the superposition between u * fact(x)) and fact(S(x)) is u * f act(S(x)) which 
has 3 distinct normal forms giving 3 definitions of h(S(x), u) as: 

1. h(S(x), u) = u * (h(x, x) + f act(x)) 

The third one gives a tail recursive definition. The partial completion will force the con- 
fluence to  a unique normal form. If the ordering is well chosen (we noted above that this 
is the major drawback of the method), the third definition will be the normal-form. On 
another hand, without completion, you might get either the third definition with an out- 
ermost rewriting, or the first or the second ones with an innermost rewriting. The first 
definition is obtained by choosing to simplify first with the rule S(x) * y) -t x * y + y, and 
the second definition is obtained by choosing to simplify first with the definition of h(x, u). 



3 Conclusion 

We choose to use a partial unfailing completion process as the central part of a transforma- 
tion system. For that we use the toolkit of rewriting tools provided by ORME [16]. With 
this simple initial implementation we have tested the well-known examples and the kwic ex- 
ample given in the appendix. The kwic example is interesting because it requires 3 steps of 
transformation and therefore shows the potential for transformation of larger specifications 
by composition of individual transformation steps. With abilities to perform: 

1. induction proofs [14, 201, 

2. check of consistency [I, 91, 

3. check of complete definition and sufficient completeness [ll, 131, 

one could check the main properties of the specifications and prove the inductive conse- 
quences that must be added to perform the transformation. The system must also extract 
the specification (C f ,  R f )  from the specification (C', R') resulting from a transformation 
step, i.e. extract a complete definition of the function of interest f and, iteratively, com- 
plete definitions of functions that occur in the definition of f .  For this purpose it needs a 
check of a complete definition. 

All this might be extended to conditional specifications, i.e. a set of conditional equa- 
tions. A conditional equation is an equation or an expression el A . . . A en + e where 
el , .  . , ,en are equations called conditions and e is an equation. Conditional equations are 
very useful to  express specifications. The function filter in the appendix might rather be 
expressed by: 

f ilter(ni1) = nil 

issig(x) + f ilter(cons(x, xs)) = f ilter(xs) 

not(issig(x)) =+ f ilter(cons(x, 3s)) = cons(x, f ilter(xs)) 

They are also very useful to express conditional properties that might help the transforma- 
tion. 
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4 Appendix: Kwic example 

The problem is to  produce, from a list of titles, a list of the cyclic permutations of the 
original titles such that we retain only those permutations that begin with a key word. 

4.1 Specification 

Here we show the construction of the specification by successive enrichments. 
Let us represent a title by a list of words. Our input is a list of titles. We can use a 

specification of lists. 

sort list[elem] 

nil : H list 

:: : elem x list H list 

append : list x list I-+ list 

V x  : list.append(ni1, x )  = x 

V x  : elem.xs, y : list.append((x :: xs) ,  y)  = x :: append(xs, y) 

We enrich the specification with the definition of a function rotations to get an elementary 
cyclic permutation. 

V x  : list[word].rotate(nil) = nil 

V x  : word.xs : list.rotate(x :: x s )  = append(xs, x :: ni l )  

Now we want t o  iterate the function rotate to get the permutations of a title. The title 
itself can be used to  control the iteration. The function all returns the complete list of 
cyclic permutations of a title. 

Vx : list[word].all(x) = repeat(x, x )  

V x  : list[word].repeat(x, nil)  = nil 

V x  : word.u, xs  : list[word].repeat(u, x :: xs )  = u :: repeat(rotate(u), x s )  

We can now get the permutations of all titles by a function concall: 

concall(ni1) = nil 

V x  : list[word].xs : list[list[word]].concall(x :: xs)  = append(all(x),concall(xs)) 

The list of permutations can be filtered to extract the significant titles. The permutations 
whose initial word belongs to the set of insignificant words can be dropped. A predicate 
issig checks if the permutation is kept. To specify filter, we use a ternary conditional 
operator cond. 

filter(ni1) = nil 

V x  : list[word].xs : list[list[word]]. 

f ilter(x :: xs )  = cond(issig(x), x :: f i l ter(xs),  f i l ter(xs))  

Finally, we get the desired result by: 



4.2 First transformation step 

We first transform the definition of sigperm: 

sigperm(ni1) = nil 

sigperm(x :: x s )  = f ilter(append(repeat(x, x ) ,  concall(xs)) 

We introduce an inductive theorem: 

f ilter(append(x, y))  = append( f i l ter(x),  f i l ter(y)) 

It allows us to simplify sigperm into: 

sigperm(x :: x s )  = append( f ilter(repeat(x, x ) ) ,  sigperm(xs)) 

The complete definition of sigperm is now: 

append(ni1, x )  = x 

append(x :: xs,  y) = x :: append(xs, y)  

rotate(ni1) = nil 

rotate(x :: xs)  = append(xs, x :: ni l )  

repeat(x, n i l )  = nil 

repeat(u, x :: xs )  = u :: repeat(rotate(u), x s )  

f ilter(ni1) = nil 

f ilter(x :: x s )  = cond(issig(x), x :: f i l ter(xs),  f i l ter(xs))  

sigperm(ni1) = nil 

sigperm(x :: x s )  = append( f ilter(repeat(x, x ) ) ,  sigperm(xs)) 

4.3 Second transformation step 

We are now interested in modifying the composition f ilter(repeat(x, x)) in the definition 
of sigperm. We introduce a new definition: 

sigrot(x, y) = filter(repeat(x, y))  

and the transformation process gives the equations: 

sigperm(x :: xs )  = append(sigrot(x, x ) ,  conc f i l ( xs ) )  

sigrot(x, n i l )  = nil 

sigrot(u, x :: 3 s ) )  = cond(issig(u), u :: sigrot(rotate(u), xs ) ,  sigrot(rotate(u), x s ) )  

The complete definition of sigperm is now: 

append(ni1, x )  = x 

append(x :: xs ,  y) = x :: append(xs, y) 

rotate(ni1) = nil 

rotate(% :: x s )  = append(xs, x :: ni l )  



sigperm(ni1) = nil 

sigperm(x :: xs )  = append(sigrot(x, x ) ,  sigperm(xs)) 

sigrot(x, n i l )  = nil 

sigrot(u, x :: x s ) )  = cond(issig(u), u :: sigrot(rotate(u), xs) ,  sigrot(rotate(u), x s ) )  

4.4 Third transformation step 

Our objective is to get rid of the costly occurrences of append in sigperm. We introduce 
the new definition: 

sr (x ,  y, u )  = append(sigrot(x, y) ,  u )  

and the theorem: 

append(cond(u, x ,  y) ,  a )  = cond(u, append(x, a) ,  append(y, z ) )  

the transformation process returns: 

S T ( X ,  ni l ,  u )  = u 

sr(x1, x :: xs ,  u )  = cond(issig(x), x :: sr(rotate(xl) ,  xs ,  u ) ,  sr(rotate(xl) ,  x s ,  u ) )  

conc f i l (x  :: xs )  = sr (x ,  x ,  conc f i l ( xs ) )  

The complete definition of sigperm is now: 

append(ni1, x )  = x 
append(x :: xs ,  y )  = x :: append(xs, y) 

rotate(ni1) = nil 

rotate(x :: x s )  = append(xs,x :: ni l )  

sigperm(ni1) = nil 

sigperm(x :: xs )  = sr(x ,  x ,  conc f i l ( xs ) )  

S T ( X ,  ni l ,  u )  = u 

sr(x1,  x :: xs ,  u )  = cond(issig(x), x :: sr(rotate(xl) ,  x s ,  u ) ,  sr(rotate(xl) ,  xs ,  u ) )  


