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This is a brief summary of the results obtained in applying the model of Ambros- 
Ingerson, Granger and Lynch [I] to phonetic discrimination tasks. 

Training the Model for Phonetic Discrimination 
The model of reference [I] performs top-down, hierarchical clustering of a 

distribution of input patterns by successive partitionings of the input space. At 
each level in the hierarchy a devoted group of cells performs a metric clustering 
of the input patterns presented. The clustering is arrived at by competition and 
Hebbian learning. 

A network of n groups of cells performs an n-level partitioning which is 
conveniently represented by a dendrogram. For low-dimensional (D < 3) data 
representations, the partitioning can be represented directly by plotting the input 
patterns as points, shaded to indicate which cells in a group are maximally acti- 
vated by the pattern (see Fig. 1). We have used such plots to track the convergence 
of the algorithm and otherwise verify the simulation software. 

Fig. 1 Partitioning of 3-D data in the first two levels of the hierarchy 
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Following training, the network response to an input pattern is a set of acti- 
vated cells; one cell in each group is maximally active. Each input pattern is thus 
mapped to a binary signature. We describe below how the signatures are used for 
classification. 

For our preliminary experiments we are using vowels extracted from spoken 
letters [2]. The data base consists of 52 utterances from each of 120 native English 
speakers. The data base is divided into four equal parts, each corresponding to 
30 speakers. Subsets of the first three are used for training, the fourth is used 
for testing the trained network. (Note that the utterances in the test set are 
from speakers not  included in the training set. This tests the model for speaker- 
independent recognition.) 

Each utterance was digitized to 16 bit accuracy at 16kHz sampling rate. A 
DFT was computed over 10 ms sampling windows, at 3 ms time increments. Our 
final pattern vectors are the lowest 32 DFT coefficients, time-averaged over the 
center 1/3 of the vowel. These coefficients span the frequency range from 0 to 4 
kHz. 

We describe results of experiments conducted on the vowels in the letters A, E 
and F . This set was chosen as it presents a fairly difficult phonetic discrimination 
task. Figure 2 is a dendrogram of the signatures produced in response to the 
training data. Each leaf of the dendrogram corresponds to a binary signature. 
The leaves are labeled according to the letter from which the vowel was extracted 
(1 t-, A, 2 H E, 3 H F). Each leaf is also labeled (in parenthesis) by the number 
of training examples with the corresponding signature. 

AEF Inner Product 

Fig. 2 Dendrogram of signatures produced by the training set. 

Pairs of leaves that are joined at the lowest level ("0" on the vertical scale) 
correspond to signatures that are common to two different vowels. In such cases, 



the model incorrectly clusters both vowels in the same class. Presumably, adding 
hierarchical levels would help eliminate such confusions. 

We display the statistical properties of the distribution of input patterns by 
scatter plots of the data. To identify the important degrees of freedom, principal 
components of the training data were computed. Scatter plots of the first two 
principal components of the data are shown in Fig. 3. The classes are fairly 
separable, though not linearly. The figure also shows a fair amount of overlap 
between the classes. 

Fig. 3 Scatter plots of the first two principal components of the vowel data. 

Classification Performance 

To evaluate the model as a classifier, each pattern from the test set is fed to 
the trained network. The signature (activation pattern) produced is then compared 
to the set of signatures produced by the training set. If the test pattern signature 
matches one of the training signatures, then the test pattern is assigned to the 
same vowel that produced the training signature. If the test pattern matches a 
signature common to two different vowels (two leaves of the training dendrogram 
joined at  level "O"), then that test pattern is assigned to the vowel most frequently 
represented in that signature. 

Occasionally, test patterns produce signatures not generated during the train- 
ing. We have employed two techniques to disambiguate this situation. In the 
first method, the offending winning cells are disregarded and the cells with the 
next highest activation are chosen to contribute to the signature. This process 
is repeated until we arrive at a signature that matches one generated during the 
training. The test pattern is then classified as described above. In the second 



method, the leading bits of the signature that match signatures from the train- 
ing set are retained, and the bits beyond the mismatch are discarded. The bits 
retained correspond to the grossest level of partitioning. The resulting truncated 
signatures reach part-way down the training set dendrogram. The test pattern is 
then assigned to the vowel most frequently represented in the sub-tree below the 
mismatch point. Both of these techniques yield similar classification performance. 

Figure 4 shows the classifier performance as a function of the number of 
training epochs. The performance varies somewhat with changes in the network 
configuration (number of cells in each hierarchy). We have explored the use of 
both inner-product and Euclidean-distance activation rules. The plot in Fig. 4 
shows performance with the inner-product activation. The mean performance is 
similar for both, but the inner-product activation rule produces a wider variation 
in performance with changes in the amount of training data used. The three curves 
give the test set results for networks trained on 113, 213 and 313 of the training 
corpus. The peak classification performance for this experiment is 95.6%. 

In comparison, feed-forward networks trained on the same data offer some- 
what better performance. Networks with 6 and 9 hidden nodes, trained by a 
conjugate gradient algorithm scored at 97.78% on the test data. This performance 
advantage is not surprising, given the ability of such networks to reproduce arbi- 
trary mappings. We are encouraged by our results, particularly in considera.tion 
of the computational simplicity and rapid training of this algorithm relative to 
backpropagat ion. 

Fig. 4 Classification performance for A-El? 
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Future Directions and Outlook 

We are currently conducting experiments to discriminate more phonemes, and 
evaluate the performance under the constraints imposed by limited computational 
precision. In addition, we will evaluate the performance of the model when trained 
on cochleagrams of the signal, rather than DFT's. Finally, we are planning to ex- 
tend the model to deal naturally with time-dependence, making use of the temporal 
cues in natural speech. 
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