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Abstract 
Although object-oriented database systems offer advantages over relational or record-oriented database 

systems, such as  modeling facilities for complex objects, they are criticized for poor performance and query 
capabilities on set-oriented applications. The unacceptable performance is due in part  t o  the object-at-a-time 
processing typically used by object-oriented database systems. 

We believe tha t  improved performance of object-oriented database systems depends partially on the 
efficient and selective retrieval of sets of complex objects from secondary storage. In this report, we present the 
method of complex object retrieval and assembly used in the Volcano query processing system and the Revela- 
tion project. We also present experimental results comparing set-oriented versus object-at-a-time complex 
object assembly. 

1. Introduction 

Relational database management systems provide a simple and well-understood model of data .  The sim- 

plicity and theory of the relational model result in efficient implementations. However, relational database 

management systems a re  poorly suited for modeling more complex data  such as  those found in engineering appli- 

cations. Object-oriented database systems have many advantages over traditional record-oriented database 

systems, most notably modeling facilities for complex objects, object identity, and encapsulated behavior. In a 

previous report, we have described the goals of the Revelation project and introduced a high-level vision of its 

query optimization scheme [I]. We believe tha t  four concepts are  crucial for the performance of object-oriented 

database systems. First, set-oriented processing allows leveraging expensive operations, e.g., disk seeks. Second, 

the retrieval and in-memory assembly of complex objects are very frequently used operations, therefore a deter- 

minant of performance. Third, query optimization and access planning, proven t o  be a cornerstone of relational 

systems performance, will gain even more importance for semantically richer queries and complex da ta .  Fourth, 

parallel processing techniques can be exploited much more easily if the underlying processing paradigm uses sets 

tha t  can be partitioned, rather than single object instances. 



We report on set-oriented processing t o  improve complex object retrieval and assembly - a combination of 

the first two concepts listed above. We introduce an operator called the assembly operator, implemented on top 

of the Volcano query processing system. The assembly operator was designed t o  retrieve and assemble complex 

objects in a manner tha t  outperforms non-set-oriented ( n a i v e  or object -a t -a - t ime)  complex-object assembly, using 

physical and logical information such as object clustering and the degree of sharing between objects. In addi- 

tion, the assembly operator is able t o  retrieve complex objects selectively, based on arbitrary selection predi- 

cates. 

In the next section we briefly survey related work. Section 3 discusses background information from the 

Revelation Project and the Volcano query processing system. Section 4 details the assembly operator and its 

benefits over object-at-a-time assembly. Section 5 describes the da ta  structure and algorithm used t o  drive com- 

plex object assembly. Section 6 provides a preliminary performance evaluation for the assembly operator. 

Directions for future research are presented in Section 7 and a summary and our conclusions are  given in Sec- 

tion 8. 

2. Related Work 

Our design of the assenably operator was influenced mainly by the way look-up routines work for 

unclustered index scans, for example, the join called TID-scan in Kooi's thesis [2]. Scanning a file using an  

unclustered index is much more expensive than using a clustered index. One could t ry t o  avoid the seek costs of 

the unclustered scan by sorting the pointers retrieved from the index and looking them up in physical order. 

This approach, however, may require substantial sort space. We sought an  operator tha t  avoids the cost of 

completely sorting the pointer set, but retains the advantages of using an  index. Once we had defined this 

operator, i t  was straightforward t o  extend the algorithm to  complex objects. In this report, we put this algo- 

rithm into an  extensible context t o  make it  usable in an object-oriented database system. 

Complex object assembly is closely related t o  the pointer-based join methods of relational database sys- 

tems. Assembly resembles a functional join, linking objects based on inter-object references. An early pointer- 

based join optimization, join indices [3], maintained a pre-computed join by storing pointers t o  pairs of joining 

records. More recently, pointer-based joins [4,5,6] use either explicitly stored pointers or system maintained 



pointers. We, however, do not require sets of objects to  be confined to  distinct disk files or that  object refer- 

ences contain a physical component1. 

3. Background 

The assembly operator was envisioned to meet the need for increased performance in the Revelation 

object-oriented query processor. Revelation types have encapsulated behavior and are a combination of complex 

values and methods. Objects reference other objects by embedding object identifiers (ODs) in their state. An 

overview of Revelation's architecture is shown in Figure 1. A query can be executed naively within the run-time 

system or it can be "revealed." Revealing a query is an attempt to  transform a query into its equivalent complex 

object algebra expression. In order to  reveal behavioral information about a query, the encapsulation barrier 

must be broken by the revealer, a trusted system component. Once a query is transformed into the complex 

object algebra expression, it  is optimized, by an optimizer generated optimizer [7,8]. Optimization includes 

choosing physical algebra operators, also called set processing methods, for the logical algebra (complex object 

algebra) operators. For example, a join operator a t  the logical level may be replaced by the hash-join operator 
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Figure 1. Revelation Architecture 
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' Only that there is a mapping from object reference to physical location 



in the physical algebra. The assembly operator is a set processing method tha t  does not correspond to  any com- 

plex object algebra operator2. I t  is similar t o  a sort operator in relational systems where the operator enforces a 

physical property of the da t a  tha t  is not logically apparent (i.e. sort order). The assembly operator is used t o  

prepare da ta  needed by the other physical operators. I t  enforces the physical constraint: "The portion of the 

complex object needed t o  carry out the query is entirely in memory." By "portion" we mean part  of the object's 

complex internal s ta te  plus fragments of referenced objects3. 

Once a query has been optimized and exists as a tree of physical operators i t  is executed by the set proces- 

sor. The set processor used in the Revelation project is based on the Volcano query evaluation system (91. Vol- 

cano includes a file system with heap files, B-trees, and buffer management. The design of the Volcano query 

evaluation system was influenced by a number of systems, most notably WiSS [lo] and GAMMA (111. Volcano 

queries are composed of operators tha t  provide a uniform iterator interface. Each Volcano operator conforms t o  

the iterator paradigm by providing open, next and close calls. Other query processing systems tha t  use the 

iterator paradigm, though in somewhat different ways than Volcano, are System R [12], the Ingres Corp. version 

of Ingres, EXODUS [13], and Starburst [14], where it  is called "lazy evaluation." 

4. The Assembly Operator 

The purpose of the assembly operator is t o  efficiently translate a set of complex objects from their disk 

representations t o  a quickly traversable memory representation. Complex object refers t o  one or more objects or 

object fragments connected by inter-object references. Note tha t  we do not restrict the implementation of 

inter-object references nor do inter-object references imply ownership as in composite objects. T o  achieve 

quickly traversable memory-resident complex objects, all object references (ODs)  are changed t o  memory 

pointers. This "pointer-swizzling" process results in a structure tha t  can be scanned without the need t o  consult 

an  OD-to-memory-address mapping table. Instead, complex object scanning is reduced t o  following memory 

pointers. Figure 2 illustrates a complex object where each box is a n  object and each inter-object reference is 

This is not strictly the case because the assembly operator does have the ability to perform a selection. 

' "Object" is used to label both application-level objects and storage-layer objects. An application-level object's state 
may be composed of many storage-layer objects. 



Object Type Complex Object 

Person 

Person 

Residence 

Residence +--I 

Figure 2. Sample Complex Object 

shown as  a directed edge. This particular figure should be interpreted a s  a Person and his/her father (who is 

also a Person) and the Residence of both child and father. The assembly operator has the ability t o  find and 

resolve multiple, possibly shared, object references contained within a single object. In order t o  do this 

efficiently, the operator uses physical, structural and statistical information. 

We look first at a sample query on a set of complex objects of the form depicted by Figure 2: "Retrieve all 

people tha t  live close t o  (live in the same city as) their father." A pseudo-code implementation of the top-level 

query and one method is shown in Figure 3. In the figure, the dot (".") is used t o  represent attribute selection 

and messages are written as  C functions and are italicized. The toplevel-query method iterates over all peo- 

ple. Each person in the set receives the lives-close-to-father message. When this query is executed naively, 

each complex object gets completely traversed before another is considered. Furthermore, the order tha t  each 

complex object is traversed depends on how the methods were written and how the code was interpreted or 

toplevel-query : 
for each PERSON 

if ( lives-cloae-to-father (PERSON) ) 
printout (PERSON) 

lives-close-to-father: 
if ( city (selfxesidence) == home-town (self.father) ) 

return (TRUE) 

Figure 3. Partial Query Implementation 



compiled. For example, lives-close-to-father may be compiled so tha t  the home-town message is sent before 

the city message. If each person object is clustered with a referenced residence object, then sending the city mes- 

sage first would be more efficient. The point is, method interpretation/compilation does not order object fetches 

t o  improve efficiency. 

The example above is equivalent t o  a set selection on a set of complex objects. Naive execution must 

traverse each complex object, one-at-a-time, t o  evaluate the query. However, a n  alternate way t o  compute the 

query is t o  assemble the complex objects and then carry out the selection. Preparing complex objects for subse- 

quent query evaluation is the responsibility of the assembly operator. By using the assembly operator, the order 

tha t  objects are fetched into memory is independent of the query implementation. Tha t  is, objects need not be 

fetched in the order tha t  the query implementor fetched them. Instead, fetching order is restricted only by the 

structure of the complex objects. 

At  any stage of assembling a complex object there may be several references yet t o  be resolved. Returning 

t o  the previous example, after retrieving a single person either the father or the residence reference can be 

resolved. There are two primary reasons why this choice has a direct effect on performance. First, the physical 

location of objects on disk and in memory must be considered. If requested objects are  contained in a single 

page, then only a single request should be issued t o  the buffer manager4. This situation occurs when objects are 

clustered together and when there is sharing of sub-objects. Intelligent scheduling of disk retrievals, based on 

physical location, can decrease the number of tracks covered and the total seek time. Furthermore, the larger 

the number of unresolved references t o  choose from, the greater the possibility t o  choose one with small seek dis- 

tance. The second effect on performance arises from the existence of predicates. It is advantageous t o  abort the 

assembly of a complex object as  soon as  possible if i t  has a chance of not satisfying a selection predicate. 

Therefore, t o  prevent a waste of effort i t  is beneficial t o  retrieve sub-objects tha t  have a high probability of fail- 

ing a predicate as  soon as  possible (151. For example, if the previous query was restricted t o  the s tate  of 

It can be argued that a second request is bound to be a buffer hit, therefore very inexpensive. Our experience shows, 
however, that even buffer hits can be expensive, since a table must be searched while protected against concurrent update, 
etc. While it is reasonable to expect that a buffer request can be serviced in less than 200 instructions if it does not result in 
a buffer fault, very frequent buffer hits can add significantly to overall query processing cost. 



Oregon, the residence of the person should be fetched and checked before the person's father is considered. 

So far we have only discussed assembling one complex object a t  a time. However, this approach is not 

likely t o  provide a large number of unresolved references. This problem is overcome by assembling more than 

one complex objects a t  a time. Instead of working on a single complex object, the assembly operator works on a 

window, of size W, of complex objects. As soon as  any one of these complex objects becomes assembled and 

passed up the query tree, the operator retrieves another one t o  work on. We refer t o  this as  a delayed or sliding 

assembly  operator .  Using a window of complex objects increases the pool size of unresolved references and 

results in more options, leading t o  a greater expected effect on optimization. A cost of using the sliding assem- 

bly operator is the need for enough buffer space t o  hold W partially assembled objects. 

Consider a small example using three complex objects structured like the one shown in Figure 2. Suppose 

tha t  the assembly operator is using a window size of 2. The three completely assembled complex objects and 

individual object symbols are  shown in Figure 4. Assembly begins by filling the window with references t o  the 

first two complex objects. Figure 5a shows the starting condition. The assembly operator begins with a choice 

of two references t o  resolve. After resolving Al ,  and fetching the required piece of the object, two new 

unresolved references are added t o  the list. The new state is shown in Figure 5b. Next, A2 is resolved (Figure 

5c), resulting in two more references being placed on the list. Figure 5d is the result of resolving B1 which 

places unresolved reference D l  on the list. After Cl,  CZ and D l  are resolved (Figure 5g), the first complex 

object is assembled. In order t o  keep a window size of 2, after the first complex object is passed t o  the next 

operator, a new reference is added t o  the list (Figure 5h). 

&$& 
Figure 4. Three Assembled Complex Objects 



Unresolved Reference Llst Partlally Assembled Complex ObJects 

a) Al ,  A2 

b) A.2, Bl,  c 1  EDl 
e) B1, C1, B t ,  C2 • la 
d) C1, B.2, C.2, Dl !a 

Figure 6. Sliding Assembly Operator Example 

The example depicts one order that  results in the first complex object being assembled. There are, how- 

ever, many other scheduling orders. At  each step in Figure 5, an  unresolved reference must be chosen. Ideally, 

the reference tha t  reduces disk head movement and overall assembly time will be chosen. For example, C2 may 

have been chosen from the list in Figure 5e because it  was fetched when C l  was fetched. The scheduling order 

is only restricted by the need t o  fetch objects top-down. In Section 7 we will discuss how this restriction can be 

overcome, allowing arbitrary scheduling order. 

Assembly makes no assumptions about physical location of sub-objects. It is possible for a complex object 

t o  be partially assembled - perhaps by a previous operator. When a partially assembled sub-object is 

discovered, the operator finds all unresolved references within it. Suppose tha t  objects A1 and B1 from Figure 4 

are assembled. Assembly would begin with the following list instead of the one in Figure 5a: A2, Dl, C1. 

It may appear from the example tha t  assembly reduces t o  a variant of a n  n-way pointer join. However, 

the example shows tha t  results are  produced without having t o  access all potentially participating objects. A 



pointer join would require a t  least one input t o  be completely scanned before producing a single result. Assem- 

bly can touch a number of objects ranging from only those needed for one complex object up the entire window 

of complex objects. We also anticipate cases tha t  require computations tha t  are not algebraically expressible. 

For example, lives-close-to-father (Figure 3) may involve a distance computation based on latitude and longi- 

tude of the cities. 

5. Component Iterator and Templates 

In the previous discussion and example of the assembly operator, there was no mention of how the opera- 

tor determines what par t  of a complex object t o  assemble, when assembly is complete or how to  find unresolved 

references within a newly retrieved object. Such information is specific t o  each query and is type and structure 

dependent. In our design, these tasks are the responsibility of the component iterator, a companion routine t o  

the assembly operator. Figure 6 shows the detailed architecture of the assembly operator and the component 

iterator. The component iterator uses structural and statistical information contained in a template t o  control 

Assembled Complex Objects 

c o m p E '  t o  Assembie 8 $ . e c t + ~ ! - E ~  Assembly Operator Component Iterator 

(umddvad OIB) 

Template 

Volcano 

Objects 

Disk €3 
Figure 6. Assembly Operator and Component Iterator 



the assembly operator. A template resembles a tree similar t o  the representation of a complex object shown in 

Figure 2. In addition t o  structural information, the template is annotated with statistical information. 

Currently the statistical information consists of the degree of sharing between objects and predicates with predi- 

cate selectivity. 

The template captures two essential properties of complex objects pointed out by Batory [16]. The tem- 

plate allows recursive definitions and it  indicates borders of shared components. Sharing information is impor- 

t an t  for three reasons. First, i t  will be necessary t o  ensure tha t  such components are not loaded twice for two 

different objects into two different memory locations. Thus, some mechanism is required t o  determine whether 

shared components already reside in buffer memory. Second, a mechanism must be used t o  ensure tha t  the 

shared component remains in memory as  long as  there is a t  least one valid reference t o  i t  from another object in 

memory, e.g., through reference counting. After a component is no longer referenced, i t  is subject t o  replace- 

ment using buffer replacement policies. Third, when the assembly operator runs in parallel, the original object 

identifier (OD) or fragments may be partitioned into disjoint subsets. Thus, shared components might be 

shared by objects in different partitions, and therefore introduce synchronization requirements between parti- 

tions tha t  are unique t o  the assembly operator. Note tha t  information on non-sharable objects is useful in 

avoiding the overhead of buffer lookup, reference counting and partitioning constraints. 

The statistical information contained in the template will be used t o  decide the order in which component 

retrievals are scheduled. In particular, if the physical cost of retrieving two components is the same, i t  makes 

sense t o  retrieve the component tha t  decides whether or not the other one is necessary. For example, if predi- 

cates are associated with both components, and the failure of either predicate allows abandoning assembly of 

the entire complex object, the component with the higher rejection probability should be retrieved first (151. 

6. Performance of the Assembly Operator 

The efficiency of the Volcano query processing software has been demonstrated in earlier reports, both for 

single-process and for multi-process query evaluation [9,17,18]. For this study, Volcano is used in single-process 

mode with parallelism and latching of internal da t a  structures disabled. 



Relational benchmarks such as the Wisconsin Benchmark 1191 are clearly not well suited for measuring the 

performance of an  object-oriented database system. Recent object-oriented benchmarks, the HyperModel 

Benchmark [20] and the Sun [21] benchmark, are better suited for our system. However, we wish t o  concentrate 

on complex object assembly and not on general query processing. Our solution was t o  develop a smaller group 

of benchmarks tha t  focus on clustering, buffer size, window size, database size and scheduling algorithms. 

Our benchmark most closely resembles the Altair Complex-Object Benchmark (ACOB) [22]. Each complex 

object is structured as  a binary tree of 3 levels. However, unlike objects in ACOB, our objects are  physically 

stored as  a single record, not a group of seven records. Each object consists of 4 integer and 8 object reference 

fields equaling 96 bytes, resulting in 9 objects per page. This structure provides just enough depth and breadth 

t o  compare object-at-a-time assembly t o  other scheduling methods. It also provides enough structure so tha t  

clustering can be altered. 

The primary consideration in deciding how t o  measure performance was the desire t o  compare object-at- 

a-time assembly t o  set-oriented assembly. Both methods have equivalent CPU costs6 so i t  is sufficient t o  com- 

pare the difference in 1/0 costs. For this reason, and the unavailability of a raw device for our use, performance 

is measured in terms of average seek distance, in pages of size 1K bytes. Average seek distance is the total seek 

distance divided by the total number of reads (average seek distance per read). We assume entire control over 

the queue of requests for the disk, making the seek time a significant cost in retrieving da ta  from the disk [23]. 

As briefly mentioned above, our benchmark parameters are: clustering, scheduling algorithm, window size, 

buffer size and database size. Our first objective is t o  determine if one scheduling algorithm outperforms the 

others independent of clustering method, or if the scheduling algorithm needs t o  be adaptive t o  clustering. Also, 

as  window size increases, we compare scheduling algorithm performance t o  object-at-a-time assembly. The 

second set of benchmarks test the hypothesis tha t  information about shared sub-objects can be used t o  increase 

performance. And finally, selective assembly is tested using predicates with varying selectivities. Before 

presenting the results of the benchmarks we briefly describe the clustering methods and scheduling algorithms 

The overhead of set-oriented assembly lies in the maintenance of a scheduling data structure (list, queue or priority 
queue). 



used throughout the benchmarks. 

6.1. Clustering 

One important means of increasing the performance of queries is da t a  clustering. A great deal of effort 

has been put into the research of optimal clustering methods for hierarchical objects [24,25,26,27]. However, 

even dynamic clustering algorithms, the most effective clustering method, while increasing performance of com- 

mon queries, may result in a dramatic performance decrease of less common but still frequently used queries. 

In the following discussion of clustering i t  will be useful t o  refer t o  Figure 7 which shows a set of n complex 

objects. The least restrictive form of clustering is random or unclustered data.  Unclustered da t a  is produced by 

randomly placing parts of each complex object on the disk. In Figure 8 and the following figures, a n  area boxed 

with a dashed line represents a cluster. Within a cluster the objects randomly placed. The simplest method of 

- .  cia 
Figure 7. A Set of Complex Objects 

Figure 8. Unclustered Complex Objects 

Figure 9. Inter-Object Clustering 



clustering places objects of the same type, or class, together. We refer t o  this clustering policy as  inter-object 

clustering, shown in Figure 9. Recall tha t  there is no implied order within a cluster. The fact tha t  object A1 is 

the first object in Cluster A does not imply tha t  object B1 is the first object in Cluster B. Clustering some or 

all of the parts of a composite object together leads t o  the third form of clustering, intra-object clustering (Fig- 

ure 10). This is a common form of clustering [28,29] used t o  increase the performance of queries t ha t  access a 

number of related objects a t  the same time. 

6.2. Scheduling Algorithms 

Performance is based primarily on I/O cost, so the order in which objects are fetched from disk is the key 

t o  performance. The order of object fetches is in turn dependent on the scheduling algorithm used in the assem- 

bly operator. We consider three simple scheduling algorithms in our benchmarks. 

First, O D s  can be chosen for resolution by a depth-first traversal6 of each complex object. Recall the 

three complex objects shown in Figure 4. With a window size of 2 the objects will be resolved in the following, 

depth-first order: Al ,  Bl, D l ,  C1, A2, .... Note tha t  depth-first scheduling is equivalent t o  object-at-a-time 

assembly, regardless of window size. 

The second alternative is breadth-first scheduling. Using the same example, with a window size of 2, the 

references would be resolved in the following order: Al ,  A2, E l ,  C1, B2, C2, Dl ,  D2, AS, BS, CS, DS. Note from 

the example tha t  "breadth" refers to the breadth of the window and not the breadth of a single complex object. 

Figure 10. Intra-Object Clustering 

"hild order (left-to-right) is determined by the child reference storage order in the parent's state. 



The third scheduling algorithm is an  elevator algorithm, the SCAN scheduler, t ha t  schedules OIDs based 

on their physical location. This algorithm minimizes disk head movement, reducing the total seek time. 

Because we assume a dedicated device t o  store our database, there is no interference from other processing 

sources. Furthermore, with a sufficiently large window we can expect a large number of outstanding requests, 

making SCAN scheduling a reasonable choice [30]. 

6.3. Clustering vs. Scheduling vs. Window Size 

The first group of benchmarks compare the performance of all three scheduling algorithms on all three 

clustering methods. There is enough buffer space t o  hold the largest database, so no page replacement occurs. 

Window sizes of 1, 50, 100, 150 and 200 complex objects are  tested as  well as  database sizes of 1000, 2000, 3000 

and 4000 complex objects. Recall tha t  performance is measured as average seek distance (in pages) per read. 

We present our benchmark results when window sizes of 1 and 50 complex objects are used and show the effect 

of window size on scheduling algorithm performance. 

6.3.1. Window Size = 1 

With a window size of one complex object, all three scheduling algorithms assemble objects one-at-a-time. 

However, their performance is not identical, as  shown in Figures 11(A-C). 

The performance difference observed in Figure 11A is an  artifact of the method used t o  assign references 

between inter-object clustered complex objects. Referring back t o  Figure 7, each object in Cluster A references 

an  object in Cluster B, and an  object in Cluster C. The clusters are placed on disk a s  shown in Figure 12. But 

each cluster is larger than the amount of valid da ta  contained in i t .  Thus, in Figure 12, the shaded regions con- 

tain da ta  and the unshaded area is unused. In fact, the cluster size is larger than any database size used in the 

benchmarks. Therefore, seek distance is independent of database size - shown by the flat lines in Figure 11A. 

Breadth-first scheduling performs poorly for inter-object clustering because of cluster layout. Objects are 

fetched in the following order: Cluster A, Cluster B, Cluster C and Cluster D. However, the clusters are not 

physically placed in tha t  order (Figure 12). The other two algorithms fetch from the clusters in the order they 

exist on disk, accounting for the performance difference in Figure 11A. 
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Disk: 

Figure 12. Disk Layout for Inter-Object Clustering 

When the databases are unclustered, Figure 11C, the elevator scheduler uniformly decreases average seek 

distance by approximately 10%. I t  is possible, therefore, t o  gain a small performance increase on unclustered 

data  just by scheduling object fetches based on their physical location. 

6.3.2. Window Size = 50 

Figures 13(A-C) show benchmark results for a window of 50 complex objects. Regardless of how the da ta  

is clustered, average seek distance is smallest for elevator scheduling. 

Elevator scheduling, combined with a window of more than one complex object, orders object fetches 

almost identically t o  the "ideal" scheduling algorithm. For example, disk head movement is reduced for inter- 

object clustering because objects in the current cluster are fetched before those in another cluster (breadth-first 

scheduling). The elevator algorithm goes one step further by fetching all clustered objects in physical order. 

Similarly, depth-first (object-at-a-time) scheduling is suited for inter-object clustering. However, the order of 

assembly does not match physical order for depth-first scheduling as  i t  does for elevator scheduling. 

6.3.3. Window Size vs. Scheduling Algorithm 

Under all clustering policies and window sizes, elevator scheduling is the most efficient of the three schedul- 

ing algorithms. Thus, the elevator algorithm is used t o  measure the effect of window size on performance. Fig- 

ure 14 shows the results of varying window size for a constant database size of 4000 complex objects. 

The point of diminishing returns occurs prior t o  a window of 50 complex objects. Window size increase 

beyond this point marginally decreases average seek distance while costing more buffer space (to hold partially 

assembled complex objects). For exampIe, a t  most 7 pages are required with a window size of one complex 

object. When the window size is 50, up t o  

[BX4S](pages  for uncompleted o b j e c t s )  + [ 7 x 1  1 (pages  for completed o b j e c t s )  = 301 pages 
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may be needed. 

6.4. Sharing of Sub-objects 

The previous benchmarks assume no sub-objects are shared by complex objects. However, this assumption 

cannot be made for complex objects in a realistic object-oriented database. To  improve efficiency, complex 

object assembly uses sharing statistics contained in a template. Sharing statistics are used during assembly t o  

predict buffer usage and prevent shared objects from being flushed out of the buffer. 

As in the previous benchmark, elevator scheduling and object-at-a-time (depth-first) scheduling are  com- 

pared. Inter-object clustering is used for simplicity. Sharing is the ratio of shared objects t o  sharing objects. 

For example, 100 objects sharing 5 sub-objects exhibit .05 sharing. 

One of the benchmark results, using .25 sharing, is shown in Figure 15. The results shown in this figure are 

typical of the other benchmarks with differing degrees of sharing. Not only does the use of expected sharing 

statistics increase performance, i t  also reduces the total number of reads (not apparent in Figure 15). 
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A key ability of the assembly operator is tha t  i t  can selectively assemble complex objects. This is analo- 
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gous t o  evaluating predicates while scanning or retrieving a relation in a relational database system. These 

benchmarks compare the performance of elevator scheduling t o  object-at-a-time assembly when complex objects 

must satisfy predicates of varying selectivities. 

1500 

Average Seek 

(pages) 1OOO 

0 

0 10 20 30 40 50 
Percentage Selectivity 

Figure 16. Predicates and Selectivities 



Figure 16 shows the results of running these benchmarks. We see a decrease in average seek distance with 

a n  increase in the number of complex objects, for window sizes greater than 1. The reason, fewer reads are 

needed for assembling fewer objects. Object fetches other than those needed t o  test the predicate or completely 

assemble complex objects satisfying the predicate are eliminated by first fetching objects needed t o  evaluate the 

predicate. 

7. Future Directions 

The impact of a restricted or varying buffer size has not been explored. As explained previously, increas- 

ing the window size results in a need for more buffer space. If no more buffer space is available, then some pages 

will have t o  be released and re-read. The use of the elevator algorithm will help t o  prevent the flushing of use- 

ful pages by resolving all references in the current set of buffer pages. We suspect tha t  for a given buffer size 

the window size can be tuned so tha t  performance is maximized. 

Currently, assembly operates entirely with one scheduling algorithm. Also, scheduling priorities based on 

shared sub-objects and predicates have not been integrated into a single scheduling algorithm. The primary 

scheduling algorithm will be the elevator algorithm modified t o  account for predicates, sharing and the buffer 

size. For example, although elevator scheduling orders object fetches t o  minimize disk head movement, the 

order may be altered t o  abort assembly of complex objects failing a predicate. Additional template annotations 

may be required t o  make intelligent scheduling decisions. 

A further research topic is the implementation of a parallel complex object assembly operator. Every 

effort has been made t o  isolate points where locking must occur when concurrent assembly processes access 

shared sub-objects. Since parallelism is encapsulated in Volcano [31], i t  can be used for all existing operators 

without changing their code; we anticipate tha t  i t  will also allow parallelizing the assembly operator t o  provide 

further speedup. 

Implementing a parallel assembly operator poses the same obstacles as  allowing multiple assembly opera- 

tors in a Volcano query plan. The effectiveness of elevator scheduling depends on exclusive control of the physi- 

cal device. When multiple assembly operators (or parallel invocations of a single assembly operator) are execut- 

ing, each assumes sole control of the device and independently issues object fetch requests. Therefore, there are 



two or more independent queues of requests for the device and the exclusive control assumption no longer holds. 

The situation becomes more complex when the database is stored on more than one physical device. At  present, 

the assembly operator can only handle one device. A possible solution could involve a server-per-device archi- 

tecture. Each server would maintain a queue of requests and would fetch objects on behalf of one or more 

assembly operators. 

Previously, we stated tha t  assembly had t o  occur topdown. When multiple assembly operators are 

allowed in a query tree, complex objects may be assembled bottom-up. Bottom-up and topdown assembly is 

achieved by "stacking" assembly operators. Suppose tha t  the B and D sub-objects from Figure 4 should be 

assembled bottom-up. This is accomplished by using the two assembly operators shown in Figure 17. Assembly1 

assembles all B and D objects according t o  the template and passes them to  Assembly2. Assembly2 completes 

the assembly by fetching A and C objects and linking them with the sub-objects already assembled by Assem- 

blyl. 

8. Summary and Conclusions 

In this report on the Revelation project, we have outlined techniques for set processing and complex object 

retrieval. The set processor is based on iteration over sets, using the iterator or demand-driven dataflow para- 

digm as  implemented in Volcano. 

The assembly operator uses templates and component iterators t o  selectively and intelligently assemble 

complex objects. Once assembled, complex objects may be efficiently traversed. Elevator scheduling, combined 

with a sliding window of complex objects, reduces disk head movement compared t o  object-at-a-time assembly. 

Partial Query Tree Template Structure Assembly Example 

Assembly 1 T 
Figure 17. Combination of Bottom-up and Topdown Assembly 



Furthermore, elevator scheduling outperforms depth-first and breadth-first scheduling when differing data cluster- 

ing policies are used. Predicates are used to abort assembly of failing complex objects as  soon as possible - 
reducing the number of unnecessary object fetches. Shared sub-objects are assembled and kept in the buffer as  

long as possible using sharing statistics. 

If this technique is combined with parallelism through partitioning and asynchronous I/O, both provided 

as standard services in Volcano, we expect that the assembly operator will retrieve large sets of complex objects 

with scalable performance. 

References 
1. G. Graefe and D. Maier, "Query Optimization in Object-Oriented Database Systems: A Prospectus," pp. 

358-363 in Advances in Object-Oriented Database Systems, ed. K.R. Dittrich,Springer-Verlag (September 
1988). 

2. R.P. Kooi, "The Optimization of Queries in Relational Databases," Ph.D. Thesis, Case Western Reserve 
University, (September 1980). 

3. P. Valduriez, "Join Indices," ACM Transaction on Database Systems 12(2) pp. 218-246 (June 1987). 

4. M.J. Carey, E. Shekita, G. Lapis, B. Lindsay, and J. McPherson, "An Incremental Join Attachment for 
Starburst," Sizteenth International Conference on Very Large Data Bases, p. 662 (1990). 

5. L. Haas, W. Chang, G. Lohman, J. McPherson, P.F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M.J. Carey, 
and E. Shekita, "Starburst Mid-Flight: As the Dust Clears," IEEE Transactions on Knowledge and Data 
Engineering 2(1) pp. 143-160 (March 1990). 

6. Eugene J.  Shekita and Michael J .  Carey, "A Performance Evaluation of Pointer-Based Joins," Proceedings 
of the ACM SIGMOD Conference, p. 300 (May 1990). 

7. G. Graefe and D.J. DeWitt, "The EXODUS Optimizer Generator," Proceedings of the ACM SIGMOD 
Conference, pp. 160-171 (May 1987). 

8. G. Graefe, "Rule-Based Query Optimization in Extensible Database Systems," University of 
Wisconsin-Madison, Ph. D. Thesis, (August 1987). 

9. G. Graefe, "Volcano, An Extensible and Parallel Dataflow Query Processing System," submitted for publi- 
cation, also CU Boulder Comp. Sci. TR 481, (July 1990). 

10. H.T. Chou, D.J. DeWitt, R.H. Katz, and A.C. Klug, "Design and Implementation of the Wisconsin Storage 
System," Software - Practice and Experience 15(10) pp. 943-962 (October 1985). 

11. D.J. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, and M. Muralikrishna, "GAMMA - A 
High Performance Dataflow Database Machine," Proceedings of the Conference on Very Large Data Bases, 
pp. 228-237 (August 1986). 

12. M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P. Griffiths, W.F. King, R.A. 
Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L. Traiger, B.W. Wade, and V. Watson, "System R: A 
Relational Approach to  Database Management," ACM Transactions on Database Systems l(2)  pp. 97-137 
(June 1976). 

13. J.E. Richardson and M.J. Carey, "Programming Constructs for Database System Implementation in 
EXODUS," Proceedings of the ACM SIGMOD Conference, pp. 208-219 (May 1987). 

14. L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis, B.G. Lindsay, G.M. Lohman, K. Ono, and H. Pirahesh, "An 
Extensible Processor for an Extended Relational Query Language," Computer Science Research Report, 
(RJ 6182 (60892))IBM Almaden Research Center, (April 1988). 



D.S. Batory and A.P. Buchmann, "Molecular Objects, Abstract Data Types and Data Models: A Frame- 
work," Proceedings of the Conference on Very Large Data Bases, pp. 172-184 (August 1984). 

T. Keller and G. Graefe, "The One-to-one Match Operator of the Volcano Query Processing System," 
Oregon Graduate Center, Computer Science Technical Report, (89-009)(June 1989). 

G. Graefe, "Parallel External Sorting in Volcano," submitted for publication, also CU Boulder Comp. Sci. 
TR 459, (February 1990). 

D. Bitton, D.J. DeWitt, and C. Turbyfill, "Benchmarking Database Systems: A Systematic Approach," 
Proceeding of the Conference on Very Large Data Bases, pp. 8-19 (October-November 1983). 

T.L. Anderson, A.J. Berre, M. Mallison, H. Porter, and B. Schneider, "The HyperModel Benchmark," Proc. 
Int'l Conf. on Eztending Data Base Technology, (March 1990). 

R.G.G. Cattell, "Object-Oriented DBMS Performance Measurement," pp. 364-367 in Advances in Object- 
Oriented Database Systems, ed. K.R. Dittrich,Springer-Verlag (September 1988). 

D.J. DeWitt, P. Futtersack, D. Maier, and F. Velez, "A Study of Three Alternative Workstation-Server 
Architectures for Object-Oriented Database Systems," Sizteenth International Conference on Very Large 
Data Bases, p. 107 (1990). 

R.A. Scranton, D.a. Thompson, and D.W. Hunter, "The Access Time Myth," IBM Technical Report RC 
10197 (#46223)(September 1983). 

J. Banerjee, W. Kim, S.J. Kim, and J.F. Garza, "Clustering a DAG for CAD Databases," IEEE Transac- 
tions on Software Engineering 14(11) p. 1684 (November 1988). 

E. Chang and R. Katz, "Exploiting Inheritance and Structure Semantics for Effective Clustering and 
Buffering in an  Object-Oriented DBMS," Proceedings of the ACM SIGMOD Conference, p. 348 (May-June 
1989). 

Veronique Benzaken and Claude Delobel, "Dynamic Clustering Strategies in the O2 Object-Oriented Data- 
base System," Rapport Technique 34-89, Altair (18 aouat 1989). 

P. Drew, R. King, and S. Hudson, and 135, "The Performance and Utility of the Cactis Implementation 
Algorithms," Sizteenth International Conference on Very Large Data Bases, (1990). 

M.F. Hornick and S.B. Zdonik, "A Shared, Segmented Memory System for an Object-Oriented Database," 
ACM Transactions on Ofice Information Systems 6(1) pp. 70-95 (January 1987). 

W. Kim, J .  Banerjee, H.T. Chou, J.F. Garza, and D. Woelk Composite Object Support in an  Object- 
Oriented Database System, Proceedings of ACM Conference on Object-Oriented Programming Systems, 
Languages and Applications, pp. 118-125 (October 1987). 

T.J. Teorey and T.B. Pinkerton, "A Comparative Analysis of Disk Scheduling Policies," Communications 
of the ACM 16(3) pp. 177-184 (March 1972). 

G. Graefe, "Encapsulation of Parallelism in the Volcano Query Processing System," Proceedings of the 
ACM SIGMOD Conference, p. 102 (May 1990). 




