
Efficient Assembly of Complex Objects

Tom Keller
Oregon Graduate Institute

Goetz Graefe
University of Colorado

David Maier
Oregon Graduate Institute

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-023

December, 1990

Report published in Proceedings of the ACM-SIGMOD International Conference on Management of Data,
Denver, Colorado, May 199 1.

Efficient Assembly of Complex Objects

Tom Keller
Oregon Graduate Inatitute

Goetz Graefe
University of Colorado

David Maier
Oregon Graduate Inatitute

Abstract
Although object-oriented database systems offer advantages over relational or record-oriented database

systems, such as modeling facilities for complex objects, they are criticized for poor performance and query
capabilities on set-oriented applications. The unacceptable performance is due in part t o the object-at-a-time
processing typically used by object-oriented database systems.

We believe tha t improved performance of object-oriented database systems depends partially on the
efficient and selective retrieval of sets of complex objects from secondary storage. In this report, we present the
method of complex object retrieval and assembly used in the Volcano query processing system and the Revela-
tion project. We also present experimental results comparing set-oriented versus object-at-a-time complex
object assembly.

1. Introduction

Relational database management systems provide a simple and well-understood model of data . The sim-

plicity and theory of the relational model result in efficient implementations. However, relational database

management systems a re poorly suited for modeling more complex data such as those found in engineering appli-

cations. Object-oriented database systems have many advantages over traditional record-oriented database

systems, most notably modeling facilities for complex objects, object identity, and encapsulated behavior. In a

previous report, we have described the goals of the Revelation project and introduced a high-level vision of its

query optimization scheme [I]. We believe tha t four concepts are crucial for the performance of object-oriented

database systems. First, set-oriented processing allows leveraging expensive operations, e.g., disk seeks. Second,

the retrieval and in-memory assembly of complex objects are very frequently used operations, therefore a deter-

minant of performance. Third, query optimization and access planning, proven t o be a cornerstone of relational

systems performance, will gain even more importance for semantically richer queries and complex da ta . Fourth,

parallel processing techniques can be exploited much more easily if the underlying processing paradigm uses sets

tha t can be partitioned, rather than single object instances.

We report on set-oriented processing t o improve complex object retrieval and assembly - a combination of

the first two concepts listed above. We introduce an operator called the assembly operator, implemented on top

of the Volcano query processing system. The assembly operator was designed t o retrieve and assemble complex

objects in a manner tha t outperforms non-set-oriented (n a i v e or object -a t -a - t ime) complex-object assembly, using

physical and logical information such as object clustering and the degree of sharing between objects. In addi-

tion, the assembly operator is able t o retrieve complex objects selectively, based on arbitrary selection predi-

cates.

In the next section we briefly survey related work. Section 3 discusses background information from the

Revelation Project and the Volcano query processing system. Section 4 details the assembly operator and its

benefits over object-at-a-time assembly. Section 5 describes the da ta structure and algorithm used t o drive com-

plex object assembly. Section 6 provides a preliminary performance evaluation for the assembly operator.

Directions for future research are presented in Section 7 and a summary and our conclusions are given in Sec-

tion 8.

2. Related Work

Our design of the assenably operator was influenced mainly by the way look-up routines work for

unclustered index scans, for example, the join called TID-scan in Kooi's thesis [2]. Scanning a file using an

unclustered index is much more expensive than using a clustered index. One could t ry t o avoid the seek costs of

the unclustered scan by sorting the pointers retrieved from the index and looking them up in physical order.

This approach, however, may require substantial sort space. We sought an operator tha t avoids the cost of

completely sorting the pointer set, but retains the advantages of using an index. Once we had defined this

operator, i t was straightforward t o extend the algorithm to complex objects. In this report, we put this algo-

rithm into an extensible context t o make it usable in an object-oriented database system.

Complex object assembly is closely related t o the pointer-based join methods of relational database sys-

tems. Assembly resembles a functional join, linking objects based on inter-object references. An early pointer-

based join optimization, join indices [3], maintained a pre-computed join by storing pointers t o pairs of joining

records. More recently, pointer-based joins [4,5,6] use either explicitly stored pointers or system maintained

pointers. We, however, do not require sets of objects to be confined to distinct disk files or that object refer-

ences contain a physical component1.

3. Background

The assembly operator was envisioned to meet the need for increased performance in the Revelation

object-oriented query processor. Revelation types have encapsulated behavior and are a combination of complex

values and methods. Objects reference other objects by embedding object identifiers (ODs) in their state. An

overview of Revelation's architecture is shown in Figure 1. A query can be executed naively within the run-time

system or it can be "revealed." Revealing a query is an attempt to transform a query into its equivalent complex

object algebra expression. In order to reveal behavioral information about a query, the encapsulation barrier

must be broken by the revealer, a trusted system component. Once a query is transformed into the complex

object algebra expression, it is optimized, by an optimizer generated optimizer [7,8]. Optimization includes

choosing physical algebra operators, also called set processing methods, for the logical algebra (complex object

algebra) operators. For example, a join operator a t the logical level may be replaced by the hash-join operator

Stru,ctural and
Semantlc Information

Revealer Q
Ob'ect Algebra logical algebra

dxpresslon

Optimizer 11
. . . . , I , Q,,CV Evaluation Operatom

Assembl Set Processor
Volcano .,...........

Query Plan(s)

Figure 1. Revelation Architecture

physical algebra

' Only that there is a mapping from object reference to physical location

in the physical algebra. The assembly operator is a set processing method tha t does not correspond to any com-

plex object algebra operator2. I t is similar t o a sort operator in relational systems where the operator enforces a

physical property of the da t a tha t is not logically apparent (i.e. sort order). The assembly operator is used t o

prepare da ta needed by the other physical operators. I t enforces the physical constraint: "The portion of the

complex object needed t o carry out the query is entirely in memory." By "portion" we mean part of the object's

complex internal s ta te plus fragments of referenced objects3.

Once a query has been optimized and exists as a tree of physical operators i t is executed by the set proces-

sor. The set processor used in the Revelation project is based on the Volcano query evaluation system (91. Vol-

cano includes a file system with heap files, B-trees, and buffer management. The design of the Volcano query

evaluation system was influenced by a number of systems, most notably WiSS [lo] and GAMMA (111. Volcano

queries are composed of operators tha t provide a uniform iterator interface. Each Volcano operator conforms t o

the iterator paradigm by providing open, next and close calls. Other query processing systems tha t use the

iterator paradigm, though in somewhat different ways than Volcano, are System R [12], the Ingres Corp. version

of Ingres, EXODUS [13], and Starburst [14], where it is called "lazy evaluation."

4. The Assembly Operator

The purpose of the assembly operator is t o efficiently translate a set of complex objects from their disk

representations t o a quickly traversable memory representation. Complex object refers t o one or more objects or

object fragments connected by inter-object references. Note tha t we do not restrict the implementation of

inter-object references nor do inter-object references imply ownership as in composite objects. T o achieve

quickly traversable memory-resident complex objects, all object references (ODs) are changed t o memory

pointers. This "pointer-swizzling" process results in a structure tha t can be scanned without the need t o consult

an OD-to-memory-address mapping table. Instead, complex object scanning is reduced t o following memory

pointers. Figure 2 illustrates a complex object where each box is a n object and each inter-object reference is

This is not strictly the case because the assembly operator does have the ability to perform a selection.

' "Object" is used to label both application-level objects and storage-layer objects. An application-level object's state
may be composed of many storage-layer objects.

Object Type Complex Object

Person

Person

Residence

Residence +--I

Figure 2. Sample Complex Object

shown as a directed edge. This particular figure should be interpreted a s a Person and his/her father (who is

also a Person) and the Residence of both child and father. The assembly operator has the ability t o find and

resolve multiple, possibly shared, object references contained within a single object. In order t o do this

efficiently, the operator uses physical, structural and statistical information.

We look first at a sample query on a set of complex objects of the form depicted by Figure 2: "Retrieve all

people tha t live close t o (live in the same city as) their father." A pseudo-code implementation of the top-level

query and one method is shown in Figure 3. In the figure, the dot (".") is used t o represent attribute selection

and messages are written as C functions and are italicized. The toplevel-query method iterates over all peo-

ple. Each person in the set receives the lives-close-to-father message. When this query is executed naively,

each complex object gets completely traversed before another is considered. Furthermore, the order tha t each

complex object is traversed depends on how the methods were written and how the code was interpreted or

toplevel-query :
for each PERSON

if (lives-cloae-to-father (PERSON))
printout (PERSON)

lives-close-to-father:
if (city (selfxesidence) == home-town (self.father))

return (TRUE)

Figure 3. Partial Query Implementation

compiled. For example, lives-close-to-father may be compiled so tha t the home-town message is sent before

the city message. If each person object is clustered with a referenced residence object, then sending the city mes-

sage first would be more efficient. The point is, method interpretation/compilation does not order object fetches

t o improve efficiency.

The example above is equivalent t o a set selection on a set of complex objects. Naive execution must

traverse each complex object, one-at-a-time, t o evaluate the query. However, a n alternate way t o compute the

query is t o assemble the complex objects and then carry out the selection. Preparing complex objects for subse-

quent query evaluation is the responsibility of the assembly operator. By using the assembly operator, the order

tha t objects are fetched into memory is independent of the query implementation. Tha t is, objects need not be

fetched in the order tha t the query implementor fetched them. Instead, fetching order is restricted only by the

structure of the complex objects.

At any stage of assembling a complex object there may be several references yet t o be resolved. Returning

t o the previous example, after retrieving a single person either the father or the residence reference can be

resolved. There are two primary reasons why this choice has a direct effect on performance. First, the physical

location of objects on disk and in memory must be considered. If requested objects are contained in a single

page, then only a single request should be issued t o the buffer manager4. This situation occurs when objects are

clustered together and when there is sharing of sub-objects. Intelligent scheduling of disk retrievals, based on

physical location, can decrease the number of tracks covered and the total seek time. Furthermore, the larger

the number of unresolved references t o choose from, the greater the possibility t o choose one with small seek dis-

tance. The second effect on performance arises from the existence of predicates. It is advantageous t o abort the

assembly of a complex object as soon as possible if i t has a chance of not satisfying a selection predicate.

Therefore, t o prevent a waste of effort i t is beneficial t o retrieve sub-objects tha t have a high probability of fail-

ing a predicate as soon as possible (151. For example, if the previous query was restricted t o the s tate of

It can be argued that a second request is bound to be a buffer hit, therefore very inexpensive. Our experience shows,
however, that even buffer hits can be expensive, since a table must be searched while protected against concurrent update,
etc. While it is reasonable to expect that a buffer request can be serviced in less than 200 instructions if it does not result in
a buffer fault, very frequent buffer hits can add significantly to overall query processing cost.

Oregon, the residence of the person should be fetched and checked before the person's father is considered.

So far we have only discussed assembling one complex object a t a time. However, this approach is not

likely t o provide a large number of unresolved references. This problem is overcome by assembling more than

one complex objects a t a time. Instead of working on a single complex object, the assembly operator works on a

window, of size W, of complex objects. As soon as any one of these complex objects becomes assembled and

passed up the query tree, the operator retrieves another one t o work on. We refer t o this as a delayed or sliding

assembly operator . Using a window of complex objects increases the pool size of unresolved references and

results in more options, leading t o a greater expected effect on optimization. A cost of using the sliding assem-

bly operator is the need for enough buffer space t o hold W partially assembled objects.

Consider a small example using three complex objects structured like the one shown in Figure 2. Suppose

tha t the assembly operator is using a window size of 2. The three completely assembled complex objects and

individual object symbols are shown in Figure 4. Assembly begins by filling the window with references t o the

first two complex objects. Figure 5a shows the starting condition. The assembly operator begins with a choice

of two references t o resolve. After resolving Al , and fetching the required piece of the object, two new

unresolved references are added t o the list. The new state is shown in Figure 5b. Next, A2 is resolved (Figure

5c), resulting in two more references being placed on the list. Figure 5d is the result of resolving B1 which

places unresolved reference D l on the list. After Cl, CZ and D l are resolved (Figure 5g), the first complex

object is assembled. In order t o keep a window size of 2, after the first complex object is passed t o the next

operator, a new reference is added t o the list (Figure 5h).

&$&
Figure 4. Three Assembled Complex Objects

Unresolved Reference Llst Partlally Assembled Complex ObJects

a) Al , A2

b) A.2, Bl, c 1 EDl
e) B1, C1, B t , C2 • la
d) C1, B.2, C.2, Dl !a

Figure 6. Sliding Assembly Operator Example

The example depicts one order that results in the first complex object being assembled. There are, how-

ever, many other scheduling orders. At each step in Figure 5, an unresolved reference must be chosen. Ideally,

the reference tha t reduces disk head movement and overall assembly time will be chosen. For example, C2 may

have been chosen from the list in Figure 5e because it was fetched when C l was fetched. The scheduling order

is only restricted by the need t o fetch objects top-down. In Section 7 we will discuss how this restriction can be

overcome, allowing arbitrary scheduling order.

Assembly makes no assumptions about physical location of sub-objects. It is possible for a complex object

t o be partially assembled - perhaps by a previous operator. When a partially assembled sub-object is

discovered, the operator finds all unresolved references within it. Suppose tha t objects A1 and B1 from Figure 4

are assembled. Assembly would begin with the following list instead of the one in Figure 5a: A2, Dl, C1.

It may appear from the example tha t assembly reduces t o a variant of a n n-way pointer join. However,

the example shows tha t results are produced without having t o access all potentially participating objects. A

pointer join would require a t least one input t o be completely scanned before producing a single result. Assem-

bly can touch a number of objects ranging from only those needed for one complex object up the entire window

of complex objects. We also anticipate cases tha t require computations tha t are not algebraically expressible.

For example, lives-close-to-father (Figure 3) may involve a distance computation based on latitude and longi-

tude of the cities.

5. Component Iterator and Templates

In the previous discussion and example of the assembly operator, there was no mention of how the opera-

tor determines what par t of a complex object t o assemble, when assembly is complete or how to find unresolved

references within a newly retrieved object. Such information is specific t o each query and is type and structure

dependent. In our design, these tasks are the responsibility of the component iterator, a companion routine t o

the assembly operator. Figure 6 shows the detailed architecture of the assembly operator and the component

iterator. The component iterator uses structural and statistical information contained in a template t o control

Assembled Complex Objects

c o m p E ' t o Assembie 8 $. e c t + ~ ! - E ~ Assembly Operator Component Iterator

(umddvad OIB)

Template

Volcano

Objects

Disk €3
Figure 6. Assembly Operator and Component Iterator

the assembly operator. A template resembles a tree similar t o the representation of a complex object shown in

Figure 2. In addition t o structural information, the template is annotated with statistical information.

Currently the statistical information consists of the degree of sharing between objects and predicates with predi-

cate selectivity.

The template captures two essential properties of complex objects pointed out by Batory [16]. The tem-

plate allows recursive definitions and it indicates borders of shared components. Sharing information is impor-

t an t for three reasons. First, i t will be necessary t o ensure tha t such components are not loaded twice for two

different objects into two different memory locations. Thus, some mechanism is required t o determine whether

shared components already reside in buffer memory. Second, a mechanism must be used t o ensure tha t the

shared component remains in memory as long as there is a t least one valid reference t o i t from another object in

memory, e.g., through reference counting. After a component is no longer referenced, i t is subject t o replace-

ment using buffer replacement policies. Third, when the assembly operator runs in parallel, the original object

identifier (OD) or fragments may be partitioned into disjoint subsets. Thus, shared components might be

shared by objects in different partitions, and therefore introduce synchronization requirements between parti-

tions tha t are unique t o the assembly operator. Note tha t information on non-sharable objects is useful in

avoiding the overhead of buffer lookup, reference counting and partitioning constraints.

The statistical information contained in the template will be used t o decide the order in which component

retrievals are scheduled. In particular, if the physical cost of retrieving two components is the same, i t makes

sense t o retrieve the component tha t decides whether or not the other one is necessary. For example, if predi-

cates are associated with both components, and the failure of either predicate allows abandoning assembly of

the entire complex object, the component with the higher rejection probability should be retrieved first (151.

6. Performance of the Assembly Operator

The efficiency of the Volcano query processing software has been demonstrated in earlier reports, both for

single-process and for multi-process query evaluation [9,17,18]. For this study, Volcano is used in single-process

mode with parallelism and latching of internal da t a structures disabled.

Relational benchmarks such as the Wisconsin Benchmark 1191 are clearly not well suited for measuring the

performance of an object-oriented database system. Recent object-oriented benchmarks, the HyperModel

Benchmark [20] and the Sun [21] benchmark, are better suited for our system. However, we wish t o concentrate

on complex object assembly and not on general query processing. Our solution was t o develop a smaller group

of benchmarks tha t focus on clustering, buffer size, window size, database size and scheduling algorithms.

Our benchmark most closely resembles the Altair Complex-Object Benchmark (ACOB) [22]. Each complex

object is structured as a binary tree of 3 levels. However, unlike objects in ACOB, our objects are physically

stored as a single record, not a group of seven records. Each object consists of 4 integer and 8 object reference

fields equaling 96 bytes, resulting in 9 objects per page. This structure provides just enough depth and breadth

t o compare object-at-a-time assembly t o other scheduling methods. It also provides enough structure so tha t

clustering can be altered.

The primary consideration in deciding how t o measure performance was the desire t o compare object-at-

a-time assembly t o set-oriented assembly. Both methods have equivalent CPU costs6 so i t is sufficient t o com-

pare the difference in 1/0 costs. For this reason, and the unavailability of a raw device for our use, performance

is measured in terms of average seek distance, in pages of size 1K bytes. Average seek distance is the total seek

distance divided by the total number of reads (average seek distance per read). We assume entire control over

the queue of requests for the disk, making the seek time a significant cost in retrieving da ta from the disk [23].

As briefly mentioned above, our benchmark parameters are: clustering, scheduling algorithm, window size,

buffer size and database size. Our first objective is t o determine if one scheduling algorithm outperforms the

others independent of clustering method, or if the scheduling algorithm needs t o be adaptive t o clustering. Also,

as window size increases, we compare scheduling algorithm performance t o object-at-a-time assembly. The

second set of benchmarks test the hypothesis tha t information about shared sub-objects can be used t o increase

performance. And finally, selective assembly is tested using predicates with varying selectivities. Before

presenting the results of the benchmarks we briefly describe the clustering methods and scheduling algorithms

The overhead of set-oriented assembly lies in the maintenance of a scheduling data structure (list, queue or priority
queue).

used throughout the benchmarks.

6.1. Clustering

One important means of increasing the performance of queries is da t a clustering. A great deal of effort

has been put into the research of optimal clustering methods for hierarchical objects [24,25,26,27]. However,

even dynamic clustering algorithms, the most effective clustering method, while increasing performance of com-

mon queries, may result in a dramatic performance decrease of less common but still frequently used queries.

In the following discussion of clustering i t will be useful t o refer t o Figure 7 which shows a set of n complex

objects. The least restrictive form of clustering is random or unclustered data. Unclustered da t a is produced by

randomly placing parts of each complex object on the disk. In Figure 8 and the following figures, a n area boxed

with a dashed line represents a cluster. Within a cluster the objects randomly placed. The simplest method of

- . cia
Figure 7. A Set of Complex Objects

Figure 8. Unclustered Complex Objects

Figure 9. Inter-Object Clustering

clustering places objects of the same type, or class, together. We refer t o this clustering policy as inter-object

clustering, shown in Figure 9. Recall tha t there is no implied order within a cluster. The fact tha t object A1 is

the first object in Cluster A does not imply tha t object B1 is the first object in Cluster B. Clustering some or

all of the parts of a composite object together leads t o the third form of clustering, intra-object clustering (Fig-

ure 10). This is a common form of clustering [28,29] used t o increase the performance of queries t ha t access a

number of related objects a t the same time.

6.2. Scheduling Algorithms

Performance is based primarily on I/O cost, so the order in which objects are fetched from disk is the key

t o performance. The order of object fetches is in turn dependent on the scheduling algorithm used in the assem-

bly operator. We consider three simple scheduling algorithms in our benchmarks.

First, O D s can be chosen for resolution by a depth-first traversal6 of each complex object. Recall the

three complex objects shown in Figure 4. With a window size of 2 the objects will be resolved in the following,

depth-first order: Al , Bl, D l , C1, A2, Note tha t depth-first scheduling is equivalent t o object-at-a-time

assembly, regardless of window size.

The second alternative is breadth-first scheduling. Using the same example, with a window size of 2, the

references would be resolved in the following order: Al , A2, E l , C1, B2, C2, Dl , D2, AS, BS, CS, DS. Note from

the example tha t "breadth" refers to the breadth of the window and not the breadth of a single complex object.

Figure 10. Intra-Object Clustering

"hild order (left-to-right) is determined by the child reference storage order in the parent's state.

The third scheduling algorithm is an elevator algorithm, the SCAN scheduler, t ha t schedules OIDs based

on their physical location. This algorithm minimizes disk head movement, reducing the total seek time.

Because we assume a dedicated device t o store our database, there is no interference from other processing

sources. Furthermore, with a sufficiently large window we can expect a large number of outstanding requests,

making SCAN scheduling a reasonable choice [30].

6.3. Clustering vs. Scheduling vs. Window Size

The first group of benchmarks compare the performance of all three scheduling algorithms on all three

clustering methods. There is enough buffer space t o hold the largest database, so no page replacement occurs.

Window sizes of 1, 50, 100, 150 and 200 complex objects are tested as well as database sizes of 1000, 2000, 3000

and 4000 complex objects. Recall tha t performance is measured as average seek distance (in pages) per read.

We present our benchmark results when window sizes of 1 and 50 complex objects are used and show the effect

of window size on scheduling algorithm performance.

6.3.1. Window Size = 1

With a window size of one complex object, all three scheduling algorithms assemble objects one-at-a-time.

However, their performance is not identical, as shown in Figures 11(A-C).

The performance difference observed in Figure 11A is an artifact of the method used t o assign references

between inter-object clustered complex objects. Referring back t o Figure 7, each object in Cluster A references

an object in Cluster B, and an object in Cluster C. The clusters are placed on disk a s shown in Figure 12. But

each cluster is larger than the amount of valid da ta contained in i t . Thus, in Figure 12, the shaded regions con-

tain da ta and the unshaded area is unused. In fact, the cluster size is larger than any database size used in the

benchmarks. Therefore, seek distance is independent of database size - shown by the flat lines in Figure 11A.

Breadth-first scheduling performs poorly for inter-object clustering because of cluster layout. Objects are

fetched in the following order: Cluster A, Cluster B, Cluster C and Cluster D. However, the clusters are not

physically placed in tha t order (Figure 12). The other two algorithms fetch from the clusters in the order they

exist on disk, accounting for the performance difference in Figure 11A.

Average Seek
(pages)

2200

2000-

Average Seek 1800 -
(pages)

1600 -

Average Seek
(pages)

Window Size = 1
Inter-Object Clustering

*
0

*--------a--------a -------- Q

- Breadth-First - - Depth-First
..... Elevator

Window Size = 1
Intra-Object Clustering

1400 , I I I
1000 2000 3000 4000

Number of Complex Objects

- Breadth-First - - Depth-Fist
..... Elevator

Number of Complex Objects

1000

800

600

400 - Breadth-First

200

1000 2000 3000 4000
Number of Complex Objects

Figure 11. Scheduling Algorithm vs. Database S i ~ e (Window Size=l)

Disk:

Figure 12. Disk Layout for Inter-Object Clustering

When the databases are unclustered, Figure 11C, the elevator scheduler uniformly decreases average seek

distance by approximately 10%. I t is possible, therefore, t o gain a small performance increase on unclustered

data just by scheduling object fetches based on their physical location.

6.3.2. Window Size = 50

Figures 13(A-C) show benchmark results for a window of 50 complex objects. Regardless of how the da ta

is clustered, average seek distance is smallest for elevator scheduling.

Elevator scheduling, combined with a window of more than one complex object, orders object fetches

almost identically t o the "ideal" scheduling algorithm. For example, disk head movement is reduced for inter-

object clustering because objects in the current cluster are fetched before those in another cluster (breadth-first

scheduling). The elevator algorithm goes one step further by fetching all clustered objects in physical order.

Similarly, depth-first (object-at-a-time) scheduling is suited for inter-object clustering. However, the order of

assembly does not match physical order for depth-first scheduling as i t does for elevator scheduling.

6.3.3. Window Size vs. Scheduling Algorithm

Under all clustering policies and window sizes, elevator scheduling is the most efficient of the three schedul-

ing algorithms. Thus, the elevator algorithm is used t o measure the effect of window size on performance. Fig-

ure 14 shows the results of varying window size for a constant database size of 4000 complex objects.

The point of diminishing returns occurs prior t o a window of 50 complex objects. Window size increase

beyond this point marginally decreases average seek distance while costing more buffer space (to hold partially

assembled complex objects). For exampIe, a t most 7 pages are required with a window size of one complex

object. When the window size is 50, up t o

[BX4S](pages for uncompleted o b j e c t s) + [7 x 1 1 (pages for completed o b j e c t s) = 301 pages

A.
Inter-Object Clustering
D - - - ' - - - - J = - - - - - - - - 4 b --------

1500

Average Seek
(pages) 1- 4

Average Seek
(pages)

- Breadth-First - - Depth-First
..... Elevator

A A
0 I I I

1000 2000 3000 4000
Number of Complex Objects

Average Seek

(pages)

lo00 2000 3000 4000
Number of Complex Objects

-

-

1000 - Window Size = 50
Unclustered

500 -
- Breadth-First - - Depth-First
. . - . . Elevator

Window Size = 50
Intra-Object Clustering

- Breadth-First - - Depth-First Elevator
w C

1000 2000 3000 4000
Number of Complex Objects

Figure 13. Scheduling Algorithm vs. Datablue Siw (Window Size=50)

loo0 -
Average Seek

(pages)

Database Size = 4000
Elevator Scheduling

- Inter-Object -- Intra-Object
. . , . Unclustered

I I I I I
0 50 100 150 200

Window Size
(complex objects)

Figure 14. Database Size = 4000, Elevator Scheduling

may be needed.

6.4. Sharing of Sub-objects

The previous benchmarks assume no sub-objects are shared by complex objects. However, this assumption

cannot be made for complex objects in a realistic object-oriented database. To improve efficiency, complex

object assembly uses sharing statistics contained in a template. Sharing statistics are used during assembly t o

predict buffer usage and prevent shared objects from being flushed out of the buffer.

As in the previous benchmark, elevator scheduling and object-at-a-time (depth-first) scheduling are com-

pared. Inter-object clustering is used for simplicity. Sharing is the ratio of shared objects t o sharing objects.

For example, 100 objects sharing 5 sub-objects exhibit .05 sharing.

One of the benchmark results, using .25 sharing, is shown in Figure 15. The results shown in this figure are

typical of the other benchmarks with differing degrees of sharing. Not only does the use of expected sharing

statistics increase performance, i t also reduces the total number of reads (not apparent in Figure 15).

Average Seek

(pages) 500

0

loo0 2000 3000 4000
Number of Complex Objects

Figure 15. Performance of Databases Containing Shared Objects

-

-

6.5. Predicates and Selectivity

. Degree of Sharing = 25%
'

....
. .

Depth-First *' '

Elevator
window-60

 window^ a

A key ability of the assembly operator is tha t i t can selectively assemble complex objects. This is analo-

I I I I

gous t o evaluating predicates while scanning or retrieving a relation in a relational database system. These

benchmarks compare the performance of elevator scheduling t o object-at-a-time assembly when complex objects

must satisfy predicates of varying selectivities.

1500

Average Seek

(pages) 1OOO

0

0 10 20 30 40 50
Percentage Selectivity

Figure 16. Predicates and Selectivities

Figure 16 shows the results of running these benchmarks. We see a decrease in average seek distance with

a n increase in the number of complex objects, for window sizes greater than 1. The reason, fewer reads are

needed for assembling fewer objects. Object fetches other than those needed t o test the predicate or completely

assemble complex objects satisfying the predicate are eliminated by first fetching objects needed t o evaluate the

predicate.

7. Future Directions

The impact of a restricted or varying buffer size has not been explored. As explained previously, increas-

ing the window size results in a need for more buffer space. If no more buffer space is available, then some pages

will have t o be released and re-read. The use of the elevator algorithm will help t o prevent the flushing of use-

ful pages by resolving all references in the current set of buffer pages. We suspect tha t for a given buffer size

the window size can be tuned so tha t performance is maximized.

Currently, assembly operates entirely with one scheduling algorithm. Also, scheduling priorities based on

shared sub-objects and predicates have not been integrated into a single scheduling algorithm. The primary

scheduling algorithm will be the elevator algorithm modified t o account for predicates, sharing and the buffer

size. For example, although elevator scheduling orders object fetches t o minimize disk head movement, the

order may be altered t o abort assembly of complex objects failing a predicate. Additional template annotations

may be required t o make intelligent scheduling decisions.

A further research topic is the implementation of a parallel complex object assembly operator. Every

effort has been made t o isolate points where locking must occur when concurrent assembly processes access

shared sub-objects. Since parallelism is encapsulated in Volcano [31], i t can be used for all existing operators

without changing their code; we anticipate tha t i t will also allow parallelizing the assembly operator t o provide

further speedup.

Implementing a parallel assembly operator poses the same obstacles as allowing multiple assembly opera-

tors in a Volcano query plan. The effectiveness of elevator scheduling depends on exclusive control of the physi-

cal device. When multiple assembly operators (or parallel invocations of a single assembly operator) are execut-

ing, each assumes sole control of the device and independently issues object fetch requests. Therefore, there are

two or more independent queues of requests for the device and the exclusive control assumption no longer holds.

The situation becomes more complex when the database is stored on more than one physical device. At present,

the assembly operator can only handle one device. A possible solution could involve a server-per-device archi-

tecture. Each server would maintain a queue of requests and would fetch objects on behalf of one or more

assembly operators.

Previously, we stated tha t assembly had t o occur topdown. When multiple assembly operators are

allowed in a query tree, complex objects may be assembled bottom-up. Bottom-up and topdown assembly is

achieved by "stacking" assembly operators. Suppose tha t the B and D sub-objects from Figure 4 should be

assembled bottom-up. This is accomplished by using the two assembly operators shown in Figure 17. Assembly1

assembles all B and D objects according t o the template and passes them to Assembly2. Assembly2 completes

the assembly by fetching A and C objects and linking them with the sub-objects already assembled by Assem-

blyl.

8. Summary and Conclusions

In this report on the Revelation project, we have outlined techniques for set processing and complex object

retrieval. The set processor is based on iteration over sets, using the iterator or demand-driven dataflow para-

digm as implemented in Volcano.

The assembly operator uses templates and component iterators t o selectively and intelligently assemble

complex objects. Once assembled, complex objects may be efficiently traversed. Elevator scheduling, combined

with a sliding window of complex objects, reduces disk head movement compared t o object-at-a-time assembly.

Partial Query Tree Template Structure Assembly Example

Assembly 1 T
Figure 17. Combination of Bottom-up and Topdown Assembly

Furthermore, elevator scheduling outperforms depth-first and breadth-first scheduling when differing data cluster-

ing policies are used. Predicates are used to abort assembly of failing complex objects as soon as possible -
reducing the number of unnecessary object fetches. Shared sub-objects are assembled and kept in the buffer as

long as possible using sharing statistics.

If this technique is combined with parallelism through partitioning and asynchronous I/O, both provided

as standard services in Volcano, we expect that the assembly operator will retrieve large sets of complex objects

with scalable performance.

References
1. G. Graefe and D. Maier, "Query Optimization in Object-Oriented Database Systems: A Prospectus," pp.

358-363 in Advances in Object-Oriented Database Systems, ed. K.R. Dittrich,Springer-Verlag (September
1988).

2. R.P. Kooi, "The Optimization of Queries in Relational Databases," Ph.D. Thesis, Case Western Reserve
University, (September 1980).

3. P. Valduriez, "Join Indices," ACM Transaction on Database Systems 12(2) pp. 218-246 (June 1987).

4. M.J. Carey, E. Shekita, G. Lapis, B. Lindsay, and J. McPherson, "An Incremental Join Attachment for
Starburst," Sizteenth International Conference on Very Large Data Bases, p. 662 (1990).

5. L. Haas, W. Chang, G. Lohman, J. McPherson, P.F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M.J. Carey,
and E. Shekita, "Starburst Mid-Flight: As the Dust Clears," IEEE Transactions on Knowledge and Data
Engineering 2(1) pp. 143-160 (March 1990).

6. Eugene J. Shekita and Michael J . Carey, "A Performance Evaluation of Pointer-Based Joins," Proceedings
of the ACM SIGMOD Conference, p. 300 (May 1990).

7. G. Graefe and D.J. DeWitt, "The EXODUS Optimizer Generator," Proceedings of the ACM SIGMOD
Conference, pp. 160-171 (May 1987).

8. G. Graefe, "Rule-Based Query Optimization in Extensible Database Systems," University of
Wisconsin-Madison, Ph. D. Thesis, (August 1987).

9. G. Graefe, "Volcano, An Extensible and Parallel Dataflow Query Processing System," submitted for publi-
cation, also CU Boulder Comp. Sci. TR 481, (July 1990).

10. H.T. Chou, D.J. DeWitt, R.H. Katz, and A.C. Klug, "Design and Implementation of the Wisconsin Storage
System," Software - Practice and Experience 15(10) pp. 943-962 (October 1985).

11. D.J. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, and M. Muralikrishna, "GAMMA - A
High Performance Dataflow Database Machine," Proceedings of the Conference on Very Large Data Bases,
pp. 228-237 (August 1986).

12. M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P. Griffiths, W.F. King, R.A.
Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L. Traiger, B.W. Wade, and V. Watson, "System R: A
Relational Approach to Database Management," ACM Transactions on Database Systems l(2) pp. 97-137
(June 1976).

13. J.E. Richardson and M.J. Carey, "Programming Constructs for Database System Implementation in
EXODUS," Proceedings of the ACM SIGMOD Conference, pp. 208-219 (May 1987).

14. L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis, B.G. Lindsay, G.M. Lohman, K. Ono, and H. Pirahesh, "An
Extensible Processor for an Extended Relational Query Language," Computer Science Research Report,
(RJ 6182 (60892))IBM Almaden Research Center, (April 1988).

D.S. Batory and A.P. Buchmann, "Molecular Objects, Abstract Data Types and Data Models: A Frame-
work," Proceedings of the Conference on Very Large Data Bases, pp. 172-184 (August 1984).

T. Keller and G. Graefe, "The One-to-one Match Operator of the Volcano Query Processing System,"
Oregon Graduate Center, Computer Science Technical Report, (89-009)(June 1989).

G. Graefe, "Parallel External Sorting in Volcano," submitted for publication, also CU Boulder Comp. Sci.
TR 459, (February 1990).

D. Bitton, D.J. DeWitt, and C. Turbyfill, "Benchmarking Database Systems: A Systematic Approach,"
Proceeding of the Conference on Very Large Data Bases, pp. 8-19 (October-November 1983).

T.L. Anderson, A.J. Berre, M. Mallison, H. Porter, and B. Schneider, "The HyperModel Benchmark," Proc.
Int'l Conf. on Eztending Data Base Technology, (March 1990).

R.G.G. Cattell, "Object-Oriented DBMS Performance Measurement," pp. 364-367 in Advances in Object-
Oriented Database Systems, ed. K.R. Dittrich,Springer-Verlag (September 1988).

D.J. DeWitt, P. Futtersack, D. Maier, and F. Velez, "A Study of Three Alternative Workstation-Server
Architectures for Object-Oriented Database Systems," Sizteenth International Conference on Very Large
Data Bases, p. 107 (1990).

R.A. Scranton, D.a. Thompson, and D.W. Hunter, "The Access Time Myth," IBM Technical Report RC
10197 (#46223)(September 1983).

J. Banerjee, W. Kim, S.J. Kim, and J.F. Garza, "Clustering a DAG for CAD Databases," IEEE Transac-
tions on Software Engineering 14(11) p. 1684 (November 1988).

E. Chang and R. Katz, "Exploiting Inheritance and Structure Semantics for Effective Clustering and
Buffering in an Object-Oriented DBMS," Proceedings of the ACM SIGMOD Conference, p. 348 (May-June
1989).

Veronique Benzaken and Claude Delobel, "Dynamic Clustering Strategies in the O2 Object-Oriented Data-
base System," Rapport Technique 34-89, Altair (18 aouat 1989).

P. Drew, R. King, and S. Hudson, and 135, "The Performance and Utility of the Cactis Implementation
Algorithms," Sizteenth International Conference on Very Large Data Bases, (1990).

M.F. Hornick and S.B. Zdonik, "A Shared, Segmented Memory System for an Object-Oriented Database,"
ACM Transactions on Ofice Information Systems 6(1) pp. 70-95 (January 1987).

W. Kim, J . Banerjee, H.T. Chou, J.F. Garza, and D. Woelk Composite Object Support in an Object-
Oriented Database System, Proceedings of ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, pp. 118-125 (October 1987).

T.J. Teorey and T.B. Pinkerton, "A Comparative Analysis of Disk Scheduling Policies," Communications
of the ACM 16(3) pp. 177-184 (March 1972).

G. Graefe, "Encapsulation of Parallelism in the Volcano Query Processing System," Proceedings of the
ACM SIGMOD Conference, p. 102 (May 1990).

