
The LGDF2 Language and Preprocessor

David C. DiNucci

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-026

October 1990

1. Introduction

This document explains the syntax of the Large-Grain Data Flow 2 (LGDFO) language, as
based on the F-Net model of Portable Parallel Software Engineering. This section will give a
brief description of F-Nets and their semantics. A much more detailed account can be found
through the bibliography a t the end of this document.

The F-Net formal model was devised as a basis for architecture-independent parallel

software engineering. An F-Net consists of a set of variables1, a set of operations ("processes"),
and a set of instructions ("process calls") which reference both operations and variables.

An F-Net variable can be likened to the combination of a traditional imperative-language
variable and a finite-state machine. As such, i t possesses both a da ta value, called its da t a
state, and the current s ta te of the FSA, called its control state. It is the generalization of a
single-assignment variable in a dataflow language, which can be regarded as having a two-state
FSA with states "defined" and "undefined".

An F-Net operation consists of a signature and an implementation. The signature declares
a set of arguments (formal variables), and identifies whether the instruction will use each for
reading, writing, both reading and writing, or neither. In addition, i t declares some transitions
(formal control states) for each argument. The implementation expresses a functional mapping
from the da ta states of the read arguments (when the operation begins execution) t o both a new
da ta state for each write argument and a transition for each argument. In the LGDF2
language discussed here, the implementation of an operation is expressed via the C language,
augmented with a means of performing (declaring) transitions for arguments. Arguments tha t
are used for both reading and writing can be updated in place. For efficiency, after a transition
is performed for an argument, the da ta state of the argument is no longer accessible by the C
program. Thus, performing a transition can be considered as "returning" tha t argument, while
leaving the rest of the arguments for further computation. When all of the arguments have had
a transition declared for them, execution of the operation terminates. If an operation never per-
forms a transition for some argument (because, say, i t goes into an infinite loop before perform-
ing the transition), i t has the effect of performing a 1 transition t o the argument. This 1 transi-
tion has the effect of leaving the control state of the argument permanently undefined.

An F-Net instruction provides a means of instantiating an operation, with bindings relat-
ing each of its arguments t o an actual F-Net variable and each transition t o a n actual control
state of tha t variable. In addition, i t dictates when the operation can be invoked by naming a
control s ta te of each of the variables t o which arguments are bound (pole bindings). The
instruction will only "fire" (execute) when each of the variables has the named control state.
Thus, the order in which instructions appear in an F-Net has no relation t o the order in which
they will execute. Any number of instructions can instantiate the same operation, with different
variables and/or control states.

An F-Net is often represented graphically (see examples near the end of this document).
Each variable is shown as a polygon, with one side for each of its control states. An instruction
is represented graphically as a circle labeled for its operation, with one arc for each of its argu-
ments between it and the variable t o which that argument is bound. Readlwrite usages of the
arguments are shown with arrow-heads, pole bindings are shown by the side of the polygon to
which the arc is bound, and transitions are shown with pointers inside of the polygon from the
end of the arc t o the appropriate sides of the polygon.

The abstract F-Net model has two characteristics which greatly diminish the pitfalls nor-
mally associated with parallel programming. Since the LGDF2 language is a valid representa-

' In other literature on LGDF2 or F-Nets, LGDF2 variables are referred to as states, datapaths, data switches, or
switches.

tion of the model2, the LGDF2 programmer can also rely on these characteristics, even if they
may seem unintuitive in the framework of operation implementations in C.

(1) Operations (and therefore instructions) execute atomically-i.e. as though each execu-
tion took no time, or identically, as though the executions were serialized in time with
each finishing within a finite amount of time. In LGDF2, this characteristic ensures t ha t
no instruction can detect or effect the execution of other concurrently-executing instruc-
tions, and t ha t the order in which an operation declares transitions for its arguments is
not important in determining the effects of the operation's exe~u t ion .~

(2) If an argument has but one declared transition in its signature, and does not have write
usage, then the argument is called non-volatile. An F-Net operation will never perform a
transition of 1 t o a non-volatile argument. In LGDF2, this means tha t a transition will
be performed t o a non-volatile argument even if the C program implementing the opera-
tion never does so explicitly. This allows the possibility for the scheduler t o invoke a
subsequent instruction t o access the variable even before the current one has finished. In
a shared-memory environment such as the Sequent Symmetry, if tha t subsequent instruc-
tion does not have write usage, both instructions will access the da t a state of the vari-
able concurrently. If the subsequent instruction has write usage, the scheduler will sup-
ply i t with a new version of the da ta state, and the old da ta s tate being discarded when
the reader is finished with it. Note that all of this occurs behind the programmer's
back-there is no need or ability t o compensate for or explicitly request buffering or
shared reading.

An LGDF2 program consists of 4 sections: (1) Included text, (2) Variable declarations, (3)
Operation declarations, and (4) Instruction declarations. Six optional pragmas, t o be discussed
later, are scattered among these other sections, each of the form

// hints //
where hints is a space-separated list of hints. Pragmas never affect the formal semantics of the
execution, but are used t o increase the parallelism or efficiency of the execution and/or turn
tracing and debugging options on or off. C-style comments are allowed anywhere within any of
the sections.

Some examples of LGDF2 programs are given in section near the end of this document
which may provide grounding for the reader as the syntax is discussed.

2. Included text

The included text section is optional. It's function is t o provide a means for the user t o
include un-interpreted material directly into the C program produced by the l g d f 2 preproces-
sor. If the included text section appears, i t is of the form:

I n c l u d e { included-text) e n d i n c l u d e

where included-text is any text, and may include newline characters. Newline characters cannot
appear between the braces and their adjoining keywords (though white-space can).

The included text section is provided primarily t o compensate for a "shortcoming" in the
LGDF2 syntax. LGDF2 does not know C, and specifically, does not know the syntax of a C
da ta type or constant expression. In LGDF2, all data types and constant expressions must be in
the form of an identifier. The included text section provides a means t o associate identifiers
with complex da ta types and constants through the use of # i n c l u d e , # d e f i n e , and
t y p e d e f statements. In the rest of this document, type fields will refer t o either a n identifier

2A model for the model?

sother than possibly altering the efficiency of execution.

defined within the included text section in this way, a simple C type (i n t , f l o a t , char, etc.),
or a special LGDF2 type (s t r e a m or f i l e) .

3. Variable Declarations
All LGDF2 variables used within any of the instructions must be declared in the variable

declarations section. Any value which must be communicated between LGDF2 instructions or
which must persists across executions of a single instruction must reside on an LGDF2 variable.

The variable declaration section consists of one or more variable declarations, each of the
form

type var d i m (control-domain) initial : var-pragrna

where type is a s defined above, var is the name of the variable being declared, dim is an optional
dimension of the form

[constant]
(to be described in a later section), controCdomain is a space-separated list of identifiers, initial
is an optional field of the form

= "string"
and var-pragma is an optional pragma. The type field describes the domain of the da t a state of
the variable, and the controLdomain field describes the domain of the control state of the vari-
able4 (when interpreted as a set containing the named identifiers). The first element of the con-
trol domain corresponds t o the initial value given t o the control state of the variable. If the ini-
tial field is present, its string subfield must be a valid C initializer, complete with braces, for a
variable of the type denoted by type. If the type field is f i l e or s t r e a m , the string subfield
should not contain braces, but instead the name of a file, as described in a later section.

When the controCdomain has but a single element, i t is often clumsy t o try t o find a name
for it, so the following syntactic sugar is provided: if the controCdomain field and its surround-
ing parens are omitted, a control s ta te domain containing a single element, null, is declared for
tha t variable.

4. Operation Declarations

The Operation Declaration section consists of the keyword Ops followed by one or more
operation declarations, each of the form

opname [sig] op-pragma { opbody) endop

where opname is the name of the operation being defined, sig is the signature of the operation,
and opbody is the "mainline" C program which implements the operation. No newline charac-
ters may appear between the right brace and the endop keyword. The signature sig consists of
one or more argument signatures, each of the form

usages type argname (transs) arg-pragma

where usages is either i n (signifying read usage), o u t (write usage), i n o u t (read and write
usage), or n o d a t a (neither read nor write usage), type is as described above (and is omitted the
usages field is n o d a t a) , and transs is a space-separated list of identifiers representing the possi-
ble transitions for the argument. Following the same syntactic sugaring guidelines expressed
above for variables, if the transs field and its surrounding parens are omitted, a single transition
with a null name will be declared for the argument.

The opbody consists of a C block-i.e. local variable declarations followed by C state-
ments, which may include other nested blocks) with the following exceptions and additions:

i n the literature, the elements of t h e control s t a te domain a re sometimes called poles

(I) No variables should be declared as s t a t i c . (This is unfortunately not enforced by the
lgdf 2 preprocessor.) The proper way to handle static variables is t o make them LGDF2
variables.

(2) 1 /0 should be performed only as suggested by the guidelines in a following section.
(Again, not enforced.)

(3) Arguments having other than nodata usage can be used as variables of the same type
anywhere within the opbody. However, i n arguments cannot be assigned to. (Not
enforced, but could have disastrous consequences if violated.) Any reference t o a n argu-
ment for which a transition has been performed will produce a run-time error.5

(4) Transition statements, each of the form
Shalt trans arg

or
$$halt arg

may appear. The second form is used when the argument has only a single null transi-
tion declared for it. The halt field is either null, an exclamation point (!), or a question
mark (I) , and no white space may appear between it and the dollar sign t o its left. arg
is the name of an argument declared in the signature, and trans is the name of a transi-
tion for tha t argument.

The execution of a transition statement has several effects: (I) the control state of the
switch t o which the argument is bound is assigned the control state corresponding t o the transi-
tion binding in the instruction, (2) the argument is made unavailable t o further da t a state
accesses or transitions, and (3) if transitions have already been executed for all volatile argu-
ments, the operation execution halts. It is this final effect to which the halt field refers. If halt is
null, i t signifies tha t the programmer does not expect the operation t o halt with this transition.
If i t does halt, a warning will be issued. If halt is ! , i t signifies tha t a halt is expected on this
transition. If there are still some volatile arguments for which transitions have not been per-
formed, the operation will halt nonetheless, issuing a warning and performing the first-declared
transition t o each of the remaining arguments. If halt is ?, i t signifies tha t the transition may
or may not cause the operation t o halt: no warning will be issued either way.

Finally, there is a third form of transition,

$$$!

which takes no parameters. I t is provided t o halt the operation as described above, but without
performing a transition first-i.e. i t has the effect of branching past the last line of the opbody.

5. Instruction Declarations

The instruction declaration section consists of the keyword I n s t r s followed by instruc-
tion declarations, each of the form

opcode [bindings] instr-pragma

where opcode is the name of a declared operation and bindings is one or more argument bind-
ings, each of the form

arg : pole-bdg var (trans-bdgs) bdg-pragma

where arg is an argument of operation opcode, var is a declared LGDF2 variable, pole-bdg is a
control state of tha t variable, and trans-bdgs is a comma-separated list of transition bindings,
each of the form
- -

q n fact, this will de-reference a null pointer, which may or may not yield an error. On the Sequent, this will
simply produce incorrect results unless the -h option is used on the loader, in which case i t might produce a run-time
error.

trane : c-state

where trans is a transition of argument arg and c-state is a control state of var. A null control
state in the pole-bdg, c-state, or trans field is signified by omitting the field. Note tha t even if
the trans-bdgs field consists of a null transition bound to a null control state, i t must still be
present-as (:) .

Unlike the formal model of F-Nets, this implementation provides the ability t o bind multi-
ple transitions t o the same control state. This introduces a point of confusion: if an argument
does not have write usage but has multiple transitions, and all of those transitions are bound t o
the same control state, is the argument non-volatile or not? If i t were not, then the resulting
instruction would have no representation in the formal model, so in such a case, the argument

will be taken t o be non-vo1atile.O

A further bit of syntactic sugar is also permitted. The pole-bdg field can actually consist
of any number of control states, separated by the word o r . In this case, the textual instruction
declaration declares many different instructions, one for each permutation of pole bindings. (To
illustrate, the last instruction declared in the example below actually becomes 8 instructions
which are all the same but for their pole binding.) The logical result is as if there were a single
instruction tha t could fire when the var has any of the named control states.

110 is not explicitly addressed in the abstract F-Net model, so the following extensions
have been made t o facilitate a useful binding between the LGDF vars and Unix files and
streams.

An LGDF var can be declared as type f i l e , in which case it corresponds t o a file descrip-
tor, or s t r e a m , in which case i t corresponds t o a stream descriptor. The initializer (initial)
field for vars of type f i l e or stream plays a slightly different purpose than for other vari-
ables: i t contains the name of the Unix file t o which the var should correspond.

When execution begins, the file or stream named in the initializer is opened automatically.
If there is no initializer for the variable, a temporary file will be opened (except for LGDF vars
s t d i n and s t d o u t , described below). The LGDF var can then be used as a n argument t o the
standard Unix 110 routines (f p r i n t f , f s c a n f , f p u t c , f g e t c , etc., for streams, and r e a d ,
w r i t e , etc., for files) by any operation bound to that var. Since the var represents both the
content of the Unix file and a pointer into tha t file, all arguments of type f i l e or s t r e a m
should have i n o u t usages. A f i l e or stream should not be closed, and since these streams
are unbuffered, i t is unnecessary t o flush their buffers (f f l u s h) .

Standard I/O (p r i n t f , s c a n f , the vars s t d i n and s t d o u t) should not be used. How-
ever, if a n LGDF2 var is named s t d i n or s t d o u t and has a type of f i l e or s t r e a m and
has no initializer string, any I/O performed to the var will correspond t o the appropriate stan-
dard 1 / 0 port.

7. Array Vars

If the optional dim field is included on a var declaration, i t signifies tha t the switch is t o
be replicated dim times, where dim is either an integer or an identifier # d e f i n e d in the
included text section. If a n initializer is present for an array var, each element of the var is ini-
tialized with its value. There is no difference between a var with dimension 1 and a var with no
declared dimension. Any instruction bound to such an array var is replicated, with one instruc-
tion bound t o each element. If an instruction is bound to multiple array vars, the instruction is
- - - - -

This requires that there be a possible one-to-many relationship between the operations in this implementation
and the operations in the formal model.

9. Pragmas

As described earlier, each optional pragma section is of the form
/ / h i n t s / /

and each hint is an identifier or an integer, and may be followed by a list of "subhints" within
parentheses. Each subhint has the same form as a hint, allowing nesting t o any level. The
meaning (and thus effect) of a hint may depend on the pragma section in which it appears as
well as the target architecture of the LGDF2 program. All hints defined here are valid for the
Sequent Symmetry, and may not apply t o other implementations. For the most part, hints
which are not valid within some particular pragma are ignored.

An optional global pragma can appear before or after the included text section. The hints
currently understood in the global pragma are as follows:

n a c t i v e (n)
w a i t
n o w a i t
tsl ice (n)
t r a c e (aspects)

The n a c t i v e hint tells the number of Unix (heavyweight) processes tha t should be util-
ized t o execute the program. In general, if system load is light and the number of processes is
fewer than the number of available processors, this will correspond to the number of processors
being utilized in parallel. (In fact, there may be more processes than this forked a t any one
time, but the only n a c t i v e will be scheduled for execution under Unix.) If a parameter of 0 is
given (the default), the number of available processors is checked a t runtime, and 1/2 of tha t
number of processes is used. If the parameter is greater than the number of available proces-
sors, only the number of available processors will be used.

The w a i t and n o w a i t hints set the global defaults for whether non-volatile arguments
should attempt t o act like volatile arguments as long as possible. Recall tha t a n argument is
defined as non-volatile if and only if i t has exactly one transition and does not have write usage,
and tha t a non-volatile argument is guaranteed t o perform its transition in a finite time,
whether or not a transition is explicitly performed for i t . If the w a i t hint is given, non-volatile
arguments will not perform a transition until (a) the instruction explicitly performs a transition
for the argument, (b) the instruction finishes, or (c) the instruction is descheduled (see t s l ice
below). If the n o w a i t hint is given, non-volatile arguments perform their transitions when the
instruction is initiated, even if it requires that a copy of the da ta state of the corresponding
switch be made t o facilitate this, and any explicit request t o perform a transition is ignored. If
neither w a i t or n o w a i t is present, n o w a i t is assumed.

The tslice hint tells the time slice in cpu seconds. In the general case, no time-sharing
is performed, and a n instruction executes until i t has performed a transition for each of its
arguments. If, however, all of the available processors (dictated by n a c t i v e) become
"plugged" with instructions which execute longer than a time slice, and there are other instruc-
tions waiting t o execute, then one of the processors will suspend the currently executing instruc-
tion t o begin another. The overhead for this operation is quite high, and its only purpose is t o
prevent a few divergent instructions from clogging the system and violating the liveness of the
implementation, so the time slice should be set t o some large value which is assumed t o be
larger than any instruction execution, unless tha t instruction has entered an infinite loop. The
default value is 10 seconds.

The t r a c e hint tells which aspects of the execution t o trace. If not present, the global
default is for no tracing. If present, the aspects can be f i r e , t o trace instruction firings,
t r a n s , t o trace each execution of a transition statement, and/or var, t o print the contents of
LGDF vars after each transition. The format for a trace will be described later.

replicated t o create one instruction for each combination of array indices-i.e. the total number
of instructions created is the product of the dimensions of all vars t o which the instruction is
bound. The effective result is as if there is a single instruction which can fire whenever each of
the array vars i t is bound to has a t least one element with the "proper" control state.

It is sometimes useful for an operation to determine the element of an array var which it
is accessing. The construct

$& argname
within a n operation body will evaluate t o the index of the var element to which argument arg-
name is bound, with the first element having an index of 0. Thus, this construct will always
return 0 for arguments bound t o non-dimensioned vars. The use of this construct is illustrated
later in the examples section (doctor's office).

Vars with type f i l e or s t r e a m can have dimension other than one if and only if (1) the
name of the var is not s t d i n or s t d o u t and (2) there is no initializer for the switch. In this
case, a n array of temporary files or streams is created. The utility of this feature is limited by
Unix, since a maximum of 20 files may be open a t one time.

8. Subroutines and Separate Compilation

In an operation declaration, the opbody is restricted t o being one C block-i.e. no functions
may be declared within the opbody. Functions tha t may be ultimately called from the opbody
fall into two categories: "normal" functions, which do not contain any of the special constructs
offered by the preprocessor (transition statements, data state references, or index determina-
tion), and "LGDF2" functions which do contain one or more of these constructs.

Normal functions are compiled separately in the normal way. They are still bound to the
LGDF2 rules tha t they may not harbor or access static or global variables (including ma l loc ' d
or shma l loc ' d memory), and should not perform 110. Data state of LGDF2 vars may be
passed t o them a s arguments in the standard way.

An LGDF2 function is identical in form to a C function except tha t it should may contain
the above constructs, must be preceded by the keyword lgdf2, and the terminal) must be
followed by the keyword e n d l g d f 2 on the same line. LGDF2 vars should not be passed t o a n
LGDF2 function: i t is not only unnecessary, since the function body has direct access to the
data states of its LGDF2 arguments, but is also dangerous, since it may allow access t o the
data state (through the alias created by C argument passing) after a transition has been per-
formed for the LGDF2 argument.

In order t o be correctly preprocessed, LGDF2 functions can either appear between the
endop of the opbody from which they will be called and the following operation declaration, or
can be compiled separately. A file for separate compilation is identical t o an LGDF2 program
minus the variable declarations section, instruction declarations section, pragmas, and
opbodys-i.e. i t consists only of the O p s keyword and operation headers followed by LGDF2
functions. The operation header in a separate compilation file must exactly match tha t for the
same operation in the main LGDF2 program, though there is currently no automatic means for
verifying this.

For large LGDF2 programs, it may be desirable t o make all opbodys consist of a single
function call, then define tha t function in a separate compilation file. (The function can even
have the same name as the operation calling i t , since LGDF2 operation names do not find their
way into the resulting C program, while LGDF2 function names are passed along undisturbed.)
In this case, the main LGDF2 program becomes no more than a skeleton, or "wirelist", for how
the modules will interact. On the other hand, for small LGDF2 programs, normal functions
may be bracketed by the l g d f 2 - e n d l g d f 2 keywords to allow their inclusion after the opbody
of their associated operations.

Graphical representation of Hamming's Problem

stream s t d o u t
i n t p r imel
i n t prime2
i n t prime3
i n t r d p t r l
i n t r d p t r 2
i n t r d p t r 3
i n t prod1
i n t prod2
i n t prod3
i n t smallest-1-2
i n t sma l l e s t - a l l

(open c losed) = "harnmingo~t '~ :
= "(3)";
= "{5)";
= "(7)":

(nonempty empty) = "{o)I1;

(nonempty empty) = ff{o>**;
(nonempty empty) = fl{o>ff :
(empty f u l l) :
(empty f u l l) :
(empty f u l l) :
(empty f u l l) :
(empty f u l l) :

OPS
t imes [i n o u t i n t r d p t r (g e t 1 g e t l a s t)

i n HLIST prev-ans
i n i n t prime
o u t i n t product

1

There is but one possible hint for the var-pragma:
o n w r i t e (routine)

where routine is the name of a user-supplied function t o be called after each transition t o the
variable by a n instruction which has write (o u t or i n o u t) usage t o the variable. The assump-
tion is tha t routine will analyze and/or print the da ta state of the variable for debugging pur-
poses. routine will be called only if variable tracing has been turned on in the global pragma.
The function should be declared as follows:

routine (i d x , l g d f v a r)
i n t i d x :
type * l g d f v a r :

where type is the type of the variable being traced. i d x will contain the index of the variable.
l g d f v a r is the value of the variable. (Only one element of an LGDF array var, namely i d x ,
is passed t o the routine.) The routine should not alter the value of l g d f v a r . Any output per-
formed by routine should occur t o s t d e r r .

Only w a i t and n o w a i t hints are allowed for the arg-pragma and bdg-pragma pragmas.
The argument hints over-ride the effects of the associated hints in the global pragma for all
instructions in which the operation is used, and the binding hints over-ride both the global
pragma and the argument hints for a single instruction.

10. Examples

10.1. Hamming's Problem

The goal of Hamming's Problem is t o take three prime numbers, i , j, and k, and t o pro-
1

duce a n ordered list of the first p numbers of the form i j m k n , where I , m , and n are non-
negative integers. The strategy is to multiply the list of answers formed so far by each of the
three primes and merge the resulting lists. As the list of answers grows, so does the list of
answers!

In this case, the list of answers is kept in var a n s w e r s , the three primes are kept in
p r i m e l , p r i m e 2 , and p r ime3 , the read pointers into the list of answers for each of the three
multiplies kept in r d p t r l , r d p t r 2 , and r d p t r 3 , and two temporary variables s m a l -
l e s t -1 -2 and s m a l l e s t - a l l are used t o aid in the three-way merge. The control states of
the read pointers reflect whether or not the portion of the answers which have not been
traversed by it is empty or not. As new answers are added to the list, the value of these control
states is therefore always set back t o nonempty.

I t is tempting t o consider using an array of primes rather than three distinct vars so tha t
any number of primes can be accomodated, but the binary tree for finding the smallest product
only works for exactly three primes, and cannot dynamically grow or shrink t o accomodate
different sizes of prime arrays. This is being remedied in future versions of LGDF2.

// n a c t i v e (4) t s l i ce (10) //

I n c l u d e (

d e f i n e HLI ST-SI ZE 500
t y p e d e f s t r u c t (

i n t l e n g t h :
i n t c o n t e n t s [HLIST-SIZE] :

) HLIST:

) e n d i n c l u d e

HLIST a n s w e r s

s m a l l e s t :
I t C o p d l

opd2
s m a l l e s t :

s a v e [new-ans :
p r e v - a n s :
o u t p u t :
r d p t r l :
r d p t r 2 :
r d p t r 3 :

empty sma l l e s t -1 -2 (: f u l l)]
f u l l p r o d 3 (l e a v e : f u l l , t a k e : empty)
f u l l sma l l e s t -1 -2 (l e a v e : f u l l , t a k e : empty)
empty s m a l l e s t - a l l (: f u l l)]
f u l l s m a l l e s t - a l l (: empty)
a n s w e r s (: I
open s t d o u t (p u t l : open , p u t l a s t : c l o s e d)
empty o r nonempty r d p t r l (: nonempty)
empty o r nonempty r d p t r 2 (: nonempty)
empty o r nonempty r d p t r 3 (: nonempty)]

10.2. A Doctor's Office

The following problem simulates a doctor's office. Idle doctors line up waiting for patients.
A flu-bug will non-deterministically descend upon unsuspecting people, a t which time they go t o
the doctor's office and line up. When there is a t least one idle doctor and one patient in line, a
receptionist (r e c e p t l) takes the first doctor and first patient and puts them into a treatment
room. Here they wait for a non-deterministic amount of time until mercy descends upon them
and the patient is cured. At this time, a second receptionist notices and takes them from the
room, putting the doctor back in line and sending the cured patient back into the world.

The mercy instruction is superfluous, and has been shown with an empty body.' Even if a
body was present, i t would not be executed: the run-time system knows tha t i t has only non-
volatile arguments, so the execution of the body can have no effect on the result. If the user
desired t o make mercy execute for some period of time, the argument t o mercy would need t o
be declared as volatile (by altering the usages or number of transitions).

/ / t r a c e (v a r f i r e t r a n s) nowa i t / /
I n c l u d e (
d e f i n e NROOMS 50
d e f i n e NDOCS 5 0
d e f i n e NPEOPLE 5 0
d e f i n e QSIZE 100

/ * Number o f rooms */
/ * Number o f d o c t o r s * /
/* Number o f p e o p l e */

t y p e d e f s t r u c t room {
i n t t r e a t i n g - d o c :
i n t p a t i e n t :

ROOM:

t y p e d e f s t r u c t q u e u e (
i n t name [QSIZE] :
i n t 1 a s t - i n :
i n t n e x t - o u t :

3 QUEUE:

3 e n d i n c l u d e

QUEUE i d l e - d o c s (u n i n i t emp ty nonempty) = "({O), -1,O)":
QUEUE p a t i e n t s (empty nonempty) = "{{O),-1,O)":
ROOM t r t - r m [NROOMS] (empty s i c k w e 1 1) : / / o n w r i t e o room) //
i n t p e r s o n [NPEOPLE] (u n i n i t a b s e n t p r e s e n t) :
s t r e a m s t d o u t :

' ~ a v e you no mercy?

{
product = prev-ans.contents[rdptr] * prime:
$$product
if (++rdptr == prev-ans.length)

$! getlast rdptr
else
$!get1 rdptr

) endop

It [in int opdl (leave take)
in int opd2 (leave take)
out int smallest]

<
if (opdl < opd2) (

smallest = opdl:
$take opdl

) else if (opdl == opd2) {
smallest = opdl:
$take opdl
$take opd2

) else (
smallest = opd2:
$take opd2

3
3 endop

save [in int new-ans
inout HLIST prev-ans
inout stream output (put1 putlast)
nodata rdptrl
nodata rdptr2
nodata rdptr31

{
prev-ans.contents[prev-ans.length++] = new-ans:
fprintf (output, "%do, new-ans) :
if (prev-ans.length == HLIST-SIZE) $putlast output

) endop

Instrs
times [rdptr :

prev-ans :
prime :
product :

times [rdptr :
prev-ans :
prime :
product :

times [rdptr :
prev-ans :
prime :
product :

It opdl
opd2

nonempty rdptrl
answers
prime1
empty prod1
nonempty rdptr2
answers
prime2
empty prod2
nonempty rdptr3
answers
prime3
empty prod3
full prod1
full prod2

(getl: nonempty, getlast: empty)

(: I
(:)
(: full)]
(getl : nonempty, getlast: empty)

(: I
(: I
(: full)]
(getl: nonempty, getlast: empty)

(: I
(: I
(: full)]
(leave: full, take: empty)
(leave: full, take: empty)

if (patients.next-out++ == patients.last-in) Stakelast patients
) endop

recept2 [in ROOM room
inout QUEUE docs
out int we1 1-person]

(
docs.name[++docs.last~in % QSIZE] = room.treating-doc;
well-person = room.patient:

) endop

f lu-bug [in int we1 1-person
inout QUEUE patients]

{
patients.name[++patients.last-in % QSIZE] = well-person;

) endop

mercy [nodata room]

C 3 endop

Include (
void p-room (idx, room)
int idx :
ROOM *room;

{
fprintf (stderr, "Room %d, Patient %d, Treating doc %do,

idx, room -> patient, room -> treating-doc):
>

) endinclude

Instrs
med-school [docs: uninit idle-docs (: nonempty) 1
stork [person: uninit person (: present) 1
receptl [docs: nonempty idle-docs

(takel: nonempty, takelast: empty)
patients: nonempty patients

(takel: nonempty, takelast: empty)
new-rm: empty trt-rm (: sick)
outfile: stdout (:) I

mercy [room: sick trt-rm (: well)
recept2 [room: well trt-rm (: empty)

docs : empty or nonempty idle-docs (: nonempty)
well-person: absent person (: present)]

flu-bug [well-person: present person (: absent)
patients: empty or nonempty patients (: nonempty)]

11. Tracing

Tracing is divided into transition tracing, listing each transition as it is performed, and
firing tracing, listing each instruction as it fires. If both are requested, a firing will always be
the resuIt of a transition, and this cause-effect relationship is shown by listing the firing t o the
right of the transition which enabled it . Tracing is always printed t o stderr.

-- -

Graphical representation of Doctor's Office

OPS
med-school [out QUEUE docs 1
i

int docname:

docs.next-out = 0:
for (docname = 0: docname < NDOCS: docname++)

docs. name [docname] = docname :
docs.last-in = NDOCS - 1:

) endop

stork [out int person]

person = $&person:
) endop

receptl [inout QUEUE docs (take1 takelast)
inout QUEUE patients (take1 take1 ast)
out ROOM new-rm
inout stream out f ile]

<
new-rm.treating-doc = docs.name[docs.next~out % QSIZE]:
if (docs.next-out++ == docs.last-in) Stakelast docs
new-rm.patient = patients.name[patients.next-out % QSIZE]:

LGDF: + stork@83 $ person (person&41 present)
LGDE: + stork@83 $ person (person&39 present)
LGDE: + stork@83 $ person (person&42 present)
LGDF: + stork@83 $ person (person&44 present)
LGDF: + stork@83 $ person (person&43 present)
LGDE: + storkt383 $ person (person&45 present)
LGDF: + storkt383 $ person (person&40 present)
LGDF: + storkt383 $ person (person&48 present)
LGDF: + stork@83 $ person (personst47 present)
LGDF: + stork@83 $ person (person&46 present)
LGDE: -flu_bug@94 $ well-person (personti0 absent)
LGDF: + storkt283 $ person (person&49 present)
LGDF: +flu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $&49 0
LGDF: -flu_bug@94 $ well-person (person&49 absent)
LGDF : +f lu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $6~48 0
LGDF: -flu_bug@94 $ well-person (person&48 absent)
LGDF: +flu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $&47 0
LGDF: -flu_bug@94 $ well-person (person&47 absent)
LGDE: +flu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $&46 0

...
LGDF: -flu_bug@94 $ well-person (person&6 absent)
LGDF: +flu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $&4 0
LGDF: -flu_bug@94 $ well-person (person&4 absent)
LGDF : + f lu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $&5 0
LGDF : - flu_bug@94 $ well-person (person&5 absent)
LGDF : +flu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $&3 0
LGDE: -flu_bug@94 $ well-person (person&3 absent)
LGDF: +flu_bug@94 $ patients (patients&O nonempty) -> flu_bug@94 $642 0
LGDF: -flu_bug@94 $ well-person (person&2 absent)
LGDF: +flu_bug@94 $ patients (patientdo nonempty) -> flu_bug@94 $&l 0
LGDF: -f lu_bug@94 $ well-person (person&l absent)
LGDE: +flu_bug@94 $ patients (patients&O nonempty) -> receptl@84 $&O 0 49
LGDF: +receptl@84 $ takel docs (idle_docs&O nonempty)
LGDE: +receptl@84 $ takel patients (patientdo nonempty)
Room 49, Patient 0, Treating doc 0
LGDF: +receptl@84 $ new-rm (trt_rm&49 sick) -> mercy@90 $&49
LGDF: - mercy@90 $ room (trt_rm&49 well) -> recept2@91 $&49 0 1
LGDF: +receptl@84 $ outfile (stdout&O)
LGDE: -recept2@91 $ room (trt_rm&49 empty)
LGDF: +recept2@91 $ docs (idle-docs&O nonempty) -> receptl@84 $&O 0 49
LGDF: +receptl@84 $ takel docs (idle-docs&O nonempty)
LGDF: +recept2@91 $ well-person (person&l present)
LGDF: +receptl@84 $ takel patients (patientdo nonempty) -> flu_bug@94 $&1 0
LGDF: -flu_bug@94 $ well-person (person&l absent)
Room 49, Patient 49, Treating doc 1
LGDE: +flu_bug@94 $ patients (patients&O nonempty)
LGDF: - mercy@90 $ room (trt_rm&49 well) -> recept2@9l $&49 0 1
LGDE: -recept2@91 $ room (trt_rm&49 empty)
LGDF: +receptl@84 $ new-rm (trt_rm&49 sick) -> mercy@90 $&49
LGDF: +recept2@91 $ docs (idle-docs&O nonempty)
LGDF: +receptl@84 $ outfile (stdout&O) -> receptl@84 $&O 0 49 0
LGDF: +receptl@84 $ takel docs (idle-docs&O nonempty)
LGDF: +recept2@91 $ well-person (person&l present)

The format for a transition trace is:

opn@line $trans arg (varbindez estate)

The first two fields identify the instruction in which the transition is being performed by its
opcode and the line of the source file i t is declared on. The next two fields are the transition
name and argument for the transition. The last three fields (in parens) are the variable t o
which the arg is bound, expressed as its name and index, and the new control s ta te assigned to
the variable as a result of the transition. The transition trace may be preceded by a +, signify-
ing tha t the transition was performed automatically after the opbody finished, or a - signifying
tha t the transition was performed automatically by the runtime system because the argument
was non-volatile.

The format for a firing trace is:

-> opn@line $& indezl indez2 ...
The first two fields describe the instruction which fired, again by its operation and line in the
source. The rest of the fields are the indices for each of the arguments. These are listed in the
order in which the arguments are declared for the operation, not in the order of the bindings for
the instruction.

What follows is a partial trace from the doctors office example:

% doc
LGDF: ------------------init------------------ -> med_school@82 $&O
LGDF: ------------------init------------------ -> stork@83 $&O
LGDF: ------------------init------------------ - stork@83 $&1
LGDF: ------------------init------------------ - stork@83 $&2
LGDF: - - - - - - - - - - - - - - - - - - init------------------ -> stork@83 $&3
LGDF: ------------------init------------------ -> stork@83 $&4
LGDF: ------------------init------------------ -> stork@83 $&5

. . .
LGDF: ------------------init------------------ -> stork@83 $&46
LGDF: ------------------init------------------ -> stork@83 $&47
LGDF: - - - - - - - - - - - - - - - - - - init------------------ -> stork@83 $&48
LGDF: - - - - - - - - - - - - - - - - - - init------------------ -> stork@83 $&49
LGDF: +med_school@82 $ docs (idle-docs&O nonempty)
LGDF: + stork@83 $ person (person&O present) -> flu_bug@94 $&O 0
LGDF: + stork@83 $ person (person&l present)
LGDF: + stork@83 $ person (person&2 present)
LGDF: + stork@83 $ person (person&3 present)
LGDF: + stork@83 $ person (person&5 present)
LGDF: + stork@83 $ person (person&4 present)
LGDF: + stork@83 $ person (person&6 present)
LGDF: + stork@83 $ person (person&7 present)
LGDF: + stork@83 $ person (person&8 present)
LGDF: + stork@83 $ person (person&9 present)
LGDF: + stork@83 $ person (person&lO present)
LGDF: + stork@83 $ person (person&12 present)
LGDF: + stork@83 $ person (person&14 present)
LGDF: + stork@83 $ person (person&ll present)
LGDF: + stork@83 $ person (person&15 present)
LGDF: + storkt383 $ person (person&16 present)
LGDF: + storkt383 $ person (person&13 present)
LGDF: + stork@83 $ person (person&18 present)
LGDF: + stork@83 $ person (person&17 present)

. . .

LGDF: +receptl@84 $
LGDF: -flu_bug@94 $
Room 49, Patient 48,
LGDF: +flu_bug@94 $
LGDF: +receptl@84 $
LGDF: -recept2@91 $
LGDF: - mercy@90 $

LGDE: +receptl@84 $
LGDF: +receptl@84 $
LGDF: +receptl@84 $
LGDF: +recept2@91 $
Room 49, Patient 47,
LGDF: +recept2@91 $
LGDF: -flu_bug@94 $
LGDF: +receptl@84 $

LGDF: -recept2@91 $
LGDF: +flu_bug@94 $

LGDF: - mercy@90 $
LGDF: +receptl@84 $
LGDF: +recept2@91 $
LGDF: +receptl@84 $
LGDF: +recept2@91 $
LGDF: +receptl@84 $
LGDF: - flu_bug@94 $
Room 49, Patient 46,
LGDF: +flu_bug@94 $
LGDF: +receptl@84 $
LGDF: - mercy@90 $
LGDF: +receptl@84 $

LGDF: -recept2@91 $
LGDF: +recept2@91 $
LGDF: +receptl@84 $
LGDF: +recept2@91 $
LGDF: +receptl@84 $
LGDF: -flu_bug@94 $

Room 49, Patient 45,
LGDF: +flu_bug@94 $
LGDF: +receptl@84 $

LGDF: -recept2@91 $
LGDF: +receptl@84 $
LGDF: - mercy@90 $
LGDF: +recept2@91 $
LGDF: +receptl@84 $
LGDF: +recept2@91 $
LGDF: +receptl@84 $

. . .

takel patients (patientdo nonempty) -> flu_bug@94 $&l 0
well-person (person&l absent)

Treating doc 2
patients (patients640 nonempty)
new-rm (trt_rm&49 sick) -> mercy@90 $6149
room (trt_rm&49 empty)
room (trt_rm&49 well) -> recept2@91 $&49 0 1

takel docs (idle-docs&O nonempty)
outfile (stdout&O 1

takel patients (patients&O nonempty)
docs (idle-docs&O nonempty) -> receptl@84 $&O 0 49 0

Treating doc 3
well-person (person&l present) -> flu_bug@94 $&l 0
well-person (person&l absent)
new-rm (trt_rrn&49 sick) -> mercy@90 $&49
room (trt_rm&49 empty)

patients (patients&O nonempty)
room (trt-rm&49 well) -> recept2@91 $&49 0 1

takel docs (idle-docs&O nonempty)
docs (idle-docs&O nonempty) -> receptl@84 $&O 0 49 C

outfile (stdout&O 1
well-person (person&l present) -> flu_bug@94 $&1 0

takel patients (patients&O nonempty)
well-person (person&l absent)

Treating doc 4
patients (patients&O nonempty)
new-rm (trt_rm&49 sick) -> mercy@90 $&49
room (trt_rm&49 well) -> recept2@91 $&49 0 1

outfile (stdout&O 1
room (trt_rm&49 empty)
docs (idle-docs&O nonempty) -> receptlQ84 $&O 0 49 C

takel docs (idle-docs&O nonempty)
well-person (person&l present)

takel patients (patients&O nonempty) -> flu_bug@94 $&1 0
well-person (person&l absent)

Treating doc 5
patients (patients&O nonempty)
new-rm (trt_rm&49 sick) -> mercy@90 $&49
room (trt_rm&49 empty)

outfile (stdout&o 1
room (trt_rm&49 well) -> recept2@91 $&49 0 1
docs (idle-docs&O nonempty) -> receptl@84 $&O 0 49 C

takel docs (idle-docs&O nonempty)
well-person (person&l present)

takel patients (patientdo nonempty) -> flu_bug@94 $&1 0

It is interesting to note that only room 49 gets used for treating patients, since the next
patient is only taken when the previous patient is already cured and leaves the room vacant.
This is at least partially due to the time required for tracing. If only var tracing is used, room
48 is also used sometimes.

12. Preparing an LGDF2 Program for Execution

The LGDF2 program is processed in three steps: (1) The lgdf2 processor,
/ogc/pro jects/parallel/bin/lgdf2

converts the program t o a c language program, (2) tha t c language program is compiled with
the standard c compiler, and (3) the resulting object file is linked with the LGDF2 runtime
object files,

/ogc/projects/parallel/lgdf/vl.0/sequent/runtime/sched.o
/ogc/projects/parallel/lgdf/vl.0/sequent/runtime/tslice.o

t o yield a n executable file. Here is a sample make file from directory
/ogc/projects/parallel/lgdf/vl.0/samples.

hammings : hammings.0
cc -g -h -0 hammings hammings.0 ../sequent/runtime/sched.o

hammings . o : hammings.~
cc -g -c hammings.~

hammings . c : hammings . 1
../bin/lgdf2 < hammings.1 > hammings.~

C syntax errors within the operation definitions or initializers will not be caught by the
lgdf2 preprocessor, since the preprocessor does not know C. These will be caught during com-
pile time, but the line numbers issued by the compiler will conform to those in the initial LGDF2
(-1) file.

