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Abstract  

From the breakthrough research of Latanya Sweeney we have learned that the secondary use of 

healthcare data may be privacy-revealing.  Common techniques for ensuring privacy focus more 

on security and validation and are vulnerable to privacy attacks.  Yet, it is only through the 

secondary use of healthcare data that we can ultimately achieve Elias Zerhouni’s vision to 

“Transform Medicine from Curative to Preemptive”.    After all, it is the analysis and sharing of 

data that is crucial to understanding patterns within the healthcare population.  But we cannot 

do this unless we can ensure the privacy of the individual patient.   

In this paper we review some of the common methods used to ensure privacy, including the use 

of privacy algorithms, and emphasize the use of differential privacy algorithms and the 

application of differential privacy via Privacy Integrated Queries (PINQ).    Differential privacy 

protects the patient by adding exponentially distributed random noise to the results of a query 

against a data set.  Exponentially distributed random noise has some interesting properties that 

provide privacy guarantees.  Within the framework of PINQ, one can apply the differential 

privacy algorithm, specify the amount of accuracy (epsilon) desired, and PINQ translates this to 

the units of privacy that it can guarantee (i.e. providing risk enforcement).  The concern, 

especially within healthcare datasets which are typically small in size, is that the additional of 

random noise, while providing privacy guarantees, will significantly reduce statistical accuracy.   

By applying differential privacy using PINQ against a healthcare dataset, we were able to 

successfully alleviate this concern.  By analyzing historical data, we narrowed down the range of 

candidate epsilon values.  We then replicated the statistical tests performed prior to 

perturbation at the bounds of the 95% confidence interval to determine the ideal epsilon value.  

It is important that values with higher sample sizes have a lower epsilon value so that we could 
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in turn apply a higher epsilon value to the values with smaller sample sizes.  Altogether this 

allows us to find and publish the ideal epsilon value that ensures statistical accuracy while 

providing privacy guarantees.  
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Introduction  

Based on an analysis of the 1990 United States Census, 87% of the United States population is 

uniquely identifiable by the three attributes of zip code, date of birth, and gender (Sweeney, k-

anonymity: a model for protecting privacy).  Latanya Sweeney’s breakthrough research clearly 

depicts that the de-identification, masking, or hiding of publicly available information does not 

adequately protect the privacy of an individual.  Sweeney obtained masked medical data from 

the Group Insurance Commission of Massachusetts responsible for state employees’ health 

insurance.  The masked medical data contained only what was considered non-identifiable 

information such as ethnicity, visit date, diagnosis, procedure, medication, total charge, zip 

code, date of birth, and gender.  This masked medical data set was compiled following the 

Limited Data Set directive as noted within the Health Information Portability and Accountability 

Act or HIPAA (United States Department of Health and Human Services).  For a cost of $20, 

Sweeney then obtained the publicly available Cambridge, MA voter list.  The voter list provided 

personal information but was limited only to voting information, address, date of birth, and 

gender.   Illustrated in the Venn diagram in Figure 1, each of the two data sources by itself 

revealed little information.  

Recall that 87% of the US population is uniquely identifiable by only the three attributes of zip 

code, date of birth, and gender.  In this case, there were only six people in Cambridge, MA who 

had the same date of birth as Massachusetts Governor William Weld and only three of those 

were men.  Of those men, the Governor was the only person to live in his particular zip code.   

Through these two pieces of information joined only by gender, date of birth, and zip code, 

Sweeney was able to identify and reveal the medical records of the Governor. 

 

http://www.hhs.gov/ocr/hipaa/decisiontool/tool/lds.html
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Due to the importance of patient privacy, this paper will study the use of Privacy Integrated 

Queries (PINQ) which applies a differential privacy algorithm to a data set.  While there are 

unique perturbations of the data with this technique, our goal is to demonstrate its efficacy and 

build an initial methodology to use differential privacy (via PINQ) on healthcare datasets to 

allow analysts to have secondary use of the data and protect the subjects at the same time.  This 

research project will serve as the capstone project for Mr. Denny Lee in the Master of 

Biomedical Informatics program at OHSU and has been approved by that institution's 

Institutional Review Board. 

 

  

Figure 1: Patient Re-identification via the three 
attributes.  Medical data is on the left, voting records 

on the right.  
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Background 

Importance of Privacy for Healthcare Research 

In addition to better documentation, accountability, and clinical operational benefits, a key 

benefit of the use of electronic medical records is to lower the barriers to the secondary use of 

data that is collected and primarily used in clinical settings, including its use for research 

purposes.  However, privacy concerns remain large. Consider that over 80% of the US 

consumers will cite privacy concerns as a major reason why they are slow to adopt the use of a 

personal health record (Markle Foundation).   After all, while sharing of medical data is 

beneficial, the rights of individual to privacy protection must not be violated (Buckovich, Rippen 

and Rozen; Korn).   Unless we can ensure privacy for the individual patient, we will not have the 

necessary infrastructure to analyze and understand the data.   

The vision of the director of the National Institutes of Health, Dr. Elias A. Zerhouini, for the 

future paradigm of medicine is to “Transform Medicine from Curative to Preemptive” (Zerhouni).  

It is apparent that to fulfill this vision of healthcare prediction, we will need the ability for 

secondary use of data.  It will become necessary to apply advanced techniques to mine patient 

health records so that we can find patterns in the population.  For example, by analyzing many 

patient health records it was possible to determine that mean arterial pressure provides a 

strong indicator of stroke (Fogelholm, Avikainen and K) while pulse pressure forewarns of a 

heart attack (Vaccarino, Holford and Krumholz).   If we lose the ability for secondary use of data, 

we will no longer be able to make these discoveries that can help us predict and prevent health 

issues from occurring.   

We cannot stress enough the importance of patient privacy, as we cannot benefit from the 

analysis of patient data unless patients believe their privacy is respected and institutions trust 
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that their data is secure.  While we are doing more to ensure that our data is secure, this effort 

has not been necessarily translated to privacy.  At the same time, it should not be presumed 

that secondary use of data and electronic medical records automatically means that one’s 

privacy is revealed.  There is anecdotal evidence that suggests that electronic medical records 

may still offer better protection than traditional paper records due to features such as auditing 

trials, the ability to filter data, and electronically sign documents to ensure consistency (Barrows 

and Clayton).  For example, the Cancer Bioinformatics Grid (caBIG) from the National Cancer 

Institute has developed a grid of servers and institutions across the country that allow the 

sharing of key cancer research between institutions so researchers can more easily leverage 

each other’s work.   They have even provided guidance on how to build a more secure 

environment by way of their project (Langella, Hasgints and Oster).  It can be seen that most of 

the focus on privacy and security occur in high profile cases such as the Kaiser Permanente 

Internet Patient portal security breach (Collmann and Cooper).    While this focus on securely 

providing secondary use of data is required and admirable, as noted in the Governor Weld case 

security does not necessarily mean privacy.   

Privacy Concerns and Policies 

Over the last few years, there has been a concerted effort to provide the policies to address 

patient’s privacy concerns.   There are now legal definitions of privacy (Nissenbaum) and 

regulations such as those resulting from the Health Insurance Portability and Accountability Act 

of 1996 (HIPAA) provide very explicit instructions on what information can and cannot be 

revealed in different scenarios (US Department of Health and Human Services (Office for Civil 

Rights)).    Businesses such as Microsoft® provide detailed statements (e.g., “Microsoft Online 

Privacy Statement”) about the personal information collected, uses of that information, and 

offering users the choice to not share/expose their data for secondary uses (MSN).  Academic 

https://cabig.nci.nih.gov/
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institutions, such as Oregon Health & Science University, have requirements in addition to 

HIPAA standards stating the permitted uses and disclosures associated with protected health 

information (OHSU Healthcare System (Administrative Policy Manual)).  Yet, as seen from the 

Governor Weld case, the masking of data in compliance with the HIPAA Limited Data Set rules 

and explicit statements of use and disclosures may not necessarily insure privacy.    After all, 

HIPAA may provide the policies to protect the privacy of medical records but it wasn’t designed 

to facilitate or limit the secondary use of medical data.  This is a stark reminder that there 

should be additional policies or mechanisms to reduce threats to privacy and confidentiality 

breaches (Annas). 

While there are many privacy policy frameworks, none provide actual techniques or 

methodologies to ensure privacy.   Currently, there is a lack of coherent policies and standard 

“good practices” for the desired secondary use of data (Safran, Bloomrosen and Hammond), i.e. 

we lack the actual information on how to properly implement the proposed frameworks.  For 

example, if you refer to the HIMSS Privacy and Security Toolkit (HIMSS), you will notice a lack of 

in-depth guidance on how to ensure privacy.  The Markle Foundation has provided a verbose 

Privacy Notice to Consumers as part of their overall Common Framework for Networked Personal 

Health Information (Markle Foundation) and the Model Privacy Policies and Procedures for 

Health Information Exchange within the same framework (Markle Foundation).   But again, 

while we may now have effusive policies and models on privacy, there is little discussion of how 

to actually implement it.   One of the more complete books on the topic of privacy is that of JC 

Cannon’s What Developers and IT Professionals Should Know (Cannon) but it is very much 

information technology (IT) centric and will require a very good healthcare IT consultant and 

staff to help bridge the gap between the IT techniques described and their application to 

healthcare. 

http://www.himss.org/asp/privacySecurityTree.asp?faid=78&tid=4#PSToolkit
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Privacy Techniques 

While there is a lack of standard best practices for privacy, this has not prevented individuals 

and institutions from attempting to put together their own privacy methodologies.  From an 

informal survey of privacy advocates and privacy officers, a theme has emerged on the types of 

privacy techniques that are commonly employed, including auditing, suppression of data with 

limited participation, limiting the number of queries to a dataset, and application of privacy 

algorithms.   

Auditing 

An audit trail ensures that all users and actions to patient data are recorded.  While auditing 

medical data is important, it is not a technique that prevents confidentiality breaches.  It is 

important to ensure accountability with an audit trail, as it may act as a deterrent for persons 

with malicious intent or who are just snooping.  But auditing data only provides the ability to 

determine who and how the breach occurred after it had already happened.  If a breach of 

patient privacy occurs, the Office of Health and Human Services can ask any number of 

questions during their investigation, as can be seen in the article HIPAA audit: The 42 questions 

HHS might ask (Vijayan).  

Suppression of data with limited participation 

A common technique believed to ensure privacy is applying the rule that if the number of 

records meeting a query criterion falls below a defined threshold, then the results are not made 

available.  An example of this approach might be the question, “How many patients of this clinic 

have three children?” where, if less than 4 patients have less than three children (4 being the 

threshold value), you do not display the results.  The first problem with this approach is that 
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healthcare data is often comprised of small populations, which could result in frequent 

suppression of query results and consequent impairment of investigators to perform data 

analysis.  In addition, this method can be broken. After asking a limited number of questions, for 

example, it may become possible to determine what that threshold is (if it is not already 

publicized) which will provide you a definitive insight into a small population albeit in a rather 

round-about way.  In addition, to attack the above question – you need only ask the questions: 

 Question 1: For how many patients is there a record of the number of their children? 

 Question 2: How many patients have more than 3 children? 

 Question 3: How many patients have less than three children? 

Therefore, to answer “How many patients have 3 children?" you need only calculate Answer 1 – 

Answer 2 – Answer 3. 

Limit the number of queries to a dataset 

As can be seen from the above example, the ability to ask an unlimited number of questions 

may provide one with the ability to break any privacy protecting technique.  Therefore, a 

common technique to assure privacy is to limit the number of questions a user is allowed to ask.  

By itself, this technique does not provide any privacy protections unless you have an extremely 

low threshold for the number of questions allowed to be asked (in the above example, you 

would only allow two questions).  In combination with other privacy algorithms, it can be a 

helpful tool, however, because it prevents one from being able to reverse engineer the privacy 

algorithm applied to your data set using "brute force". 
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Privacy Algorithms 

Within the privacy research and IT worlds, there are a number of privacy techniques that have 

been designed and employed only to later find limiting issues.  These techniques include (but 

are not limited to): 

 Disambiguation of data by applying algorithms to blank or null out certain fields in your 

data so that no row in the table is unique (Fischetti and Salazr; Øhrn and Ohno-

Machado).  Further research and analysis has determined that this methodology can be 

successfully attacked (Drieseitl, Vinterbo and Ohno-Machado). 

 Trusted Third Parties (TTP) that separate the researcher and the original patient data 

with the full power to encrypt and decrypt the data.   This method was pioneered by 

deCODE Genetics and ensures that no personal identifiers associated with medical data 

ever reach the analyst (Gulcher, Kristjánsson and Gudbjartsson).   However, as noted 

from the Governor Weld case, there are other forms of attack to which TTP is 

susceptible (Malin, An Evaluation of the Current State of Genomic Data Privacy 

Protection Technology and a Roadmap for the Future).   The same paper also provides 

information on the susceptibility of other privacy protection algorithms including de-

identification, de-nominalization, and SEMITRUST. 

 Cell Suppression is a technique in which individual columns or cells of data are 

suppressed thus preventing an attacker from identifying a patient because the data is 

missing key pieces of information (Sweeney, Achieving k-anonymity privacy protection 

using generalization and suppression; Su and Ozsoyoglu).  Anonymization by way of cell 

suppression does not necessarily prevent inferences being made of that data (Onhno-

Machado, Vinterbo and Drieiseitl). 
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More recently, there have been efforts to mathematically define and formulate attacks against 

privacy as well as providing privacy guarantees (Chawla, Dwork and McSherry, Toward Privacy in 

Public Databases; Malin and Sweeney, How (not) to protect genomic data privacy in a 

distributed network: using trail re-identification to evaluate and design anonymity protection 

systems).  The area that has received the most attention so far is that of k-anonymity.  

Protecting Privacy by k-anonymity  

A widely used approach for privacy protection is that of k-anonymity (Sweeney, k-anonymity: a 

model for protecting privacy).  In addition, there are k-anonymity derivatives such as l-diversity 

(Machanavajjhala, Gehrke and Kifer), t-closeness (Li, Li and Venkatasubramanian), and m-

invariance (Xiao and Tao) as well as are other suppression methodologies built on top of k-

anonymity (Sweeney, Guaranteeing anonymity when sharing medical data, the datafly system; 

Wellner, Huyck and Mardis) to allow data release (Li, Wang and Jin).   

The key fundamental of k-anonymity is the ability to measure privacy risk.  For example, 

consider a dataset consisting of four fields: gender, birth date, zip code and person (Figure 2).   

When one denotes that this data set is anonymized to a value of k=2, this translates to a risk 

threshold of 1/k = 0.50.  If you were to view this data by a set of selected attributes (e.g. gender, 

birth date, and zip code), there must be at least two records for each combination of gender, 

birth date, and zip code that exist in the database.  If there are attribute combinations within 

the dataset that have less than two records, then these records would not be sufficiently 

anonymized. 
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Figure 2: Sample data set where the first four rows are anonymized to k = 2 while the last three rows 
are not sufficiently anonymized 

 Observe that the top four records in the example in Figure 2 have two sets of k = 2 data while 

the bottom 3 records have the value of k = 1.  To ensure that your released data has a k = 2 

anonymization, you will need to suppress the last three rows and only provide the top four rows 

for analysis.  The concern with this approach is that the suppression of data will skew the 

analysis of your data because a significant proportion of the population may not be included in 

this new data set.   To help mitigate the effects of this skew, the measurement error 

(information loss) can be calculated by the sample ratio and the level of suppression.  El Emam 

and Dankar’s Protecting Privacy Using k-Anonymity (El Emam and FK) extends this concept by 

the application of hypothesis testing prior to algorithmic application as well providing a 

categorization of risk and risk assessment tool.   

Even with all of these tools, k-anonymity provides the ability to measure risk as opposed to 

providing privacy guarantees.  In addition, the skew in data distribution especially within a 

healthcare setting of small sample populations may cause statistical bias.  From more recent 

research, it has also been determined that k-anonymity and its derivatives are vulnerable to 

composition attacks and the risk assessment of 1/k may not be correct (Ganta, Kasiviswanathan 

and Smith). 
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Note that the purpose of this paper is not to judge the efficacy of k-anonymity nor its 

derivatives.   However, based on the desire to have privacy guarantees without the statistical 

bias due to data suppression, the application of differential privacy algorithms to healthcare 

data presents an enticing alternative.  

Protecting Privacy by Differential Privacy 

Defining Privacy and Differential Privacy 

A formal definition of privacy can be described as protection from being brought to the 

attention of others (Gavison).  But to understand and provide guarantees of privacy, i.e. 

“guarantee that one will not be brought to attention of others”, it was important first to define 

privacy mathematically.  The works of Privacy-Preserving Data Mining in Vertically Partitioned 

Databases (Dwork and Nissim, Privacy-Preserving Data Mining in Vertically Partitioned 

Databases) and Practical Privacy: The SuLQ Framework (Blum, Dwork and McSherry) expanded 

the mathematical statements abstracting the concept of a database, adversary, and define 

(mathematically) adversarial success.  By having a mathematical definition of privacy, it became 

possible to mathematically define privacy attacks and protection.  It is through these 

mathematical definitions that the technique of differential privacy was first described.  

The basic principal of differential privacy is that privacy is guaranteed because nothing more 

about the individual can be learned when her information is in the database than when it is not.   
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Figure 3: With differential privacy, one cannot learn more about an individual (Person C) whether she is in 
or not in the database 

There are several works on differential privacy (Dwork, McSherry and Nissim; Blum, Dwork and 

McSherry; Chawla, Dwork and McSherry, On Privacy-Preserving Histograms; McSherry and 

Talwar, Mechanism design via differential privacy; Shuchi, Dwork and McSherry) which note 

end-to-end differential privacy guarantees on different statistical analyses without 

customization or needing to work in isolation. That is, differential privacy can work within the 

context of other analyses while keeping these guarantees (McSherry, Privacy Integrated 

Queries). 

To do this, random noise generated by an exponential distribution is applied to the outgoing 

result.  Using the example shown in Figure 3, the correct answer to the question “How many 

people are in the dataset?” is four.  The addition of random exponential noise in this particular 

case adds a value of +2 which results in the answer of 6.  In a query of a similar dataset, where 
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the correct answer is 5, with addition of exponential noise of +1, the result is also 6.  Therefore, 

the person asking the question cannot learn any more information about the individual whether 

she is in (second case) or not in (first case) the dataset.  This is a simple analogy of the impact of 

random noise to the result.  In reality, the amount of noise is truly random hence the value 

applied and the corresponding final answer to the user may be quite different.  For more in-

depth information on the sanitization concept, please refer to Appendix 1: Differential Privacy 

concepts. 

Revisiting the Governor William Weld case 

Recall that to attack aggregate data, one need only to ask enough questions to drill down to a 

specific individual with very distinct attributes.  In the Governor Weld case, the first question 

was the number of people who had his date of birth (answer is 6).  The next question was the 

number of those people who were male (answer is 3).  The final question is the number of those 

people who lived in his 5-digit zip code (answer is 1).  In this example, only three questions were 

required for the author, Sweeney, to drill down to Governor Weld and his medical records 

(Sweeney, k-anonymity: a model for protecting privacy). However, if we were to add random 

exponential noise (i.e. some integer value between –∞ to +∞) to consistently change the above 

values, it would be impossible to drill down to this one person.  For example, if the noise values 

to be applied to these questions were that of (-2, +1, +6), then the results of the above 

questions would be:  

Question Original Answer Noise Values Noisy Answer 

How many patients with Governor 
Weld’s date of birth 

6 -2 4 

How many of those users are male 3 +1 4 

How many of those users are in 
Governor Weld’s Zip Code 

1 +6 7 

 



Protecting Patient Data Confidentiality using Differential Privacy 21 

When looking at the results from the application of differential privacy , the additional noise has 

made it impossible to drill down to the single individual, therefore the data is “privacy 

preserving”.  In this particular example, the noise is large, too large for an investigator to 

discover any meaningful understanding of trends and patterns. The amount of added noise must 

be calibrated such that enough noise is added to the system that the answer changes but that 

the results of statistical analyses applied to the data do not change.  In addition, to prevent 

attacks to the noise algorithm itself, more noise needs to be added as more questions are asked.  

The efficacy toward privacy guarantees of this methodology is not in question as this has already 

been amply researched and verified (Chawla, Dwork and McSherry, On Privacy-Preserving 

Histograms; McSherry, Privacy Integrated Queries) .   The usefulness of the methodology in 

working environments, however, is still to be determined. 

Acceptability of the effects of privacy algorithms 

One of the key concerns of this approach is the acceptability of adding random noise to the 

results of the data.   As noted in a pilot qualitative case study referenced in the Carnegie Mellon 

University / Microsoft Research Mindswap (Lee), the key to accepting the use of privacy 

algorithms and/or the addition of noise to the data is the users’ trust of the data.  For more 

information, please refer to Error! Reference source not found..  While we have a better 

understanding of the perspective of business analysts, the question arises as to how clinical 

researchers will react to additional noise being added to their research data.  The same pilot 

qualitative study on the perceptions of clinical researchers (Lee) noted the following six themes: 

1. Statistical Accuracy:  Ensuring statistical precision and consistency is the most important 

perspective towards the application of privacy algorithms.  Because of this, the bulk of 

this paper focuses on ensuring that the application of differential privacy to healthcare 
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data will still result in the same statistical outcomes as when differential privacy was not 

applied. 

2. Understanding the privacy algorithm: Most clinical researchers are willing to accept the 

mathematics and science behind privacy algorithms without necessarily understanding 

them.  While this increases acceptability, the potential problem is that one will 

implement privacy algorithms without understanding them and then incorrectly state a 

guarantee of privacy.  

3. Can get back to the original data: It is a very important requirement that healthcare 

researchers can get back to the original data if so required.  Some privacy algorithms 

perturb data so while guaranteeing patient privacy, it is impossible to get back to the 

patient.  As differential privacy only affects the results, not the original data, this is not a 

concern. 

4. Understanding the purpose of the privacy algorithms: Most educated healthcare 

professionals either understand issues surrounding patient privacy or would quickly 

understand it by providing case studies such as the Governor Weld case to make it more 

apparent.   But it will be important to provide well worded text and/or confidence 

intervals, including publishing of the epsilon values, below a chart or report that has 

privacy algorithms applied. 

5. Management ROI: The secondary use of patient data involves Institutional Review 

Boards (IRB), privacy and security steering committees, and HIPAA compliance.  

Therefore, the return-on-investment for the extra steps for security and privacy 

validation revolves around providing patient privacy guarantees that reduce the legal 

expenses attributed to revelation or perceived revelation of patient data. 
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6. Protecting Patient Privacy: It will become possible for researchers to use differential 

privacy to ensure patient privacy provided there is guidance on how to use it. 

Differential privacy satisfies the latter five themes; it is the purpose of this paper to ascertain if 

differential privacy satisfies the theme of statistical accuracy. 

Privacy-Integrated Queries (PINQ) 

PINQ is a software application framework that applies the mathematics of differential privacy.  It 

is built on top of Language-Integrated Query (LINQ) which is a .NET framework that allows 

developers and IT professionals to query any data source using the same methods 

(http://msdn.microsoft.com/en-us/library/bb308959.aspx).   This allows users to apply 

differential privacy without understanding the mathematics behind it.  For example, with LINQ 

you can write a .NET framework method to ask a question from a database (e.g. query a SQL 

database) and it will provide you with the answer (e.g. results from a SQL query to that 

database).  With PINQ, you ask the same question but it will give you an answer with differential 

privacy applied, meaning that there will be some exponential noise added to your results.  How 

much noise is used depends on the epsilon value, ε, which the user provides to PINQ.  The larger 

the epsilon value, the less noise is applied to the result set, which means it is more accurate but 

potentially more privacy revealing.  Conversely, the smaller the epsilon value, the more noise is 

applied to the result set which means there is more privacy but less accuracy. 

 

IOP # of patients 

08-09 1 

10-11 2 

12-13 17 

http://msdn.microsoft.com/en-us/library/bb308959.aspx
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14-15 20 

16-17 43 

18-19 63 

20-21 57 

22-23 23 

24-25 7 

26-27 2 

28-29 0 

30-31 2 

32-33 1 

Table 1: Intraocular pressure ranges based on the Woolson dataset (Woolson) 

 

To best see the effect of PINQ to a dataset, consider its use against a publicly available 

healthcare dataset, in this case a dataset containing the intraocular pressure for 238 patients 

visiting an ocular disease clinic (Woolson). A common way to view the dataset is in terms of 

intraocular pressure ranges as noted in Table 1. When applying differential privacy with an 

epsilon value of ε = 0.1, an example of the result set that might be returned is shown in Table 2. 

Note this is only one of many possible results; since differential privacy by PINQ is the 

application of random noise (by way of exponential distribution), the results can be different 

every time.   The application of this random noise can result in wide ranges of variation.  The 

higher the epsilon value, the smaller the degree of variation and the more accurate the values 

are to the real value. 

 

 

IOP # of patients (real 
value) 

# of patients (differential 
privacy applied) 

08-09 1 -1.089174486 

10-11 2 0.332053694 
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12-13 17 16.71256706 

14-15 20 18.67770913 

16-17 43 62.75784853 

18-19 63 79.93521335 

20-21 57 44.60007283 

22-23 23 28.04627043 

24-25 7 -14.62243625 

26-27 2 15.67088707 

28-29 0 19.38616653 

30-31 2 9.491168864 

Table 2: Intraocular pressure ranges with the differential privacy applied at ε = 0.1 

 

This variation is best exemplified in Figure 4 where the actual value (blue) and six separate query 

executions at the set epsilon value (orange) are shown graphically side-by-side.  At ε = 0.01, the 

actual values are barely visible as the variation of differential privacy values is larger than the 

actual value.  But at ε = 0.1, the actual values are more visible and the magnitude of variation is 

not as significant.  At ε = 1.0, there is little variation as most of the values are very close to the 

actual values.  Recall that the application of noise is based on an exponential distribution which 

means that there is an exponential (as opposed to linear) difference between values of 0.1 and 

1.0.   
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Figure 4: IOP ranges with various values of epsilon applied (differential privacy) 
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When there is a need for accurate values, the analysis can employ a higher epsilon value (e.g. ε 

= 1.0) but the problem with this approach is that consistently providing accurate values will 

result in consistently having low privacy guarantees (i.e. the analysis may be privacy revealing).  

The goal is to provide enough accuracy in the result set to retain statistical significance while 

ensuring enough noise has been added to provide privacy guarantees.  One solution is to 

introduce a gating mechanism to prevent investigators from asking too many high accuracy 

questions.  The investigator could then ask a mix of questions with high accuracy (low privacy) 

and low accuracy (high privacy) epsilon values to meet the desired goals of statistical 

significance and patient privacy within an allowed total value of accuracy.  To provide the 

privacy context, one should publish the epsilon values with the results. 

Figure 5 shows the conceptual model of how PINQ gates the amount of privacy revelation when 

applying the exponential noise derived from the differential privacy algorithm.  The gating 

mechanism is analogous to an ATM withdrawal from your bank except that instead of money, 

privacy units are withdrawn.  In this example, a user is allowed use up to 20 privacy units (PrU) a 

day.   This isn’t the same as 20 questions a day because some questions are more complex than 

others.  Questions that require filtering logic and associations to multiple data sources are more 

expensive.  As well, the higher the epsilon value (i.e. lower privacy guarantees) the more 

expensive it is to ask these questions. 
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Figure 5: PINQ Privacy Gating Mechanism 

 

The scenario proceeds with an analyst asking a question with their desired epsilon value (e.g.  ε 

= 0.01).  When submitted to PINQ, it will calculate the amount of privacy units it takes to 

calculate this question (e.g. 0.05 PrU).  Then it will compare that with the balance with the 
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amount you have that day (e.g. 20 PrU).  Provided the privacy units it takes to answer this 

question is less than the available balance, PINQ can then submit the question to the data 

source (e.g. database), obtain the real answer, apply the exponential noise based on the epsilon 

value applied, provide the answer to the analyst and deduct the privacy unit amount from the 

available balance.  If the question is very complex and/or the epsilon value is too high, the 

amount of calculated privacy units may be too high and be greater than the balance available.  If 

this occurs, then PINQ will simply return without an answer.  By design it will not indicate the 

reason for not providing the answer (e.g. epsilon too high, question too complex, not enough 

balance, etc.) as if revealed it may make PINQ more vulnerable to attack.  For examples of how 

to use PINQ including the logging of privacy units, please refer to Appendix 3: C# Code 

Example. 

Determining the amount of privacy units an analyst is allowed to use on a daily basis and the 

amount of epsilon a user should apply for their questions will differ with different situations.  

Recall that the amount of epsilon that should be applied has an impact on the statistical 

significance of the answers you receive.  Therefore, we will need to first provide guidance on 

how to determine the right amount of epsilon for a healthcare dataset.  This in turn will 

ultimately lead to determining the right amount of daily privacy units.  Determining the right 

amount of daily privacy units is out of scope for this paper as it will need to involve the study of 

different analyst scenarios (trusted researcher vs. journalist vs. third party analyst, etc.) 

 

 

 



Protecting Patient Data Confidentiality using Differential Privacy 30 

The Application of PINQ to Healthcare 

The goal of the remaining portion of this paper is to examine the use of differential privacy on 

healthcare data.  In particular, the objective is to devise a methodology to determine the correct 

values of epsilon for healthcare datasets.  Because healthcare datasets typically involve smaller 

numbers of records, the concern is that epsilon values will need to be high to ensure statistical 

significance.  It is important to determine, if possible, the right value of epsilon with enough 

variability to ensure the desired privacy guarantees and yet enough accuracy to retain statistical 

accuracy. 
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Methods 

To determine statistical applicability of differential privacy to a healthcare dataset, we chose to 

apply the differential privacy algorithm (using PINQ) to the results of recently published research 

performed here at OHSU (Lieberman, Holub and Moravec). Data gathered by the Clinical 

Outcomes Research Initiative (CORI) through their national research network of gastrointestinal 

endoscopists was analyzed to determine if there is evidence of racial differences in the 

frequency and location of large or neoplastic colonoscopic polyps.  The final result set is shown 

in Table 3.   

Statistical difference in the two study groups (Caucasian non-Hispanic and African American 

non-Hispanic) was determined in the published analysis using Pearson's Chi-Square Test.  

Successful application of the differential privacy algorithm should, therefore, result in a dataset 

in which there is inaccuracy in the values (by addition of random noise) yet accuracy in the 

statistical results, i.e. the same significance can be found on comparison of the groups when 

analyzed with Pearson's Chi-Square Test.   

A subset of this data was chosen for analysis as shown in Table 4.  These three rows are 

representative of three possible scenarios: 1) higher values (n) with the difference in the groups 

found to be statistically significant, 2) lower n with no statistical significance, and 3) higher n 

with no statistical significance. Defining statistical significance as p < 0.05, it can be observed 

that African Americans with routine or average risk factors have a higher risk of advanced 

neoplasia compared to Caucasians (p = 0.0002).  However, no difference is found in the other 

two subgroups, <50 and 50-59 years of age (p = 0.06).    
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 Caucasian non-Hispanic African American  non-Hispanic  

Characteristic Total With outcome Total With outcome p-value 

Number (%) 80061      4964 (6.2) 5464 422 (7.7) <.0001 

By Screening group 

Routine/Average Risk 60380 3822 (6.3) 4366 339 (7.8) .0002 

Family history 19681 1142 (5.8) 1098 83 (7.6) .02 

By Age group 

<50 5279 222 (4.2) 421 26 (6.2) .06 

50 – 59  36400 1942 (5.3) 3100 190 (6.1) .06 

60 – 69  24125 1717 (7.1) 1378 145 (10.5) <.0001 

70 – 79  12194 934 (7.7) 501 54 (10.8) .01 

80+ 2063 149 (7.2) 64 7 (10.9) .26 

By Age Category 

Age <60 41679 2164 (5.2) 3521 216 (6.1) .02 

Age ≥60 38382 2800 (7.3) 1943 206 (10.6) <.0001 

By Gender 

Female  38268 1769 (4.6) 2813 197 (7.0) <.0001 

Male  41793 3195 (7.6) 2651 225 (8.5) .11 

By Site type 

Community/HMO 64205 3910 (6.1) 4392 350 (8.0) <.0001 

Academic 8263 453 (5.5) 310 18 (5.8) .81 

VA/military 7593 601 (7.9) 762 54 (7.1) .42 

Table 3: Distribution of patients with Advanced Neoplasia 

 

 
 

Caucasian non-Hispanic African American non-Hispanic  

Characteristic Total With outcome Total With outcome p-value 

By Screening group 

Routine/Average Risk 60380 3822 (6.3) 4366 339 (7.8) .0002 

By Age group 

<50 5279 222 (4.2) 421 26 (6.2) .06 

50 – 59  36400 1942 (5.3) 3100 190 (6.1) .06 

Table 4: Subset of queries from Table 3 that will be used for analysis 

 

As noted above, the epsilon value within PINQ determines the amount of random exponential 

noise applied to a result set and therefore determines the degree of privacy protection.  A low 

epsilon value provides higher privacy protection while a higher epsilon value provides more 

accuracy (i.e. the results are closer to the true values) but with less privacy guarantees.  One aim 
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in this project is to define a methodology for selecting the best epsilon value, one which 

provides enough variability in the result set for privacy guarantees yet enough accuracy that the 

statistical findings in the result set will not be altered.   

For this healthcare dataset, hypothesis testing using the Pearson’s Chi-Square test was 

performed for each value of epsilon.   As the application of differential privacy will provide 

different results for each execution, we first performed 30 repetitions of the algorithm at each 

epsilon value.  We then calculated the Average Query Error (LeFevre, DeWitt and Ramakrishnan; 

Kodeswaran and E) to narrow down the range of epsilon values that we will test.  Average Query 

Error is defined as: 

Average Query Error =
sum ( Real  Value −PINQ  Value  )

Number  of  Queries
 

With the narrowed result set, we then calculated the average and standard deviation of the 

result set. These steps were repeated across a wide range of epsilon values. 

Analysis Example 

As an example of the analyses performed, consider the routine / average risk screening results. 

Table 5 is a contingency table from this data.  Application of Pearson's Chi-square test gives   χ2 

= 13.6975, p = 0.000215.   

Race 

Outcome Variable 

Total No Outcome 
(Total - Outcome) 

Outcome 

Caucasian (Cau) 56558 3822 60380 

African American (AA) 4027 339 4366 

Total 60585 4161 64746 

   Table 5: Chi-Square Table for Routine/Average Risk screening group 
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a. 

Race 

Outcome Variable Total 

 No Outcome 
(Total - Outcome) 

Outcome 

 Caucasian (Cau) 56395.16 3729.79 60124.95 

 African American (AA) 3890.91 261.50 4152.41 

 Total 60286.07 3991.29 64277.36 

 

b. 

Race 
Outcome Variable 

Total  No Outcome 
(Total - Outcome) 

Outcome 

 Caucasian (Cau) 56676.45 3936.29 60612.74 

 African American (AA) 4151.25 436.25 4587.5 

 Total 60827.7 4372.54 65200.24 

 Table 6: Contingency tables at a. ( - 2σ) and b. ( + 2σ) 

Repeating the application of PINQ to this data provides as many possible values for each of the 

observations.  At ε = 0.03, with 30 repetitions of the algorithm, for example, the average and SD 

for Caucasian patients with the outcome of advanced neoplasia are  = 3833.04 and σ = 51.62.  

This value of epsilon adds enough noise to assure privacy protections, but also (by introducing 

measurement error) modifies the statistical accuracy of the data.   We consider the perturbation 

of the dataset to be statistically accurate if the values maintain statistical significance at +/- 2 SD 

from the average.  This means that 95% of the time that differential privacy is applied, the 

resulting (perturbed) dataset retains the statistical accuracy of the original dataset.    

Tables 6a and 6b show the contingency table for the above example.  Pearson's Chi-square test 

for Table 6a ( - 2σ) results in χ2 = 0.0441, p = 0.83; for Table 6b ( + 2σ), χ2 = 61.1864, p 

= 5.19E-15.  Recall, the actual p-value is p = 0.0002 meaning that the difference in the outcome 

observations (7.8% of the African American population vs. 6.3% of the Caucasian population) is 

statistically significant.  Because the ( - 2σ) value is not statistically significant, we cannot use 

an ε = 0.03 when applying differential privacy using PINQ.    Other values of epsilon, however, 

may result in statistical accuracy.   
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Results 

The results are organized by the three scenarios of Pearson’s Chi-Square tests performed to 

calculate the p-value to determine the statistical significance of the patient’s comparative risk of 

advanced neoplasia within the context of characteristic and ethnicity.  

Higher values (n), differences statistically significant 

The first group to undergo analysis is the screening group of routine / average risk which has a 

relatively high n.  There is statistical significance indicating that African Americans have a higher 

risk than Caucasians for advanced neoplasia (p = 0.0002) as noted in Table 7. 

 There is a similar exponential curve pattern irrelevant of population size when viewing the 

Average Query Error for a range of epsilon values (0.001 <= ε <= 1.0) for all four categories as 

noted in Figure 6.  Whether dealing with a smaller (e.g. n{AA Outcome} = 338) or a larger (e.g. n{Cau 

Total} = 60380) population, the AQE curves imply that the epsilon value will need to be ε >= 0.04 

to ensure statistical accuracy (the point of the where the curves converge and plateau). 

When reviewing the average query error percentage (AQE% = AQE/n) observed in Figure 7, it 

notes that sample size has an impact on the amount of noise applied (as opposed to the AQE 

graph in Figure 6).  Because n{AA Outcome} is smaller in size as compared to the other three 

datasets, it requires a higher epsilon value (e.g. ε >= 0.1) before the graphs coalesce indicating a 

higher epsilon value will be required to ensure statistical accuracy. 

 Caucasian non-Hispanic African American non-Hispanic  

Characteristic Total With outcome Total With outcome p-value 

Routine/Average Risk 60380 3822 (6.3) 4366 339 (7.8) .0002 

Table 7: Routine / Average risk patients with Advanced Neoplasia 
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Figure 6: Average query error by epsilon for all routine/average risk screening groups 

 

Figure 7:  Average query error percentage by epsilon for all routine/average risk screening groups 
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 Cau Total Cau Outcome AA Total AA Outcome 

n 60380 3822 4366 339 

AQE 33.908 33.3886 39.4536 33.2521 

AQE% 0.06% 0.87% 0.90% 9.81% 

Table 8: Focusing on the ε = 0.03 values 

 

To elaborate the difference between AQE and AQE%, the values at ε = 0.03 can be seen in Table 

8.  While the AQE for all four values is approximately 33, the AQE% is quite different (AQE%{AA 

Outcome} = 9.81%, AQE%{Cau Total} = 0.06%).   

Recall our goal is to find the right level of epsilon that can be applied in this scenario such that 

there is a high degree of variability while at the same time statistical significance (or 

insignificance) is unaffected.  Based on the AQE graph in Figure 6, the degree of variability is less 

extreme at ε = 0.04.  But the AQE% graph in Figure 7 indicates a less extreme degree of 

variability at ε = 0.1. To help determine which metric is the correct starting point to determine 

the right epsilon, we will start with ε = 0.04 since it is lower.   

Table 9 provides the list of p-values calculated on differential privacy applied data for the 

epsilon range of 0.04 to 1.0.  The goal is to have the p-value close to the actual p-value (p = 

0.0002) for the average and +/- 2SD (,  - 2σ,  + 2σ).    If you review ε = 1.0 you’ll notice 

that all three values are close to the actual p-value.  But at this level of epsilon, there is very 

little noise applied to the data (max(AQE%) = 0.29%).  That is, at ε = 1.0 you have a high 

degree of accuracy but there is very little privacy guarantee.  Therefore, we will want to review 

other smaller epsilon value candidates. The epsilon range we will want to focus on is between 

0.12 and 0.25 as noted in Table 9 because these values are close to the original p-value of p = 

0.0002.  Figure 8 provides this view within the context of a high/low bar graph.  
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epsilon p(p, )+ 2σp p(p, )- 2σp p(p, ) max(AQE%) 

0.04 4.9E-07 0.286987 0.001906 5.64% 

0.05 6.17E-09 0.059931 9.65E-05 4.40% 

0.06 5.7E-11 0.202343 6.64E-05 5.93% 

0.07 1.59E-08 0.112237 0.000228 5.11% 

0.08 3.15E-09 0.235576 0.000304 5.58% 

0.09 5.73E-06 0.012186 0.0004 2.84% 

0.1 6.6E-07 0.02092 0.000249 3.50% 

0.11 2.81E-06 0.002463 0.00011 2.37% 

0.12 2.92E-05 0.002585 0.000314 1.71% 

0.13 9.21E-06 0.003541 0.00023 2.07% 

0.14 1.03E-05 0.006124 0.000335 2.46% 

0.15 4.16E-05 0.001076 0.000226 1.22% 

0.16 7.92E-06 0.00242 0.000171 1.75% 

0.17 2.02E-05 0.001128 0.000168 1.27% 

0.18 1.18E-05 0.003244 0.000242 1.79% 

0.19 7.77E-06 0.002513 0.000175 1.67% 

0.2 1.59E-05 0.001153 0.000153 1.22% 

0.25 8.07E-05 0.000502 0.000206 0.63% 

0.3 6.97E-05 0.001332 0.000324 0.90% 

0.35 5.17E-05 0.000593 0.000182 0.75% 

0.4 9.16E-05 0.000591 0.000238 0.68% 

0.45 9.07E-05 0.000554 0.000229 0.55% 

0.5 6.67E-05 0.000687 0.000222 0.63% 

0.55 9.73E-05 0.000415 0.000204 0.45% 

0.6 9.28E-05 0.000563 0.000234 0.58% 

0.65 9.83E-05 0.000389 0.000198 0.47% 

0.7 9.85E-05 0.000373 0.000194 0.35% 

0.75 7.55E-05 0.000438 0.000186 0.47% 

0.8 9.84E-05 0.000455 0.000215 0.46% 

0.85 0.000166 0.000315 0.000229 0.21% 

0.9 0.000101 0.000501 0.000229 0.42% 

0.95 0.00015 0.000354 0.000231 0.28% 

1 0.000138 0.000359 0.000224 0.29% 

Table 9: p-value calculated on PINQ applied data - Avg, Avg+2Std, Avg-2Std, max(AQE%) 
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Figure 8: Epsilon values focused on 0.12 to 0.25 

Within Figure 8, the triangle figures signify the average p-value (hovering at around 0.0002) 

against differential privacy applied data.  The high/low bar provides the range of values found 

between +/- 2 standard deviations.  The desire is to have a low epsilon value that has a high 

variation (i.e. longer high/low bar) while the average value is as close to p = 0.0002 as possible.   

The top three candidates would be epsilon values 0.14, 0.13, and 0.18.   But since ε = 0.14 has 

pavg = 0.00033 and ε = 0.18 has less variability, the best choice here is to use ε = 0.13 with its 

higher variability, pavg = 0.00023, and at +/- 2 standard deviations the p-value observations all 

note statistical significance. 

Because PINQ is applying the differential privacy algorithm via random exponential noise 

uniformly across sample sizes, at smaller sizes there is larger amount of relative error that will 

have impact the statistical calculations that will be applied to this data.  This observation also 
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Lower n with no statistical significance 

The first group involving routine/average risk screening is an easier test because of the 

statistically significant outcome.  In the case of the <50 age group, we will apply the same 

analysis logic but the solution is more complex because the differences between the ethnicities 

in this age group is not statistically significant (p = 0.06).  If we apply too much error, the 

differential privacy applied results can more easily provide a false-positive (falsely indicating 

statistical significance).   The actual values can be seen in Table 10.  As observed in the previous 

test, to narrow down the range of candidate epsilon values, we will start with the AQE% graph 

as noted in Figure 9. 

 Caucasian non-Hispanic African American non-Hispanic  

Characteristic Total With outcome Total With outcome p-value 

<50 5279 222 (4.2) 421 26 (6.2) .06 

Table 10: By age group <50 with Advanced Neoplasia 

 

Figure 9:  Average query error percentage by epsilon for age < 50 groups 
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Epsilon p(p, )+ 2σp p(p, )- 2σp p(p, ) 

0.4 0.058694814 0.302132392 0.0072022 

0.45 0.089662818 0.283554003 0.023362266 

0.5 0.107305992 0.437373461 0.016990851 

0.55 0.090430474 0.337005333 0.017400007 

0.6 0.091122496 0.611744416 0.005380644 

0.65 0.070627906 0.261704467 0.014270468 

0.7 0.097995276 0.663075723 0.005278488 

0.75 0.083205255 0.183233662 0.034329218 

0.8 0.06356584 0.170854703 0.020451077 

0.85 0.09520205 0.332489944 0.019563679 

0.9 0.057815042 0.21576649 0.011486068 

0.95 0.085943971 0.357958722 0.013319093 

1 0.085547165 0.223119552 0.027615096 

Table 11: p-value calculated on PINQ applied data for <50 age group - Avg, Avg+2Std, Avg-2Std 

Because of the smaller sample size (n{AA Outcome} = 26) it will be soon observed that this larger 

AQE% will have a profound impact on the analysis of differential privacy applied datasets.  Upon 

narrowing down the candidate range of epsilon values (ε >= 0.4),  Table 11 provides a list of the 

different p-values derived from the ,  - 2σ, and  + 2σ based on thirty repeated runs. 

All of the p-values for ( + 2σ) and ( - 2σ) for the entire range of epsilon values indicate lack 

of statistical significance.  But even at ε = 1.0, the  value denotes statistical significance (p = 

0.0276) due to the small population size (n{Age < 50, AA Outcome} = 26).  With so much noise added to 

the final result, the statistical outcome resulted in a false positive of statistical significance. 

Since the AQE% variation is high between the four different values making up the contingency 

table, we altered the approach slightly so that we apply a different epsilon value to the {AA 

Outcome} category since it has the smallest sample size.  In the previous test we had applied the 

same ε value to make the test and method easier.  But it is apparent that with the difference in 

sample size and AQE% variation, it is necessary to use a larger epsilon value for {AA Outcome}.     
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ε ε {AA, Outcome} p(p, )+ 2σp p(p, ) - 2σp p(p, ) max(AQE%) 

0.18 0.9 0.023866 0.130846 0.056331 4.58% 

0.18 0.95 0.026711 0.243806 0.08497 5.15% 

0.18 1 0.055933 0.130216 0.084111 7.68% 

0.18 1.05 0.056194 0.09544 0.071969 3.07% 

0.18 1.1 0.064358 0.090271 0.075024 2.87% 

0.18 1.15 0.056949 0.101357 0.074617 3.54% 

0.18 1.2 0.054636 0.11429 0.077803 3.51% 

0.18 1.25 0.04017 0.094349 0.060545 3.21% 

0.18 1.3 0.026874 0.122391 0.057329 3.57% 

0.18 1.35 0.059742 0.074593 0.065759 2.71% 

0.18 1.4 0.07774 0.076671 0.076388 2.49% 

0.18 1.45 0.046262 0.094568 0.065126 3.36% 

0.18 1.5 0.075438 0.06578 0.069893 2.28% 

0.18 1.55 0.07038 0.114788 0.08841 2.72% 

0.18 1.6 0.082181 0.066207 0.073341 2.21% 

0.18 1.65 0.057154 0.086465 0.069103 2.97% 

0.18 1.7 0.081752 0.058565 0.069044 1.87% 

0.18 1.75 0.098768 0.045819 0.068471 1.44% 

0.18 1.8 0.072244 0.057398 0.064032 2.05% 

0.18 1.85 0.084445 0.071142 0.076977 2.26% 

0.18 1.9 0.108015 0.046341 0.072346 1.31% 

0.18 2 0.079584 0.074867 0.076403 2.30% 

0.18 2.5 0.096872 0.055402 0.073819 1.71% 

0.18 3 0.118764 0.039313 0.07101 0.86% 

0.18 3.5 0.117503 0.046768 0.07617 1.14% 

0.18 4 0.119194 0.038475 0.07049 0.81% 

0.18 4.5 0.10883 0.045748 0.072252 1.13% 

0.18 5 0.117451 0.040754 0.071679 0.74% 

0.18 6 0.126259 0.037945 0.072432 0.65% 

0.18 7 0.134026 0.036274 0.073549 0.54% 

0.18 8 0.133871 0.035984 0.073247 0.48% 

0.18 9 0.135168 0.034845 0.072652 0.42% 

0.18 10 0.140198 0.034902 0.074282 0.37% 

Table 12: p-value calculated on PINQ applied data - , +2σ, -2σ, max(AQE%) for different ε values for {AA, 
Outcome}; ε = 0.18 for all other categories. 
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To find the right epsilon value for the {AA Outcome} category, we needed to re-test using 

different epsilon values.  Table 12 provides the list of p-values calculated on PINQ applied data 

for the epsilon range of 0.9 to 10.0 for {AA, Outcome} and ε = 0.18 for the other three 

categories.  The latter epsilon value was determined using the same technique but focused only 

on those three categories (as opposed to all four).  Recall that we want all three metrics (p(p, )+ 

2σp, p(p, )- 2σp, p(p, )) to be as close to the actual value (p = 0.06) as possible without actually 

going under p = 0.06 since a lower value and a threshold of p = 0.05 that would falsely indicate 

statistical significance.     

Narrowing down the range further by reviewing the original AQE% graph (Figure 9) and Table 

12, we focused on the epsilon values for the {AA, Outcome} at 0.9 <= ε = 1.75 as noted in Figure 

10.  The blue dashed bar within Figure 10 indicates that actual value of p = 0.06; any values that 

drop significantly below this bar (p < 0.055) will be excluded.  As can be seen in Figure 10 and 

verified in Table 12, the average, average +/- 2S D values at ε = 1.05 for {AA, Outcome} and ε = 

0.18 for all other categories describe the same degree of statistical insignificance as the actual 

value.  In addition to ε = 1.05 being one of the lowest values and higher AQE% values (AQE% = 

3.07%), it is also surrounded by two values that are also valid.  Both ε = 1.0 and ε = 1.1 are 

acceptable as well increasing the chance that this value is valid as opposed to luck. 
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Figure 10: Epsilon values for {AA, Outcome} focused on 0.9 - 1.75 

 
 

Higher n with no statistical significance 

Based on the lessons learned from the first two scenario tests, we have determined a 

methodology to find the right balance of privacy and accuracy.  But now that we have 

determined the template ε values, the question remains on whether we can apply those 

template values to a different dataset.  Note that in Table 13 that the <50 and 50-59 age groups 

have a similar profile – ~6% of the African American population has the outcome with relatively 

small sample sizes. To determine if we can use the previous analyses as our template, we used 

the results from the Lower n with no statistical significance (Age Group: <50) analysis and 

executed the query runs using ε = 1.05 for {AA Outcome} and ε = 0.18 for all other categories for 

the Age Group 50-59 characteristic.   

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

ε{AA, Outcome} values Focused to 0.9 - 1.75
pPinq+2STd

pPinq-2Std

pPinqAvg

Expon. 
(pPinq-2Std)

Linear 
(Actual)



Protecting Patient Data Confidentiality using Differential Privacy 45 

 Caucasian non-Hispanic African American non-Hispanic  

Characteristic Total With outcome Total With outcome p-value 

<50 5279 222 (4.2) 421 26 (6.2) .06 

50 – 59  36400 1942 (5.3) 3100 190 (6.1) .06 

Table 13: By age group <50 and 50-59 with Advanced Neoplasia 

 
As can be seen in Table 14, we successfully applied the template epsilon values from the <50 age 

group to the 50-59 age group with accurate results (i.e. statistical insignificance with p ≈ 0.06).  

This can be confirmed by reviewing all of the values for ε range of (0.7- 1.9) for {AA Outcome} as 

seen in Figure 11. 

ε ε {AA, Outcome} p(p, )+ 2σp p(p, ) - 2σp p(p, ) P 

0.18 1.05 0.06001 0.07167 0.06551 0.06 

Table 14: p-values for average, avg +/- 2std at epsilon = 0.18 and epsilon = 1.05 

 

 

Figure 11: epsilon values focused to 0.7 - 1.35 
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Discussion 

Since healthcare datasets typically employ smaller sample sizes, our concern was that the 

application of differential privacy in the form of exponentially distributed random noise would 

result in a high degree of measurement error.  Because the noise is random, repeated questions 

have different amounts of noise applied resulting in different answers.  We consider the 

perturbation of the dataset to be statistically accurate if the values maintain statistical 

significance at +/- 2 SD from the average.  This means that 95% of the time that differential 

privacy is applied, the resulting (perturbed) dataset retains the statistical accuracy of the original 

dataset. 

As demonstrated by the above tests and analysis against the CORI dataset, we can use PINQ to 

apply differential privacy against healthcare datasets to provide privacy guarantees and ensure 

statistical accuracy.  For the first test concerning the Higher values (n) with statistical 

significance (Routine / Average Risk screening group), it was determined that African Americans 

have statistically significant higher risk (p = 0.0002) for advanced neoplasia as compared to 

Caucasians.  By reviewing the various tests (AQE%, Pearson’s Chi-Square test) at different 

degrees of epsilon, it was determined that the ideal epsilon value was ε = 0.13.   The Lower n 

with no statistical significance (<50 age group) was different in that while the African Americans 

had a higher risk than Caucasians for advanced neoplasia, the difference was not statistically 

significance (p = 0.06).  As well, the {AA Outcome} sample size was relatively small (n = 26).  

Based on additional tests and analysis, it was determined that using the same epsilon for all 

questions would not provide statistically accurate results.  The key lesson here was that for 

smaller sample sizes, a larger epsilon would need to be applied.  In the case of our tests, we had 

applied ε = 0.18 for the other three categories within the contingency table and experimented 
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with a range of epsilon values for the {AA Outcome} category.  Ultimately, we were able to find 

an appropriate epsilon value, ε = 1.05, for this category.  In addition to having a lot of variability 

(e.g. relatively high standard deviation and AQE%) and statistically insignificant answers at the 

same magnitude as the non-PINQ applied data, we also chose a value where ε + 0.05 and ε – 

0.05 were also statistically insignificant reducing the chance that the chosen epsilon value was 

arbitrary.    

These tests allowed us to develop the process and methodology that analysts can use to 

determine their appropriate epsilon value.  We had also wanted to see if we could apply these 

learnings to another group, i.e. apply the epsilon values for the Lower n with no statistical 

significance (<50 age group) to the Higher n with no statistical significance (50-59 age group).  

Using the same epsilon values (ε = 0.18 for three categories, ε = 1.05 for the {AA, Outcome} 

category), we obtained a similar set of p-values: p(p, ) = 0.066, (p(p, )- 2σp) = 0.0716, (p(p, )+ 2σp) 

=  0.06, and pActual = 0.06.  While not included in this analysis, one could have also applied 

different levels of epsilon for each of the other three categories such that each category within 

the contingency table had a different ε value.  More generically, one could simply apply a 

different ε value for every single question asked if so desired. 

As observed from the above tests, we had achieved our goals of providing guidance on how to 

apply differential privacy using PINQ against a healthcare dataset and obtain statistically 

accurate results.  The methodology involves the testing of different epsilon values against a 

known dataset and then applying that knowledge to an unknown dataset.  Over time, with more 

analysts using differential privacy, it will be possible to build up additional guidelines to 

determine the correct levels of epsilon.   Ultimately, knowing the right level of epsilon for your 

datasets will allow you to determine the appropriate level of “privacy unit” funds within your 
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privacy gating mechanism.   It will take a combination of profiling the data (e.g. sample size, 

AQE%, etc.) and quantitatively measuring analyst access rights (e.g. trusted researcher vs. 

journalist) to eventually build the differential privacy application rules.  Nevertheless, the results 

from these tests provide us a starting point. 
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Conclusion 

Providing patient privacy is a key tenet to the future of healthcare – to transform medicine from 

curative to preemptive.  It is the analysis and sharing of data that is fundamental to discovering 

patterns within the healthcare population.  Yet, this cannot be achieved unless patients trust 

that their privacy is guaranteed and healthcare institutions have the processes and tools to 

implement these safeguards. 

While there are many privacy techniques, many of them do not fulfill the six themes describing 

the acceptability of the effects of privacy algorithms by healthcare researchers.  Many of these 

techniques provide a return on investment for management because they reduce the legal 

expenses associated with (perceived) patient data revelation.  The perturbation effects of many 

algorithms provide the ability to get back to the original dataset when necessary.  While many 

healthcare researchers do not understand (nor want to) the mathematics behind a privacy 

algorithm, they understand the issues surrounding patient privacy and accept some form of data 

perturbation.  How differential privacy separates itself from most algorithms is that the 

mathematics behind it allows one to provide privacy guarantees, not just provide privacy risk.  

While the application of differential privacy, made easier by using PINQ, provides privacy 

enforcement, a cause for concern is the impact on statistical accuracy when one adds 

exponential random noise to the result set.   

By using AQE% graphs and replicating and repeating the original statistical tests at the bounds of 

95% confidence interval on PINQ applied datasets, we have provided a methodology to identify 

candidate epsilon vales (the value the analyst sets that determines the accuracy of the result).  

By applying lower epsilon values for higher sample sizes and vice versa, we were able to 
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demonstrate that differential privacy can be applied to healthcare datasets to ensure privacy 

and provide statistically accurate results. 
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Appendix 

Appendix 1: Differential Privacy concept 

The concepts of differential privacy are based on the research published by Cynthia Dwork and 

Frank McSherry (Chawla, Dwork and McSherry, On Privacy-Preserving Histograms; Blum, Dwork 

and McSherry; McSherry, Privacy Integrated Queries).   Described here are both the sanitization 

concept and the privacy mechanism theorem associated with it (Lee). 

Sanitization Concept 

To protect the individuals comprising the data, individuals are masked within the data by 

creating a "sanitization point" between the user interface and the data (Figure 12).   The green 

shape on the left in this figure represents the database while the right-most circle represents 

the answer or result set provided to the user interface.  The middle section is the interactive 

sanitizer, defined as К, which introduces random noise to produce uncertainty, hence privacy.    

 

 

Figure 12: Sanitization Concept 
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Note the magnitude of the noise is given by the theorem: 

 If many queries f1, f2, … are to be made, noise proportional to ΣiΔfi suffices.   For many 

sequences, we can often use less noise than ΣiΔfi .  Note that Δ Histogram = 1, 

independent of number of cells  

The sanitizer requires the creation of a carefully detailed algorithm and will be discussed in more 

detail in the differential privacy section below.  A safe answer on the amount of noise to apply is 

that of a standard deviation equal to the total number of queries.  If the number of queries is 

not known, then the standard deviation can be proportional to the square of the queries asked 

so far.  As for the noise itself, it should be newly seeded each time a query is applied.   

By doing this, this algorithm will be able to address all attacks. Consequently, for each person, 

the increase in probability of the individual being attacked (or anyone else for that matter) due 

to the contribution of their data is nominal. The example given is foiled for two reasons: a) the 

addition of noise will (formally) complicate the polynomial reconstruction and b) the number of 

queries is limited by the degree of privacy guaranteed, and n is generally going to be way too 

many queries. 

Mathematically, at this sanitization point, the differential privacy algorithm will apply a little bit 

of noise within each cell of the histogram.   Descriptively, if one’s result set from the database is 

a report with a set of rows and columns, for each value within each row and column cell is a 

small bit of error added to the original number.  Provided that the sanitization point can limit 

the number of questions being asked and/or add more noise as more questions are being asked, 

then the differential privacy algorithm can guarantee the privacy of the individuals that make up 

these aggregates.  
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Differential Privacy 

Our privacy mechanism, К, gives ε-differential privacy for all transcripts t, all databases DB, and 

all data items (rows in the DB) Me, the ratio   

 

The differential privacy theorem is a simple mathematical formula that describes the fact that 

nothing more can be learned about an individual when her information is in the DB (DB+Me) 

than when it is not in the DB (DB-Me).  This is important from the context of joining one set of 

data that is in the DB (e.g., the masked medical data) with another set of data that is not in the 

DB (e.g., Cambridge, MA voter list).  If there is no noticeable difference between f(DB-Me) and 

f(DB+Me) then there is no perceptible risk by joining the two data sets together.    Therefore, to 

achieve this differential privacy, we will need to add scaled symmetric noise 

    ∝ exp(-|x| ε/ Δf) 
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Note that possible responses, R, is defined as R = Δf / ε.  The black line represents the f(DB-Me) 

while the red line represents the f(DB+Me).  This means that increasing the value of R will flatten 

the curve; the flatter the curve the more privacy is provided.  The flatter curve means that no 

response is much more likely in one case in comparison to other.   

The question that is incurred then is what difference must noise obscure or how much can 

f(DB+Me) exceed f(DB-Me).  This goes back to the above noted formula of differential privacy: 

 f = maxDB, Me  |f(DB+Me) – f(DB-Me)| 

where the noise depends on the sensitivity of the system. 

Figure 13 shows the real value is f(DB-Me) = 104 while the added noise value of f(DB+Me) = 

105.2.  The statistical difference between these two values seems insignificant, but this depends 

on the sensitivity of one’s statistics.  If you have highly sensitive data where a 1.2 difference 

results in a $1.2 billion sale price, then any change to the data is unacceptable.  While if your 

data is relatively insensitive (and most data analyses are), this slight error of difference is well 

within an acceptable error margin.   A key presumption of this design is that one will need to 

calibrate the noise to ε and the number of queries.   More explicitly to this latter point, as the 

number of queries increase, the more noise will need to be added to ensure that the noise 

algorithm itself can counter an attack.  The vast majority of analytical queries do not require a 

substantial increase in noise due to the relatively low number of questions asked.  As seen in 

Figure 14, noise is independent of the database size so privacy is insured but accuracy varies; 

the larger the database the higher the accuracy. 
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Figure 13: Example of noise and sensitivity 

 

 

Figure 14: Differential privacy can be applied to many different statistical techniques 

 

Generating the Noise 

In many types of reporting solutions, we are primarily concerned with counts and summations.  

Specifically, these reporting systems involve unique visitor counts, event transaction counts, and 

page view summations.  As we are dealing with discrete data, instead of continuous data, a basic 

differential privacy histogram algorithm to implement is: 
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𝑝𝑟𝑔 𝑅, 𝑆𝑒𝑒𝑑 𝑓𝑜𝑟 𝐴 = (𝑛1 , 𝑛2 , … , 𝑛𝑛 ) 

Where 

prg() This is a pseudo-random number generator (RNG) such as SRAND 

R This is a magnitude of the noise to be applied to the system.  The larger 

the number, the more error is added.  More error means more privacy 

but could skew the meaning of the numbers if the value is too high. 

Seed for A This is the seed that is used generate an array of numbers where A is the 

original query. 

n1, n2, … An array of numbers that will alter the counts, in effect adding noise. 

 

The routine, 𝑝𝑟𝑔(), is based on the property that for any interval [𝑥, 𝑧] of the density function  

𝑝 𝑥 ≅ 𝑒
 −

 𝑥 
𝑅

 
 

we can analytically find the point y such that 𝑝  𝑥, 𝑦  = 𝑝( 𝑦, 𝑧 ). A single random bit can tell 

us on which side of y our sample should be drawn, and we can recursively apply the technique 

to the appropriate subinterval (i.e.: either one of [𝑥, 𝑦] or [𝑦, 𝑧]). 

 

To generate the noise, the RNG will create a stream of numbers, for example: 

0 0 1 1 1 … 1 0 0 0 0 1 
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The resulting exponential distribution translation of this stream is: 

- . 2  +  1 … + . . . . 6 

 

The generated noise will then be applied to the result set.  The generation of noise uses the 

above RNG (there is no such thing as a true random number generator in mathematics) to 

create the stream of 0s and 1s.  We then take the stream of numbers and translate it into the 

noise.  For example, if you look at the right most set of numbers (starting after the …) within the 

array, you’ll notice 1, then 5 0s, then 1 again.  The first 1 denotes a positive value (vs. negative), 

the five 0s represent a count of 5, and the final 1 represents the full stop.  Hence, these seven 

values represent a positive 5 count + 1 count with full stop equaling +6.   

 

Effect on Data 

This stream of numbers is then applied directly to the results.  Recall, that the stream of noise 

values was -2, +1, …, +6 and the original values are that of A = 36, B = 22, …, N = 102 as noted in 

Figure 15. 

 

Figure 15: Effect of noise 
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The noise added to the system provides a new result of A = 34, B = 23, …, N = 108.  By adding 

this noise to the system, it is not possible for one to drill down to a value of 1, which would 

expose a single individual (e.g., A = 1).  After all, if you are able to drill down to one individual, 

even through what is perceived as non-identifiable attributes (e.g., birth date, zip code, and 

gender); it becomes possible to identify this individual.  But the additional noise will never allow 

you to get down to a single individual of any attributes (or combination thereof).  If the numeric 

answer to your question represents a single individual (e.g., A = 1), one is not sure if this truly 

represents an individual or if this is due to the noise applied.  Note the definition of privacy is 

much more complex mathematically than the ability to drill down to one person; this view 

provides a simple analogy.   

An issue of concern is if we apply too much noise (e.g., +1000) then we risk changing the 

meaning of the data completely.  If too little noise (e.g., +0, +1, -0, -1, etc.) is applied we risk not 

protecting the data very well.  Hence, we followed the safe rule that the magnitude of the noise 

applied to the RNG is the standard deviation of the total number of queries.  In our case, the 

total number of queries per user ranged from 90 to 110 queries.  Therefore, the standard 

deviation was 10 and the magnitude applied to the RNG, R, is 10.  We limited the number of 

questions asked of the system otherwise it may have become possible to break the noise 

pattern.  Since the noise generated by the RNG requires some seed value (i.e., a starting point), 

if you ask enough questions it becomes mathematically possible to determine how the RNG is 

generating its values.  Once this is determined, it becomes possible to reverse engineer the 

system and determine the original set of values.  Hence the importance of either limiting the 

number of questions asked (e.g., a hundred questions) or adding more noise to the system as 

more questions are being asked thus preventing an attack of this nature. 
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The effect on the customer data by the application of noise is reflected in the tables below.  In 

Figure 16, the top and bottom tables are two of the same queries executed a few seconds of 

each other with the exponential noise applied. 

 

 

Figure 16: Effect on data with the application of exponential noise for the same query; notice that 
{Afghanistan, Unknown} is 121563 for one execution and 121561 for the second time the same question 
is asked. 
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Figure 17: Graphical Effect on data 

 

For example, reviewing the country Afghanistan, the “Unknown” value is 121563 in one case 

and 121561 in another.  Because of this random exponentially distributed noise, we do not 

know what the “real” value is.  The visual effect to this data is minimal, as depicted in Figure 17.    
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Appendix 2: Application of Differential Privacy Case Study 

A case study was previously performed where these algorithms were applied to Microsoft 

Network (MSN) reporting data.  MSN is one of the largest web portals with more than 2 billion 

page views a day offering advertiser-paid services including Search, Messenger, Live Mail, 

among many other services.  This case study used MSN visitor data where the privacy preserving 

noise algorithms were applied to the data to determine reporting efficacy.   MSN has 550 million 

Passport users (as of February 2006) and contains visitor self-reported data such as gender, birth 

date, occupation, country, and zip code.  The web traffic data associated with MSN also has 

additional attributes including IP address, pages viewed, page view duration, browser, and 

operating system.  MSN uses this data to provide customizable experiences of their users and to 

better understand how visitors are using the various services.   At the same time, there are 

various major privacy issues including identity theft, fraud, and/or bad press (e.g., AOL released 

search engine queries that ended up revealing their users).  If user expectations are not 

satisfied, customers will no longer trust the services provided.  As data is accumulated, it 

becomes easier to segment the population and potentially identify individual users without 

directly using personally identifiable information.   Hence, there was an interest within MSN to 

use the MSR research to determine the latter’s applicability for all reporting. 

To test the applicability of these privacy-preserving techniques within a reporting environment, 

two different analytics groups analyzed MSN visitor data.  The “Sampled Users Web Analytics” 

group is a set of users who wanted to understand what MSN web sites people were using (e.g. 

the MSN home page, Moneycentral, MSN Autos, etc.).  The “Customer Churn analytics” group is 

a set of users who were trying to better understand how customers are using the features of 

MSN (e.g. Messenger, Search, Hotmail, etc.). A considerable amount of time was spent with 
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both groups to determine the reporting features and the metrics they wanted.  After 

determining this, an OLAP database built on Microsoft© SQL Server Analysis Services 2005 was 

created so these groups could have a multi-dimensional view of their data with fast response 

times. Once the groups were happy with the reports, the differential privacy algorithm was 

introduced in the form of a privacy preserving histogram (PPH).  This allowed the groups to view 

both original reports and PPH-applied reports and to express any issues perceived in comparing 

the two report types. 

Sampled Users Web Analytics Group 

The “Sample Users Web Analytics Group” wanted to understand what visitors were using on the 

MSN.com and Windows Live web sites.  The concept of PPH was introduced to this group after 

building a new reporting solution on an existing web analytics solution specific to their business 

requirements.  In addition, an Analysis Services database was built for this new reporting 

solution to allow the group the ability to view the data from multiple dimensions – something 

that they had desired for quite some time. 

Unfortunately, the resulting feedback was negative; the basic problem was that this group could 

not accept any amount of error in their data.  For example, an initial query provided the number 

of visitors per country, where the total US visitors was 202 (Figure 18).  A subsequent query 

against the data which broke out the same US visitors by gender would result in a total that was 

203.  While it could be understood that the added noise to the system could explain these 

differences, this group insisted that these numbers had to match at all times.  Note, it did not 

matter that these numbers were not used for financial reconciliation and was only to be used 

for analysis purposes.   
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Figure 18: Totaling errors 

 

From further discussions with this group, it appeared that they had been utilizing reporting 

systems that had perceived accuracy issues.  It is this perception that resulted in the groups’ 

negative feedback to additional noise being added to the resulting data. 

Customer Churn Analysis Group 

To provide the reports that this group desired, we built a brand new reporting solution.  The 

customers were familiar with this data because it was built on an existing targeted marketing 

system.  Similar to the “Sampled Users Web Analytics Group,” a SQL Server 2005 database was 

created to initially filter and transform the data.  Upon processing completion, an OLAP cube 

and a custom web UI was built on this data to provide the reporting interface.  This new 

reporting system allowed the analyst to understand how MSN services (Messenger, Mail, 

Search, Spaces, etc.) were being used.  Multiple iterations were also performed with this 

customer group insuring they had received the data they desired.  A key difference between the 

groups is while the first group was able to use legacy reporting systems; the second group did 

not have access to any reporting. Within a few weeks of their initial request this group was able 
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to interact, validate, and provide feedback on a working reporting solution.  Most importantly, 

they were able to analyze and re-analyze the data to determine the precision and accuracy of 

the data.  

Once exponential noise was introduced into their churn reports (with the additional noise being 

seen in the result set), this group was satisfied with the results.  After some use, they seemed to 

forget that a privacy algorithm was applied – even though the numbers in the reports were 

changing (due to the additional noise) and the statement “Privacy Preserving Histogram 

Applied” was applied directly into the reports.  Based on conversations and surveys, it was very 

apparent that the collaborative effort in creating these reports led to the customer trusting the 

data – this is a key difference in comparison to the first group.  Because of this trust, the small 

amount of error introduced into the system to ensure customer privacy was well within a 

tolerable error margin.  It also helped that this group is a direct marketing group, so they were 

more familiar with the concept of customer privacy.   

 



Appendix 3: C# Code Example 

Below is a C# code example using the PINQ.dll; it reads the tab-delimited CoriData.txt data and provides the differential privacy applied answer. 
 
using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.IO; 

 

using PINQ; 

 

namespace PINQ_Skeleton 

{ 

    class Program 

    { 

        // Reads a text file via the StreamReader 

        public static IEnumerable<string> ReadFile(string filename) 

        {  

            StreamReader file = new StreamReader(filename); 

            while (!file.EndOfStream) 

                yield return file.ReadLine(); 

 

            file.Close(); 

        } 

 

        // Logs data and denotes privacy increments 

        public class PINQAgentLogger : PINQAgent 

        { 

            double total; 

 

            public override bool apply(double epsilon) 

            { 

                total += epsilon; 

                Console.WriteLine("** privacy change **\tincrement: " + epsilon + "\t new total: " + total); 

 

                return true; 

            } 

        } 

 

         

        // Main class 

        static void Main(string[] args) 

        { 

            // Create Querable connection to file 

            var source = ReadFile(@"..\..\..\CoriData.txt").AsQueryable(); 
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            // LINQ sample to query the raw data; i.e. not PINQ applied 

            //   Filtered by: routine/avg risk screening 

            //   Grouped by: Outcome, Ethnicity 

            //   NOTE: this code below should be commented out; this provides an example of how to use LINQ 

            var RawQuery = source.Select(x => x.Split('\t')) 

                                .Select(x => new 

                                { 

                                    Indication = x[0], 

                                    Ethnicity = x[1], 

                                    AgeCategory = x[2], 

                                    AgeOver60 = x[3], 

                                    Gender = x[4], 

                                    SiteType = x[5], 

                                    Outcome = System.Convert.ToInt16(x[6]) 

                                }) 

                                .Where(x => x.Indication.Equals("Routine/Avg Risk Screening")); 

 

            // Load Group Query 

            var GroupQuery = RawQuery 

                    .GroupBy(w => new { w.Ethnicity, w.Outcome }) 

                    .Select(g => new { Grouping = g.Key, NumOfPatients = g.Count() }); 

 

 

            // Output 

            Console.WriteLine("Original Raw Data"); 

            Console.WriteLine("Ethnicity/Outcome, Number of Patients"); 

            int QueryTotal; 

            QueryTotal = RawQuery.Count(); 

            foreach (var obj in GroupQuery) 

            { 

                Console.WriteLine("{0}, {1}", obj.Grouping, obj.NumOfPatients); 

            } 

            Console.WriteLine("Total, {0}\n\n", QueryTotal.ToString()); 

 

            // 

            // PINQ sample to query the raw data with PINQ applied 

            //   Filtered by: routine/avg risk screening 

            //   Grouped by: Outcome, Ethnicity 

            // 

 

            // Provides PINQ-applied total count 

            var RawQuery = source.Select(x => x.Split('\t')) 

                                .Select(x => new 

                                { 

                                    Indication = x[0], 

                                    Ethnicity = x[1], 

                                    AgeCategory = x[2], 

                                    AgeOver60 = x[3], 

                                    Gender = x[4], 

                                    SiteType = x[5], 

                                    Outcome = System.Convert.ToInt16(x[6]) 
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                                }) 

                                // Routine/Avg Risk Screening 

                                // ---------------------------------- 

                                .Where(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                              & x.Ethnicity.Equals("White non-Hispanic") & x.Outcome == 1); 

                                //.Where(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                                      & x.Ethnicity.Equals("White non-Hispanic") ); 

                                //.Where(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                                      & x.Ethnicity.Equals("Black non-Hispanic") ); 

                                //.Where(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                                      & x.Ethnicity.Equals("Black non-Hispanic") & x.Outcome == 1); 

 

            int RawQueryCount = RawQuery.Count(); 

 

            // Open new connection to the file 

            var psource = new PINQueryable<string>(ReadFile(@"..\..\..\CoriData.txt").AsQueryable(), null); 

 

            // Load protected data 

            var pRawQuery = psource.PINQSelect(x => x.Split('\t')) 

                                   .PINQSelect(x => new {  

                                        Indication = x[0], 

                                        Ethnicity = x[1], 

                                        AgeCategory = x[2], 

                                        AgeOver60 = x[3], 

                                        Gender = x[4], 

                                        SiteType = x[5], 

                                        Outcome = System.Convert.ToInt16(x[6]) 

                                    }) 

                                    // ---------------------------------- 

                                    // Routine/Avg Risk Screening 

                                    // ---------------------------------- 

                                    .PINQWhere(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                                             & x.Ethnicity.Equals("White non-Hispanic") & x.Outcome == 1); 

                                    //.PINQWhere(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                                             & x.Ethnicity.Equals("White non-Hispanic") ); 

                                    //.PINQWhere(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                                             & x.Ethnicity.Equals("Black non-Hispanic") ); 

                                    //.PINQWhere(x => x.Indication.Equals("Routine/Avg Risk Screening")  

                                             & x.Ethnicity.Equals("Black non-Hispanic") & x.Outcome == 1); 

 

            //Console.WriteLine("argument: {0}", args[0]); 

            double epsilon; 

            epsilon = System.Convert.ToDouble(args[0]); 

            for (int j = 0; j < 30; j++ ) 

            { 

                Console.WriteLine("{0}, {1}, {2}", epsilon, RawQueryCount, pRawQuery.NoisyCount(epsilon)); 

            } 

 

        } 

    } 

} 
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To simplify the code, the code was re-compiled for the different categories of: 

 Routine / Avg Risk Screening, White Non-Hispanic, Outcome = 1 (Advanced Neoplasia) 

 Routine / Avg Risk Screening, White Non-Hispanic, Outcome = 0 (Not Advanced Neoplasia) 

 Routine / Avg Risk Screening, Black Non-Hispanic, Outcome = 1 (Advanced Neoplasia) 

 Routine / Avg Risk Screening, Black Non-Hispanic, Outcome = 0 (Not Advanced Neoplasia) 

 

Upon compiling the code, execution of the executable from the command line was in the form of: 

"PINQ Skeleton.exe" 0.001 

 
where the first parameter is the desired epsilon value.  Note within the code sample that the final for loop traverses thirty times, each time 

executing the .NoisyCount() method.  The input epsilon value from the command line is the main parameter of the .NoisyCount method which 

then provides the answer with differential privacy applied at the provided epsilon value.   Sample output of this execution can be seen below. 
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0.001, 18, 44.344049528914 

0.001, 18, 1881.86559796183 

0.001, 18, -315.785133749554 

0.001, 18, 2106.74146919961 

0.001, 18, 651.228582546968 

0.001, 18, -37.073718748642 

0.001, 18, -268.026476956296 

0.001, 18, -445.898305492377 

0.001, 18, 363.859343247873 

0.001, 18, 812.100705873035 

0.001, 18, -52.9857873009428 

0.001, 18, 2300.44337566087 

0.001, 18, 1126.80854873549 

 
 
An additional note, if you use the PINQAgentLogger () function for the PINQueryable 

var protectedQuery = new PINQueryable<string>(source, new PINQAgentLogger()); 
 
then PINQ will provide the amount of information that is revealed.  For example, when the logger notes that the privacy change increment is 

111.11, this means that 111.11 total privacy units have been revealed.  The lower the number of privacy units, the less information is revealed 

and the higher the privacy.   

 


